
ThisPDFdocumentwasmadeavailable

fromwww.rand.orgasapublicserviceof

theRANDCorporation.

6Jumpdowntodocument

VisitRANDatwww.rand.org

ExploreRANDNationalSecurity

 ResearchDivision

Viewdocumentdetails

This document and trademark(s) contained herein are protected by law
as indicated in a notice appearing later in this work.  This electronic
representation of RAND intellectual property is provided for non-
commercialuseonly.PermissionisrequiredfromRANDtoreproduce,or
reuseinanotherform,anyofourresearchdocuments.

LimitedElectronicDistributionRights

ForMoreInformation

CHILDPOLICY

CIVILJUSTICE

EDUCATION

ENERGYANDENVIRONMENT

HEALTHANDHEALTHCARE

INTERNATIONALAFFAIRS

NATIONALSECURITY

POPULATIONANDAGING

PUBLICSAFETY

SCIENCEANDTECHNOLOGY

SUBSTANCEABUSE

TERRORISMAND
HOMELANDSECURITY

TRANSPORTATIONAND
INFRASTRUCTURE

TheRANDCorporationisanonprofit
researchorganizationproviding
objectiveanalysisandeffective
solutionsthataddressthechallenges
facingthepublicandprivatesectors
aroundtheworld.

Purchasethisdocument

BrowseBooks&Publications

Makeacharitablecontribution

SupportRAND

http://www.rand.org/pdfrd/
http://www.rand.org/pdfrd/
http://www.rand.org/pdfrd/nsrd/
http://www.rand.org/pdfrd/publications/MG/MG226/
http://www.rand.org/pdfrd/research_areas/children/
http://www.rand.org/pdfrd/research_areas/children/
http://www.rand.org/pdfrd/research_areas/civil_justice/
http://www.rand.org/pdfrd/research_areas/education/
http://www.rand.org/pdfrd/research_areas/energy_environment/
http://www.rand.org/pdfrd/research_areas/health/
http://www.rand.org/pdfrd/research_areas/international_affairs/
http://www.rand.org/pdfrd/research_areas/national_security/
http://www.rand.org/pdfrd/research_areas/population/
http://www.rand.org/pdfrd/research_areas/public_safety/
http://www.rand.org/pdfrd/research_areas/science_technology/
http://www.rand.org/pdfrd/research_areas/science_technology/
http://www.rand.org/pdfrd/research_areas/substance_abuse/
http://www.rand.org/pdfrd/research_areas/substance_abuse/
http://www.rand.org/pdfrd/research_areas/terrorism/
http://www.rand.org/pdfrd/research_areas/terrorism/
http://www.rand.org/pdfrd/research_areas/infrastructure/
http://www.rand.org/pdfrd/research_areas/infrastructure/
http://www.rand.org/pdfrd/nsrd/
http://www.rand.org/pdfrd/cgi-bin/Abstracts/e-getabbydoc.pl?MG-226
http://www.rand.org/pdfrd/cgi-bin/Abstracts/e-getabbydoc.pl?MG-226
http://www.rand.org/pdfrd/publications/electronic/
http://www.rand.org/pdfrd/publications/electronic/
http://www.rand.org/pdfrd/giving/contribute.html
http://www.rand.org/pdfrd/giving/contribute.html


Thisproduct ispartoftheRANDCorporationmonographseries.

RANDmonographspresentmajorresearchfindingsthataddressthe

challengesfacingthepublicandprivatesectors.AllRANDmono-

graphs undergo rigorous peer review to ensure high standards for

researchqualityandobjectivity.



WalterL.Perry

JamesMoffat

PreparedfortheUnitedKingdomMinistryofDefense

InformationSharing
AmongMilitary
Headquarters
TheEffectsonDecisionmaking



TheRANDCorporationisanonprofitresearchorganizationproviding
objective analysis and effective solutions that address the challenges
facing the public and private sectors around the world. RAND’s
publicationsdonotnecessarilyreflecttheopinionsofitsresearchclients
andsponsors.

R®isaregisteredtrademark.

©Copyright2004RANDCorporation

All rights reserved.No part of this bookmay be reproduced in any
formby any electronic ormechanicalmeans (includingphotocopying,
recording, or information storage and retrieval)without permission in
writingfromRAND.

Published2004bytheRANDCorporation
1776MainStreet,P.O.Box2138,SantaMonica,CA90407-2138

1200SouthHayesStreet,Arlington,VA22202-5050
201NorthCraigStreet,Suite202,Pittsburgh,PA15213-1516

RANDURL:http://www.rand.org/
ToorderRANDdocumentsortoobtainadditionalinformation,contact

DistributionServices:Telephone:(310)451-7002;
Fax:(310)451-6915;Email:order@rand.org

LibraryofCongressCataloging-in-PublicationData

Perry,WaltL.
  Informationsharingamongmilitaryheadquarters:theeffectsondecisionmaking/
 WalterL.Perry,JamesMoffat.
  p.cm.
  “MG-226.”
  Includesbibliographicalreferences.
  ISBN0-8330-3668-8(pbk.:alk.paper)
  1.Commandandcontrolsystems—UnitedStates.2.UnitedStates—Armed
 Forces—Communicationsystems.3.Militaryartandscience—UnitedStates—
 Decisionmaking.4.UnitedStates—ArmedForces—Headquarters.I.Moffat,James,
 1948–II.Title.

 UB212.P492004
 355.3'3041—dc22

2004018584

A jointUS/UK study team conducted the research described in this
report. In theUS, the researchwas carried outwithinRANDEurope
andtheInternationalSecurityandDefensePolicyCenteroftheRAND
National SecurityResearchDivision,which conducts research for the
USDepartmentofDefense,alliedforeigngovernments,theintelligence
community, and foundations. In theUK, theDefence Science and
TechnologyLaboratory(Dstl)directedtheworkandparticipatedinthe
researcheffort.TheRANDCorporationhasbeengrantedalicencefrom
theController ofHerBritannicMajesty’s StationeryOffice to publish
theCrownCopyrightmaterialincludedinthisreport.



iii

Preface

New concepts such as network-centric operations and distributed and
decentralised command and control have been suggested as techno-
logically enabled replacements for platform-centric operations and for
centralised command and control in military operations. But as
attractive as these innovations may seem, they must be tested before
adoption. This report assesses the effects of collaboration across alter-
native information network structures in carrying out a time-critical
task, identifies the benefits and costs of local collaboration, and looks
at how ‘information overload’ affects a system.

A joint US/UK study team conducted the research described in
this report. In the United States, the research was carried out within
RAND Europe and the International Security and Defense Policy
Center of the RAND National Security Research Division, which
conducts research for the US Department of Defense, allied foreign
governments, the intelligence community, and foundations. In the
United Kingdom, the Defence Science and Technology Laboratory
(Dstl) directed the work and participated in the research effort. Dstl
is the centre of scientific excellence for the Ministry of Defence, with
a mission to ensure that the UK armed forces and government are
supported with in-house scientific advice. RAND has been granted a
licence from the Controller of Her Britannic Majesty’s Stationery
Office to publish the Crown Copyright material included in this
report.

This report will be of interest to military planners, operators,
and personnel charged with assessing the effects of alternative infor-
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mation network structures, processing facilities, and dissemination
procedures. Planners contemplating the use of network-centric pro-
cesses to achieve military objectives can use the methods described in
the report to evaluate alternative structures and processes. Informa-
tion technologists can assess the contribution of each alternative to
the decisionmaker’s knowledge prior to taking a decision. The ulti-
mate goal is to develop tools that will allow operators to quickly
evaluate plans for their level of situational awareness.

For more information on the RAND International Security and
Defense Policy Center, contact the director, James Dobbins. He can
be reached by email at James_Dobbins@rand.org; by phone at 310-
393-0411, extension 5134; or by mail at RAND Corporation, 1200
South Hayes Street, Arlington, VA, 22202-5050. More information
about RAND is available at www.rand.org.
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Summary

New information technologies introduced into military operations
provide the impetus to explore alternative operating procedures and
command structures. New concepts such as network-centric opera-
tions and distributed and decentralised command and control have
been suggested as technologically enabled replacements for platform-
centric operations and for centralised command and control. As
attractive as these innovations seem, it is important that military
planners responsibly test these concepts before their adoption. To do
this, models, simulations, exercises, and experiments are necessary to
allow proper scientific analysis based on the development of both
theory and experiment.

The primary objective of this work is to propose a theoretical
method to assess the effects of information gathering and collabora-
tion across an information network on a group of local decision-
making elements (parts of, or a complete, headquarters). The effect is
measured in terms of the reduction in uncertainty about the informa-
tion elements deemed critical to the decisions to be taken.

Our approach brings together two sets of ideas, which have been
developed thus far from two rather different perspectives. The first of
these sets is the Rapid Planning Process, developed as part of a project
on command and control in operational analysis models within the
UK Ministry of Defence Corporate Research Programme. It is a con-
struct for representation of the decisionmaking of military com-
manders working within stressful and fast-changing circumstances.
The second set of ideas comes from the work on modelling the effects
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of network-centric warfare, carried out recently by the RAND
Corporation for the US Navy. We assess the effects of collaboration
across alternative information network structures in prosecuting a
time-critical task using a spreadsheet model. We quantify the benefits
and costs of local collaboration using a relationship based on
information entropy as a measure of local network knowledge. We also
examine the effects of complexity and information overload caused by
such collaboration.

Decisions in a Network

New technologies are enabling militaries to leverage information
superiority by integrating improved command and control capabili-
ties with weapon systems and forces through a network-centric
information environment. The result is a significant improvement in
awareness, shared awareness, and collaboration. These improvements
in turn affect the quality of the decisionmaking process and the deci-
sion itself, which ultimately lead to actions that change the battle-
space.

In this report, we focus on the quality of the decisions, or the
planned outcome, rather than on whether or not the desired effect is
eventually achieved.

We note that decisions are made based on the information avail-
able from three sources: information that is resident at the decision
node; information from collection assets and information processing
facilities elsewhere in the network; and information from other local
decisionmakers with whom the decision nodes are connected and
with whom they share information.

Rapid Planning Process

In most cases, decisionmakers must make decisions without full
understanding of the values of the critical information elements
needed to support the decisions. The decision taken depends on the
current values of the critical information elements, which are depen-
dent on the scenario. This dependency is modelled using the Rapid
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Planning Process. The critical information elements map out the
commander’s conceptual space. In the basic formulation of the Rapid
Planning Process, a dynamic linear model is used to represent the
decisionmaker’s understanding of the values of these factors over
time. This understanding is then compared with one or more of the
fixed patterns within the commander’s conceptual space, leading to a
decision.

A probabilistic information entropy model is used to represent
the uncertainty associated with the critical information elements
needed for the decision. Ideally, through the Rapid Planning Process,
additional information from collection assets or from collaborating
elements in the network serves to reduce uncertainty and therefore
increase knowledge.

Knowledge

We are principally concerned with the information and cognitive
domains, as depicted in Figure S.1. The domains of the information
superiority reference model divide the command and control cycle
into relatively distinct segments for ease of analysis. Their description
includes the entities resident in the domain, the procedures per-
formed and the products produced there, and the relationships
among the domains.

Information derived from sensors or other information gather-
ing resides in the information domain. This information is trans-
formed into awareness and knowledge in the cognitive domain and
forms the basis of decisionmaking. Our metrics quantify this process
through the use of information entropy and knowledge measures.

Information sharing among nodes ideally tends to lower infor-
mation entropy (and hence increase knowledge) partly because of the
buildup of correlations among the critical information elements. That
is, information can be gained about one critical information element
(e.g., missile type) from another (e.g., missile speed). Such cross cou-
pling is a key aspect for consideration, and we use conditional en-
tropy to capture these relationships.
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Figure S.1
The Information Superiority Reference Model

RAND MG226-S.1

Cognitive domain

Structured information (CROP)Prior knowledge,

expectations, and concerns

Situational awareness, shared situational awareness, collaboration,
and decisionmaking

Information domain

Data collection, fusion to produce the CROP, dissemination of
the CROP, and sensor tasking

Physical domain

Ground truth: entities, systems, intentions, plans, and physical
activities

Collected
data

Sensor
tasking

Knowledge derived from entropy is a quantity that reflects the
degree to which the local decisionmaker understands the values of the
information elements. It is represented as a number between 0 and 1,
with the former representing ‘no understanding’ and the latter repre-
senting ‘perfect understanding’. From this knowledge, decision-
makers can assess whether or not they are in their ‘comfort zone’—
that is, whether the values of the key information elements support
the decision they wish to take (such as one to launch the next attack
mission).
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Effects of Collaboration

Networks provide an opportunity for participating entities to share
information as part of a collaborative process.1 Here we focus on the
synergistic effects of collaboration that improve the quantity (the
completeness of our information) and the quality (its precision and
accuracy) of the information needed to take decisions. We model the
network as the combination of clusters of entities and represent each
entity by a node. A cluster consisting of a single node is taken to be
the degenerate case. Each such cluster consists of a set of entities,
which have full shared awareness. Full shared awareness means that all
entities in the cluster agree on the set of information elements and
their values at any given time.

Estimators

Through observations of the battlespace, sensors and other informa-
tion sources generate estimates for the information elements deemed
critical to the decision. The uncertainty associated with the informa-
tion elements is expressed in terms of probability distributions, the
means of which are estimates of the ground-truth values. Because the
mean of a probability distribution is a parameter of the distribution,
we turn to parameter estimation theory to assess the quality of the
information available to the decisionmaker and examine how the
quality of the estimates contributes to knowledge.

• Bias: Bias in an estimate is error introduced by systematic distor-
tions. An unbiased estimator is one for which its statistical
expectation is the true value of the estimated parameter. That is,
the expected value of the estimate of the parameter,  µ

^ , is the
true value of the parameter, µ . The bias in the estimate is there-
fore the degree to which this is not true.

• Precision: The variation in estimates of the critical information
elements can occur in a purely random way. Random errors

____________
1 Collaboration in this context is taken to be a process in which operational entities actively
share information while working together towards a common goal.
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affect the precision of the estimates reported because they
increase the variance of the distribution of the estimated infor-
mation element. In general, precision is defined to be the degree
to which estimates of the critical information element or ele-
ments are close together.2 Bias and precision, therefore, are
independent—that is, biased estimates may or may not be pre-
cise.

Precision and Entropy

The amount of information available in a probability density is meas-
ured in terms of information entropy, denoted H(x). Information
entropy is always a function of the distribution variance, and there-
fore we use it as the basis for developing a knowledge function. For
example, the bivariate normal distribution is   H(x, y)= log | |, where

 is the covariance matrix. From this, we create a precision-based
knowledge function as3

    

K x, y( ) =1 e
log

max
H x , y( )[ ]

=1

max

,

where | |max  is the determinant of the covariance matrix that pro-
duces the maximum uncertainty. Based on precision alone,   K (x, y)
reflects the level of understanding within a cluster of decisionmakers.

For the simple case of two collaborating decisionmakers (i.e.,
two nodes of the network forming a cluster) who share two pieces of
information with a multivariate normal distribution, the change in
knowledge is given by

____________
2 This is a commonly accepted definition. Ayyub and McCuen (1997, p. 191) define preci-
sion as ‘the ability of an estimator to provide repeated estimates that are very close together’.
A similar definition can be found in Pecht (1995).

