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Abstract

This paper studies a Stackelberg game wherein a sender (leader) attempts to shape the information of a less informed
receiver (follower) who in turn takes an action that determines the payoff for both players. The sender chooses signals to
maximize its own utility function while the receiver aims to ascertain the value of a source that is privately known to the
sender. It is well known that such sender-receiver games admit a vast number of equilibria and not all signals from the
sender can be relied on as truthful. Our main contribution is an exact characterization of the minimum number of distinct
source symbols that can be correctly recovered by a receiver in any equilibrium of this game; we call this quantity the
informativeness of the sender. We show that the informativeness is given by the vertex clique cover number of a certain
graph induced by the utility function, whereby it can be computed based on the utility function alone without the need
to enumerate all equilibria. We find that informativeness characterizes the existence of well-known classes of separating,
pooling and semi-separating equilibria. We also compare informativeness with the amount of information obtained by
the receiver when it is the leader and show that the informativeness is always greater than the latter, implying that the
receiver is better off being a follower. Additionally, we also show that when the players play behavioral strategies, an
equilibrium may not exist.

1. Introduction

The real world has no dearth of examples of interactions
between parties with asymmetric information. A player’s
decisions in these interactions are driven by the alignment
of its utility function with that of other players and the
possibility of shaping the information of the other players
in order to affect the eventual actions chosen. Signalling
is the regime where a more informed player (or sender of
information) attempts to shape the information of a less
informed player (or the receiver) who in turn takes an
action that determines the payoff of both players. The
sender cannot take actions of its own, and hence attempts
to maximize its utility by sending suitable signals to the
receiver.
Our interest in this paper is the quantification of the

number of truthful signals revealed by the sender in the
process of signalling to the receiver. The sender may
choose to misreport or reshape its information in order
to achieve its own benefits. Thus not all signals from
the sender can be relied on as truthful. Indeed, this has
long been known in the Bayesian signalling games litera-
ture; distinct classes of equilibria in which sender’s signals
are informative or non-informative are known through the
concepts of pooling and separating equilibria [1]. While
the non-informativeness of the sender’s signals is generally
understood, the precise extent of the non-informativeness
and the structure of the sender’s type space that is cor-
rectly revealed to the receiver is, to the best of our knowl-
edge, not fully understood.

We seek to fill this gap in this paper. We study a par-
ticular setting of signalling in which the sender aims to
maximize a general utility function, but the receiver’s goal
is to maximize the number of sender types correctly re-
covered. We ask the question – what is the amount of
information that such a receiver can glean through signals
sent by the sender? We quantify the amount of informa-
tion by the minimum number of distinct source symbols or
sender types that can be correctly inferred by the receiver
in any equilibrium of the game. Our main contribution is
a characterization of this quantity, called the informative-
ness of the sender, solely in terms of the utility function
of the sender.

1.1. Main findings

Following is a brief outline of our model. The source
or type of the sender is chosen from a finite source al-
phabet X and is known privately to the sender. The
sender’s signalling strategy maps each source symbol to
a signal and the receiver’s strategy maps the signal re-
ceived (noiselessly) to a recovered symbol. The sender has
a utility that is a function of the recovered symbol and the
source symbol. The sender chooses its signalling strategy
to maximize its utility for each source symbol whereas the
receiver chooses its strategy to maximize the number of
symbols that are correctly recovered.
Since we are concerned with signalling, we study this

problem through the Stackelberg equilibrium concept with
the sender as the leader and the receiver as the follower.
The sender may behave differently for different values of

Preprint submitted to Elsevier October 7, 2022

http://arxiv.org/abs/2202.10145v2


the source, ranging from being truthful, partially truth-
ful or completely prevaricating, depending on its utility
function. Our overarching goal is understanding the in-
formativeness of a sender, i.e., the minimum number of
symbols correctly recovered by the receiver in any Stack-
elberg equilibrium. Informativeness provides a metric by
which one can measure the minimum amount of informa-
tion that is revealed to the receiver in any interaction with
the sender.
In general this game admits a vast number of equilib-

ria, each yielding a different number of recovered symbols,
whereby computing the informativeness is nontrivial. Our
first main finding is a structural characterization of any
Stackelberg equilibrium strategy of the sender. We define
a graph, called the strong sender graph, on the source al-
phabet X and induced by the utility function U . We show
that in any Stackelberg equilibrium strategy, the sender
partitions this graph into cliques and sends a unique sig-
nal for each clique. Thus all source symbols in the same
clique are mapped to the same signal. The receiver, with
this limited information, can recover the source only to
the granularity of these cliques. Thanks to the structural
characterization, the informativeness is given by the vertex
clique cover number of this graph. This characterization
gives the informativeness as a function of only the utility
function of the sender, without the need to enumerate the
equilibria of the game.
In Bayesian signalling games, one can categorize Stack-

elberg equilibria into three known categories namely, sepa-
rating, pooling and semi-separating equilibria. We extend
these notions in a natural manner to our game and find
that the value of informativeness characterizes the exis-
tence of these equilibria. If the informativeness is |X |,
then there exist only separating equilibria, if the informa-
tiveness is unity then there exist only pooling equilibria,
whereas if the informativeness is greater than unity but
less than |X |, there exists a semi-separating equilibrium.
In the last part of our paper, we study a Bayesian ana-

logue of our setting; remarkably we find that it need not
admit an equilibrium. This example demonstrates some
departures from the usual setting of Bayesian signalling
games. Since in our setting the receiver looks to maxi-
mize the number of recovered symbols in a distribution-
free sense, the receiver’s objective is nonlinear in the pos-
terior distribution. Due to this the insights and intuitions
from the signalling games literature do not extend directly
to our setting. Mathematically this nonlinearity also leads
to discontinuities that jeopardize the existence of an equi-
librium. We find these observations to be instructive and
may be of independent interest.
In a related but distinct model, this setting was studied

with the receiver as the leader [2, 3]. There it was shown
that the independence number of another graph, called the
weak sender graph, quantifies the number of symbols that
can be recovered by the receiver; this quantity is called the
information extraction capacity of the sender with utility
U . Surprisingly, we show that this number never exceeds

the informativeness of U . Hence the receiver always ben-
efits from a being a follower: the minimum amount of
information recovered by the receiver when it is a follower
is no less than the maximum information it recovers when
it is a leader. In fact, when U is symmetric, there is opti-
mization duality at play here: the information extraction
capacity and the informativeness are given by primal-dual
integer programs. This connection between a switch in the
order of commitment and a primal to dual transformation
is fascinating, whose implications we hope to understand
better in the future.

1.2. Related Work

Within game theory, our model can be identified as a
game with incomplete information (in particular a sender-
receiver game) [4]. There are two broad subclasses in this
setting – screening games and signalling games [5]. In
screening games, the uninformed player is the leader while
in signalling games, the informed player is the leader, as
in our model. Most of the works in such games consider
a Bayesian setting; see for example [6] where information
design or Bayesian persuasion is the subject. In addition
to a leader-follower setting, there are settings such as the
one studied by Crawford and Sobel [7] where the players
moved simultaneously. In the setting studied in [6] the
sender commits to its choice of policy, and the receiver
responds to it. Thus, the concept of Stackelberg equilib-
rium [8] is used to study the sequential move game in [6]
instead of Nash equilibrium [9] as done in [7]. However in
all of these studies concerning the interplay of information
and games, to the best of our knowledge, quantification of
the information transmitted remains open.
Having said that, strategic communication has been

studied from the perspective of information theory by
Akyol, Langbort and Basar in [10, 11], Treust and Tomala
in [12, 13] and by Vora and Kulkarni in [2, 3, 14].
In [10, 11], a sequential communication setting involv-
ing quadratic distortion measures, Gaussian sources and
side information is studied. Treust and Tomala studied a
persuasion problem with communication constraints [13],
while in [12] they studied a similar problem with side in-
formation with the receiver. The main contribution is in
characterizing the optimal payoff of the sender using the
information theoretic capacity of the channel. Signalling
games in the communication set up have also been studied
in [15, 16, 17, 18, 19, 20, 21]. To the best of our under-
standing neither of these studies address the question we
ask. Our earlier works [2, 3, 14] study a setting similar
to ours but as a screening game, while ours is a signalling
game.
There has also been a lot of recent interest in the in-

terplay of games and graphs [22, 23, 24, 25]. The most
common model studied involves denoting the players by
the nodes or the vertices of the graph where two nodes are
adjacent if their utility functions are dependent on each
other’s action. For the graphs arising in our study, the
nodes are elements from the source alphabet and the edges
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of the sender graphs are induced by the utility function of
the sender. This, to the best of our knowledge is a novel
interplay of game theory and graph theory.
The paper is organized as follows. Section 2 formulates

the problem and the Stackelberg equilibrium is character-
ized in Section 3. In Section 4, we introduce and char-
acterize the informativeness of the sender and study its
applications. We study behavioral strategies in Section 5
and in Section 6 we conclude the paper.

