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ABSTRACT 
The effectiveness of information retrieval systems is measured by 
comparing performance on a common set of queries and 
documents. Significance tests are often used to evaluate the 
reliability of such comparisons.  Previous work has examined 
such tests, but produced results with limited application. Other 
work established an alternative benchmark for significance, but 
the resulting test was too stringent. In this paper, we revisit the 
question of how such tests should be used. We find that the t-test 
is highly reliable (more so than the sign or Wilcoxon test), and is 
far more reliable than simply showing a large percentage 
difference in effectiveness measures between IR systems. Our 
results show that past empirical work on significance tests over-
estimated the error of such tests. We also re-consider comparisons 
between the reliability of precision at rank 10 and mean average 
precision, arguing that past comparisons did not consider the 
assessor effort required to compute such measures. This 
investigation shows that assessor effort would be better spent 
building test collections with more topics, each assessed in less 
detail. 

Categories and Subject Descriptors 
H.3.3 [Information Search and Retrieval]: Systems and 
Software --- performance evaluation. 

General Terms 
Experimentation, Measurement. 

Keywords 
Significance tests, mean average precision, precision at 10. 

1. INTRODUCTION 
Test collections are the principal tool used for comparison 

and evaluation of retrieval systems. These collections – typically 
comprised of documents, queries (or topics), and relevance 
judgments – have been a key part of information retrieval (IR) 
research for decades; the use of such collections is based on 
research and practice in collection formation (Spärck Jones & Van 
Rijsbergen, 1975; Voorhees & Harman, 1999) and measurement 
of retrieval effectiveness (Van Rijsbergen 1979, Ch. 7; Dunlop, 
1997; Järvelin, 2000; Buckley, 2004). Effectiveness is computed 
by measuring the ability of systems to find relevant documents. 
The measured score is most often used as an indicator of the 

performance of one system relative to another; with an assumption 
that similar relative performance will be observed on other test 
collections and in operational settings. 

When researchers report results of a retrieval experiment and 
show, using some effectiveness measure, that one retrieval system 
is better than another, significance tests are often used to evaluate 
the result. The tests provide evidence that the observed difference 
in effectiveness is not due to chance. Significance tests such as the 
t-test or Wilcoxon are commonly used. The question of how likely 
it is that a significant result observed on a test collection will 
continue to be observed in other settings has not been as widely 
investigated as have other aspects of test collections. 

Significance tests require that the data being tested has 
certain properties. Among the assumptions of the Wilcoxon 
signed-rank test and the t-test are that the values being tested – in 
this case, per-query effectiveness – are distributed, respectively, 
symmetrically and normally (Van Rijsbergen, 1979, Ch. 7); 
however, effectiveness rarely follows either distribution. The tests 
also assume that each set of per-query values being tested is a 
random sample from a broader population. What the tests 
determine, in comparing the runs of two retrieval systems, is 
whether the two samples are from the same population of 
effectiveness outcomes (the systems are equivalent) or different 
populations (one system gets better results than the other). 

It is in this context, where significance tests are widely used 
in IR experiments but their impact is little understood, that we 
undertook the work reported in this paper. Our results suggest 
new procedures for evaluation of retrieval systems and show that 
both a relative improvement in measured effectiveness and 
statistical significance are required for confidence in results. If 
significance is omitted or the improvement is small – as is the 
case in many SIGIR papers – results are not reliable. We also find 
that assessor effort, currently expended evaluating few topics in 
detail, maybe better spent examining more topics in less detail. 

After reviewing past work (Section 2), an existing 
methodology for computing the consistency of an evaluation 
measure is extended to assess the impact of using statistical 
significance when assessing IR systems (Section 3). The measures 
Mean Average Precision (MAP) and Precision measured at rank 
10 (P@10) are compared with a view to the assessor effort 
required to compute such measures (Section 4). The reliability of 
effectiveness measures are briefly examined on test collections 
with large numbers of topics (Section 5), Next, a previously 
unreported statistical effect in the methodology is shown; means 
of alleviating the effect are described and its substantial impact on 
past and current results presented (Sections 6 and 7), before 
conclusions and future work are outlined (Section 8). 