3 Actually, the exact entropy value for the bivariate normal case is 
  
H x, y( ) = log 2 e( )

2

.
However, because we are concerned about the relative entropy, we use the simpler version,
which we refer to as ‘relative entropy’.
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K =

1,2
2

1
2

2
2

1,max
2

2,max
2

,

where   1,2  is the correlation coefficient,  1
2 , 2

2  are the variances, and

  1,max
2 , 2,max

2  are the maximum or bounding values on the variance for
the two pieces of information.

Accuracy

Accuracy is the degree to which the estimates of the critical informa-
tion elements are close to ground truth. The concept of accuracy
comprises both precision and bias. In general, if a is an information
element whose value x is unknown with probability distribution     f (x)
and mean µ  representing ground truth, then the bias associated with
the estimate of the mean is       b =| E(µ^ ) µ |, where   µ

^  is the estimate of
the mean. Because accuracy consists of both bias and precision, we
therefore need a metric that combines both. One such metric is the
mean square error (MSE),       E[(µ^ µ)2 ]= b2

+
2 , where   

2  is the
variance of µ^ . The MSE is an extremely useful metric because it
includes both accuracy in the total and precision as a component. In
estimating ground truth, the bias accounts for nonrandom errors and
the precision accounts for random errors.

We illustrate by continuing with the bivariate normal case. We
assume that Bayesian updating is used to refine the location estimate
based on the arriving reports. Bayesian updating is not always un-
biased, and therefore we introduce systemic error. In this case, the
bias is the Euclidean distance between the Bayesian estimate and the
ground-truth value:

    

b = µ^ x µ x

 

 
 

 

 
 

2

+ µ^ y µ y

 

 
 

 

 
 

2

.

By analogy with the MSE, the accuracy of the estimate is defined as
D(x, y) = b2

+ |
^

|.



xx    Information Sharing Among Military Headquarters

The Effects of Bias, Precision, and Accuracy on Knowledge

We now account for bias, precision, and hence accuracy in the
knowledge function by replacing the distribution variance with the
MSE, or the accuracy measure     D(x, y ) in the knowledge function.
Therefore, for the multivariate normal case, we get a modified knowl-
edge function of the form:4

      

K M x( ) =1
b2

+

b2
+( )

max

.

The ‘maximum mean square error’ is a combination of the maximum
bias and the maximum precision and represents the maximum in
inaccuracy. Because bias and precision are independent, the maxi-
mum occurs when both are maximised, or (b2

+ | |)max = bmax
2

+ | |max .
Like the variance, a suitable upper bound for bias can be found by
searching for the largest possible measurement error the sensors or
sources might produce.

Completeness

In addition to precision and accuracy, collaboration also affects the
completeness of the critical information elements available within a
cluster. For the entire network, we assume there are a maximum of N
critical information elements. For a given cluster, the total number
required is  C N . However, at a given time, t, only   n C  might be
available. If waiting for additional reports is not possible, a decision-
maker would be required to take a decision without benefit of com-
plete information. Depending on his experience and other contextual
information, the decisionmaker may be able to infer some likely less
reliable value for the missing information. For now, we assume that if
the value of an information element is missing, the value of com-
pleteness at cluster i is

____________
4 The subscript M denotes knowledge derived from the MSE.
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X i ,t n( ) =

n

C

 

 
 

 

 
 ,

where  is a ‘shaping’ factor. For values of  <1, the curve is con-
caved downwards; for  >1, it is concaved upwards; and for   =1, it is
a straight line. The selection of the appropriate value depends on the
consequences associated with being forced to take a decision with
incomplete information as well as the commander’s attitude to risk.

Information Freshness

A final consideration when assessing uncertainty is that of freshness.
The information arriving at a decision node consists of reports con-
cerning one or more of the critical information elements necessary to
take a decision. Both precision and accuracy depend on the joint
probability density function that reflects the uncertainty in our
knowledge of the ground-truth fixed pattern at a decision node.
These reports are used to update the joint probability distribution of
the information elements and hence the probability of correctness of
each of the fixed patterns in the local decisionmaker’s conceptual
space.

We have selected Bayesian updating as the method for combin-
ing reports from various sources and sensors. All things being equal,
we desire to give more weight to more recent reports, which requires
that we reevaluate all available, valid reports at the time a decision is
to be taken. A time-lapse estimate, 0 1, is used to determine the
rate of information decay so that old information is given less weight
than current information.

Measuring the Overall Effect of Cluster Collaboration

Finally, we combine the currency-adjusted precision and accuracy
knowledge function with completeness to arrive at a single metric to
assess the effects of collaboration across the cluster. The ideal case is
when we have full completeness, i.e., X t (n)= X t (C )=1, and the
knowledge shared across the cluster is fully accurate,   K M (x)=1.
Unfortunately, this ideal is seldom, if ever, achieved. Consequently,
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we require a construct that gauges the degree to which accuracy, as
calculated here, and completeness contribute to knowledge.

In general, when X t (n)  is small, the knowledge function should
also be small. One way to reflect this behaviour is to replace the MSE
in the entropy calculation with

    

b2
+

2

X t n( )
.

This equation has the desirable property that, when   X t (n) 1.0, the
ratio is just the MSE, and when X t (n) 0 , it increases without
bound. Because n is discrete, we can select     n =1 to be the worse case,
with     X t (1)=C . Consequently, the upper bound on the resultant
entropy calculation is

bmax
2

+ max
2

C
=C bmax

2
+ max

2( ) .

If C =1, there is no effect on the current entropy calculation or on
the maximum entropy. If we let     K (x) be the knowledge within the
cluster based on accuracy and completeness, with the maximum
variance replaced with     C (bmax

2
+ max

2 ), we get

    

K x( ) =1
b2

+
2

n bmax
2

+ max
2( )

for the univariate normal case.5

Up to this point, we have captured the effects of collaboration
among decision nodes within a cluster on knowledge. The measured
effects of information sharing through collaboration are accuracy and
completeness. For the most part, these effects are dynamical, because
they vary with the quality and quantity of reports received and pro-
cessed over time. Missing from this analysis so far is an assessment of

____________
5 The  subscript in this case refers to knowledge based on both the MSE and completeness.
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the systemic effects of the network structure—that is, the effects that
are more static. Next, we take up such measures of network com-
plexity and combine them with the collaborative effects to arrive at a
single measure of network performance and its effect on decision-
making.

Effects of Structural Complexity

All networks exhibit complexity to a greater or lesser degree. Military
command and control systems operating in a network-centric envi-
ronment also exhibit complex behaviour. The challenge is under-
standing exactly what the complexity is, what its effects are, and how
to quantify these effects. We note that there are both good and bad
effects of complexity. Unfortunately, the term ‘complexity’ has a
negative connotation; therefore, we have adopted Murray Gell-
Mann’s more neutral term, ‘plecticity’.

In this context, plecticity refers to the ability of a connected set of
actors to act synergistically via the connectivity between them. This
measure is intended to take into account the fact that there may be
constraints, due to technical or procedural limitations, on how nodes
can constructively connect to other nodes; that is, a node’s connec-
tivity can add costs as well as benefits to the cluster. A measure of
plecticity should account for the value of the cluster’s ability to glean
information from throughout the network to fulfil its particular func-
tions, include a means for measuring the value of information redun-
dancy, and reflect a cost to network effectiveness if nodes are over-
whelmed.

For networks with inadequate clustering, as with excessive
clustering—flows 1 and 3, respectively, in Figure S.2—we would
expect low plecticity scores. The goal is to configure the information
flow over a network with established link connectivity so as to maxi-
mise plecticity as measured in the terms discussed above and as illus-
trated by flow 2 in the figure.
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Figure S.2
Overall Network Plecticity

RAND MG226-S.2

Minimal
information flow

Benefits = none
Costs = none
Plecticity = low

1 2 3

Benefits = high
Costs = low
Plecticity = optimal

Benefits = high
Costs = high
Plecticity = low

Adequate
information flow

Excessive
information flow

Accessing Information

The metric developed for completeness earlier is simply a ratio of
counts: available required information elements to total required
information elements. No attempt is made to assess the degree to
which we can really expect to receive the information element, i.e., the
degree to which the network allows the cluster to access information
in the network. A metric that does so is the ratio of the aggregate
expected degree of critical information access to the total number of
required information elements. Such a metric accounts for the uncer-
tainties associated with retrieving needed information.

We thus replace the binary accounting for information ele-
ments, with a connectivity score based on a distance function that
recognises the cost imposed by the path the information must take
through the network to arrive at the node requiring it.

For any information element, al , we are interested in the shor-
test path from source node to destination node, d l 1, however
calculated. The restriction that the path distances always exceed 1.0
accounts for the fact that, for connectivity to exist at all, at least one
link must exist between source and destination. The case in which no
links exist implies an infinitely long path resulting in 0 connectivity.
The quantity,   d l , represents the expense incurred by moving infor-
mation element al  from source to destination. The associated con-
nectivity value is calculated as
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kl =

1

d l
l

,

where l 1 is the rate at which kl  varies with changing values of the
distance function.

The strength of the connectivity among all the nodes in such a
path must take into account the vulnerability of path elements (links
and nodes) to attack or failure. We can do this using the connectivity
score described above by examining its value as we remove each
node—link or both—one at a time from a given path. For simplicity,
we consider only the loss of nodes. We create a depletion vector,   L l ,
whose elements consist of the connectivity values for information
element al , with each of the path nodes removed in turn. The vector
L l  then represents the vulnerability of the path and, as such,
expresses the degree of uncertainty associated with retrieving informa-
tion element al  from network sources. The adjusted connectivity for
information element al  from network sources to a single destination
is calculated to be

lk = lk 1
L l

L l

 

 

 
 

 

 

 
 

1

,

where       | L l | is the cardinality of the vector     L l  and  is the edge
expansion parameter of the network, which measures the overall
robustness and reliability of the network. The resulting formula for
accessibility,   X (k), is

X k( ) =

k

C

 

 
 

 

 
   C 0

1   otherwise

 

 
 

 
 

,

where     k = kl
*

l=1
C  and C is, as before, the total number of information

elements critical to the cluster.
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Benefits of Network Redundancy

Network redundancy focuses on the reliability of the network; its
ability to deliver information in the face of node loss; system outages;
inefficient operating procedures; or some combination of all these
elements. At the same time, a network can deliver excessive informa-
tion, thus causing delays because of the time and resources required
to process all of it. Consequently, network redundancy can be both a
cost and a benefit of the network information flow.

Needed information can be provided to a cluster from multiple
sources. If the value of the information will change over time, we can
expect multiple reports from each source. These multiple reports
require combining in some way as previously discussed under col-
laboration. Whatever method is used, the degree to which the reports
contribute to estimates close to ground truth and to a narrowing of
the distribution variance, a benefit will accrue to the cluster because
of redundancy. Recall that the total number of required information
elements across the whole network is N; the number critical to a clus-
ter is C, where C N ; and the number of these available within the
cluster is n, where n C . If we let the vector 

  
= [ 1, 2 , , C ]T

represent the aggregate value of reports received for each required
information element (

      a1,a2 , ,aC ) from 
  
P = [ p1, p2 , , pC ]T  sources,

then we can construct a suitable normalised aggregate metric,   R( ),
as

R( ) =1
1

n
ie

i i 1( )
i=1
C ,

where     i =1 if     pi 1 and 0 otherwise. We let     ri ( i )  be the benefit
accruing from obtaining reports on the value of information element

  ai  from   pi  sources where 
  i = i , jj=1

pi , and 
    i , j [1, )  measures the

assessed reliability of the report on information element   ai  from
source   

s j . The parameter,  i , reflects the relative importance of the
information element, ai .

The combined benefit of information redundancy information
to the cluster, based on the conditional dependency between accessi-
bility and redundancy, is
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B R( ) | X k( )[ ] =
1( ) X k( )+ R( )[ ]
( ) X k( )[ ]

,

where   >1 is a constant that ensures a nonzero denominator and

  0 is another constant that ensures that the combined metric is
bounded between 0 and 1.

Costs of Information Overload

At the same time, a network can deliver excessive information. The
more sources of required information and the more frequent the
reporting, the longer it takes for the cluster to get a coherent view of
the situation. That is, it takes time to process information, which may
or may not contribute to improving the quality of the estimates. This
excess is referred to as ‘information overload’. In addition, some of
the sources may provide disconfirming evidence. The value of the
disconfirming evidence can be good or bad, depending on the degree
to which it reflects ground truth. Disconfirming evidence requires
time to evaluate and therefore may increase uncertainty and decrease
the quality of the estimates. Finally, it is also possible that raw data
may be processed before being sent, thus arriving at the cluster as
time-stamped information with the time at which the processing
ended. This possibility introduces an artificial latency that contributes
to uncertainty.

The supply of unneeded information to a cluster has an imme-
diate negative impact, because it must be processed or, at a mini-
mum, interferes with the receipt of needed information. However, as
more unneeded information is supplied, its impact is reduced. Thus,
a good function to model this behaviour is the exponential

    U (m)=1 e m , where m is the number of sources of unneeded infor-
mation and  is a scaling parameter.

The costs of information overload associated with needed
information within a cluster are generally minimal for low levels of
redundancy. Indeed, at these levels, the benefits far outweigh the
costs, as discussed earlier. However, at some point, costs rise sharply
so that the marginal cost of an additional source of information is
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greater than the previous source. At some further point, this cost then
levels off so that the marginal costs are minimal. This behaviour is
best described using a logistics response function for each information
element shared within the cluster. For simplicity, we express the
combined costs of oversupply of needed information as a simple sum,

      
G P( ) =

1

n
i

e i + i pi( )

1+ e i + i pi( )i=1
C ,

where   i  and  i  are shaping parameters.
In considering the overall costs for the cluster, a balance is struck

between costs of needed and unneeded information. We use a simple
weighted linear sum of the two components of information overload,
or       O[U (m),G(P)]= U (m)+ (1 )G(P) , where  0 1, as a relative
weight parameter.

Redundancy-Based Plecticity

The next step is to combine the costs and benefits of plecticity for a
cluster associated with the mission at hand. For each cluster in the
network, the measure of network plecticity, C(B,O), is calculated as
follows:

      
C B,O( ) = B R( ) X k( )[ ] 1 O U m( ),G P( )[ ][ ].

Network Performance

The last step is to combine the redundancy-based plecticity with the
benefits of collaboration across all the clusters of the network. Our
collaboration metric quantifies the effects of information sharing
across a cluster on information completeness and accuracy, whereas
plecticity measures the positive and negative effects of redundant
information and the degree of information access. The former assesses
the dynamic nature of the operation conducted on the network; the
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latter measures the effects of the underlying network structure and is
therefore systemic. All the dependencies among the several compo-
nents of collaboration and plecticity are not generally well under-
stood. However, we know that high-quality performance requires
good cluster knowledge and the means to share it and that scores in
either category are penalised by deficiencies in the other. Therefore,
the measure of total network performance is taken to be

,K N( ) = C i B,O( )K i ,[ ]i=1
L i

,

where     i =1i=1
L  and L is the number of clusters.