2. Problem formulation and background

2.1. Problem Formulation

Let X = {0, 1, 2, . . . , q − 1}, where q ∈ N, be a set of
source symbols observed by the sender and let x ∈ X
represent any one such symbol. The symbol x ∈ X
can be thought of as the sender’s type. The sender pri-
vately observes the symbols x and transmits a message1

y = s(x) to the receiver using the strategy s : X → X .
The receiver receives this message y noiselessly and at-
tempts to recover the sent message using the strategy
g : X → X where g(y) = x̂ is the recovered message.
Let AS = {s|s : X → X}, AR = {g|g : X → X} denote
the strategy sets of the sender and receiver, respectively.
When x ∈ X is the symbol observed by the sender and

x̂ ∈ X is the symbol recovered by the receiver, the sender
obtains a utility U (x̂, x), where U : X × X → R is the
utility function of the sender. Define,

D(g, s) = {x ∈ X|g ◦ s(x) = x}, (1)

as the set of perfectly recovered symbols when the sender
and the receiver play s and g, respectively. We posit that
the sender chooses s ∈ AS to maximize U (g(s(x)), x) for
each x, and the receiver maximizes |D(g, s)| by choosing
g ∈ AR. Since the receiver has a deterministic objective
and the sender can observe the source x ∈ X , the proba-
bility distribution of x has no bearing on the problem so
long as it has support X .
We will study a game where the sender commits to a

strategy first and the receiver responds it, and analyze it
through the Stackelberg equilibrium [8] with the sender
as leader and the receiver as the follower. We will also
compare our results to the setting where the receiver is the
leader. The latter setting has been studied in [2, 3, 14].
We outline both settings in the sections below.

2.1.1. Receiver as the follower: Deterministic strategies

All terms corresponding to the case with the receiver as
the follower will be denoted with the subscript F and all
terms corresponding to the case with the receiver as the
leader will be denoted with the subscript L.
The Stackelberg equilibrium (S.E.) solution for the model

with the receiver as the follower is defined as follows.

1One may more generally consider a message space Y . It is easy
to show that as long as |Y| ≥ |X |, then without loss of generality we
can take Y = X .

Definition 2.1. (Stackelberg equilibrium with the receiver
as follower) s∗ ∈ AS is a Stackelberg equilibrium strategy
of the sender if

min
g∈BR(s∗)

U (g ◦ s∗(x), x) ≥ min
g∈BR(s)

U (g ◦ s(x), x),

∀x ∈ X , ∀s ∈ AS ,
(2)

where the best response set of the receiver BR(s) is defined
as

BR(s) = {g ∈ AR : |D(g, s)| ≥ |D(g′, s)|, ∀g′ ∈ AR}. (3)

Any g∗ ∈ BR(s
∗) is referred to as the Stackelberg equilib-

rium strategy of the receiver. (s∗, g∗) is referred to as the
Stackelberg equilibrium.

The best response set of the receiver for a strategy s of
the sender is a collection of strategies g that recover the
maximum number of source symbols correctly.

Definition 2.2. (Worst case utility and utility for correct
recovery) We refer to the mapping

x 7→ min
g∈BR(s)

U (g ◦ s(x), x)

as the worst case utility for a strategy s of the sender and
the mapping

x 7→ U (x, x)

as the utility for correct recovery.

The sender’s Stackelberg equilibrium strategy is the one
that maximizes the worst case utility for each x ∈ X .

2.1.2. Receiver as follower: Behavioral strategies

We now introduce the setting where the players play
behavioral strageies [8]. We will end with the surpris-
ing conclusion that there may not exist an equilibrium
in the space of behavioral strategies. Let X denote
the source random variable which takes values from X
with prior probability distribution p known to both play-
ers. Assume that p(x) > 0 for all x ∈ X . We rede-
fine the strategy sets of the sender and the receiver re-
spectively as sets of conditional distributions as follows:
AS = {π|π : X×X −→ [0, 1],

∑
y∈X

π(y|x) = 1, ∀x ∈ X} and

AR = {σ|σ : X × X −→ [0, 1],
∑
x∈X

σ(x|y) = 1, ∀y ∈ X}.

Let Y ∈ X be the signal sent by the sender and let
Y(π) := {y ∈ X|∃x ∈ X s.t. π(y|x) > 0} contain the
signals used by the sender when it plays π ∈ AS . Let
X̂ be the symbol mapped by the receiver and the set
D(σ, π) := {x ∈ X|P(X̂ = x|X = x) = 1} be the sym-
bols recovered by the receiver with probability one when
the receiver plays σ and the sender plays π. If x ∈ D(σ, π),
then we say x is recovered correctly. Note that the joint
distribution of X,Y, X̂ is given by

P(x, y, x̂) = p(x)π(y|x)σ(x̂|y).
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For any π ∈ AS , for any x ∈ X let Ex = Ex(π) := {y ∈
X : π(y|x) > 0}, be the support of π(·|x). We assume the
sender chooses π to maximize Ū(π, σ) where

Ū(π, σ) =
∑

x∈X

∑

y∈Y(π)

∑

x̂∈X

p(x)π(y|x)σ(x̂|y)U (x̂, x),

whereas the receiver seeks to maximize the size of D(σ, π).

Definition 2.3. (Stackelberg equilibrium for behavioral
strategies) π∗ ∈ AS and σ∗ ∈ AR form a Stackelberg equi-
librium strategy pair of the sender and the receiver respec-
tively if

π∗ ∈ arg max
π∈AS

min
σ∈BR(π)

Ū(π, σ), (4)

and σ∗ ∈ BR(π
∗) where BR(π) = {σ∗ ∈ AR| |D(σ∗, π)| ≥

|D(σ, π)|, ∀σ ∈ AR}.

The Bayesian signalling games literature involves the
sender playing behavioral strategies; in such games, the
use of randomization leads to an obfuscation of the true
type of the sender and thereby can result in a benefit to the
sender. This is essentially the idea behind Bayesian per-
suasion [6]. In this literature the objective of the receiver
is to maximize its expected utility, and it is as such linear
in the posterior distribution P(X |Y ). On the other hand,
in our model, the number of signals recovered correctly –
which is the objective of the receiver – is not linear in the
posterior distribution. This nonlinearity has dramatic con-
sequences. It implies that the posterior distribution is not
a sufficient statistic for the receiver’s problem, and hence
the intuition of strategic obfuscation from the Bayesian
persuasion literature does not carry over to our setting.
Moreover, the nonlinearity brings with it an inherent dis-
continuity, owing to which a Stackelberg equilibrium is not
guaranteed to exist, even for rather simple examples.

Theorem 2.1. (Existence of S.E. is not guaranteed)
There need not exist a S.E. in behavioral strategies.