2. Previous work 
There is limited discussion of significance tests in IR 

literature. Van Rijsbergen (1979) detailed the shape and form of 
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data distributions to which the sign, Wilcoxon and t-tests can be 
applied. He showed that test collection data fails to meet all the 
requirements of any of the tests and warned that none can be used 
with confidence. Countering such caution, Hull (1993) described 
past (non-IR) work showing that the t-test can be reliable even 
when data being tested is not distributed normally. Hull described 
a range of significance tests, but did not empirically test them. 

Savoy (1997) investigated several significance measures and 
echoed Van Rijsbergen’s concerns. He proposed an alternative 
bootstrap method, based on sampling from a set of query 
outcomes; it is not clear whether this approach could be applied 
with the small sets of queries for which we have relevance 
judgments and to our knowledge it has not been used in practice 
to assess significance. 

The Wilcoxon and t- are common significance tests used in 
IR experiments. Both take a pair of equal-sized sets of per-query 
effectiveness values, and assign a confidence value to the null 
hypothesis: that the values are drawn from the same population. If 
confidence in the hypothesis (reported as a p-value) is ≤0.05 
(≤5%), it is typically rejected. Although such tests only consider 
the null hypothesis, it is common to assume rejection implies that 
values are from different populations with likelihood >95%. 

Apart from correctly determining significance or a lack 
thereof, the tests also produce type I and type II errors.  A type I 
error is a false positive; for a p-value of 0.05 (5%), one positive 
test in twenty is expected to be a type I error. A type II error is a 
false negative; the incidence of type II errors is unknown. In the 
statistical and medical communities, there has been concern that 
the theory underestimates the rate of type I error, but that the 
small samples used in typical studies mean that there is 
insufficient data to determine significance and thus that type II 
errors may be common, leading to useful methods being discarded 
prematurely (Matthews 2003). 

2.1 Zobel 
The first IR-based work to measure the utility of significance 

tests was that of Zobel (1998), who split the fifty topics of TREC-
5 into two disjoint sets of 25: one set holding topics 251-275, the 
other topics 276-300. Taking the 61 runs submitted to TREC-5, 
Zobel compared each run with every other, resulting in 1,830 
pair-wise comparisons. If a significant difference was observed 
between a pair of runs measured on the first 25 topics (that is, if 
the null hypothesis was rejected, p≤0.05), the ordering of the runs 
based on an effectiveness measure was noted and the same pair of 
runs was compared on the second 25 topics. If the ordering of 
runs on both sets was the same, the significance test was judged to 
be correct. If the ordering was different, a type I error was 
recorded. Zobel examined the 1,830 pairs under four effectiveness 
measures, including eleven-point average precision and P@10, 
resulting in a total of 7,320 comparisons. 

The significance tests assessed were ANOVA, Wilcoxon and 
the t-test. Zobel found all three to be accurate at predicting system 
ordering in the second set of topics: depending on the 
effectiveness measure used, between 97%-98% for the t-test and 
ANOVA, and 94%-98% for Wilcoxon. Significance via the t-test 
was observed in 3,810 pairs; in all but 4 of these pairs ANOVA 
also found significance. Significance via the Wilcoxon test was 
not observed in 14 of the 3,810 pairs found by t-test, but 
significance was observed in an additional 724 pairs. 

It is to be expected that significance where 0.04<p≤0.05 will 
have more type I errors than significance where 0.01<p≤0.05, and 

even more if significance of p≤0.01 is observed. However, Zobel 
concatenated all such observations into a single measure of type I 
error for each significance test with no indication of the 
distribution across p values. This lack of detail in Zobel’s results 
is addressed in the work presented here. 

2.2 Voorhees and Buckley 
Expanding on Zobel’s topic-partitioning methodology, 

Voorhees & Buckley (2002) examined a simple form of 
significance: measuring the absolute difference in MAP between 
two systems. Their aim was to determine the size of difference 
observed for the first set of topics before it was possible to be 
confident that system ordering would be preserved in the second 
topic set. The runs used were those submitted to the ad hoc track 
of TRECs 3-10. The total number of runs was 476;1 the number of 
pair-wise comparisons made was 16,678 (comparisons were 
restricted to those pairs of runs submitted to the same year of 
TREC). Voorhees & Buckley randomly split the 50 topics in each 
TREC year into two disjoint sets of 25 and computed errors rates 
for 20 bins of MAP differences, 0%-1%, 1%-2%, up to 19%-20%. 
The whole procedure was repeated 50 times to ensure that any 
random variation in topic selection was smoothed out.  