For values of       ( ,K N ) close to 1.0, the network is performing
well by producing the information required to take decisions within
each of the clusters when required. However, this is not the whole
story. The next step is to assess how well the combat mission is
accomplished. As important as good decisions are, good combat out-
comes are the ultimate measure of the value of network-centric opera-
tions. An example application shows how these approaches can be
combined. The mathematical approach is used to filter out preferred
network and clustering assumptions, which are then tested in a
simulation environment. This allows the development of both
network-based Measures of Command and Control Effectiveness and
higher-level Measures of Force Effectiveness.
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Abbreviations and Glossary of Terms

AA Bde Air Assault Brigade

Accuracy The degree to which information agrees with
ground truth

ACP Ammunition Control Point

AH Regt Attack Helicopter Regiment

Armd Bde Armoured Brigade

Armd Div Armoured Division

Awareness A realisation of the current situation

Bias Error in an estimate introduced by systematic
distortions

BSA Brigade Supply Area

C4ISR command, control, communications, computers,
intelligence, surveillance, and reconnaissance

CEC Cooperative Engagement Capability; a capability
that combines data from all platforms in an
operation and allows the combined data to
produce a better shared CROP

CEP circular error probable

Cluster A set of network nodes possessing full shared
awareness

CMM Collaboration Metric Model

CoA course of action
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Collaboration A process in which operational entities actively
share information while working together towards
a common goal

Complexity The condition of having several interrelated parts
in a network with several interrelated operational
entities. Kolmogorov definition: The length of the
shortest binary program needed to compute a
string of data; the minimal description length

Conceptual space The conceptual space of a commander is the space
defined by the values of his critical information
requirements

CROP common relevant operating picture; a view of the
battlespace shared by all friendly forces

DLM dynamic linear model

DSA Divisional Supply Area

Dstl Defence Science and Technology Laboratory

FOB Forward Operating Base

FSG Forward Support Group

Full shared
awareness

A set of network nodes that (1) share information,
(2) agree on the same set of critical information
elements, and (3) agree on the current values of
the agreed critical information elements

Information
entropy

A measure of the average amount of information
in a probability distribution (also referred to as
Shannon entropy)

Information
superiority

The ability to collect, process, and disseminate
information as needed; anticipate changes in the
enemy’s information needs; and deny the enemy
the ability to do the same

IPB intelligence preparation of the battlefield

Knowledge Accumulated and processed information wherein
conclusions are drawn from patterns

Logically
connected nodes

Nodes with a communication path between them
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MADM multiple attribute decisionmaking

Measures Standards for comparison

Mech Bde Mechanised Brigade

Metrics Mathematical expressions that evaluate both the
relative effect of alternatives and the degree to
which one is better or worse than another

MLRS Regt Multiple-Launch Rocket System Regiment

MSE mean square error; a measure of the accuracy of an
estimate. It is the sum of the bias and the
precision of the estimate

Mutual
information

The amount of information gained about random
variable X based on information gained about
dependent variable Y

NAI named area of interest

PCPR perceived combat power ratio

Physically
connected nodes

Nodes with a communications link between them

Plecticity The ability of a connected set of actors to operate
synergistically via the connectivity among them

Precedence
weighting

A multi-attribute decisionmaking method

Precision The degree to which multiple observations are
close together

RPD Recognition Primed Decision

SA situation awareness

SAW simple additive weights; a multi-attribute
decisionmaking method

Shared awareness The ability of a decisionmaking team to share
realisations

TAI target area of interest
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CHAPTER ONE

Introduction

New information technologies introduced into military operations
provide the impetus to explore alternative operating procedures and
command structures. New concepts such as network-centric opera-
tions and distributed and decentralised command and control have
been suggested as technologically enabled replacements for platform-
centric operations and centralised command and control. As attrac-
tive as these innovations may seem, it is important that military plan-
ners responsibly test these concepts before their adoption. To do this,
models, simulations, exercises, and experiments are necessary.

Objective

The major objective of this work is to produce a method to assess the
effects of information gathering and sharing across an information
network on the quality of decisions taken by a group of local deci-
sionmaking elements (parts of, or a complete, headquarters). The
effect is measured in terms of the reduction in uncertainty about the
information elements deemed critical to the decisions to be taken at
these local decisionmaking elements. We are thus assuming that the
set of information elements necessary to produce a local conceptual
picture of the battlespace is known.1 The issue here is the degree of

____________
1 Other experimentally based research work in the United Kingdom is considering what
these factors are in different scenarios.
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confidence with which they are known, as measured by the local deci-
sionmaking element’s level of knowledge.

The term ‘knowledge’ has several meanings, and therefore it is
important that, at the outset, we define what it means in the context
of the decisionmaking processes described in this work. Formally, we
define knowledge to be accumulated and processed information
wherein conclusions are drawn from patterns. Information elements
accumulated over time form patterns that can be matched to known
patterns. The more reports confirming a given pattern, the less uncer-
tainty remains and the more knowledge is gained.

The Information Superiority Reference Model

In terms of the categorisation developed by Alberts et al. (2001), we
are representing the flow of information about the physical domain
around the network in the information domain and its effect (in terms
of knowledge, situation assessment, shared awareness, and decision-
making) in the cognitive domain. These concepts are embodied in the
information superiority reference model depicted in Figure 1.1. Infor-
mation superiority is a term used to express the ability of one side in a
conflict to impose its will over the other based on superior informa-
tion collection, processing, and dissemination capabilities. Formally,
we define information superiority to be the ability to collect, process,
and disseminate information as needed; anticipate changes in the
enemy’s information needs; and deny the enemy the ability to do the
same.

Both sides in a conflict generally have different perceptions of a
single reality, referred to as the situation. Figure 1.1 shows how the
three domains contribute to this perception. We list the major activi-
ties performed in each of the domains in each of the boxes. The
physical domain is where reality, or ground truth, resides. In addition
to physical objects, such as weapon systems, terrain features, and
sensors, this domain also contains intangibles, such as enemy intent,
plans, and current and projected activities. A complete assessment of
the situation will contain estimates about each.
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Figure 1.1
The Information Superiority Reference Model
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Cognitive domain

Structured information (CROP)Prior knowledge,

expectations, and concerns

Situational awareness, shared situational awareness, collaboration,
and decisionmaking

Information domain

Data collection, fusion to produce the CROP, dissemination of
the CROP, and sensor tasking

Physical domain

Ground truth: entities, systems, intentions, plans, and physical
activities

Collected
data

Sensor
tasking

In the information domain, data are extracted from the physical
domain and processed to form structured information in the form of
a common relevant operating picture (CROP). Three primary func-
tions are performed in the information domain: collecting data
through the use of sensors and sources, including tasking sensors, to
close gaps in the data; processing the data through the fusion process
to produce the CROP; and disseminating relevant parts of the CROP
to friendly units. The last step contributes to the collaboration pro-
cess in the cognitive domain in which the shared CROP is trans-
formed into a shared awareness of the current and future situation
that can be used to gain understanding of threats and opportunities as
well as the subsequent decisionmaking regarding an appropriate
course of action. Our quantified assessment of the difference due to



4    Information Sharing Among Military Headquarters

local collaboration is a knowledge-based metric and hence resides in
the cognitive domain.2

Finally, the human activities associated with using the informa-
tion available to form an estimate of the situation are accomplished in
the cognitive domain. To the extent that decisionmaking teams exist,
they collaborate to form a level of situational awareness. In addition
to the CROP produced in the information domain, individual team
members and the decisionmaker may have prior information from
processes like the intelligence preparation of the battlefield (IPB)
available to support their deliberations. Finally, the decisionmaker is
likely to have concerns and expectations about the performance of his
own forces, as well as the enemy’s, that would colour his assessment
of the situation and therefore his decision. These elements are de-
picted in Figure 1.1 as emanating directly from the physical domain.

This report documents the mathematical constructs and metrics
used to assess the effectiveness of the various operating schemes and
command arrangements.

Research Approach

The basis of our approach is to bring together two sets of ideas, which
have been developed thus far from rather different perspectives. The
first of these comes from the work performed as part of a project on
command and control in operational analysis models within the UK
Ministry of Defence Corporate Research Programme. The pro-
gramme aims to provide the Ministry of Defence with the ability to
carry out fundamental research not tied to particular procurement
programmes. In this case, it has led to the development of the Rapid
Planning Process (Moffat, 2002) as a construct for representation of
the decisionmaking of military commanders working within stressful
and fast-changing circumstances. The process is now well accepted
and has been included in a number of key command and

____________
2 Collaboration in this context is taken to be a process in which operational entities actively
share information while working together towards a common goal.
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control–centred simulation models developed or under development
by the UK Defence Science and Technology Laboratory (Dstl). Such
a representation approximates to the ‘simple decisionmaking’ of
Alberts et al. (2001) in which the information elements and the crite-
ria for decision are known and a satisficing strategy is adopted.

The second set of ideas comes from the work on modelling the
effects of network-centric warfare, carried out recently by the RAND
Corporation for the US Navy (Perry et al., 2002). In this work, the
effects of collaboration across alternative information network struc-
tures in prosecuting a time-critical task can be assessed using a spread-
sheet model. The benefits and costs of local collaboration are quanti-
fied using a relationship based on information entropy as a measure
of local network knowledge. The effects of network complexity and
the completeness of the information collected are also reflected in the
overall assessment of the quality of the information made available to
the decisionmakers.

To merge these two ideas, we examine the decisionmaking pro-
cess among networked headquarters. We postulate that improved
decisions are contingent on increased knowledge and, therefore, on
diminished uncertainty. The pattern-matching features of the Klein
Recognition Primed Decision (RPD) model (Klein, 1989) are used to
match current estimates of critical information elements to the deci-
sionmaker’s set of typical situations or internalised patterns. A match
is made when the current estimates lie within the comfort zone of one
of the typical situations.

There are several analytic techniques available that are able to
match estimates of values of multiple information elements to sets of
typical situations—variously referred to as pattern-matching tech-
niques or classification processes. In this work, we rely on the
matching algorithms within the Rapid Planning Process mentioned
earlier and discussed in detail in Appendix A. The decision to be
taken in this case is the selection of an appropriate course of action
based on the closeness of the current critical information element
estimates to one of the typical situations.

Since, in a military operation, a rapid decision is usually desir-
able, the focus now centres on the means used to collect information
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about the uncertain critical information elements, the ease with
which this information is shared among participants in the operation,
the quality of the resulting processed information, and its effect on
knowledge. The methodology then turns to examining the structure
of the decision networks and the quality and quantity of the collabo-
ration exercised on it, and how both contribute to overall knowledge
and, by extension, better decisions.

Organisation of This Report

In the next chapter, we set forth the framework for thinking about
decisionmaking in a network. In Chapter Three, we address the un-
certainties associated with information elements needed to support
decisions, and suggest statistical representations that include a knowl-
edge metric. Chapter Four examines the effects of collaboration on
network performance. In Chapter Five, we explore the effects of
network complexity on network performance and combine collabora-
tion and network complexity to achieve a single metric that measures
the performance of networked clusters of decision nodes.

In addition, we include three appendixes. Appendix A describes
the Rapid Planning Process, and Appendix B discusses information
entropy used in the development of the knowledge metric. Finally,
Appendix C describes an application of the measures and metrics dis-
cussed in the text to the logistics command and control problem dis-
cussed in Chapter Two. Appendix C also discusses how the Measures
of Command and Control Effectiveness, examined in the main body
of this report, may be combined with combat models to assess the
effects of increased knowledge on force effectiveness.



7

CHAPTER TWO

Decisions in a Network

Western militaries are formulating new visions, strategies, and con-
cepts that rely on acute situational awareness, the transformation of
information into knowledge, and rapid, secure means of sharing
knowledge. They seem to be placing great reliance on networked
forces that are fully integrated with joint, national, and coalition or
allied systems. To achieve these goals, militaries must create and lev-
erage information superiority. It is foreseen that, under some circum-
stances, a mix of command and control capabilities would be inte-
grated with weapon systems and forces on an end-to-end basis
through a network-centric information environment to achieve sig-
nificant improvements in awareness, shared awareness, and collabora-
tion (Alberts et al., 2001; Alberts et al., 2002).

The ultimate effect, however, is on the quality of the decision-
making process and the decision itself. These decisions ultimately
lead to actions that change the battlespace. In this report, we are thus
concerned with the quality of these decisions, i.e., the planned out-
come, rather than the effect in the physical domain. It is almost an
article of faith that a richly connected network of decision nodes will
perform better by improving the quality of decisions. However, we
need to quantify this benefit as well as consider and quantify the
downside of such information sharing (such as the effect of informa-
tion overload and the problems associated with resolving discon-
firming evidence).



8    Information Sharing Among Military Headquarters

The Decision Model

For this work, we assume that the decisions taken by the various deci-
sion elements in the headquarters network are selections of courses of
action (CoAs) in response to the perceived situations. The CoAs pre-
scribe actions to be taken in the event that the situation in the battle-
space deviates from what is expected. Ideally, a mutually exclusive
and collectively exhaustive set of CoAs is known to the decision-
makers, and all they need do is collect information that informs the
perceived situation. In general, this is only partially true: CoAs can
also be developed in response to unfolding events—events that may
not have been perceived a priori. However, it is a reasonable assump-
tion when representing expert decisionmakers in stressful and time-
critical circumstances.

This approach is consistent with the naturalistic decisionmaking
paradigm of the RPD model, introduced by Gary Klein (1989). Klein
argues that experienced decisionmakers store up a set of typical situa-
tions and responses over time. They search the environment for clues,
cues, and expectancies that might clarify the situation. Once the
situation is perceived to match one of their stored situations, the deci-
sionmakers are then able to respond accordingly by selecting what
they feel is an appropriate course of action—generally something that
has worked in the past. However, if the situation is not clarified, they
seek additional information or examine the situation to determine
causes for the lack of clarity. This assessment could lead to the modi-
fication of a typical situation and response or to the creation of a
whole new stored experience. The latter behaviour results in the crea-
tion of new CoAs.

Matching the current situation to one of the decisionmaker’s
stored situations is clearly a subjective process. Each decisionmaker
assesses the current values of what are considered to be critical infor-
mation elements and decides whether the values are ‘close enough’ to
one of the stored situations. The choice of a ‘good enough’ stored
situation defines what we refer to as the decisionmaker’s comfort zone.
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Figure 2.1 illustrates what is going on.1 In this case, the commander’s
conceptual space is described in terms of two critical information
elements, a1 and a2. The ground-truth values of these information
elements are not known with certainty and therefore are considered
to be random variables with known densities. The ellipses in the dia-
gram represent the decisionmaker’s comfort zones for each of the
stored situations. The centre of each is the desired value set, and the
major and minor axes represent acceptable deviations from this
desired set. Both the centre and the axis lengths in each direction are
fixed. The centre of the shaded ellipse represents the current estimates
for     a1  and     a2 , and the axes represent the uncertainty in the estimate
based on the covariance between the two.

Figure 2.1

Decisionmaker’s Conceptual Space and Stored Situations

NOTE: Adapted from Moffat (2002), p. 45.
RAND MG226-2.1
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____________
1 See Moffat (2002) for a more complete discussion.
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In the diagram, we depict four stored situations, each with its
degree of acceptable uncertainty depicted by the size of its ellipse.
The shaded ellipse is the current estimate, and its size represents the
uncertainty in the estimate. In this case, although the estimate is clos-
est to situation     S1 , it does not fall completely in the comfort zone.
The issue then is to discern how close the shape must be to declare a
match. In practise, this is a subjective process dependent in part on
the decisionmaker’s attitude to risk.