A concrete counter-example with the nonexistence of the
Stackelberg equilibrium is presented in Section 5. This
example also illustrates the discontinuity discussed above.
As a result of Theorem 2.1, we conclude that the sender

must play deterministic strategies. Our analysis is there-
fore limited to the case where both players play determin-
istic strategies.

2.1.3. Receiver as the leader

We now recall the model in [2, 3], where the receiver is
the leader and the sender follows. Let A′

R = {g|g : X →
X ∪ {∆}} where ∆ is such that U (∆, x) = −∞ for all
x ∈ X . The symbol ∆ denotes a punishment action for the
receiver, and is introduced for convenience. More details
on this can be found in [2, 3]. The Stackleberg equilibrium
for this setting is defined as follows.

Definition 2.4. ( [2, 3] Stackelberg equilibrium with the
receiver as the leader) g∗ ∈ A′

R is a Stackelberg equilibrium
strategy of the receiver if

g∗ ∈ arg max
g∈AR

min
s∈BS(g)

|D(g, s)|, (5)

where the best response set of the sender BS(g) is given
by

BS(g) = {s ∈ AS |U (g ◦ s(x), x) ≥ U (g ◦ s′(x), x),

∀x ∈ X , ∀s′ ∈ AS}.
(6)

Any s∗ ∈ BS(g
∗) is referred to as the Stackelberg equilib-

rium strategy for the sender. The pair (s∗, g∗) is referred
to as the Stackelberg equilibrium.

The setting with the receiver as the leader defined here
is an elementary version of the setting developed in [2, 3].
The model in [2, 3] is for n-blocklength sequence generated
at the source where n ≥ 1, while we focus on the case
n = 1. We outline the results in [2, 3] below.

2.2. Prior results on the model with receiver as leader

The model in [2, 3] focuses on a block-communication
setting with a strategic sender and a receiver communi-
cating through a noisy or noiseless channel. A′

S = {sn|sn :
Xn → Xn} and A′

R = {gn|gn : Xn → Xn
⋃
{∆}} are the

strategy set of the sender and receiver respectively where
∆ is a penalty term. The source generates a sequence of
symbols X = (X1, X2, ...Xn) ∈ Xn which is observed by
the sender. After observing input X ∈ Xn, the sender
encodes X using the strategy sn ∈ A′

S such that X is re-
ceived by the receiver as sn(X) = Y ∈ Xn (output of the
channel). The output of the channel is then decoded by
the receiver by using gn ∈ A′

R. This results in recovering

X as gn(Y ) = X̂, where X̂ ∈ Xn.

The set D′(gn, sn) is the sequence equivalent of D(g, s)
which contains all those sequences X ∈ Xn which gets
recovered perfectly when gn and sn are the respective
strategies of the receiver and the sender. The utility
function of the sender here is an n-block utility func-
tion Un : Xn ∪ {∆} × Xn → R where Un(x̂, x) =

1
n

n∑
i=1

U (x̂i, xi), ∀x, x̂ ∈ Xn and Un(∆, x) = −∞ for all

x ∈ Xn. The goal in [2, 3] is to characterize the informa-
tion extraction capacity of the sender, defined as

Ξ(U ) := lim
n→∞

min
sn∈BS(gn)

|D′(gn, sn)|
1/n,

which is the asymptotic growth rate of the number of se-
quences correctly recovered, or equivalently the maximum
amount of information that can be extracted from a sender
acting as follower. In order to capture this quantity, a
graph called the weak sender graph Gn

L = (Xn, EL) is in-
troduced. The independence number of the graph Gn

L is
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denoted by α(Gn
L). [2, 3] showed that for any n, the max-

imum number of sequences that the receiver can correctly
recover is α(Gn

L), and that

Ξ(U ) = lim
n

α(Gn
L)

1

n . (7)

We will use a simpler version of this result for n = 1 :

Theorem 2.2. (Maximum information theorem) For n =
1, the maximum number of symbols the receiver can recover
from the sender is α(GL).

With slight abuse of notation we define the information
extraction capacity of U for n = 1 as Ξ(U ) := α(GL).

3. Stackelberg equilibrium of the game

This section characterizes the S.E. of the model in Sec-
tion 2.1.1. We first establish the structure of the best
response of the receiver to the sender’s strategy. Through
this we characterize the minimum number of symbols re-
covered by the receiver at any Stackelberg equilibrium via
the vertex clique cover number of a suitably defined strong
sender graph.

3.1. Best response of the receiver

In this section we study the best response of the receiver
to a strategy of the sender. Say the sender plays a strategy
s which maps exactly m elements to the same element.
Then the receiver can recover at most one symbol out of
these m symbols. To describe the best response of the
receiver, we introduce the concept of a receiver dilemma
set.
Let s ∈ AS and i be any element from range(s). The

pre-image set of i ∈ range(s) denoted by Pi(s),

Pi(s) := {y ∈ X|s(y) = i}. (8)

Note that every strategy s partitions the source alphabet
X into a set of pre-image sets. We call this partition, the
receiver dilemma set.

Definition 3.1. (Receiver dilemma set) The receiver
dilemma set of the strategy s of the sender denoted by P(s)
is defined as,

P(s) := {Pi(s) : i ∈ range(s)}. (9)

The following lemma demonstrates that for any choice
s ∈ AS of the sender, the receiver’s best response is to
choose those strategies g ∈ AR which map every image
under s to one of its pre-images. This is equivalent to
choosing those strategies which yield |D(g, s)| = |P(s)|.

Lemma 3.1. If the sender plays any s ∈ AS then

1. (Symbols recovered) The best response set of the re-
ceiver is characterized as follows

BR(s) = {g ∈ AR : |D(g, s)| = |P(s)|} (10)

2. (Best response set) Equivalently, the best response set
of the receiver is given by

BR(s) = {g ∈ AR| g(i) ∈ Pi(s), ∀i ∈ range(s)}. (11)

Proof : Consider any map s ∈ AS . Since | range(g ◦ s)| ≤
|P(s)| for any g ∈ AR, we have

|D(g, s)| ≤ |P(s)|, ∀g ∈ AR.

Consider g ∈ AR which maps each received signal i ∈
range(s) to one element in Pi(s). Clearly for this choice of
g, we have |D(g, s)| = |P(s)|. This proves (10).
The above proof also shows that the RHS of (11) is

included in BR(s). We now show that BR(s) is contained
in the RHS of (11). To this end, we first show that no
strategy of the receiver can recover more than one symbol
from any pre-image set. Let i ∈ range(s), and say there
exists a g which recovers distinct x, y ∈ Pi(s) correctly.
Then, g ◦ s(x) = x and g ◦ s(y) = y, while s(x) = s(y) = i.
This gives g(i) = x = y, a contradiction. Thus for any
strategy g ∈ AR, the receiver can recover at most one
symbol in Pi(s) for each i ∈ range(s). Now, if g ∈ BR(s)
is such that g(i) /∈ Pi(s) for some i ∈ range(s), then for
all x ∈ Pi(s), we have g ◦ s(x) 6= x. Thus such a g can
not recover any symbol in Pi(s), whereby for such a g
|D(g, s)| < |P(s)|, again a contradiction to g ∈ BR(s).
Hence, every g ∈ BR(s) satisfies the RHS of (11).

3.2. Characterization of the Stackelberg equilibrium

In Lemma 3.1 we showed that the best response set of
the receiver BR(s) for any strategy s of the sender, consists
of those strategies of the receiver which map every i ∈
range(s) to an element in Pi(s).

In the following proposition, we show that the worst
case utility for any S.E. strategy is identically equal to the
utility for correct recovery.