They found that an absolute difference of between 8%-9% 
was required in the first set of 25 topics before the chance of the 
both sets of topics having the same run ordering was over 95% 
(that is, the error rate was less than 5%). Because the runs for each 
year of TREC covered only 50 topics, a 25/25 split was the largest 
that could be measured. Plotting the error rates by topic set size 
showed that as size increased, error rates reduced with a clear 
exponential trend. Voorhees & Buckley projected the trend lines 
forward to topic sizes of 50 and concluded that an absolute 
difference in MAP of 5%-6% would be needed between two runs 
measured on 50 topics before one could be 95% confident that the 
ordering measured on the topic set would also occur on a different 
set of  50 topics. 

The result of Voorhees & Buckley made collections such as 
TREC appear less useful than they were perhaps thought to be, as 
few IR experiments comparing retrieval runs produce an absolute 
difference in mean average precision as large as 5%. However, 
they did not study one aspect of measuring the effectiveness of 
runs, namely the impact of significance tests on error rates. The 
use of such tests may reduce the difference in MAP required 
before experimenters could be confident that their result will hold 
when tested on other topic sets. The starting point of our work 
was a re-examination of these results, as we now describe. 

3. Error rates reconsidered 
Our first experiment was a re-run of the Voorhees & Buckley 

experiment with two further TREC runs added: 2 and 11. For 
consistency with the methodology of the earlier work, the bottom 
25% of runs (as ranked by their MAP) were eliminated from the 
comparisons. Across the ten TRECs, 555 runs were pair-wise 
compared, producing 18,460 comparisons. As with Voorhees & 
Buckley, each comparison (of run ordering across two randomly 
selected topic sets) was repeated 50 times. Figure 1 shows the 
error rates computed for each of the bins of absolute difference in 
MAP (note only topics set sizes from 5 to 25 were computed). As 
can be seen, the larger the difference in MAP observed in the first 
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due to a concern that the poorer runs might skew results. 



topic set, the more likely the run ordering in the second set 
matches that found in the first (that is, the error rate is reduced). 
As with Voorhees & Buckley, to overcome the limitation of only 
being able to calculate error rates for sets of 25 topics, trend lines 
were projected2 from the data to topics set sizes of 50, as shown in 
Figure 1. (As can be seen the trend lines appear to fit the data 
well, however, as will be seen later in the paper, trend lines 
provide limited accuracy.) According to the trend, when 
measuring the difference between two runs on TREC data, if an 
absolute difference of more than 5% is observed, one can be 95% 
confident that the ordering of the two runs will be preserved for 
different topic sets. 
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Figure 1: Projected trends of error rates for absolute 
differences in MAP up to topics of size 50. 
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Figure 2: Error rates for relative differences in MAP with 

trends projected to topics of size 50. 

The figures obtained in this experiment were close to those 
reported by Voorhees & Buckley, giving us confidence that our 
software was correctly implementing their methodology. 

Voorhees & Buckley chose to focus on absolute differences, 
to test a well known rule of thumb in evaluation from Spärck 
Jones (1974), who stated that an absolute difference of less 5% 
between two runs was not meaningful. Most reported research, 
however uses relative percentage differences when computing the 
magnitude of difference between two runs. Therefore, we re-ran 
the experiments to compute the error rates for relative differences 
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an exponential growth from existing data. 

in MAP. As such differences tend to range more widely than 
absolute differences, the bins used were also wider: 0%-5%, 5%-
10%, up to 95%-100%; higher relative differences were not 
considered. Not all bins were graphed, either to remove clutter or 
because insufficient data was available. The data generated from 
the repeated experiment, along with projection lines, is shown in 
Figure 2. As can be seen, according to the projection a relative 
difference of 25% must be observed to give confidence that the 
result for the first topic set is significant. Such a large difference, 
although sometimes observed, is much greater than differences 
measured in most retrieval experiments. The implication being 
that few observed differences between IR systems are significant. 

3.1 Considering significance 
We then evaluated the impact of introducing a significance 

test, re-running the experiment but only considering pairs of runs 
with statistically significant differences. The first test used was the 
t-test, with 0.01<p≤0.05 (that is, confidence in the null hypothesis 
was 1%-5%). Figure 3 shows the impact of significance. The 
relative percentage difference in effectiveness required in order to 
obtain significant results when measuring runs on 50 topics was 
projected to be less than 10%; substantially lower than the 25% 
required when no significance test was applied. The experiment 
was repeated, but only those comparisons with significance at 
level 0.04<p≤0.05 were considered (see Figure 4). Here it can be 
seen that the required relative difference increases, but is still 
much less than the 25% required without any significance test. 
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Figure 3: Error rates for those relative differences in MAP for 

which a t-test produced significance 0.01<p≤0.05. 