Estimators

Through observations of the battlespace, sensors and other informa-
tion sources generate estimates for the information elements deemed
critical to the decision. As we discuss in the next chapter, the uncer-
tainty associated with the information elements is expressed in terms
of probability distributions, the means of which are estimates of the
ground-truth values. The quality of the estimates is therefore of con-
cern to us as we assess the contribution of networking to the quality
of the decisions taken. The mean of a probability distribution being a
parameter of the distribution, we turn naturally to parameter estima-
tion theory to assess the quality of the information available to the
decisionmaker, and we examine how the quality of the estimates con-
tribute to knowledge. Mathematical constructs from estimation
theory exist for the quality of estimates such as accuracy, bias, pre-
cision, sufficiency, efficiency, and consistency. We discuss some of
these terms more fully in Chapter Four.

A Networked Decision Model

Figure 2.2 depicts a simple network of decisionmaking nodes that are
connected to each other to form a decision network. In Alberts
(2001), the point is made that such a node-based network should
represent actors, decisionmakers (or knowledgeable entities), and sen-
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Figure 2.2
Network of Decisionmaking Elements
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sors (in the most general sense of information gatherers). We put the
focus here on information gathering and decisionmaking. Each node
thus represents either a ‘local decisionmaker’—i.e., a local com-
mander who needs to make decisions, or an information source—i.e.,
a collection facility such as a sensor, a processing facility such as a
fusion centre, or a source of information about future plans. Deci-
sions are made based on the information available to them either
locally, from collection assets and information processing facilities
elsewhere in the network, or from other local decisionmakers with
whom they are connected. The connectivity depicted is logical and
not necessarily physical. The structure of this network (the local
commanders represented and how they link up across a network) will
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be determined by the way we choose to organise the system and
develop a plan.

Information is thus available from three sources: other decision
nodes, external information sources, and information resident at the
decision node.2 In this depiction, we are concerned solely with such
information flows.

Clusters

In Figure 2.2, some of the decision nodes are linked together to form a
cluster that allows for local sharing of information. The term ‘cluster’,
as used here, refers to a set of network decision nodes that (1) share
information, (2) agree on a common set of critical information ele-
ments, and (3) agree on the current value of the agreed critical infor-
mation elements and degree of uncertainty associated with the cur-
rent values. The term ‘local’ refers to proximity in terms of logical
connectivity. It does not necessarily imply physical nearness. In addi-
tion, we assume that each of these clusters supports distributed
decisionmaking over time. Hence, we consider the process to be
dynamical.

Clusters of decision nodes have the following properties:

• Only decision nodes can be members of a cluster.
• A cluster forms a complete graph. All decision nodes communi-

cate with each other, thus producing n(n 1) connections, but
these connections are not necessarily physical.

• All decision nodes in a cluster are self-aware. Each decision node
is aware of its own status and is able to inform others in the clus-
ter.

• A cluster could consist of a single decision node, a number of
nodes, or perhaps even all decision nodes in the network.

• Clusters may or may not communicate with each other.

____________
2 Resident information is sometimes referred to as ‘organic information’. This expression is
the preferred term in the Office of Force Transformation’s network-centric operations
framework (Office of Force Transformation, Network-Centric Operations Conceptual
Framework, Version 1.0, 12 April 2004; available at www.oft.osd.mil).
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• A decision network consists of the union of clusters. The total
network consists of the decision network and all supporting
nondecision nodes.

For example, in Figure 2.2 decision nodes 1 and 2 share infor-
mation and therefore form a cluster. Decision nodes 3, 4, and 5 also
share information and therefore form another cluster. Note that
although decision nodes 2 and 3 may share information with each
other, neither shares information with the other decision nodes in the
other’s cluster. In the academic literature, ‘small world networks’ have
taken an approach similar to this in which highly clustered sets of
nodes are linked by longer-range ‘shortcuts’. These types of links lead
to desirable network properties such as a high clustering coefficient (a
measure of how well the network is linked locally) and a low average
path length (a measure of the mean number of links between two
randomly chosen nodes).3

Partitioning

We mentioned earlier that our goal is to assess the degree to which
networked headquarters increase (or decrease) the knowledge avail-
able to the decisionmakers and at what cost. We stop short of actually
taking the decision but rather measure success on the premise that
more knowledge improves decisionmaking.

One way to affect network knowledge may be to rearrange or
partition the network clusters. In Figure 2.2, for example, there are
several possible partitions, ranging from five separate independent
clusters of a single decision node each to one cluster consisting of all
five decision nodes.4 The question therefore is how best to partition
the network to improve knowledge at an acceptable cost.

____________
3 See Watts (1999) and Albert and Barabási (2002).

4 For a three-decision node network, the number of partitions is five; for a four-decision
node network, it increases to 15; and for the five-decision node network, depicted in Figure
2.2, the number of possible partitions is 49. The number of partitions for n nodes is

    
P

n
= S n,k( )k=1

n ,
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Requirements for a Model of the Process

We now take up the requirements for the general model in more
detail. There are many ways in which networks can be evaluated,
using a variety of methods such as petri nets, Bayesian networks, or
Neural Nets. The approach chosen depends on the particular charac-
teristics of the network and the metrics that have analytic value. Fol-
lowing the ideas of Claude Shannon, we use information entropy as a
key construct in developing metrics—since we wish to focus on
information—and how it is converted into knowledge. We also use
estimation theory to assess the quality of the estimates of the critical
information elements needed to take decisions. In addition, we wish
to capture the network dynamics of local information sharing, clus-
tering in the form defined above, local collaboration, and the costs
associated with complex network structures, since these capture core
aspects of potential future headquarters structures. It is for these rea-
sons that we have adopted the method presented here.

Consider one of these clusters, i. Suppose a local decisionmaker
within cluster i must take a critical decision at time t. Estimates of the
information required for the cluster to render a decision is accumu-
lated over time so that if

  
x i(t ) = xi,1 t( ),xi,2 t( ), ,xi ,C t( )[ ]

represents the current estimated values for the C cluster-agreed critical
information elements     {a1,.......,aC } needed at time t, the historical
matrix of values for the estimates of the critical information elements
is represented by the   t C  matrix:

  

x i 1( ),x i 2( ), ,x i t( )[ ] = xi ,k j( )[ ]
t C

=

xi ,1 1( ) xi ,2 1( ) xi ,C 1( )
xi ,1 2( ) xi ,2 2( ) xi ,C 2( )

xi ,1 t( ) xi ,2 t( ) xi ,C t( )

 

 

 
 
 
 

 

 

 
 
 
 

.

______________________________________________________

where 
    
S n,k( )  (also known as the Stirling number) is the number of partitions of n  nodes into

k nonempty sets and     S(n,k)= S(n 1,k 1)+ kS(n 1,k)  (Jackson and Thoro, 1989).
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Each element in the matrix represents the perceived value (estimates)
of the critical information element,   ak , at time j for cluster i.

We wish to represent the local decisionmaking process within
cluster i, using ideas based on the Rapid Planning Process. We thus
represent the local conceptual space of the decisionmakers within
cluster i by a space spanned by a small number, C, of information
elements that are the key concerns of the decisionmakers within the
cluster, as depicted for C = 2 in Figure 2.1.

Framing

For the entire network, we assume there is a maximum of N of these
critical information elements, ak , and therefore A = {a1,.......,aN }  is
the global set of critical information elements that we shall refer to as
the superset of critical information elements . Each of the critical infor-
mation elements, ak , is perceived to have the value     xi ,k( j)  at time step
j within cluster i.

Suppose   N = 4 , so that the complete information set is

      A = {a1,a2 ,a3 ,a4 } . For each cluster, the local conceptual picture will be
‘framed’ by selecting a subset of A. For example, the local conceptual
space of a cluster might be framed by the set of elements    A1 = {a1,a2 } .
The space of a second cluster might be framed by the set
A2 = {a2 ,a3 ,a4 } . Then, given that the two clusters collaborate, the
local collaboration between them results in a shared conceptual space
that is framed by the elements

      
A1 A2 = a1,a2{ } a2 ,a3 ,a4{ }= a1,a2 ,a3 ,a4{ }= A1,2 .5

Shared Awareness and Clustering

A cluster of decision nodes as defined earlier corresponds to a form of
shared awareness if the information shared among the cluster nodes is
available and internalised at each decision node in the cluster. By
‘shared awareness’, we mean the ability of the decision nodes in the

____________
5 In this simple example, we have that 

  
A

1,2
= A ; however, this is not always true.
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cluster to share realisations about the critical information elements.
We further state that the nodes of a cluster possess full shared aware-
ness if, in addition to sharing the same set of critical information ele-
ments, they further agree on the values each of these should take at a
given time.6

These perceived values, xi ,k( j) , of the critical information ele-
ments form the input data to cluster i at time step j as described in
Appendix A (The Rapid Planning Process) at stage 1 (observation
analysis and parameter estimation). Within cluster i, we assume there
are a shared number of fixed patterns or stored situations in the
shared local conceptual space that are the areas of the space about
which decisionmakers within the cluster are particularly concerned.
These are represented by multivariate normal probability distribu-
tions in the conceptual space in the basic approach, as described in
Appendix A. However, when a multivariate normal representation is
not appropriate, more general methods must be applied, as will be
discussed later. In either case, these fixed patterns are assumed to be
directly linked to one of a small set of key courses of action (or mis-
sions) from which the local decisionmakers within the cluster can
choose.

A Simple Logistics Example

Sustainment of deployed forces is one of the more difficult logistics
tasks. In this simple model, we do not claim to have examined all the
problems associated with supplying the force. In fact, we explore a
single decision: allocating supplies to competing friendly units. This
would be part of a sustainment plan, and our task is to examine how
various decisionmakers contribute to the plan across a simple network
of information sharing.

Figure 2.3 depicts the structure of a push (a) and pull (b) system
for logistics resupply from a holding point to two local commanders.

____________
6 This relates to the models of situational awareness such as those discussed in Endsley
(1995) and Feltham, Sheppard, and Cooper Chapman (2003).
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The allocation decision is made by the master in Figure 2.3a and the
arbiter in Figure 2.3b.

In Figure 2.3a, the master node decides which local commander
has priority, and therefore there is no benefit to be gained from the
two demand nodes collaborating. As a result, the demand nodes
(local commanders) are considered sources of information about their
own stock levels so that the critical information set required by the
master is     A = {a1,a2 } , where the numerical subscripts refer to the sup-
ply levels at the two demand points. Consequently, the network con-
sists of the decision node ‘cluster’ and the two demand nodes. Infor-
mation about global stock levels is only available at the master node.

In Figure 2.3b, the arbiter responds to the demands from the
local commanders. All three nodes in this case are decision nodes and
require the same information to make their decisions—the local sup-
ply levels     A = {a1,a2 } , as in the master case. The local commanders
place demands on the arbiter based on their anticipated requirements,
and the arbiter allocates stocks based on knowledge of global supplies

Figure 2.3
Networked Sustainment Decisions

RAND MG226-2.3

Master
Arbiter

Demand nodes
Demand nodes

A. Push sustainment

B. Pull sustainment

d1

d2

M A

d2

d1
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and anticipated future needs at both demand nodes. The knowledge
of global stock levels is based on shared information from the
demanding nodes and the stock levels available to the arbiter. In this
case, we can consider the benefit of the local commanders collabo-
rating in order to ensure that their demands are placed by taking
account of global knowledge about stock levels. The network there-
fore consists of a single cluster that comprises the three decision
nodes, as depicted in the diagram.7

In the push case, no other partitions are possible because there is
only one decision node. In the pull case, however, it is possible to
consider the arbiter and one of the headquarters nodes in a single
collaborating cluster and the other a single decision node cluster.
Operationally, we would expect the arbiter, in this case, to give pri-
ority to the connected headquarters, with the residual supply going to
the single-node cluster. It is not possible, however, to partition the
two headquarters as a single cluster with the arbiter as a single deci-
sion node cluster because it would violate the operational concept.
For this example, we consider the single cluster in each case.

Each cluster supports local decisionmaking within the cluster.
We can enrich the representation by adding an information node that
supplies more detail on the operational plan, the synchronisation
matrix of the forces, and the resultant likely pattern of demand for
stocks. We focus here on the demand for fuel supplies to make the
example more concrete. In Chapter Four, we will discuss the implica-
tions of these two modes of supply in terms of information sharing
through collaboration and network knowledge. Later, we will address
the costs of achieving this level of knowledge as well.

____________
7 All three agree that the local and global stock levels are the critical information elements,
they all share information about the value of these critical information elements, and they all
agree on these values.
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CHAPTER THREE

Representing Uncertainty

The decisions within each of the clusters must be taken, in most
cases, without full knowledge of the values of the critical information
elements needed to support the decisions. The degree of uncertainty
depends on the information collection assets devoted to the cluster’s
critical elements of information and the extent to which collaboration
among the cluster decision nodes is facilitated. Information entropy is
a reasonable estimate of the uncertainty, and consequently we use a
probabilistic entropy model to represent the uncertainty associated
with the critical information elements needed within the cluster. The
reports on the values of the critical information elements are treated
as estimates of the means of the distributions describing their uncer-
tainty, and therefore the quality of the estimates is assessed using
concepts from estimation theory.

Decisions

The decisions taken within each of the clusters depend on the sce-
nario represented. In Figure 2.3, we depicted a simple logistics exam-
ple in which the decision is the quantity of supply to allocate to each
demanding unit. In general, we focus on operational and tactical
decisions made at the division/brigade, ship group, or equivalent level
and below. The decision taken within the cluster depends on the cur-
rent estimated values of the critical information elements.
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The dependency among the critical information elements is
modelled using the Rapid Planning Process, provided that uncer-
tainty can be expressed in the form of normal distributions. The
Rapid Planning Process is a set of algorithms that together represent
local command decisionmaking at each of the decision nodes (Mof-
fat, 2002). The process requires that the commander’s local ‘concep-
tual space’ be spanned by a small number of critical information ele-
ments. These elements are a subset of the total set, {a1,.......,aN }, of
information elements considered across the network. In the basic
formulation, a dynamic linear model (DLM; see Appendix A) is then
used to represent the decisionmaker’s estimates of the values of these
factors over time. Ideally, through this process, additional informa-
tion from collection assets or from collaborating elements in the net-
work serves to reduce uncertainty and therefore increase understand-
ing.

A Multivariate Normal Model

We begin first with a simple case in which we assume that the uncer-
tainty in these critical information elements is represented by a multi-
variate normal distribution, and we are considering all the informa-
tion elements 

  
A = {a1, ,aC }  shared across a cluster.1 Their values are

represented by the random vector 
     X = [x1,x2 , ,xC ]T . In this case, the

DLM can be used to make a local assessment of the overall uncer-
tainty of the vector of critical information elements within the cluster.
The uncertainty in the vector is represented as the multivariate nor-
mal distribution

      

f X( ) =
1

2( )
C

e

1

2
X µ[ ]

T 1
X µ[ ]

 

 
 

 

 
 

,

____________
1 We will deal later with the more general case in which this assumption need not hold.



Representing Uncertainty    21

where 
      µ = [µ1,µ2 , ,µC ] is the mean and
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is the covariance matrix. The off-diagonal elements are the covariance
values between the random variables   xi  a n d  x j , calculated as

i , j = E(xi µ i )(x j µ j ). The value

    
i , j =

i , j

i j

is the correlation between the random variables, xi  and x j . When

  i = j , then     i , j  is just the variance     i
2  depicted along the diagonal in

the covariance matrix. The entropy of the distribution (as we will dis-
cuss in more detail later) can be easily calculated from the covariance
matrix and is then used as the basis for a quantifiable metric of the
knowledge available to the cluster. With improved knowledge, we can
refine the estimates of the critical information elements to more
closely reflect ground truth.