Proposition 3.2. (Worst case utility is the utility for
correct recovery) If s∗ is a S.E. strategy of the sender then

min
g∈BR(s∗)

U (g ◦ s∗(x), x) = U (x, x), ∀ x ∈ X . (12)

Proof : Consider any strategy of the sender s ∈ AS . Fix a
P ∈ P(s) and let x ∈ P. In Lemma 3.1, we observed that
every g ∈ BR(s) maps s(x) to a x̂ ∈ P . Thus we have,

min
g∈BR(s)

U (g ◦ s(x), x) = min
x̂∈P

U (x̂, x), ∀x ∈ P. (13)

Since P is arbitrary this holds for all P ∈ P(s). Noting
that min

x̂∈P
U (x̂, x) ≤ U (x, x), ∀x ∈ P, we have

min
g∈BR(s)

U (g ◦ s(x), x) ≤ U (x, x), ∀x ∈ P, ∀P ∈ P(s). (14)
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Note that if s◦ ∈ AS is a one-to-one mapping then every
set P in P(s◦) is a singleton set and BR(s◦) = {s−1

◦ }.
Thus, for all one-to-one mappings s◦ ∈ AS ,

min
g∈BR(s◦)

U (g ◦ s◦(x), x) = U (x, x), ∀x ∈ X . (15)

Hence, every one-to-one mapping attains the bound in
(14). And consequently, if s = s∗ ∈ AS is a S.E. strat-
egy, then equality must hold in (14), which proves (12).

In the next theorem we give a structural characterization
of S.E. strategies of the sender and receiver.

Theorem 3.3. (Characterization of the S.E.) Consider a
sender with a utility U . s∗ ∈ AS is a S.E. strategy of the
sender if and only if

U (x, x) ≤ U (x̂, x), ∀x, x̂ ∈ P, ∀P ∈ P(s∗). (16)

Moreover, for the receiver, |D(g, s∗)| = |P(s∗)| for all g ∈
BR(s

∗).

Proof : (⇒) Let s∗ ∈ AS be a S.E. strategy of the sender.
Then from Proposition 3.2 it is clear that (16) holds.
(⇐) We now show the converse. Let s∗ be any strategy

of the sender such that (16) holds. Let P ∈ P(s∗) and
x ∈ P . For any s′ ∈ AS , we have

min
g∈BR(s′)

U (g ◦ s′(x), x) ≤ U (x, x), (17)

= min
x̂∈P

{U (x̂, x)}, (18)

= min
g∈BR(s∗)

U (g ◦ s∗(x), x),(19)

where (17) follows from (14), (18) follows from (16) and
(19) follows Proposition 3.2. Since this holds for every
x ∈ P and every P ∈ P(s∗), combining the above three
equations we get

min
g∈BR(s′)

U (g ◦ s′(x), x) ≤ min
g∈BR(s∗)

U (g ◦ s∗(x), x),

∀x ∈ X , ∀s′ ∈ AS .
(20)

Consequently, the strategy s∗ is a S.E. strategy of the
sender.
And using Lemma 3.1, we can conclude that the

receiver can recover at most |D(g, s∗)| = |P(s∗)| symbols
for all g ∈ BR(s

∗).

The above theorem shows that in a S.E., the sender par-
titions the source alphabet X into subsets (the partition
being the receiver dilemma set) such that for any x, x′ be-
longing to the same subset we have U (x, x) ≤ U (x′, x).
It maps all symbols in a subset to the same signal. Thus,
upon seeing any x from an subset P in the partition, the
sender has least preference for x itself to be recovered cor-
rectly amongst all elements in P . On the other hand the
receiver attempts to recover the source correctly, whereby

the worst case utility min
x′∈P

U (x′, x) for the sender becomes

the utility for correct recovery U (x, x) for every x ∈ X .
The above theorem also shows that any one-to-one map-

ping s∗ ∈ AS is an equilibrium strategy for the sender,
since for such an s∗, P(s∗) is a collection of q singleton
sets and (16) holds trivially. Moreover, if the condition
in (16) is not satisfied for any P ⊂ X with at least two
symbols, then there does not exist any many-to-one S.E.
strategy of the sender. Thus, in such cases even a sender
whose utility is not aligned with the objective of the re-
ceiver, i.e., a sender who prefers incorrect recovery, would
have to resort to playing a one-to-one mapping at Stackel-
berg equilibrium. We will see an example demonstrating
this later in the paper.
There are multiple S.E. strategies s∗ that induce the

same receiver dilemma set. However, the above theorem
shows that the utility obtained by both the sender and the
receiver in equilibrium is completely characterized by the
receiver dilemma set2. Thus the outcome of the game can
be understood by studying these receiver dilemma sets. In
the next section we build on this observation to obtain a
measure of informativeness of a sender’s utility function.

4. Information revealed via signalling

4.1. Informativeness of a utility function

Theorem 3.3 shows that in general our game admits
multiple Stackelberg equilibria. Though the utility of the
sender in equilibrium does not depend on the specific equi-
librium strategy being considered (by Proposition 3.2 it is
equal to the utility for correct recovery), the number of
symbols recovered by the receiver is a function of the S.E.
strategy of the sender. Thus the amount of information
revealed to the receiver in a game depends not only on
the utility function of the sender but also on the specific
S.E. under consideration. We now define a measure of the
amount of information that is independent on the equilib-
rium under consideration.

Definition 4.1. (Number of symbols recovered by the re-
ceiver in a S.E.) The number of symbols recovered by the
receiver when the sender plays S.E. strategy s∗, denoted by
NR(s

∗;U ), is defined as |D(g, s∗)| where g is any strategy
in BR(s

∗).

Note that the above definition is meaningful because
|D(g, s∗)| is the same for each g ∈ BR(s

∗), by Theorem 3.3.
Moreover, we have NR(s

∗;U ) = |P(s∗)|. We have seen
that all one-to-one mappings are equilibrium strategies for
the sender. From Lemma 3.1, if s∗ ∈ AS is a one-to-one
mapping then BR(s

∗) = {(s∗)−1} and consequently, we

2In general, there could be multiple s ∈ AS with identical re-
ceiver’s dilemma set P(s). But the R.H.S. of (13) is independent of
s. Hence, any two strategies of the sender with identical receiver’s
dilemma sets, have the same worst case utility.
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get NR(s
∗;U ) = q. Thus, the maximum of NR(s

∗;U )
over all equilibria s∗ is q for any U .
We define the minimum of NR(s

∗;U ) over all equilibria
s∗ as the informativeness of a utility function U .

Definition 4.2. (Informativeness of a utility function)
The informativeness of a utility function U of the sender
denoted by I(U ) is the optimal value of the optimization
problem below.

I(U ) := min
s∗∈AS

NR(s
∗;U )

s.t. s∗ is a sender S.E. strategy .
(21)

I(U ) captures the minimum amount of information re-
vealed to a receiver in such a game. This quantity is a
function only of the utility function of the sender and can
hence be thought of as a measure of how informative an
interaction with such a sender can be for the receiver.
The number of equilibria of this game is enormous; re-

call that all one-to-one sender strategies constitute equi-
libria whereby there are at least q! equilibria in any game.
Though it may appear that computing I(U ) would re-
quire one to enumerate all equilibria of the game, we show
I(U ) can be computed from U alone without explicitly
finding all equilibria. Our main result builds on the The-
orem 3.3 to characterize I(U ) in terms of a graph. Using
this characterization we compute the informativeness for
some examples and characterize the existence of pooling
and separating equilibria of the game via the informative-
ness of the utility.
We recollect the following notions from graph theory.

Let G = (X , E) be a graph where X is the set of vertices
and E is the set of edges. A set C ⊆ X is called a clique
if (x, y) ∈ E, ∀x, y ∈ C. We will consider a singleton sub-
set of X a clique by definition. We call a set I ⊆ X an
independent set if (x, y) /∈ E, ∀x, y ∈ I. The size of the
largest possible independent set of G is called the inde-
pendence number of the graph and is denoted by α(G). A
vertex clique cover of the graph G is a collection of dis-
joint cliques in the graph G whose union is X . The vertex
clique cover number of a graph G denoted by θv(G) is the
minimum number of cliques in a vertex clique cover of the
graph G.