Note that, because only pairs of runs where significance was 
observed were used, the quantity of data was greatly reduced. 
Consequently, the data points in Figure 3 and Figure 4 were more 
erratic and the accuracy of fit of the projections was not as high as 
in the previous figures. Insufficient data was available to plot a 
projection line for relative differences in the 0%-5% and 5%-10% 
bins. Note also that all the computed error rates (for topics 5-25) 
in Figure 3 and Figure 4 are well above the 5% error rate line. 
Note also, for small topic sets, even with statistical significance 
between two runs in the first topic set, there is no guarantee that 
the ordering will be preserved for other sets of topics. 

Other forms of significance were also examined. For size 25 
topics sets across a range of relative differences (i.e. 10%-30%) 
the tests – sign and Wilcoxon measured at 0.01<p≤0.05 – were 
not as accurate as the t-test: producing respectively 17%-8% and 
16%-10% error rates compared to 13%-7% error for the t-test. 
Zobel (1998) also observed Wilcoxon producing more type I 



errors than the t-test. Even though use of sign or Wilcoxon 
violates fewer assumptions on the nature of the data being tested, 
the t-test appears to be more reliable. 
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Figure 4: Same as Figure 3 but for 0.04<p≤0.05. 

3.2 Type I and type II errors 
Another perspective on significance tests is given by 

consideration of the full sets of 50 queries. On the sets of runs 
described above, we used all 50 queries to compare every pair of 
runs as above, to count the proportion of runs where a significant 
test returned a positive result. We then binned these counts by the 
relative difference in MAP between the runs. 

For the t-test, at a relative difference in MAP of up to 10%, 
only 1.3% of comparisons were significant for p≤0.05. For 
differences of up to 30%, around 30.0% of comparisons were 
significant, while for differences in the band 20%-30% we 
observed that 57.3% of comparisons are significant. For the sign 
test and differences in MAP of up to 10%, the proportion of 
comparisons judged significant was 8.6%, a dramatic difference.  
For higher differences in MAP, results were similar to the t-test.  
The Wilcoxon test was less ready to pronounce small differences 
as significant, starting at 6.6% of comparisons where the relative 
difference in MAP was less than 10%, but reported that 78.0% of 
differences in the band 20%-30% were significant. 

Clearly these tests are not interchangeable. Given the broad 
agreement between these results and those discussed above, we 
again conclude – tentatively, at least – that the t-test is more 
reliable than the alternatives, based on the expected false-positive 
rate of 5%. (However, the results also suggest that 5% may be an 
overestimate, possibly due to the strong correlation between per-
query scores produced by different systems.) Both sets of results 
indicate that, assuming a false-positive rate of 5%, a positive t-test 
with a relative MAP difference of less than 10% is arguably more 
likely to be a type I error than a significant result. 

This conclusion is consistent with the observation that, in 
practice, only a minimal alteration to the rankings produced by 
retrieval systems – such as exchange in order of a relevant and a 
non-relevant document in each of a fraction of the queries – is 
sufficient to produce a small relative MAP difference. That is, 
such improvements would be imperceptible to a user. 

This analysis provides an upper bound for the proportion of 
type II errors. For example, for relative differences in MAP in the 
range 40%-50%, we observed that 87.7% of t-tests are positive, 
rising to 96.2% for MAP differences in the range 90%-100%. 
Only the residue – 12.3% and 3.8% respectively – are candidate 
type II errors. These proportions rise to 96.1% and 100.0% 

respectively when runs with a low MAP score (<0.1%) are 
discarded, and to 100% in both cases when runs with MAP <0.2% 
are discarded. For comparisons of runs with reasonable levels of 
effectiveness, we conclude that type II errors are rare. 

3.3 Examining past SIGIR results 
In view of these observations, some recent reported results 

were almost certainly invalid. Only about half of comparisons 
with a MAP difference of around 20% are significant, yet in 
recent SIGIR papers many authors claim such differences as a 
valid result while failing to undertake a significance test. We 
contend that results based on MAP differences of this order are 
meaningless without a significance test. 