Knowledge from Entropy

Decisions taken within a cluster depend on the degree to which the
local decisionmakers know the true values for each of the critical
information elements.       f (X) represents the level of uncertainty associ-
ated with the values of the critical information elements. It therefore
forms the basis for measuring the level of knowledge. To quantify the
level of knowledge, we apply the concept of information entropy,
borrowed from information theory.

Information entropy, sometimes referred to as Shannon entropy,
measures the amount of information in a probability distribution
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(Shannon, 1948). Shannon entropy for a probability density func-
tion, f (X), is defined to be the expected value of the negative loga-
rithm of       f (X), or

        
H X( ) = E log f X( )[ ] = f X( )

xC

log f X( )
x2x1

dxC dx2dx1.

If, as in this case,    f (X) is continuous,    H(X) is referred to as differen-
tial entropy.2

For the multivariate normal distribution, the differential entropy
is calculated to be

H X( ) =
1

2
log 2( )

C
+

C

2
=

1

2
log 2 e( )

C 

  
 

  
, (3.1)

where   | | is the modulus of the determinant of the covariance matrix
 and   C N  is the number of information elements critical to the

cluster.
In this work, we are interested in relative entropy, and therefore

noting that       H(X) varies solely with the covariance (since C is held
constant), we simplify equation (3.1) to       H r (X) = log | |.    Hr (X) is
then a local measure of the (relative) information entropy. From now
on, we will drop the subscript r.

Knowledge

Knowledge derived from entropy is a quantity,       0 K (X) 1, that
reflects the degree to which the local decisionmakers within a cluster
know the true values of the information elements, 

  
{a1, ,aC }, and

their interaction. For       K (X) 1, knowledge is considered to be good,
and for K (X) 0 , it is considered to be poor.

For the multivariate normal distribution,       K (X) is calculated as
follows. We first assume the existence of a maximum joint entropy,

      
Hmax X( ) = log

max
.

____________
2 See Appendix B for a more detailed discussion of information entropy.
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Physically, this can be interpreted to be the maximum uncertainty in
the probability distribution, f (X). If, for example, the information
elements consist of the x- and y-coordinates associated with the loca-
tion of an enemy unit, the maximum entropy might be associated
with search area. Search areas are derivative of ‘named areas of inter-
est’ (NAIs) or ‘target areas of interest’ (TAIs). If, through the IPB
process, we are able to describe a circular area in an NAI or TAI
within which we are virtually certain the enemy unit is located, we
can then relate this information through a circular error probable
(CEP) to the variance of the location in the x- and y-directions.3

If the maximum entropy is taken to be   log | |max , then the
residual entropy at any given time is log | |max H(X). A formulation
for K (X) therefore ensures that a value confined to the interval [0,1]
is

      

K X( ) =1 e
log

max
H X( )[ ]

=1

max

.

When the modulus of the determinant of the covariance is close to its
maximum, knowledge is at a minimum, whereas for small values of
the covariance determinant, knowledge is greatest.4

The Effects of Knowledge

As a basis for our consideration of the effects of knowledge, we use
the domain structure depicted in Figure 1.1. We are principally con-
cerned with the information and cognitive domains. Information
derived from sensors or other information gathering resides in the
information domain. It is then transformed into awareness and
knowledge in the cognitive domain and forms the basis of decision-

____________
3 For unit location, if we assume that   x = y =  and that   xy = yx = 0 , then the CEP is
related to the common variance as follows:     =CEP /1.1774 . CEP in this formula is the radius
of the maximum search area. See Burington and May (1958).

4 See Perry et al. (2002).
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making. Our metrics quantify this process through the use of infor-
mation entropy and the derivative knowledge measures. Information
sharing among nodes ideally tends to lower information entropy (and
hence increases knowledge) because of the reduction in variance and
the buildup of correlations among the critical information elements.

One of the key aspects of increased knowledge (and, corre-
spondingly, reduced entropy) is thus an increased understanding of
the correlations between variables. This means information can be
gained about one critical information element (e.g., missile type)
from another (e.g., missile speed). Such cross coupling is a key aspect
for consideration as we extend our analysis from normal to more arbi-
trary probability distributions.

More General Models

The multivariate normal assumption is likely to be restrictive for
some applications. The example above in which it was used to repre-
sent the location of a target is perhaps the best-known military appli-
cation. A more general model for a cluster recognises that the uncer-
tainty associated with each of the critical information elements is
likely to be represented by unique probability distributions and that
their joint distribution is either unknown or can be discerned only
through a laborious combinatorial process.

For example, suppose we wish to model a US carrier battle
group executing a cruise missile defence mission with its attached
Aegis cruisers.5 Our cluster in this case might consist of the deci-
sionmakers on board each of the Aegis cruisers taking part in the
mission—assuming that all commanders in the cluster are able to

____________
5 This is a very real problem examined extensively by the Royal Navy and the US Navy. In
the United States, the Cooperative Engagement Capability (CEC) is being developed in
response to the challenges of littoral warfare, the shrinking size of US and Allied navies, and
improvements to adversary capabilities. CEC is an approach to air defence that allows com-
bat systems to rapidly share unfiltered sensor measurement data and track data to enable a
carrier battle group to operate collectively. See ‘The Cooperative Engagement Capability’
(1995).
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share information with each other. The decision to be taken is when
and where to engage an incoming enemy cruise missile.6 We further
assume that each weapon system (standard missiles on board the
Aegis cruisers) requires the same information—the location of the
target (latitude and longitude), its altitude and speed, its direction,
and its type—so as to have a critical information set that is uniform
among all decision nodes in the cluster:7

A = location,altitude,speed,direction,missile type{ } = a1,a2 ,a3,a4 ,a5{ }.

These are the information elements shared among the cluster, leading
to full shared awareness within the cluster. The location of the missile
has two components—latitude and longitude—and therefore we have
a1 = [a1,x ,a1, y ]. The uncertainty of these components is taken to be bi-
variate normal as developed earlier. As tempting as it is to include
altitude in location and model uncertainty in three dimensions, we
recognise that altitude is bounded from below and therefore its uncer-
tainty is better described using a density such as the lognormal or the
gamma.8 This situation is also true of speed. Direction, however, is
circular and therefore bounded between 0 and   2 . If normalised on
[0,1], the uncertainty here can be represented by a beta density. Mis-
sile type is nominal, and therefore its distribution is empirical.

Although more realistic, this representation is clearly more
problematic. Added to the complexity is the fact that not all the
information elements are independent, and therefore their joint dis-
tribution is not likely to be multiplicative. For example, the speed of
a missile is, in some part, a function of its type—as is its altitude. Its

____________
6 We omit a discussion of shooting policy, centralised versus decentralised command and
control, and the participation of ground defence units. These are all interesting aspects of the
problem and their examination in a network-centric environment will lead to the assessment
of several alternative network structures and command and control arrangements—what our
models are ultimately designed to accomplish.

7 In this case, direction refers to the bearing of the incoming missile and not its inclination.

8 Actually, it is likely bounded from above as well, and therefore one might argue for a beta
distribution. In either case, a normal distribution is not appropriate.
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location and direction at any point in time, however (ignoring its
trajectory history), need not be.

Two problems arise from this more general representation: (1)
describing the joint probability distribution,    f (A), needed to account
for the dependencies within the critical information elements, and (2)
combining the knowledge functions for each of the marginal distribu-
tions to create an overall measure of local knowledge. We discuss two
methods for dealing with these issues: multi-attribute assessment and
mutual information.

Multi-Attribute Assessment

The simplest (but perhaps not the most accurate) way to deal with
the problem of combining the knowledge functions associated with
multiple distributions is to create a weighted sum that represents the
current level of knowledge of the combined critical information ele-
ments. Weights generally imply some notion of relative importance.
Although indeed desirable, weights are not enough in all cases. What
is needed is some way to represent the inherent dependencies among
the information elements. Regardless of how well we are able to
achieve this goal, a weighted sum is inherently flawed because of the
fact that knowledge need not be additive. Nevertheless, as a means of
comparison, the methodology has value.

The objective of multi-attribute assessment is to derive a single
knowledge value that describes the joint level of knowledge about the
critical information elements within a cluster and, ultimately,
throughout the network. In the multivariate normal case, described
earlier, this value is just the knowledge function derived from the dis-
tribution’s information entropy. By deriving this single value, we
model the assessment of a decisionmaker within the cluster, of the
current estimates of the critical information based on information he
has received, and his level of knowledge derived from these estimates.
This, in turn, can be used to select a course of action (take a deci-
sion).
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The two methods discussed here derive from multiple attribute
decisionmaking (MADM) theory; in particular, the MADM tech-
niques in which the decisionmaker is supplied with the value of dif-
ferent sub-attributes that contribute to an overall value. Generally,
MADM methods are used when a decision must be made between
two or more alternatives based on multiple attributes that have
incommensurable units—for example, speed and direction. The
choice of one technique over another depends on the nature of the
attributes being combined and their relation to one another. Here we
discuss two methods: simple additive weights (SAW) and weighted
product.9 In both methods, we use the terms ‘system’ and ‘system
instantiation’ to refer to the combat situation at the time estimates of
the critical information elements are to be assessed.

Simple Additive Weights Method

The SAW method (Fishburn, 1967) is perhaps the simplest method
of aggregation and is a relatively old technique. It is cited in Article I,
Section 2, of the US Constitution as a method to determine the
degree of a state’s representation in the Union.10 It is generally used
when the attributes are independent of each other. For a case in
which there are C attributes shared across the cluster, we get

      
V A( ) = iV ai( )i=1

C ,

where V (A) is the value of the system instantiation with critical
information elements, ai . The term i , (    i =i=1

r 1) is the weight
(importance) of information element  ai , and   V (ai ) is its value
(knowledge function in this case) for the instantiation being consid-
ered. Unfortunately, the likelihood that all information elements
shared across the cluster are independent is very small, so this tech-
nique is not widely applicable except where the weights can be made
to account for the dependencies in some way.

____________
9 For a complete discussion of several more methods, see Perry et al. (2002).

10 See Yoon and Hwang (1995, p. 32).
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Weighted Product Method

The weighted product method (Bridgman, 1922) is similar to the
SAW technique, except in this case the values of the different attrib-
utes are multiplied. The general form of this method is

V A( ) = V ai( )[ ]
i

i=1
C ,

where       V (A),   ai , and  i  are as above.
Although V (A) might be used directly as a measure of combined

system value, it is often the case that its value in relation to a positive
ideal is used instead, so we obtain

      

V A( ) =
V A( )
V A

*( )
,

where     A *  is the positive ideal that may or may not be achievable.11

A similar approach is the Keeney-Raiffa multi-attribute utility
method (de Neufville, 1990). In this method, the aggregation evalua-
tion takes the form

      
V A( )+1= i V ai( )+1[ ]i=1

C ,

where  is a normalising factor used to ensure consistency between
the definition of V (A) and the     V (ai )’s. The value of  is given by

    
+1= i +1[ ]i=1

C .

This technique is advantageous because it allows for the consid-
eration of possible interactions between the attributes—something
clearly desirable if we wish to account for dependencies. For example,

____________
11 The positive ideal case, also sometimes referred to as the most favourable case, is the
instantiation with the highest overall value. The positive ideal case is selected from the
existing instantiations, a combination of the existing instantiations or using the maximum
possible value for each attribute.
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if     C = 2, and     {a1,a2 } is the set of information elements shared across
the cluster, we get

      
V A( ) = 1V a1( )+ 2V a2( )+ 1 2V a1( )V a2( ),

with   = (1 1 2 ) ( 1 2 ) .

Precedence Weighting

Precedence weighting provides a method to get at the dependencies
among the information elements. The weights are computed based
on these dependencies. The relative importance of the information
elements is assessed singly or in combination. For example, suppose
we have decided that the information elements, shared across our
CEC cluster, required to accurately engage an attacking cruise missile
in our example are location, speed, direction, and missile type. Recall
that the decision to be made is when and where to launch a standard
missile to intercept the incoming enemy cruise missile. For each of
the information elements and combinations of information elements,
we ask: Can the decision be taken with just this (these) information ele-
ment(s)? For example, can the decision to intercept be taken knowing
only the location of the enemy cruise missile? with location and
speed? etc.? For a given set of information elements of size r,     2

r , such
questions must be asked. In this example, this amounts to 16 ques-
tions.12 For large information sets, this method could become rather
cumbersome, hence the omission of ‘altitude’.

Other questions arise: If a decision can be made knowing the
value of only one of the three information elements, what added
value does knowing the other two provide? Are the information ele-
ments not used in the decision therefore still ‘critical’? First, we
assume that if an information element is designated as ‘critical’, it is
needed to fully inform the decision. We recognise, however, that

____________
12 This includes the empty set, i.e., no information elements are available, and the entire set,
i.e., all information elements are available. We would expect the answer to the former to be
‘no’ and the latter to be ‘yes’. This is sometimes referred to as the information element power
set.
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decisions are taken with less-than-complete information but that
there is some subset below which a decision is impossible or
extremely risky—regardless of the urgency of the situation. In this
example, having estimates for all information elements is better than
two or one. One way to acknowledge this is to assign weights to
various combinations of the information elements. However, doing
this leads us back to subjective linear weighting. Consequently, we
rely solely on counts for this method.

The answers to the questions determine the weights assigned to
each element. Table 3.1 summarises the answers to the 16 questions.

The next step is to count the number of combinations that
result in a ‘yes’ response in the last column of the table for each of the
information elements. For example, of the 16 combinations here
(including the empty set), location occurs in eight with a ‘yes’
response. In each of these, it was determined that a decision to engage
the cruise missile could have been made with just the information
elements in the combination. For the remaining three, the count is
five each.

Because location alone was considered sufficient for a launch
decision, any of the other combinations that included location were
also considered sufficient. The other three information elements
appear in exactly five ‘yes’ combinations because no two combina-
tions of them were considered sufficient to order a launch but all
three together were considered sufficient. If it were the case that each
of the four information elements alone were sufficient to order a
launch, then each would earn a score of 8, which is equivalent to
equally weighted, independent information elements.

If all information elements were necessary and no lesser combi-
nation sufficient to launch, we get the same result. In this case, each
information element would receive a score of 1.

Calculating the relative weights from these results consists of
using the sum of the scores to normalise the weights so that

    i = ci / c jj=1
C ,
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Table 3.1
Precedent Weight Assessment

Location (    a1 ) Speed (   a3) Direction (    a4 ) Type (    a5 ) Yes/No

X — — — Yes
— X — — No
— — X — No
— — — X No
X X — — Yes
X — X — Yes
X — — X Yes
— X X — No
— X — X No
— — X X No
X X X — Yes
X — X X Yes
— X X X Yes
X X — X Yes
X X X X Yes

where ci  is the score for information element ai . In this example, we
would get the following weights:   1 = 0.348 and   2 = 3 = 4 = 0.217 .