Definition 4.3. (Strong sender graph) Consider a sender
with utility U . The strong sender graph GF = (X , EF )
is defined as the graph where (x, y) ∈ EF if U (x, x) ≤
U (y, x) and U (y, y) ≤ U (x, y).

Definition 4.4. (Weak sender graph) Consider a sender
with utility U . The weak sender graph GL = (X , EL) is
defined as the graph where (x, y) ∈ EL if either Un(x, x) ≤
Un(y, x) or Un(y, y) ≤ Un(x, y).

In the following theorem we show the informativeness
of a utility is the vertex clique cover number of the strong
sender graph induced by the utility.

Theorem 4.1. Consider a utility function of the sender
U .

1. (Correspondence between S.E. and clique covers) If
s is a S.E. strategy then P(s) is a vertex clique
cover of the strong sender graph GF . Conversely,
if {P1, ..., Pl} is a vertex clique cover of the strong
sender graph GF then there exists a S.E. strategy
s ∈ AS such that P(s) = {P1, ..., Pl}.

2. (Informativeness is equal to the vertex clique cover
number of the strong sender graph) I(U ) = θv(GF ),
where GF is the strong sender graph.

Proof : Proof of 1 :(⇒): Let s ∈ AS be any S.E. strategy of
the sender. Fix P ∈ P (s) and consider distinct x, y ∈ P .
Recalling Theorem 3.3, we have U (x, x) ≤ U (y, x) and
U (y, y) ≤ U (x, y), or equivalently, (x, y) ∈ EF , by the
definition of strong sender graph. Since x, y ∈ P were
arbitrary, it follows that P is a clique in GF , whereby
P(s) is a clique cover of GF .
(⇐) Suppose C = {P1, ..., Pl} is a vertex clique cover

of GF . Let c1, . . . , cl be distinct symbols in X . Define the
following strategy s∗ ∈ AS as follows

s∗(x) = ck ∀ x ∈ Pk, ∀k = 1, . . . , l.

Clearly, C = P(s∗). It is easy to see that s∗ satisfies (16)
and hence is a S.E..
Proof of 2 : From part 1 of Theorem 4.1, we know

that a strategy s∗ ∈ AS is a S.E. of the sender if and
only if P(s∗) is a vertex clique cover of the strong
sender graph GF , and every vertex clique cover C cor-
responds to a S.E. strategy whose receiver dilemma set
is equal to C. Moreover, NR(s

∗;U ) = |P(s∗)| whereby
I(U ) is equal to the vertex clique cover number of GF .

We now study examples that demonstrate how the infor-
mativeness serves as a measure of information revelation.

Example 4.1. Let X = {0, 1, 2} and consider a utility
function U1 : X × X −→ R given by

U1 = [U1(i, j)] =



0 1 1
1 0 1
1 1 0




where U1(i, j) is given by the (i, j)th entry3 in the given
matrix where i, j ∈ X . This is a case of pure misalignment
of interest between the sender and the receiver. The sender
here strictly prefers incorrect recovery of every symbol to
correct recovery. It is intuitive that since such a sender
never prefers the truth, very little information can be re-
covered from it. For this sender there is an edge in GF

(see Fig 1) between every distinct x and y in X . Thus,
every mapping in AS is a S.E. strategy of the sender and

3Note that the rows and columns are numbered 0, . . . , q − 1.
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consequently, we have I(U1) = 1, thereby confirming our
intuition.

0

1 2

(a) GF (U1)

0

1 2

(b) GF (U2)

0

1 2

(c) GF (U3)

Figure 1: Strong Sender Graphs

Next we look at a slightly different sender whose utility
function U2 : X × X −→ R is given by

U2 = [U2(i, j)] =



0 1 −1
1 0 1
1 −1 0


 .

This sender strictly prefers that 0 is recovered incorrectly
either as 1 or 2. But for the symbols 1 and 2, it has mixed
preferences. For instance it prefers that 1 is recovered as
0 as compared to 1, which in turn is preferred to 1 being
recovered as 2. A similar predicament holds for the sym-
bol 2. Here, it is intuitive that the receiver can recover
the symbol 0 and at least one of 1 and 2. From the ma-
trix it is evident that there exists only one edge, i.e., (0, 1)
in GF (U2). Therefore, I(U2) = 2 for the given utility
function of the sender. In other words, the receiver can re-
cover at least two symbols out of three in any equilibrium,
once again confirming our intuition. One can verify that
P = {{0}, {1}, {2}} and P ′ = {{0, 1}, {2}} are the only
partitions which generate S.E. strategies.
In the above two variations of the utility function of the

sender, we dealt with senders whose interest misaligned
with that of the receiver. Although these two cases suggest
that misalignment may lead to loss of information, we find
that that may not always be the case. Consider another
utility function U3 : X × X −→ R where

U3 = [U3(i, j)] =




0 1 −1
−1 0 1
1 −1 0


 . (22)

Observe that although for each symbol in X there is an-
other symbol that is preferred by the sender, the exact
number of symbols that can be recovered is not evident.
Remarkably, we find that the receiver can recover all three
symbols in any equilibrium. The utility U3 is such that GF

has no edges. Hence, I(U3) = 3 and indeed it is optimal
for the sender to play only one-to-one mappings. Thus,
even though the sender and receiver have misaligned in-
terests, we end up having full information revelation at
every Stackelberg equilibrium.
Why did this happen? Suppose the source symbol is

0. Observe that although the sender prefers 0 being ob-
served as 2 but for that he has to map 0 and 2 to the
same element to confuse the receiver. After observing
the sender’s choice of strategy, the receiver’s best response

would be a strategy which would map the sender’s mes-
sage to either 0 or 2. Thus, the set of possible utili-
ties of the sender is {U3(0, 0) = 0,U3(2, 0) = 1}. Sim-
ilarly if 2 is the source symbol, the set of possible utili-
ties is {U3(0, 2) = −1,U3(2, 2) = 0}. Consequently, the
worst case utility the sender can get for these cases are
U3(0, 0) = 0 and U3(0, 2) = −1. On the other hand if
the sender played any one-to-one mapping, he would have
obtained utilities U3(0, 0) = 0 and U3(2, 2) = 0. Hence,
the worst case utility obtained by the sender from a many-
to-one mapping is lower than the utility of correct recov-
ery, which is obtainable from a one-to-one mapping. Thus
only one-to-one mappings are equilibrium strategies for the
sender and thereby full information is revealed. �

4.2. Informativeness and pooling and separating equilibria

Our game may be viewed as a signalling game where the
type of the sender is the symbol observed by the sender.
Bayesian signalling games are known to admit three cat-
egories of equilibria based on whether the receiver is able
to ascertain the type of the sender: these are separating,
pooling and semi-separating equilibria [1], [26]. We extend
these notions to our game below. Our main contribution
is that we can characterize the existence of these equilibria
in terms of the informativeness of the utility function.

Definition 4.5. Consider a S.E. of the game with the
sender’s strategy s∗ ∈ AS.

• Separating Equilibrium: The S.E. is a separating equi-
librium if for distinct x, x′ ∈ X , s∗(x) 6= s∗(x′).

• Pooling Equilibrium: The S.E. is a pooling equilibrium
if for all x, x′ ∈ X , s∗(x) = s∗(x′).

• Semi-separating Equilibrium: The S.E. is said to be
semi-separating equilibrium if it is none of the above.

These three equilibrium classes represent qualitatively
different outcomes of the game. However, they do not
quantify the precise amount of information revealed. On
the other hand, the informativeness notion that we have
introduced is a sharper notion that serves as such a quan-
titative measure. Below we show that using the infor-
mativeness one can directly ascertain the existence of the
equilibria, without explicitly computing all equilibria.