We examined a selection of papers presented at SIGIR in 
2003 and 2004. We chose 26 papers that evaluated a well-defined 
retrieval task where MAP was a natural choice of effectiveness 
measure, and investigated what measures people actually used. 

We found that significance was not explicitly reported in 14 
of the papers. In two it was implied such tests had been tried, but 
outcomes were not given. In three or four of these papers, the 
improvements were large and arguably a significance test was 
unnecessary. However, in at least six papers (23% of the sample) 
the reported improvements were small, sometimes no more than a 
few percent in relative MAP. There is no reason to suppose that 
these are significant variations. 

Some of these were questionable for other reasons. One 
paper reported large percentage improvements in MAP, but from 
a baseline of 0.03; it is unclear whether such results should be 
regarded as important. Another reported changes of reasonable 
magnitude, but on only 10 queries. In two papers no numbers 
were given, with all results presented graphically. 

Among the 12 papers with significance tests, one used both 
ANOVA and the t-test, five each used either the t-test or 
Wilcoxon’s test, and in one, the test was not identified. Most of 
these papers reported relative change in MAP, while a couple 
reported relative change in mean reciprocal rank (MRR) and 
P@10. Large differences in MRR and P@10 were in some cases 
not significant – further evidence that untested differences in these 
measures may not be a reliable indicator of performance. For 
many of the significant results, absolute MAP differences were 
much less than 5%, indicating that this test is too stringent. 

In four papers, two using Wilcoxon and two using a t-test, 
authors reported small improvements in MAP (of less than 5%, 
and one as low as 1.6%) that were significant. On the admittedly 
slender basis of the summary information presented in the paper, 
it is our guess that these results are likely to be type I errors. 

Overall, for rather less than half of the papers it was clear 
that the results were robust. 

4. P@10 and assessor effort 
The results presented so far used MAP to compute ordering 

of runs and statistical significance. Another common measure in 
IR research is P@10. Several past papers have compared these 
two measures. Tague-Sutcliffe & Blustein (1994) showed MAP 
discriminated between runs better than P@10. Buckley & 
Voorhees (2000) used the TREC query track, which has 21 
different versions of each topic. Buckley & Voorhees compared 
the consistency of measures in ordering runs across the different 
versions of each topic. MAP was shown to be more consistent 
than P@10. Similar conclusions were drawn when Buckley & 
Voorhees (2004) examined measure stability when test collections 
were degraded by removing relevant documents. Again results 



from their experiments show that P@10 was not as reliable as 
MAP. Given that our experimental setup allowed easy comparison 
of MAP and P@10, we undertook a fresh evaluation of the two 
measures. 
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Figure 5: Error rates for relative differences in P@10 with 

trends projected to topics of size 50 

Figure 5 shows the error rates for percentage differences 
between two runs against the topic set size. Compared with the 
graph for MAP in Figure 2, the projection out to topic sets of size 
50 reveals that the two measures are almost identical: a 25%-30% 
relative difference is required to be confident in run ordering 
being preserved. Note, however, that the data points from topics 
sets 5-25 show P@10 with an error rate a few percent higher than 
the equivalent point on the MAP graph. However, the decrease in 
error rate for larger topic sets is greater for P@10 than it is for 
MAP, which results in the projection for 50 topics being very 
similar. Figure 6 shows error rates for P@10 for those 
comparisons for which a t-test at level 0.01<p≤0.05 is observed. 
In comparison with Figure 3, it can be seen that significance 
reduces the magnitude of relative difference required for P@10 
but does not reduce it as much as for MAP. 

In agreement with previous work, therefore, we conclude that 
MAP is a more reliable measure than P@10. We believe the 
simple reason for this is that MAP takes into account the location 
in a ranking of all known relevant documents, whereas P@10 is 
influenced by at most 10. We contend that the more relevant 
documents (that is, data points) an effectiveness measure uses, the 
more accurate that measure has to the potential to be. 
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Figure 6: Error rates for those relative differences in P@10 

for which a t-test produced significance 0.01<p≤0.05. 
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Figure 7: Top graph shows error rates for 25% relative 
difference in P@10 and MAP plotted against topic size; 

bottom graph shows the same rates and measures normalized 
by assessor effort. Note scale on x-axis removed. 