This method is practical only for small sets of information ele-
ments, since the dimension of the problem increases exponentially
with the number of information elements. However, for most opera-
tional decisions, the number of critical information elements is small,
and indeed, we assume this to be the case in this analysis. Even for
those cases in which the number is large, it is likely that certain com-
binations are not worth examining because it is obvious that the
combination would not be sufficient.

Mutual Information

Next, we discuss a more direct method to derive the multi-attribute
knowledge function for a set of information elements shared across a
cluster. Mutual information is derived from information entropy (see
Appendix B) and deals directly with the issue of independence (or
rather lack thereof) among the information elements. Although a
joint probability density function is still required, mutual information
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allows us to account for the dependencies even when the joint distri-
bution is empirical.

What we desire is a mathematical construct that will allow us to
modify our knowledge about a random variable (information ele-
ment, X) based on our knowledge of a second random variable
(information element, Y) when X and Y are not independent random
variables. Because one random variable informs another, we refer to
this construct as mutual information.

Relative Entropy

Relative entropy measures the ‘distance’ between two probability
mass functions, denoted     D[ p(x) || q(x)]. It is essentially the error
incurred by assuming the true distribution for X  is q(x) , when it is
really     p(x). Relative entropy as defined by Cover and Thomas
(1991)13 is

D p x( ) q x( )[ ] = p x( ) log
p x( )
q x( )x X

.

In this definition, we have

    

0log
0

q x( )
= 0  and p x( ) log

p x( )
0

= .

If     p(x)= q(x), then    D[ p(x) || q(x)]= 0 . However, relative entropy is not
a true distance metric because it is not commutative. That is,

D p x( ) q x( )[ ] = D q x( ) p x( )[ ]

is not always true.14 Kullback (1978, p. 6) refers to the quantity

____________
13 See also Kullback (1978).

14 A true metric satisfies the following properties:

A metric space is a pair (X,d ) , where X is a set and d  is a metric on X (or a distance function on X),
such that for all       x, y,z X  we have:
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D p x( ) q x( )[ ]+D q x( ) p x( )[ ]

as a measure of divergence between     p(x) and   q(x)  and, therefore, a
measure of the difficulty of discriminating between them.

Mutual Information

We use the concept of relative entropy to arrive at a measure of
mutual information. Suppose we have two dependent random vari-
ables, X and Y, with joint probability mass function     p(x, y) and mar-
ginal mass functions p(x) and p( y). We define the mutual informa-
tion to be the relative entropy between the joint mass function and
the product of the marginal mass functions, or

    

I X :Y( ) = D p x, y( ) p x( ) p y( )[ ]

= p x, y( ) log
p x, y( )

p x( ) p y( )y Yx X

.

Hence, I X :Y( ) defined in this way is the amount of informa-
tion about X gained from Y.

Cruise Missile Type and Speed

Recalling our example again of the CEC cluster, we note that the
type of enemy cruise missile threatening a friendly fleet can be
inferred somewhat from its speed of approach. However, the relation-
ship between the two is not exact because the missile may be operat-
ing at a speed other than its nominal speed and several of the missiles
may operate at similar speeds. Nevertheless, if a report of missile

______________________________________________________

  d  is real-valued, finite and nonnegative.

    
d x, y( ) = 0  if and only if   x = y .

    
d x, y( ) = d y,x( ) .

    
d x, y( ) d x,z( )+d z, y( ) .

(Taken from Kreyszig, 1978.)
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speed is received, it is possible to improve our knowledge about the
type of missile threatening us.

For example, suppose we let the random variables S and M
represent the speed and enemy missile type, respectively. We define
the joint probability mass function, p(s,m), in Table 3.2.15 Three
missile types are listed as column headers. Continuous speed has been
divided into four Mach intervals and are listed in the left-hand col-
umn. The entries in the table are the joint probability mass for the
events si m j  or p(si ,m j ). The marginal distributions p(si ) and

    
p(m j ) are the probability that a missile is travelling within the range

  si  and that the missile launched is of type m j , respectively.
From this we calculate the mutual information:

I M : S( ) = p si ,m j( ) log
p si ,m j( )

p si( ) p m j( )
= 0.222i=1

4
j=1
3 .

Table 3.2
Joint Probability Mass Function for Speed and Missile Type

C601
(    m1 )

C801
(   m2 )

SS-N-27
(    m3 )

p(si )

0–M0.75
( s1) 0.05 0.04 0.20 0.29

M0.75–1.0
(    s2 ) 0.14 0.15 0.02 0.31

M1.0–2.0
(    s3 ) 0.03 0.05 0.07 0.15

>M2.0
( s4 ) 0.04 0.01 0.20 0.25

    
p(m j ) 0.26 0.25 0.49 1.00

NOTE: The speeds are given in Mach units.

____________
15 Although it is always possible to create such a table, it is generally very difficult to obtain
credible table entries. In most cases, a normalisation process is needed to convert whole num-
bers (generally from 1 to 10) supplied by operators to the joint probabilities. In any case, the
entries are more likely to be subjective estimates.
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Therefore, the amount of information about cruise missile type
that can be gained from the speed of the incoming enemy missile is
0.222 nats.16 Because     I (M : S )= I (S : M ), we may also interpret this
to be the amount of information about the speed of the incoming
enemy cruise missile that can be gained from its type.

One way to use mutual information is to develop pairwise joint
probability mass functions for all the critical information elements
and calculate their mutual information. A high mutual information
score between two information elements means that the two are non-
randomly associated with each other, whereas a lower score signifies
that the two are independent—that is, that the joint distribution of
the two holds no more information than the information elements
considered separately. Butte and Kohane (1999) use this pairwise
assessment of mutual information to associate genes. They hypothe-
sise that an association with high mutual information means that one
gene is nonrandomly associated with another. They then select a
threshold mutual information level and use the associations above the
threshold to generate gene clusters or relevance networks.17

The next, and more difficult, step is to develop the appropriate
weights from these pairwise associations. We have not addressed this
problem as yet; however, it appears that the relevance network
approach suggested by Butte and Kohane might be applicable.

Assuming a joint probability mass function can be found for all
the information elements shared across a cluster, we can proceed as
follows.

Entropy and Mutual Information

The knowledge function used to assess understanding relies on the
calculation of information entropy. Consequently, it would be help-

____________
16 When information entropy is calculated using base 2 logarithms, the resulting measure of
information present in the distribution is a ‘nit’. When we use natural logarithms, the mea-
sure is the ‘nat’, with reference to the natural logarithm. See Appendix B for a fuller dis-
cussion.

17 Two genes are connected in the network, if their mutual information scores exceed the
threshold for that cluster.
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ful to exploit the relationship between mutual information and
information entropy. Fortunately, the relationship is quite straight-
forward. First, however, we need to develop the concept of condi-
tional entropy.

Conditional entropies     H(X |Y ) and     H(Y | X ) are sometimes
referred to as ‘side information’, i.e., the uncertainty (entropy) in one
random variable is conditioned on another random variable.18 If the
random variables X and Y have a joint probability density, p(x, y), the
conditional entropy     H(X |Y ) is defined as

    

H X |Y( ) = p x( ) p y | x( ) log p y | x( )
y Yx X

= p x, y( ) log p y | x( )
y Yx X

.

From this, we can derive an expression for mutual information in
terms of information entropy as follows:

    

I X :Y( ) = p x, y( ) log
p x, y( )

p x( ) p y( )y Yx X

= p x, y( ) log
p x | y( )

p x( )y Yx X

= p x, y( ) log p x( ) + p x, y( ) log p x | y( )
y Yx Xy Yx X

= p x( ) log p x( ) p x, y( ) log p x | y( )
y Yx X

 

 
 

 

 
 

x X

= H X( ) H X |Y( ).

____________
18 In communications theory, the conditional entropies can be thought of in terms of a
communications channel with input X and output Y. H (X |Y )  is then called the equivocation
and corresponds to the uncertainty in the transmission from the receiver’s point of view, and
H (Y | X )  is called the prevarication and represents the uncertainty from the transmitter’s
point of view. Taken from Blahut (1987).
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This is helpful because all quantities can be expressed in terms of
information entropy.

The next step is to consider the multidimensional case. That is,
how is the uncertainty in the perceived values of the critical cluster
information elements 

      {a1, ,aC } affected by knowledge of the value of
information element y? By a simple extension of the relationship
developed for two information elements, we get

  
I X1, X 2 , XC :Y( ) = H X1, X 2 , XC( ) H X1, X 2 , XC |Y( ) .

Assuming, of course, that the joint and conditional probabilities
can be defined, this gives us a closed-form value for joint entropy.

Another way to get at this value is to use conditional entropy.
For the case in which all information elements are independent, the
joint entropy calculation is additive so that

      
H X1, X 2 , XC( ) = H X i( )i=1

C .

This is, in effect, an upper bound on joint entropy so that, in general,

      
H X1, X 2 , XC( ) H X i( )i=1

C .

However, if the conditional entropies can be calculated, joint entropy
can be calculated directly as

  
H X1, X 2 , XC( ) = H X i | X i 1, X1( )i=1

C .

Summing Up

The degree of uncertainty in a cluster depends on the information
collection assets devoted to the cluster’s critical elements of informa-
tion and the extent to which collaboration among the cluster decision
nodes is facilitated. We apply a probabilistic entropy model to repre-
sent the uncertainty associated with the critical information elements
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needed within the cluster. The reports from sensors or other informa-
tion-gathering sources are treated as estimates of the means of the dis-
tributions describing their uncertainty.

These estimates are transformed into awareness and knowledge
and form the basis of decisionmaking. The metrics we have developed
in this chapter quantify this process through the use of information
entropy and the derivative knowledge metrics.

Information sharing among nodes ideally tends to lower infor-
mation entropy (and hence increases knowledge) because of the
reduction in variance and the buildup of correlations among the criti-
cal information elements. One of the key aspects of increased knowl-
edge is increased understanding.

A key requisite for calculating cluster (and eventually network)
knowledge is an acceptable method for combining knowledge gained
from all critical information elements at a single headquarters, how
that combination produces cluster knowledge, and how cluster
knowledge combines to produce network knowledge. We have sug-
gested several combining techniques, several of which require knowl-
edge of a joint probability distribution. In many cases, the joint prob-
ability distribution of all critical information elements is not known
and is difficult, if not impossible, to calculate empirically.
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CHAPTER FOUR

The Effects of Collaboration

Networks provide an opportunity for participating decision entities
to collaborate by sharing information as they form clusters. This is
generally thought to be a good thing, as we have seen so far. By shar-
ing, we experience synergistic effects that improve what we know (the
completeness of our information) and how accurately we know it, as
measured in terms of its bias and precision. In other words, collabora-
tion improves both the quantity and quality of the information we
need to take decisions. As compelling as this argument is, there is also
a possible negative aspect of collaboration and information sharing:
the expenditure of resources needed to deal with information over-
load and disconfirming evidence. The former can lead to processing
delays and the latter to indecision as contradictory information is
resolved. We treat these in more detail in Chapter Five. Here the
focus is on the role of collaboration across a cluster in producing
information that is complete and accurate.

Knowledge

As discussed earlier, information entropy appears to be a good surro-
gate for assessing the knowledge level within a cluster about a given
critical information element. Until now, we have focused only on
knowledge derived from the entropy associated with the probability
distribution for the uncertain information elements. As noted earlier,
the entropy function is always a function of the distribution variance,
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and therefore our knowledge function is a function of precision only;
that is, it measures the degree to which the observations of the critical
information element are ‘close together’. To assess the degree to
which the networked headquarters affect decisionmaking, our meas-
ure of knowledge must also include the completeness and the bias of
the estimates. We thus begin by examining the components of accu-
racy, namely, bias and precision.

Bias

Bias in an estimate is error introduced by systematic distortions. For
example, suppose we were to conduct an experiment in which the
temperatures of some substance had to be measured over time. If the
thermometer we used were calibrated such that every reading was off
by 1 degree Celsius, the result would be a set of biased measurements.
Bias therefore is systemic, not random, error.

An unbiased estimator therefore is one for which E[
  

µ ] = µ . That
is, the expected value of the estimate of the parameter, µ^ , is the true
value of the parameter, µ . Thus, the bias in the estimate is the degree
to which this is not true, or b=| E[µ^ ] µ |.

Precision

The variation in estimates of the critical information elements can
occur in a purely random way. For example, an observer may make
an error in judgment such as reporting a tracked personnel carrier to
be a tank. The variation may also be the result of uncontrollable envi-
ronmental conditions, such as weather patterns, that cause sensor
occlusions. In any event, random errors of this kind affect the preci-
sion of the estimates reported because they increase the variance of
the distribution of the estimated information element. In general,
precision is defined to be the degree to which estimates of the critical
information element(s) are close together.1 Bias and precision, there-

____________
1 This is a commonly accepted definition. Ayyub and McCuen (1997, p. 191) define preci-
sion as ‘the ability of an estimator to provide repeated estimates that are very close together’.
A similar definition can be found in Pecht (1995).
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fore, are independent. That is, biased estimates may or may not be
precise.

Precision and Entropy

In Appendix A, we describe the Rapid Planning Process by way of a
simple operational example based on a local perceived force ratio.2

For a given cluster i, at intermediate time steps j, we need only pursue
the process as far as assessing the probability of each fixed pattern
within the conceptual space of a local decisionmaker within the clus-
ter. (These are the stored situations depicted in Figure 2.1.) The
estimate produced is declared to be one of the stored situations, pro-
vided the estimate falls within the decisionmaker’s comfort zone.

The joint probability density       f (x i ( j)) , a multivariate normal
distribution with covariance matrix , reflects the uncertainty asso-
ciated with the critical information elements shared across cluster i at
time step j, where 

        x i ( j)= [xi ,1( j),xi ,2( j), ,xi ,C ( j)], the vector of per-
ceived values of the critical information elements in the shared con-
ceptual space, assuming all C elements are available to the cluster.
This is the shaded area labelled ‘current estimate’ in Figure 2.1
(Chapter Two).

The mean of the current estimate,       f (x i ( j)) , reflects the current
best estimate, based on reports received from organic sources and
information shared across the cluster, and the covariance, , reflects
the precision of this estimate. The amount of information available in
the joint (multivariate normal) probability density is measured in
terms of the relative information entropy, H(x i ( j))= log | |. Both
precision and information entropy are a function of the covariance.

____________
2 The perceived force ratio is calculated from the recognised picture, generally defined by a
number of attributes (elements of information). A detailed description of both the recog-
nized picture and the perceived force ratio can be found in Chapter 2 of Moffat (2002).
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Estimating Local Knowledge

Local knowledge is a measure of understanding within cluster i.3 As
demonstrated earlier, there is an inverse relation between entropy and
knowledge based on precision alone: As entropy increases, knowledge
decreases. In general, we get the following knowledge metric for a
joint distribution of the information elements, which is multivariate
normal: 4

K x i ( j)( ) =1 e
log

max
H x i ( j )( )[ ]

=1

max

where log | |max  is the maximum relevant information entropy and
| |max  is the determinant of the corresponding covariance matrix.