Theorem 4.2. (Equivalence of informativeness and exis-
tence of different kinds of equilibria) Let U be any utility
function of the sender.

1. For every utility function U of the sender, the game
admits at least one separating equilibrium.

2. The game admits only separating equilibria if only if
I(U ) = q.

3. The game admits a pooling equilibrium if and only if
I(U ) = 1.
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4. The game admits a semi-separating equilibrium if and
only if I(U ) < q.

Proof : Proof of 1): Since every one-one mapping is a S.E.
strategy of the sender, hence every utility function of the
sender admits at least one separating equilibrium.
Proof of 2): From Theorem 4.1, we have I(U ) = q if

and only if {{0}, {1}, ..., {q− 1}} is the only possible ver-
tex clique cover for the strong sender graph of the given
utility function of the sender. Now this set of cliques
{{0}, {1}, ..., {q− 1}} can form a receiver dilemma set of a
strategy s∗ ∈ AS if and only if s∗ is a one-to-one mapping
(using Theorem 3.3). Therefore, the game admits only
separating equilibria if and only if I(U ) = q.
Proof of 3): Note that in a pooling equilibrium the re-

ceiver’s dilemma set P(s∗) of the strategy of the sender
s∗ has only one element X such that |P(s∗)| = 1. Theo-
rem 3.3 states that s∗ is a S.E. strategy iff X is a clique
in GF . Therefore, the game admits a pooling equilibrium
if and only if I(U ) = 1.
Proof of 4): From Theorem 3.3, I(U ) < q if and only

if there exists a partition P of X such that 1 < |P| < q
where every element P ∈ P is a clique in GF . Thus,
from Theorem 3.3, we conclude that there exists a
semi-separating equilibrium if and only if I(U ) < q.

4.3. Comparison with the model with the receiver as the
leader

We now compare the information recovered by the re-
ceiver in our model with that recovered when the receiver
is the leader. Specifically we compare the information ex-
traction capacity Ξ(U ) defined in Section 2.2 with the
informativeness I(U ). To motivate this comparison we
consider an example below. Recall the weak sender graph
GL = (X , EL) from Definition 4.4. Note that every edge
in EF is also an edge in EL, i.e., EF ⊆ EL.

Example 4.2.

0

1 2

(a) GL(U3)

0

1 2

(b) GF (U3)

Figure 2: Sender Graphs

Recall U3 in 4.1 and recall that there exists no edge
in the strong sender graph GF = GF (U3). It can be
verified on the other hand that the weak sender graph
GL = GL(U3) is complete (Figure 2). Clearly from The-
orem 4.1, it is evident that θv(GF ) = 3 while α(GL) = 1.
Therefore from Theorem 2.2, the minimum information
recovered by the receiver for U3 when it is the follower
is greater than the maximum information it can recover
when it is the leader.

Note that only a choice of one-to-one mapping by both
the players would make it possible for the receiver to re-
cover all three symbols correctly. But if the receiver is
the leader and it chooses any one-to-one mapping then
its easy for the sender to get everything recovered accord-
ing to its preferences. For U3, if the receiver chooses any
one-to-one mapping, the sender can easily choose such a
strategy which would ensure that the 0 gets recovered as
2, 1 gets recovered as 0 and 2 gets recovered as 1 re-
sulting in |D(g, s)| = 0. Thus, a one-to-one mapping is
never optimal for the receiver when it is the leader and a
choice of a many-to-one strategy g ∈ AR necessarily im-
plies |D(g, s)| < 3, for every s ∈ AS . �

We show that the above observation is true in general.
For any utility function, the informativeness is no less than
the information extraction capacity of the sender. Thus,
for any utility function of the sender, the receiver benefits
being a follower in the game as opposed to the setting
where he is the leader as in [2, 3].

Theorem 4.3. (Receiver is better off being a follower)
For any utility function of the sender U ,

Ξ(U ) ≤ I(U ). (23)

Proof : Let IF and IL be any two independent sets
of the largest possible size in GF and GL respectively.
From the definition of strong sender graphs and weak
sender graphs, it is evident that |IL| ≤ |IF | which im-
plies α(GL) ≤ α(GF ). Additionally, it is well known that
for any graph G, α(G) ≤ θv(G). Thus, we can conclude
that

α(GL) ≤ α(GF ) ≤ θv(GF ).

And using Theorem 2.2, we conclude (23).

In the following proposition, we show that the infor-
mation extraction capacity of the sender and the infor-
mativeness of the utility function of the sender are math-
ematical programming duals of each other if the utility
function of the sender U is symmetric, i.e., U (x, y) =
U (y, x), ∀x, y ∈ X .

Proposition 4.4. If the utility function of the sender U

is symmetric then Ξ(U ) and I(U ) are solutions of mathe-
matical programming problems that are duals of each other.

Proof : Since U is symmetric, i.e., U (x, y) =
U (y, x), ∀x, y ∈ X , we have GF = GL. Let G = (X,E) =
GF = GL and let C be the set of all cliques in G. It is
easy to see that Ξ(U ) = α(G) is given by the following
“primal” problem.

(P ) : max
x

∑

i∈X

xi

s.t.
∑

j∈c

xj ≤ 1, ∀c ∈ C

xj ∈ {0, 1}, ∀j ∈ X .

(24)
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This follows by noting that E ⊆ C whereby α(G) ≥
OPT(P )4, whereas if S is any independent set then x ∈
{0, 1}|X | where xi = 1 if and only i ∈ S is feasible for (24)
whereby α(G) = OPT(P ). Now the dual of (P ) is given
by

(D) : min
y

∑

c∈C

yc

s.t.
∑

c:i∈c

yc ≥ 1, ∀i ∈ X

yc ∈ {0, 1}, ∀c ∈ C.

(25)

Thus, if y∗ is a solution of (25), then
∑
c:i∈c

y∗c ≥ 1 for all

i ∈ X , implying that every symbol is covered by at least
one clique c such that yc = 1. This is exactly the covering
requirement, whereby OPT(D) = θv(G) = I(U ).

In this light, when U is symmetric, Theorem 4.3 is es-
sentially a statement of weak duality. We find this relation
fascinating and unusual – there is no precedence known to
us of a switch in the order commitment in a leader-follower
setting leading to a primal to dual transformation. Under-
standing the implications of the above result more deeply
is a task for future work.
Our study so far has restricted players to play only de-

terministic strategies. The next section is dedicated to
investigating the case where the players are free to use
behavioral strategies.

5. Behavioral strategies

The observations in the previous sections have been
made by confining the sender’s choice to only determinis-
tic (pure) strategies. This in turn resulted in deterministic
strategies for the receiver as well. This section is devoted
to studying the Stackelberg equilibrium when the players
are free to use behavioral strategies as defined in Section
2.1.2. As a conclusion we will prove Theorem 2.1, i.e., we
present an example where a S.E. does not exist.
To begin, we make few observations about the set

D(σ, π) defined in Section 2.1.2 in the following results.
The first is about the well-posedness of our problem. The
receiver always recovers at least one symbol correctly for
any strategy of the sender.

Lemma 5.1. (Receiver can always recover at least one
symbol correctly) For every π ∈ AS , there exists a σ ∈ AR

such that |D(σ, π)| = 1.

Proof : Fix a x ∈ X and let π ∈ AS be arbitrary. Take
σ ∈ AR such that σ(x|y) = 1, ∀y ∈ X . Thus, x ∈ D(σ, π)
since

P(X̂ = x|X = x) =
∑

y∈X

π(y|x)σ(x|y) = 1. (26)

4OPT(P ) is the optimal value of the optimization problem P .

Thus, given any strategy of the sender, the receiver can
always recover at least one element correctly with proba-
bility one.

Lemma 5.2. If x ∈ D(σ, π) then σ(x|y) = 1, ∀y ∈ Ex.