There is, however, one aspect to the comparison of MAP and 
P@10 that has not previously been considered. In comparisons of 
the two measures in past work and in the experiments reported 
above, it was assumed that the test collection on which the 
experiments were conducted was already created; all relevance 
judgments were made. However, if a new collection is to be 
created, the distinction between the measures is not as clear. MAP 
as measured here uses all relevant documents identified in TREC, 
which were taken from a pool of documents formed from the top 
100 documents ranked by each submitted run for each topic; 
P@10, however, only needs assessment of a pool formed from the 
top 10 documents of each run for each topic. Across TRECs 2-
10,3 the size of a pool formed from the top 10 is 11%-14% of the 
                                                                 
3 In TREC-11, pools were formed to a depth of 50, and thus we 

do not consider it in this part of the analysis. 



size of pools formed from the top 100 documents returned by each 
run. That is, if one were to reduce pool size in this way, the 
assessment effort would be greatly reduced. Indeed, if instead of 
plotting error rate against topic set size, one plots against assessor 
effort (estimated as the number of topics multiplied by assessor 
effort to assess a topic to pool depth 10 or 100), the lower graph 
in Figure 7 is formed. P@10 appears to give a much lower error 
rate than MAP for a given amount of assessor effort. 

Spending substantially less assessor effort building a “P@10 
only test collection” is certainly attractive; however, there is one 
unknown about such a collection. The reason that TREC 
organizers form pools from the top 100 results of each run 
(instead of the top 10) is to try to ensure the collection will be 
effective at assessing retrieval systems that did not contribute to 
the pool. A new type of retrieval system tested on a collection 
built from a shallow pool may retrieve relevant documents that 
were not assessed when the collection was formed. Such a system 
is likely to be better assessed using a collection where more 
documents were judged. It is important to point out however, that 
the degree to which this is a problem in practice is unknown. The 
stability of test collections – formed from shallow pools – at 
assessing new retrieval systems is as yet untested. If a test 
collection is not going to be re-used in later assessment, forming 
collections from shallow pools appears to be an efficient and 
accurate approach. 

One can consider using the time saved by reducing pool 
depth to form a test collection with many more topics. Dividing 
the number of topics per year at TREC (50) by the reduction in 
pool size (11%-14%), one can estimate that test collections with 
topic set sizes in the range 357-4544 could be formed if pool 
depths were kept to 10. The density of relevant documents at the 
top of a ranking is higher than the density lower down, so an 
additional benefit of examining more topics to a shallow depth is 
that more relevant documents will be found for the same amount 
of assessor effort as is expended examining 50 topics to a depth of 
100. Counting the number of relevant documents typically found 
in a pool formed from the top 10 of runs submitted to TRECs 2-
10, one can compute that 1.7-3.6 times more relevant documents 
would be found by using shallow pools. Intuitively, it is clear that 
the more data points – relevant documents – available, the more 
reliable a run comparison will be. We speculate that such a 
collection would be better at assessing new retrieval systems, than 
a collection formed from deep pools, such as TREC. These 
considerations and the results above suggest that, in contrast to 
the current TREC methodology, it is better to have larger numbers 
of topics (perhaps 400) and shallower pools (perhaps depth 10). 

5. Examining large topic sets 
To examine some aspects of the reliability of measuring runs 

on large topic sets, we ran 10 variations of the Zettair IR system 
(configured with 5 different ranking functions each using either 
title or title+description of topics) across approximately 400 
                                                                 
4 Note that the calculation ignores two factors. If one gave a group 

of assessors more topics to assess, the overall time taken to 
become familiar with the subject matter of the topics would 
increase. However, Zobel (1998) showed that there is a greater 
density of relevant documents near the top of a ranking. There is 
anecdotal evidence from TREC and other environments that 
assessors can judge relevant documents more quickly than non-
relevant, which may reduce assessment time. 

topics produced from 10 years of TREC. Consider any run and a 
sample of 5 queries; these queries have an average effectiveness. 
Over a series of samples (say ten) the standard deviation in the 
averages can be determined. We can then average the standard 
deviation across the 10 samples. (That is, we determine the 
average standard deviation of the MAP.) As the total size of the 
samples is small compared to the number of topics, the samples 
are more or less independent; by the central limit theorem, the 
averages follow a normal distribution regardless of the 
distribution of the per-query results. 