      K (x i( j))  reflects the level of understanding within the cluster based
on precision alone.

Precision and Knowledge in the Logistics Example

To illustrate, we continue with the logistics example from Chapter
Two. In Figure 2.3a, when there is no collaboration among the
nodes, each is monitoring its requirement for fuel and providing
estimates to the single master decision node. This configuration pro-
duces a single cluster comprising only the master node. When the
nodes are collaborating, as in Figure 2.3b, information is shared
between the two nodes, and therefore we take them to be dependent.
The network in this case is a single cluster consisting of the two
demand nodes and the arbiter node.

____________
3 By understanding, we mean the ability of humans to draw inferences about the possible
consequences of a situation. Clearly, knowledge enhances this ability and therefore can be
considered a measure of understanding.

4 Actually, the exact entropy value for the bivariate normal case is H (x, y) = log | (2 e)2 |.
However, because we are concerned about the ratio of entropies, we use the simpler version.
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For simplicity, we start by assuming that the fuel requirement is
normally distributed.5 Consequently, we let     a1  be the information
element ‘fuel demand for node 1’ and a2  be ‘fuel demand at node 2’.
The fuel supply at the master node is assumed to be known with cer-
tainty; that is, the master node is self-aware in both cases. Conse-
quently, the critical information element set is A = {a1,a2 } , and the
value of each is depicted as       x = [x1,x2 ]T . In each case, the distribution
of uncertainty about the information element is normal with mean

    µ = [µ1,µ2 ]T  and covariance

  

=
1
2

1,2 1 2

1,2 1 2 2
2

 

 

 

 

 

 .

The fuel levels at each of the demanding nodes may be corre-
lated, and the effects of collaboration are therefore dependent on the
correlation coefficient, 1 1,2 1.6 If, as in Figure 2.3a, the nodes
are not collaborating, the ‘network’ consists of the master node and
the two isolated demand nodes, and we model the lack of collabora-
tion by setting 1,2 = 0. That is, we assume that each headquarters is
acting independently, and therefore all their demands for fuel are
independent. The off-diagonal elements in the covariance matrix
then are 0. This is clearly the simplest case to analyse because the
implications of ‘no collaboration’ are clear in that it produces un-
correlated fuel levels. In cases like Figure 2.3b, where collaboration
between the nodes takes place and 1,2 0, collaboration can be
shown to have a salutary effect.

In general, total cluster information entropy is

      
H x( ) = log = log 1

2
2
2 1 1,2

2( )[ ].

____________
5 This is valid only when the mean demand is large and the variance is suitably small.

6 Although the fuel is received from the same source, the demand may be generated inde-
pendently and therefore may be uncorrelated.
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In the non-collaboration case, this reduces to    H(x)= log( 1
2

2
2 ).

Because entropy measures the degree of uncertainty in probability
distributions, small values of       H(x) are desirable. Regardless of the
values of the variances   1

2  and  2
2 , this will occur when  | 1,2 | is near

1.0. Conversely, maximum entropy and, therefore, maximum uncer-
tainty occur for 1,2 = 0. The change in entropy from the non-
collaboration case and the collaboration case then is

Ha x( ) Hb x( ) = log 1 1,2
2( ).

As before, a value of  | 1,2 | close to 1.0 maximises this quantity.
To convert entropy to knowledge, we first need to establish a

maximum entropy value,7 which is equivalent to establishing a
maximum variance or determinant of the covariance matrix as devel-
oped in Chapter Three. Because the maximum covariance occurs
when the random variables are uncorrelated, we have

    
Hmax a1,a2( ) = log 1,max

2
2,max
2( ) .

We can now develop the knowledge metric to measure the cur-
rent level of understanding of the fuel demand for both the collabora-
tion (a) and non-collaboration (b) cases. We have for the non-
collaboration case that

      

K a x( ) = 1 e
log 1,max

2
2,max
2 log 1

2
2
2 

  
 

  

= 1 1
2

2
2

1,max
2

2,max
2

.

____________
7 This is necessary because entropy for continuous random variables (referred to as differen-
tial entropy; see Appendix B) is always unbounded.
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For the collaboration case, we have

K b x( ) = 1 e
log 1,max

2
2,max
2 

  
 

  
log 1

2
2
2 1 1,2

2 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

= 1
1
2

2
2 1 1,2

2( )
1,max
2

2,max
2

.

The benefits of collaboration therefore are measured as the difference
between the two, or the increase in understanding represented by

      
K x( ) = K b x( ) K a x( ) = 1,2

2
1
2

2
2

1,max
2

2,max
2

.

Here the buildup in correlation between the information elements     a1

and a2  causes the increase in knowledge. This relates to our com-
monsense understanding of an increase in knowledge of our sur-
roundings because we know how one thing relates to another.

Accuracy

Accuracy is the degree to which the estimates of the critical informa-
tion elements are close to ground truth. Collaboration across a cluster
affects the accuracy of the estimates of the information elements—
and hence the degree to which fixed patterns in the shared conceptual
space are indeed ground truth. The concept of accuracy comprises
both precision and bias: The smaller the bias, the closer the estimate
is to ground truth, and the more precise the estimates (i.e., the more
closely they are grouped), the more confident we are in the estimate.

We generally take ground truth to be the ideal distribution
mean for the information and measure the bias of the estimates in
terms of the distance from the ground-truth value. This assumes, of
course, that we know ground truth, which is always the case in mod-
els and simulations aimed at assessing and comparing alternative
C4ISR (command, control, communications, computers, intelli-
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gence, surveillance, and reconnaissance) systems, alternative network
constructs, or alternative operating procedures. Support to actual
operations in which ground truth is not known requires an assess-
ment of the consistency of the information reported. In some cases, we
may instead take as our point of comparison the estimates coming
from the higher-level planning process. For our fuel logistics illus-
tration, we can, for example, compare the perception of the fuel
demand from each of the two nodes, with the assessment made from
the top-down planning assumptions.

In general, if a is an information element whose value, x, is un-
known with probability distribution f (x) and mean µ  representing
ground truth, then the bias associated with the estimate of the mean
is b =| E(µ^ ) µ |, where µ^  is the estimate of the mean based on one or
more reports on the value of a. Because accuracy consists of both bias
and precision, we need a metric that combines both. One such metric
is the mean square error (MSE), defined as E[(µ^ µ)2 ]. It can be
shown that       E[(µ^ µ)2 ]= b2

+
2 , where   2  is the variance of  µ

^ .8 This
metric is extremely useful because it includes both accuracy in the
total and precision as a component. In estimating ground truth, the
bias accounts for nonrandom errors and the precision accounts for
random errors.

To illustrate this, in our CEC cluster example, suppose we want
to estimate the location of an enemy cruise missile based on several
sequentially arriving reports from the collaborating team. Each report
is processed in turn using Bayesian updating to refine the location
estimate.9 In this case, we need an estimate for both the x-coordinate
and the y-coordinate. The bivariate normal distribution is used to
represent the uncertainty associated with the random location vector,

      x = [x, y]T . The estimator in this case is a Bayesian estimator of the
form:

____________
8 See, for example, Cover and Thomas (1991).

9 Later in this chapter, we suggest maintaining the incoming reports and variance estimates
until a decision is imminent. If we perform the updates sequentially at that time, we can
account for the age of the reports—essentially discounting older reports.
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µ t +1 = t t +

^ 

 
 

 

 
 

1

µ^ +
^

t +
^ 

 
 

 

 
 

1

µ t (4.1)

and

t +1 = t t +
^ 

 
 

 

 
 

1
^

. (4.2)

In this formulation, µ^  is the collaborating team’s current estimate of

    
µ = [µx ,µ y ]T . The instrument (sensor, source, process) used to obtain
the estimate has an associated error, which we record as   

^
, an esti-

mate of the variance. This may be acquired from the target location
error associated with sensor or source and existing environmental
conditions prevailing when the measurement was made.10 This
matrix serves as a weight. For large   

^
, the expression 

t ( t +
^
) 1 is

very small (close to the zero matrix) and ^
( t +

^
) 1 is approximately

the identity. Therefore, the current report has little influence on     µ t+1 .
The reverse is true for small  

^
. The initiating estimates, µ0  and 0,

are obtained from the IPB process or are estimates prevailing at the
last decision point.

The task now is to assess just how accurate the estimate is. If we
are conducting a controlled experiment, such that the true location of
the unit is known, then, as mentioned above, we can take advantage
of the fact and calculate the bias in the estimate. In this case, the bias
is the Euclidean distance between the Bayesian estimate and the
ground-truth location of the unit, or

    
b = µt+1,x µ x( )

2
+ µt+1, y µ y( )

2
.

____________
10 It is also possible to use the sample mean of several reports as an estimate of the latest of
several reports, the ‘best’ report, etc. Each will require an accompanying estimate of the vari-
ance.
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For our purposes, we can take this estimate to be the true location of
the enemy cruise missile at a specific moment in time. By analogy
with the MSE, the accuracy of the estimate is defined as

      
D x( ) = b2

+ t+1 .

Accuracy in the Logistics Example

Recall that the amount of fuel required at each node is x = [x1,x2 ]T .
We assume the x is bivariate normal with mean   µ = [µ1,µ2 ]T . Reports
on projected fuel requirements are processed sequentially to create a
current estimate of future requirements for both nodes. As in the
location estimate discussed above, the estimator is Bayesian and the
bias is the Euclidean distance between the estimates and ground
truth. However, unlike the location example above, the error associ-
ated with each report is generated from two sources. In the first case
(no collaboration), the errors are independent, and in the second case
(collaboration) they are not. We also assume that a report is received
from both nodes near-simultaneously.

The estimate covariance matrices depend on the model selected
and the update methodology. For example, in the no-collaboration
case (Figure 2.3a), the sample covariance matrix is

    

a =

  
 1
2^ 0

0
  

 2
2^

 

 

 

 

 

 

 

 

 

 

.

When they are collaborating, as in Figure 2.3b, the sample covariance
matrix is

    

^
b =

1
2^

1,2
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Generating these estimates may be problematic. The sources of the
reports are generally the headquarters themselves, so the errors are
associated with both the assessment of fuel on hand and future
requirements. Standards may exist for predicting fuel requirements
that vary with a unit’s posture. In any event, it will be necessary to
provide error estimates in both cases.

The bias is the Euclidean distance, as previously discussed, so
that

    
b = µt+1,1 µ1( )

2
+ µt+1,2 µ2( )

2
.

At any time, the estimates of the covariance for both cases are

t +1,a =
t +1,1
2 0

0 t +1,2
2

 

 

 

 

 

 

and

t +1,b =
t +1,1
2

t +1 t +1,1 t +12

t +1 t +1,1 t +1,2 t +1,2
2

 

 

 

 

 

 ,

and therefore the accuracy metrics for the two cases are (iteration sub-
scripts omitted)

      
Da x( ) = b2

+ 1
2

2
2  and 

   
Db x( ) = b2

+ 1
2

2
2 2

1
2

2
2 .

Consequently, the increase in accuracy in the collaboration case is

  
2

1
2

2
2 . Again, this quantity is maximised when   | | is close to 1.0.

The task now is to measure these effects on cluster and network
knowledge.
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The Effects of Bias, Precision, and Accuracy on
Knowledge

One way to account for bias, precision, and, hence, accuracy in the
knowledge function is to replace the distribution variance with the
MSE, or the accuracy measure,       D(x), in the knowledge function.
Doing so has the effect of increasing the variance to account for bias.
The MSE is bounded from below by the variance, so when the bias is
0, the MSE is just the variance. In the general case, we express knowl-
edge as

    
K M X( ) =1 e

Hmax, M X( ) H M X( )[ ] ,

where KM (X ) is the knowledge function with the variance replaced
by the MSE. To do this, we calculate the maximum and current
entropies in the usual way and then replace the variance (or more
generally, the covariance) with the MSE.

For the multivariate normal case, for example, we get a modified
knowledge function of the form:

      

K M x( ) =1
b2

+

b2
+( )

max

.

The ‘maximum’ MSE is a combination of the maximum bias and the
maximum precision and represents the maximum in inaccuracy.
Because bias and precision are independent, the maximum occurs
when both are maximised, or   (b

2
+ | |)max = bmax

2
+ | |max . Like the vari-

ance, a suitable upper bound for bias can be found by searching for
the largest possible measurement error the sensors or sources might
produce.

We can apply this to the simple logistics problem. For the non-
collaboration case, we get

      
K Ma

x( ) =1
b2

+ 1
2

2
2

bmax
2

+ 1,max
2

2,max
2

.
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For the collaboration case, we have

K Mb
x( ) =1

b2
+ 1

2
2
2 2

1
2

2
2

bmax
2

+ 1,max
2

2,max
2

.

The maximum MSE is the same for both cases, given that the covari-
ance is maximised when = 0  and the variances are fixed. The differ-
ence between the two now reflects the effects of collaboration on
knowledge as measured by precision, accuracy, and bias and is calcu-
lated to be

      
K Ma

x( ) K Mb
x( ) =

2
1
2

2
2

bmax
2

+ 1,max
2

2,max
2

.

As expected, this quantity is diminished over the previously calculated
values that considered precision only. However, if the estimate is un-
biased (b = 0), the results are the same. Also, in the rare case that an
estimate is reported as ground truth (no variance), bias is still possible
so that there is no improvement in knowledge from the non-
collaboration to the collaboration case.

We next discuss the contribution to information sharing of the
completeness of the information available to take a decision. The
combining of precision, accuracy, bias, and completeness then will
measure the overall contribution of collaboration across the cluster to
knowledge and thus to improved local decisionmaking.

Completeness

For any cluster i, we have defined the complete data set at time t as
the set 

        x i ( j)= [xi ,1( j),xi ,2( j), ,xi ,C ( j)]. The set consists of a maxi-
mum of C elements of critical information; however, only a subset
consisting of  n C  out of C elements might be available at time t. If
waiting for additional reports is not possible, a decisionmaker would
be required to take a decision without the benefit of complete infor-
mation. Depending on his experience and other contextual informa-
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tion, he may be able to infer some likely less reliable value for the
missing information. For now, we assume that if the value of an in-
formation element is missing, the value of completeness for cluster i is

    
X i ,t n( ) =

n

C

 

 
 

 

 
 ,

where  is a ‘shaping’ factor that reflects the decisionmaker’s aversion
to risk because the selection of the appropriate value depends on the
consequences, as perceived by the decisionmaker, of being forced to
take a decision with incomplete information. For values of   <1, the
curve is concaved downwards, thus reflecting a high aversion to risk;
for   >1, it is concaved upwards, reflecting little aversion to risk; and
for =1, it is a straight line, reflecting the decisionmaker’s equivoca-
tion concerning risk. The ultimate impact of this lack of complete-
ness is the uncertainty of the decisionmaker’s perception of where he
is in the conceptual space, as depicted in Figure 2.1. The selection of
the appropriate values depends on the consequences associated with
being forced to take a decision with incomplete information.