Proof : Assume that there exists a y′ ∈ Y(π) such
that 0 ≤ σ(x|y′) < 1, where π(y′|x) > 0. Then,
P(X̂ = x|X = x) =

∑
y∈Y(π)

π(y|x)σ(x|y) < 1. Conse-

quently, x /∈ D(σ, π) which is a contradiction. Therefore,
if x ∈ D(σ, π) then σ(x|y) = 1, ∀y ∈ Ex.

Proposition 5.3. (Condition on correct recovery of two
distinct symbols) For σ ∈ AR and π ∈ AS , if distinct
x, x′ ∈ D(σ, π) then Ex ∩ Ex′ = ∅.

Proof : Assume Ex ∩ Ex′ 6= ∅ and let y ∈ Ex ∩ Ex′ . Note
that x and x′ ∈ D(σ, π). Therefore from Lemma 5.1, we
have σ(x|y) = 1 and σ(x′|y) = 1 which is a contradiction
since x 6= x′. Thus, Ex ∩ Ex′ = ∅ if x, x′ ∈ D(σ, π) where
x 6= x′.

Therefore, if two distinct symbols belong to the set
D(σ, π), then they must produce distinct signals under the
strategy π of the sender.

We now come to our main observation in this section –
that an equilibrium need not exist for this game. We show
this through the following example.

Example 5.1. Recall U3 in Example 4.1:

[U ] := [U3] =




0 1 −1
−1 0 1
1 −1 0


 ,

where X = {0, 1, 2}. y1, y2, y3 are distinct elements of
Y(π) and i, j, k are distinct symbols of X . X is uniformly
distributed on X . Let the prior p be uniform on X .

Note that for the given U , U (x, y) = −U (y, x), ∀x, y ∈
X = {0, 1, 2}. Additionally, if x, y, z ∈ X are distinct
symbols in X then U (x, y) = −U (x, z) and U (x, y) =
−U (z, y).

We categorize the π’s in AS into three different classes
on the basis of size of D(σ, π), for σ ∈ BR(π). We use
the notation ‘π ∈ •’ to denote that π lies in class ‘•’.
Associated figures depict π; for example in Figure 3, an
edge from i to say y1 says that y1 ∈ Ei. The three classes
are as follows:

(A) |D(σ, π)| = 3, ∀σ ∈ BR(π):
This is possible when the sender plays any strategy
π ∈ AS where distinct signals are used for distinct sym-
bols, i.e., Y(π) = {y1, y2, y3} = X , Ei = {y1}, Ej = {y2},
and Ek = {y3} where i, j, k are distinct elements
in X and y1, y2, y3 are distinct elements in Y(π).
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Thus, BR(π) = {σ} such that D(σ, π) = X . Hence,
Ū(π, σ) =

∑
x∈X

p(x)U (x, x) = 1
3 [0] = 0 and consequently,

min
σ∈BR(π)

Ū(π, σ) = 0, ∀π ∈ A. (27)

(B) |D(σ, π)| = 1, ∀σ ∈ BR(π):
Fix k ∈ X and let σ′(k|y) = 1, ∀y ∈ Y(π). For every π
in class (B), σ′ ∈ BR(π) since D(σ′, π) = {k}. Thus for
every π in class (B),

Ū(π, σ′) =
1

3
[U (k, i) + U (k, j)] = 0. (28)

Consequently,

min
σ∈BR(π)

Ū(π, σ) = 0, ∀π ∈ B. (29)

(C) |D(σ, π)| = 2, ∀σ ∈ BR(π):
This class can be subdivided into two subclasses based on
the the elements in D(σ, π): either D(σ, π) is the same
for all σ ∈ BR(π) or D(σ, π) is one of two distinct sets,
{i, j} and {i, k} where i, j, k ∈ X , for each σ ∈ BR(π).
Note that a third case where D(σ, π) can take be one of
three sets {i, j}, {j, k} and {i, k} is not possible due to
Proposition 5.3.

C.(a): For distinct i, j, k ∈ X there exist σij , σik ∈ BR(π)
such that D(σij , π) = {i, j} and D(σik, π) = {i, k}:

We have the following three cases in this class:

i) Y(π) = {y1, y2} for some distinct y1, y2 ∈ X :
Under this case we have Ei = {y1}, Ej = {y2} and
Ek = {y2} (see Figure 3). Thus, for every π in this
class, BR(π) = {σ ∈ AR|D(σ, π) = {i, j} or {i, k}}.
Let σij , σik ∈ BR(π) be such that D(σij , π) = {i, j}
and D(σik, π) = {i, k}. Accordingly, Ū(π, σij) =
1
3 [π(y2|k)U (j, k)] = 1

3U (j, k) and Ū(π, σik) = 1
3U (k, j).

Since U (j, k) = −U (k, j) and |U (j, k)| = 1, therefore we
can conclude that

min
σ∈BR(π)

Ū(π, σ) = −
1

3
, ∀π ∈ C.(a)−i). (30)

k

j

i

y2

y1

Figure 3: C.(a) - i)

ii) Y(π) = {y1, y2, y3} and Ei = {y1, y2} for some
distinct y1, y2, y3 ∈ X : In this particular case, Ej =
Ek = {y3} are the only possible values of Ej and Ek

respectively, thanks to Proposition 5.3 (see Figure 4).
Therefore, for every π in this class, BR(π) = {σ ∈
AR|D(σ, π) = {i, j} or {i, k}} and accordingly we get
min

σ∈BR(π)
Ū(π, σ) = − 1

3 , ∀π in class C.(a)-ii).

k

j

i

y3

y2

y1

Figure 4: C.(a) - ii)

iii) Y(π) = {y1, y2, y3} for some distinct y1, y2, y3 ∈ X
and Ei = {y1}: This case has two sub-cases:

1) Ej = {y2} and Ek = {y2, y3} (Figure 5 (a)):
Note that for every π in this class, BR(π) = {σ ∈
AR|D(σ, π) = {i, j} or {i, k}}. Let σij , σik ∈ AR

such that σij(i|y1) = σij(j|y2) = σij(j|y3) = 1
and σik(i|y1) = σik(k|y2) = σik(k|y3) = 1. Thus,
D(σij , π) = {i, j}, D(σik, π) = {i, k} and accordingly,
σij , σik ∈ BR(π). Hence, Ū(π, σij) = 1

3 [U (j, k)] and
Ū(π, σik) = 1

3 [U (k, j)] = −Ū(π, σij), resulting in
min

σ∈BR(π)
Ū(π, σ) = − 1

3 , ∀π in class C.(a)-iii)-1).

2) Ej = {y2, y3} and Ek = {y2, y3} (Figure 5(b)):
For every π in this class, BR(π) = {σij , σik},
where D(σij , π) = {i, j} and D(σik , π) = {i, k}.
Thus, min

σ∈BR(π)
Ū(π, σ) = − 1

3 , ∀π in class C.(a)-iii)-2).