We observed that, as sample size was increased, the standard 
deviation fell. At a sample size of 5, it was 0.056; to take one run, 
where the observed average was 0.283, we expected 95% of 
averages of size-5 samples to be between 0.171 and 0.395. At a 
sample size of 25 the average standard deviation was 0.025, so 
that 95% of averages were between 0.233 and 0.333. Observing 
this trend, the standard deviation continued to decline with 
increasing sample size, dropping below 0.01 at about 150-200 
queries, thus suggesting that effectiveness over a large number of 
queries – when determined in a consistent way – approaches an 
absolute value for a given run. 

6. Selection without replacement 
At the core of the methodology for measuring the accuracy of 

significance tests used here (and in the previous work of Zobel, 
1998 and Voorhees & Buckley, 2002) is an assumption that the 
two disjoint sets of topics selected from the original 50 were 
formed independently of each other. Independence is critical, as, 
if an ordering of runs and some measure of significance was 
observed on one set, what was tested in the methodology was the 
reliability of that significance measure to predict that the ordering 
was preserved on another wholly independent topic set. If the two 
sets were randomly selected from the large spread of topics that 
are typically submitted to an operational search engine, the chance 
of there being overlap of topics is low. Therefore, the two sets in 
the methodology were chosen to be disjoint. 

However, ensuring the sets were disjoint removes 
independence from the selection process. To illustrate, when 
forming two topics sets of size 5, the first is randomly chosen 
from the available 50 topics. In order to ensure the second set is 
disjoint from the first, selection of topics is performed without 
replacement; random selection of topics for the second set is from 
the remaining 45. The choice of the topics in the first set has 
influenced the choice in the second, but choosing 5 topics from 45 
is not that different from choosing 5 from 50. When building two 
topics sets of 25, however, after randomly selecting one set, the 25 
for the second are already chosen. Here, the selection of the 
second set was wholly dependent on the selection of the first. 

As the formation of the two subsets was not an independent 
process we examined the impact of dependent formation of 
disjoint topic sets from a relatively small topic pool of 50. When 
measuring the difference between two runs, a & b, over a set of 
topics, one will typically find that for some topics, a is better than 
b (a>b), for others, b is better than a (b>a), and for some topics, 
there is little difference between the runs (a≈b). Generally, if more 
topics show a>b, then, averaging across all topics, a will be 
measured to be better than b. When forming two large disjoint 
topic subsets, one set could hold nearly all the a>b topics. The 
second set would therefore, be composed of what remains: mainly 
a≈b and b>a topics. With such sets, it is likely that the first set 
will show a is better than b and the second set will show the 



opposite. The difference in MAP in the first set is likely to be 
large, as that set is composed mainly of a>b topics. If the 
difference in the first set is larger than a certain measure of 
significance (such as 25% relative difference in MAP), because 
the second set shows an opposite run order, the measure of 
significance would be shown to predict run ordering wrongly. 

Such an improbable selection of topics is unlikely when 
sampling from a large number of topics; the probability of such a 
selection occurring when selecting from 50, however, is relatively 
high. We concluded that the methodology, used here and in 
previous work, may be identifying artificially high error rates for 
significance measures. 

We sought to understand if such topic set selections 
occurred. It was assumed that any improbable topic selections 
would be identifiable by a large difference in MAP (between the 
two runs) in the first topic set and a high error rate in predicting 
run order. The selections would be more prevalent in larger topic 
subsets (e.g. 15-25) than in the smaller subsets (5-10). As stated 
earlier, each pair-wise comparison between runs was repeated 50 
times, each time with a different random selection of topic sets. 
For this analysis, the 50 pairs of topics – of sizes 5, 10, 15, 20 and 
25 – selected for each pair-wise comparison were sorted by the 
difference in MAP measured in the first topic set. The error rate in 
predicting run ordering across the two sets was measured and the 
average rate across all comparisons was plotted on a graph as 
shown in Figure 8. Each data point in the graph was an average of 
error rates measured across 18,460 pair-wise comparisons. The 
points on the left are the average error rate for the topic sets that 
had the smallest difference in MAP across the 50 trials of each 
pair-wise comparison. The points on the right are the average for 
sets producing the largest MAP difference. Scanning the graph 
left to right for topics of size 5, the prediction of run ordering 
improves as differences of MAP in the first set grow, though at 
the far right of the graph a slight increase in error rate appears. As 
can be seen, for larger topic sets, the slight increase in error on the 
right grows with topic set size as the dependency between the first 
and second topic sets grows. This we took to be evidence that the 
dependency between large topic sets has a substantial influence on 
the error rate measured by the methodology used by Zobel (1998), 
by Voorhees and Buckley (2002), and used so far in this paper. 
The rising level of error on the right side of the graphs is not a 
true measure of error, but an artifact of the methodology. 
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Figure 8: Error rates of different topic set sizes for topic 

sets selected without replacement. 

Since error rates appear to be artificially high, we view all 
work conducted here and in past works as indicating an upper 
bound on differences required between systems, which was 
encouraging as actual differences required for 95% confidence 
were probably lower. Attempts to determine how much lower 
were the next stage of work. 

We attempted to determine a means of removing the 
improbable topic set selections from the data. However, this was 
soon abandoned as each attempt resulted in error rate graphs with 
unexpected properties that questioned the validity of each attempt. 
An alternative approach was explored. 

7. Selection with replacement 
If one were forming two topic sets sampling from a large 

population to test a pair of runs a and b, across the types of topics 
(a>b, a≈b, and a<b) it would be expected that the distribution of 
types in the two sets would be similar. As was shown in the 
Section above, when selecting without replacement, such 
expectations are not always fulfilled. A solution to ensure 
distributions are the same is to select with replacement: to pick 
the first topic set from the population of 50 queries and do the 
same with the second. The disadvantage to such a strategy is that 
some topics will be common to both sets, which may cause error 
rates to be underestimated. However, it was decided to examine 
such an approach as it would establish a lower bound on the error 
rates experimenters could expect when using TREC collections, 
thereby complementing the upper bound determined by the earlier 
work of this paper and by Voorhees and Buckley (2002). 
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Figure 9: Error rates for relative differences in MAP, trends 
projected to topics of size 50; topics selected with replacement. 
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Figure 10: Error rates for those relative differences in MAP 
for which a t-test produced significance 0.01<p≤0.05. Topic 

sets selected with replacement. 



The entire procedure for computing error rates described in 
Section 3 was repeated, but using selection with replacement for 
topic selection. To save time in computing all the 18,460 pair-
wise comparisons for all the topic sets (repeated 50 times), only 
sets of size 5, 10, 15, 20 and 25 were processed. The graph in 
Figure 9 shows the resulting error rates. Here, it can be seen that 
for a topic set size of 50, a relative difference of between 15%-
20% is required in order to be 95% confident that the order of 
runs will be preserved across different topic sets, less than the 
25%-30% percentage difference computed using the previous 
methodology. When only considering those comparisons where a 
percentage difference was recorded and statistical significance 
(0.01<p≤0.05) was observed, error rates dropped substantially 
(see Figure 10). Here it can be seen that, if statistical significance 
is observed for any percentage difference between two runs, one 
can be highly confident that the ordering of the runs will be 
observed on different topic sets. The drop in error rate when 
significance was applied to the with replacement topic sets was 
much more substantial than to the sets formed without 
replacement. This effect was repeated when P@10 was examined 
as shown in Figure 11 and Figure 12. We speculate that the 
improbable topic selections observed in the without replacement 
methodology caused particularly high error rates for significance 
tests. 
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Figure 11: Same as Figure 9 but for P@10. 
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Figure 12: Same as Figure 10 but for P@10. 

8. Conclusions and future work 
We established upper and lower bounds on the error rates of 

significance applied to the TREC test collections. From the 
results, it was clear that significance substantially increases the 
reliability of retrieval effectiveness measures. When considering 

upper and lower bounds for 50 topics, at worst almost any 
measure of t-test significance coupled with at least a 10% relative 
difference in MAP between two runs is significant; at best, once 
significance is observed, experimenters can view the result as 
significant. However for small topic set sizes (≤25) observing 
statistical significance does not guarantee that a result will be 
repeatable on other sets of topics. 

In comparisons of significance tests, the t-test was shown to 
produce lower error rates than sign and Wilcoxon. It was shown 
that, if a set of relevance judgments have already been created, 
MAP is a more reliable effectiveness measure than P@10. 

If a collection is to be created, once assessor effort is taken 
into account, P@10 produces lower error rates for a given unit of 
assessor effort than MAP. We also showed that building test 
collections with shallow pools locates more relevant documents, 
which we believe results in more accurate measurement. 

Future work will examine how to better sample topic sets to 
more reliably estimate error rates: stratified sampling will be 
explored. We will also examine the error rates of relevance 
judgments built from shallow pools, particularly comparing error 
rates of P@10 to MAP measured with small numbers of relevant 
documents. 
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