Therefore, from the study of the three cases in C.(a), we
conclude that

min
σ∈BR(π)

Ū(π, σ) = −
1

3
< 0, ∀π ∈ C.(a). (31)

k

j

i

y2

y3

y1

(a) C.(a)-iii)-1)

k

j

i

y3

y2

y1

(b) C.(a)-iii)-2)

Figure 5: C.(a)-iii)

C.(b): There exists distinct i, j ∈ X such that
D(σ, π) = {i, j}, ∀σ ∈ BR(π):

We have the following two sub-classes in this class:

i) Y(π) = {y1, y2} for some distinct y1, y2 ∈ X :
For this particular class, we have Ei = {y1}, Ej = {y2}
(using Proposition 5.3). Since Ek can never be empty,
thus Ek = {y1} or {y2} or {y1, y2}. Say Ek = {y1}
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then there exists a σ′ ∈ AR such that D(σ′, π) = {k, j}.
This makes σ′ ∈ BR(π), which violates the property
of this class. Similarly, we conclude that Ek 6= {y2}
which makes Ek = {y1, y2} (Figure 6). Therefore,
BR(π) = {σij ∈ AR|D(σij , π) = {i, j}}. Thus,

min
σ∈BR(π)

Ū(π, σ) =
1

3
[U (i, i) + π(y1|k)U (i, k)

+ π(y2|k)U (j, k) + U (j, j)]

=
1

3
[π(y1|k)− π(y2|k)]U (i, k) ≤

1

3
, (32)

where we have used that U (j, k) = −U (i, k). Using i =
0, j = 2, k = 1, we can conclude that

sup
π∈C.(b)−i)

min
σ∈BR(π)

Ū(π, σ) =
1

3
. (33)

k

j

i

y2

y1

Figure 6: C.(b) - i)

ii) Y(π) = {y1, y2, y3} for some distinct y1, y2, y3 ∈ X :
This class has two-sub cases:

1) Ei = {y1}, Ej = {y2}: The only way i and j
are recovered correctly with probability one in every best
response strategy is if Ek = {y1, y2, y3} (see Figure 7).
Thus, for any σ ∈ BR(π),

Ū(π, σ) =
1

3
[−π(y1|k) + π(y2|k) + π(y3|k)(−σ(i|y3)

+ σ(j|y3))]U (j, k) ≤
1

3
(34)

If i = 2, j = 0, k = 1, then

min
σ∈BR(π)

Ū(π, σ) =
1

3
[−π(y1|k) + π(y2|k)− π(y3|k)].

Therefore,

sup
π∈C.(b)−ii)−1)

min
σ∈BR(π)

Ū(π, σ) =
1

3
. (35)

k

j

i

y3

y2

y1

Figure 7: C.(b) - ii) - 1)

2) Ei = {y1}, Ej = {y2, y3}: For every π in this
subclass, we have BR(π) = {σij} where σij(i|y1) =
1, σij(j|y2) = 1, σij(j|y3) = 1. Accordingly, we have
(α) If Ek = {y1, y2} (see Figure 8 (a)):

min
σ∈BR(π)

Ū(π, σ) =
1

3
[−π(y1|k) + π(y2|k)]U (j, k). (36)

and
(β) If Ek = {y1, y2, y3} (see Figure 8 (b)):

min
σ∈BR(π)

Ū(π, σ) =
1

3
[−π(y1|k)+π(y2|k)+π(y3|k)]U (j, k).

(37)

Using i = 2, j = 0, k = 1 in (36) and (37), we conclude
that

sup
π∈C.(b)−ii)−2)

min
σ∈BR(π)

Ū(π, σ) =
1

3
. (38)

k

j

i

y1

y2

y3

(a) C.(b)-ii)-2-α

k

j

i

y3

y2

y1

(b) C.(b)-ii)-2-β

Figure 8: C.(b)-ii)-2

We have seen in our previous observations in (27),(29)
and (31) that min

σ∈BR(π)
Ū(π, σ) ≤ 0, ∀π ∈ AS\C.(b). There-

fore using (33), (35) and (38) we conclude that

sup
π∈AS

min
σ∈BR(π)

Ū(π, σ) =
1

3
(39)

and a S.E. strategy π∗ ∈ AS exists if and only if
min

σ∈BR(π∗)
Ū(π∗, σ) = 1

3 . If π∗ exists, then it must lie in

one of the sub-classes of C.(b). Say the supremum value 1
3

is attained in class C.(b)-i). Then using (32), we conclude
that

min
σ∈BR(π)

Ū(π∗, σ) =
1

3
[π∗(y1|k)− π∗(y2|k)]U (i, k) =

1

3
,

(40)

where {i, j} = D(σ, π∗) for all σ ∈ BR(π
∗) and k 6= i, j.

Therefore, if U (i, k) = 1, then we must have π∗(y2|k) =
0, π∗(y1|k) = 1 and if U (i, k) = −1 then we must have
π∗(y2|k) = 1, π∗(y1|k) = 0 . But note that if π∗(y2|k) = 0
or π∗(y1|k) = 0 then π∗ belongs to class C.(a)-i), whereby
(40) contradicts (30). As a consequence, the supremum in
(39) is never attained in C.(b)-i).
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Next assume that the supremum is attained in class
C.(b)-ii)-1). Then there exists a S.E. strategy of the
sender, π∗ in class C.(b)-ii)-1), such that

min
σ∈BR(π∗)

1

3
[−π∗(y1|k) + π∗(y2|k)+

π∗(y3|k)(−σ(i|y3) + σ(j|y3))]U (j, k) =
1

3
.

(41)

If U (j, k) = 1 then

1

3
[−π∗(y1|k) + π∗(y2|k)− π∗(y3|k)] =

1

3
. (42)

whereby π∗(y2|k) = 1 which gives Ek = {y2}. On the
other hand if U (j, k) = −1 then

1

3
[π∗(y1|k)− π∗(y2|k)− π∗(y3|k)] =

1

3
. (43)

whereby π∗(y1|k) = 1 which gives Ek = {y1}. But if
Ek = {y2} or Ek = {y1} then π∗ ∈ C.(a)-i). But for such
a π∗ we have shown (30), which contradicts (41). Similar
arguments can be used to show that supremum is never
attained in class C.(b)-ii)-2).
In summary, a Stackelberg equilibrium does not exist

for this utility function of the sender. �

This happens since the structure of the utility function is

such that [U3] is a skew-symmetric matrix and U (j, k) =
−U (i, k), ∀i, j, k ∈ X . Therefore, min

σ∈BR(π)
Ū(π, σ) con-

tains π(y|x) terms with positive and negative coefficients,
where x /∈ D(σ, π). But making any π(.|x) with positive
coefficient exactly equal to 1, transforms the problem to
one where min

σ∈BR(π)
Ū(π, σ) < 0. Therefore, we can con-

clude that, unlike the deterministic case, the existence of
an equilibrium in behavioral strategies is not guaranteed
for every utility function which proves Theorem 2.1.

6. Conclusion

Communication theory has concerned itself with mea-
sures of information content in a source or the capacity
for transfer of information in a channel. However, these
results have validity in the setting of cooperative commu-
nication where the sender and receiver have a common
goal. Our paper studied a setting where a strategic sender
signals to a receiver to maximize its utility while the re-
ceiver seeks to know the true information known to the
sender with zero error. Our main intent was to arrive at
and characterize a measure of how informative such an in-
teraction could be for the receiver, when the receiver is the
follower.
We introduced a naturally defined quantity called the

informativeness of the sender which is the minimum num-
ber of source symbols that can be correctly recovered by
the receiver in any equilibrium of a Stackelberg game in
a deterministic setting. We characterized it and then

demonstrated certain properties of the informativeness
measure.
Additionally, we also looked at the setting where the

players played randomized behavioural strategies. From
the study we came to the conclusion that the existence
of equilibrium is not guaranteed in this particular setting.
Translating these results to the large blocklength regime
as done in information theory and also in [2, 3, 14] is a
task for the future.
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[15] Farhad Farokhi, André MH Teixeira, and Cédric Langbort. Es-
timation with strategic sensors. IEEE Transactions on Auto-
matic Control, 62(2):724–739, 2016.

[16] Venkata Sriram Siddhardh Nadendla, Cedric Langbort, and
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Serdar Yüksel. Signaling games for log-concave distributions:
Number of bins and properties of equilibria. IEEE Transactions
on Information Theory, 2021.

[21] Ertan Kazikli, Serkan Sartas, Sinan Gezici, and Serdar Yuksel.
Quadratic signaling with prior mismatch at an encoder and de-
coder: Equilibria, continuity and robustness properties. IEEE
Transactions on Automatic Control, 2022.

[22] Sanjeev Goyal. Connections: an introduction to the economics
of networks. 2009.
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