With the addition of completeness, we are now ready to com-
bine the measures of collaboration, namely accuracy (i.e., precision
and bias) and completeness, to produce a single knowledge metric
that can be subsequently combined with the measures of complexity
discussed in Chapter Five. But before we develop the combined col-
laboration metric, we must first address another measure of informa-
tion quality: its currency. It is generally assumed that more recent, or
fresher, information is desirable over older information. This supposi-
tion is certainly true in the modern battlespace, where events change
rapidly.
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Information ‘Ageing’

The information gathered by a cluster consists of reports concerning
one or more of the critical information elements shared across the
cluster, which are necessary to take a decision.11 These reports are
used to update the joint probability distribution of uncertainty con-
cerning these information elements. If the reports are old, we assume
that their contribution to reducing uncertainty is less than if they are
fresh. In addition, if resources within a cluster are such that reports
arriving are not processed in a reasonable period of time, they will age
in a queue with the same effect.

Freshness is a consideration that is separate from timeliness.
Freshness is concerned with how old the information is and, as such,
is generally context free. Timeliness, however, deals with when the
information is needed and, as such, is situation dependent. Both
timeliness and freshness are functions of the time volatility of infor-
mation, i.e., the rate at which information is likely to change over
time. For example, consider assessing the location of a missile versus
the location of a mountain. Information about the location of a
mountain is considered time resilient, and therefore freshness and
timeliness are essentially equivalent. However, we take the position
here that the older the information is, the lower its quality.

Precision, bias, and, hence, accuracy depend on the estimator
selected (a Bayesian estimator in this case) to estimate fixed patterns
of ground truth shared across a cluster. They are also dependent on
the joint probability density function that reflects the uncertainty in
our knowledge. Consequently, what is needed is a methodology that
allows us to incorporate the age of the reports in our updating pro-
cess.

Time Lapse

For each critical information element,     ai , j , shared across cluster i at
time period j, we record the time that its estimated value, 

  
xi , j , was

____________
11 In Chapter Five, we address the issue of unneeded information and its contribution to
‘information overload’.
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last reported and shared across cluster i,     ti , j . If a decision within
cluster i is to take place at time ti , then Fi , j = t i t i , j  is a measure of
the freshness of information element at the time it is used. We can
further express the importance of freshness by an exponent so that we
get

    
Fi , j = t i ti , j( ) ,

where the parameter   > 0  reflects the degree to which freshness of a
report concerning information element ai  at time period j is an
important consideration in taking a decision, i.e., the time volatility
of the information. For example, the freshness of information con-
cerning the location of the Baath Party’s headquarters in An
Nasiriyah is not as critical as a report on the location of Fedayeen
Saddam forces in the city.

To be consistent with other metrics, we choose to normalise Fi , j

as follows:

    
i , j =

ti ti , j

ti t0

 

 

 

 

 

 ,

where     t0  is the time at which the data collection begins in cluster i for
this decision. In the case of the Baath Party headquarters, a value of

  1 would be appropriate. In the case of the Fedayeen, we would
place considerable importance on fresh information and therefore
assign a value of <1.

Updating

Within the time required to take a decision within cluster i, several
reports from sensors and sources of the estimated value of     ai , j  are
likely to be produced—each with time-lapse estimate   i , j , calculated
as above. By updating the value of the information element over
time, we can also account for the age of the data reported. In this
way, we directly affect the information and therefore its knowledge
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function. As mentioned earlier, we have elected to update our esti-
mates using Bayesian updating.

We assume that at some time t, U sequentially arriving reports
concerning information element a, 

      {(
  

µ ^
1,

  
 1
2^ ),(

  
µ ^

2 ,
  

 2
2^ ) ,(

  
µ ^

U ,
  

 U
2^ )}  are to

be combined to support a decision to be made at time t.12 The pairs,
(

  
µ ^

k ,
  

 k
2^ ) are the kth sequential estimate of the mean and variance of

the distribution describing the uncertainty in the value of the
information element a. The scalar versions of equations (4.1) and
(4.2), uncorrected for freshness, are

    

µk+1 = k
2   

µ ^
k +

  
 k
2^

µk

k
2 +

  
 k
2^

and

k+1
2

=
k
2   

 k
2^

k
2

+
  

 k
2^

.

The pair   (µ0 , 0
2 ) are the estimates existing at time t0 . This could be

the IPB estimate, or it could be the estimate at the last decision. Next,
we modify the estimates to account for the freshness of the reports.

We assume that the effect of ageing makes the estimate less cer-
tain. Ageing therefore is a function of the estimated variance coupled
with the normalised freshness factor, k . For the more recent reports,

  k  is small, and for older reports, it is large. In any case,   0 k 1,
which suggests a net present value model for measuring the effect of

k  on the variance of the estimate; that is, we replace the variance
with     (1+ k )

  
 k
2^ .13 This yields the following modified Bayesian update

____________
12 We drop the cluster and time period subscripts for clarity. It should be clear that the
information element is required at cluster i and that the time period at which the combining
takes place is j.

13 The net present value, P, of a principal amount, A, compounded over n time periods is

    P = A(1+ i)n , where i is the rate of return. The argument for an analogous approach in this
case is that freshness can be thought of as the rate at which the variance increases.
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formulas for producing the current estimate for the value of the
information element a:

    

uk+1 =
k
2   

µ ^
k + 1+ k( )

  
 k
2^

µk

k
2 + 1+ k( )

  
 k
2^

and

k+1
2

=
k
2 1+ k( )

  
 k
2^

k
2

+ 1+ k( )
  

 k
2^

.

In the best case, when the freshness factor is 0 (the report arrives at
decision time), there is no effect on the reported variance. In the
worst case, when the report dates to the beginning of collection for
the current decision, the reported variance is doubled.

The final estimate,  µU , calculated in this way is taken to be the
estimate of the true mean of the distribution with bias, and variance
estimate,   U

2 . The updated density function is therefore
f (x :µU , U

2 ). From this we can calculate a current, updated knowl-
edge estimate, K M (x).14

Measuring the Overall Effect of Cluster Collaboration

Finally, we combine the currency adjusted precision and accuracy
knowledge function with completeness to arrive at a single metric to
assess the effects of collaboration across the cluster. The ideal case is
when we have full completeness, i.e.,     X t (n)= X t (C )=1, and the
knowledge shared across the cluster is fully accurate, i.e.,       K M (x)=1,
for the multivariate case. In this case, collaboration is able to provide
complete information, and its accuracy provides the local

____________
14 In the special case of a multivariate normal distribution of uncertainty across the infor-
mation elements, this effect can be put in place by adjusting the initial values of the ‘obser-
vation noise’ and ‘system noise’ in the DLM (as discussed in West and Harrison, 1997).
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decisionmaker with perfect knowledge or situational awareness.
Unfortunately, this ideal is seldom, if ever, achieved. Consequently,
we require a construct that gauges the degree to which accuracy, as
calculated here, and completeness contribute to knowledge.

The knowledge function,    K M (x) , is derived by replacing the
variance in the entropy calculation with the MSE, thus allowing us to
account for both precision and bias. It is logical that we proceed in
the same way with completeness; that is, we replace the MSE with a
function of the MSE and completeness. In general, when X t (n)  is
small, (i.e., when there exists estimates for only a small fraction of the
required number of information elements), the knowledge function
should also be small, all things being equal, because this means that
the aggregate accuracy of the estimates is based on only a few ele-
ments of information. One way to reflect this behaviour is to replace
the MSE in the entropy calculation with

b2
+

2

X t n( )
.15

This calculation has the desirable property that when     X t (n) 1.0, the
ratio is just the MSE, and that when X t (n) 0 , it increases without
bound. This indeed reflects the fact that if we have no information,
we have no knowledge and thus the bias and variance estimates are
irrelevant. However, it is not practical to use this calculation as a
lower bound, since it will drive the ratio

    

b2
+

2

X t n( )

b2
+

2( )
max

X t n( )[ ]
max

____________
15 Although we illustrate the discussion with the univariate case, this applies equally to the
multivariate case.
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to increase without bound for all values of n . To avoid this, we arbi-
trarily select     n =1 to be the worse case with X t 1( ) =C .16 Conse-
quently, the upper bound on the resultant entropy calculation is

    

bmax
2

+ max
2

C
=C bmax

2
+ max

2( ) .

This has the effect of increasing the maximum MSE when the requi-
site number of information elements is large. Note that if     C =1, there
is no effect on the current entropy calculation or on the maximum
entropy. If we let     K (x) be the knowledge within the cluster based on
accuracy and completeness, then

K x( ) =1 e
H ,max x( ) H x( )[ ] ,

where H ,max(x) is the entropy calculated with the maximum variance
replaced with C (bmax

2
+ max

2 ) and     H (x) is the current entropy calcu-
lated with the current variance replaced with

b2
+

2

X t n( )
=

C

n

 

 
 

 

 
 b2

+
2( ) .

Applying this to the normal case, we get the knowledge gained
when completeness is accounted for as

    

K x( ) =1
b2

+
2

n bmax
2

+ max
2( )

.

Knowledge increases when the values of more of the requisite infor-
mation elements have been reported and is maximised when   n =C .
This simple formulation is intuitively satisfying because we would
expect that for all the precision and accuracy, unless information on
all the information elements is present, our knowledge will be defi-
cient. This scales naturally to the multivariate normal case as

____________
16 We discuss the special case of     C =1 later.
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K x( ) =1
b2

+

n bmax
2

+
max( )

.

Up to this point, we have captured the effects of collaboration
among decision nodes within a cluster on knowledge. The measured
effects of information sharing through collaboration are accuracy and
completeness. For the most part, these effects are dynamical, since
they vary with the quality and quantity of reports received and pro-
cessed over time. Missing from this analysis so far has been an assess-
ment of the systemic effects of the network architecture, effects that
are more static. In the next chapter, we take up such measures of
network complexity and combine them with the collaborative effects
to arrive at a single measure of network performance and its effect on
decisionmaking.
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CHAPTER FIVE

The Effects of Complexity

In the previous chapter, we were concerned about measuring the
effects of collaborative decisionmaking among the decision nodes
within a cluster. Although the ability to collect, process, and share
information is dependent on the structure of the supporting network,
we focused our assessment on the dynamics of operations: the effects
of processed and shared information over time. In this chapter, we
focus on the network itself and its ability to enable efficient and effec-
tive information flow. Our measure is complexity, and we examine
both the detrimental effects of overly complex networks and the salu-
tary effects of complexity.1

Complex Networks

All networks are complex to a greater or lesser degree, including mili-
tary command and control systems operating in a network-centric
environment. The challenge is to understand the nature of complex-
ity, what its effects are, and how to quantify them. All three tasks
have been attacked in the past (we briefly summarise a history below);
however, a satisfactory resolution is still elusive. One thing is certain,

____________
1 Much of the discussion on complexity in this chapter is taken from an unpublished RAND
report: W. Perry, F. Bowden, J. Bracken, R. Button, J. McEver, and T. Sullivan, Advanced
Metrics for Network-Centric Naval Operations, December 2002 (J. McEver contributed the
work on complex systems in the referenced report.)
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though: There are both good and bad effects of complexity. For this
reason, we have adopted Murray Gell-Mann’s more neutral term plec-
ticity to describe the effects of the network infrastructure on military
operations. This characterisation avoids the negative aspects of the
term ‘complexity’.2

What Is Complexity?

Complex networks (such as the World Wide Web, which operates on
another complex network, the Internet), have been studied for years
in attempts to understand their structure and properties. The science
of complex adaptive systems, too, has evolved in less than two dec-
ades as an interdisciplinary attempt to understand how components,
when tied together in certain ways, yield systems with capabilities dif-
ferent from those of their constituent components taken separately.3

Still, although general agreement exists on what, broadly, complexity
is, there are no agreed-on definitions of complexity, much less quanti-
tative measures of complexity in networks.

For decades, researchers have recognised that as systems grow
and become more complicated, their behaviour departs substantially
from that of the system’s components (Anderson, 1972). In 1965,
Kolmogorov proposed a useful definition of complexity: ‘The com-
plexity of an object is the shortest binary computer program that
describes the object’ (Kolmogorov, 1965). It can be shown that,
defined in this way, complexity is approximately equivalent to Shan-
non entropy, a well-defined mathematical construct described earlier
(Shannon, 1948). Shannon entropy, as a surrogate for complexity, is
used in medical research to assess the complexity of biological sys-
tems. Other definitions, similar in spirit to the Kolmogorov com-

____________
2 Gell-Mann (1995/1996) argues that the study of complex adaptive systems is better
referred to as plectics, because it is ‘a broad, transdisciplinary subject covering many aspects
of simplicity and complexity as well as the properties of complex adaptive systems, including
composite complex adaptive systems consisting of many adaptive agents’. Gell-Mann derives
the word ‘plectics’ from the Greek work plektos, which can refer to both simplicity and com-
plexity. Invocation of the word plectics allows for the study of entanglement or the lack
thereof.

3 See, for example, Moffat (2003).
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plexity, have been proposed, including Gell-Mann’s effective complex-
ity, defined as the length of the description of the regularities, or the
‘grammar’ of a system, and Bennett’s logical depth, which defines
complexity as the processing time theoretically required for a com-
puter to go from the description of a system to the ability to duplicate
the system itself (Gell-Mann, 1995).

In addition to these attempts at defining complexity, some
quantitative definitions of complexity aimed at calculating the com-
plexity of specific systems have been proposed. Again, no consensus
definitions have emerged from the literature, which has the flavour of
a spirited debate among many camps. Wolpert and Macready (1997)
propose a quantification of how the spatio-temporal patterns of dif-
ferent scales of a system differ from one another (‘self-dissimilarity’)
as a signature of system complexity. Sporns and Tononi (2002)
describe a method they and Edelman developed to measure the com-
plexity of the brain by relating functional segregation and integration
measures. Solé and Luque (2002) discuss and refine a proposed sto-
chastic-based complexity measure of nonlinear physical systems,
based on the system entropy, the number of states to which the sys-
tem has access, and a measure of the interaction between the com-
ponents of the system. Other quantifications of complexity exist as
well, and ultimately we too present a complexity metric in this work,
specifically for a decision network, such as that proposed above, that
can be applied to evaluate alternative network clustering structures.

Even though this literature has yielded useful insight into the
problem of defining network complexity and understanding what
features of a complex network result in the effectiveness and adapt-
ability properties we desire, direct application of these complexity
definitions has proven difficult. This is particularly true in the context
of a command and control network in which the network compo-
nents themselves are complex and adaptive and, specifically, do not
have simple rules for how they interact with their network neighbours
(as is assumed in models of complex physical systems). Instead, by
combining insight from physics, medicine, and neural network
approaches to complexity measurement with an understanding of
network topology and desired decision network features, we can
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move towards defining a metric for evaluating various network clus-
tering possibilities.

Plecticity

In this context, plecticity refers to the ability of a connected set of
actors to act synergistically via the connectivity between them. This
measure is, in effect, the value added to the capability of the system
by the entanglements between the system’s nodes (decision nodes in
this work). It is intended to take into account the fact that there may
be constraints on how nodes can constructively connect to other
nodes, because of either technical or procedural limitations. That is, a
node’s connectivity can add costs as well as benefits to network per-
formance. Thus, networks can gain value both from the entangle-
ments that are present and from those that are not. A measure of
plecticity should account for the value of the nodes’ ability to glean
information from throughout the network to fulfil its particular func-
tions, include a means for measuring the value of network redun-
dancy, and reflect a cost to network effectiveness if nodes are over-
whelmed.

Command and control networks that do well with regard to
these measure attributes should be able to more readily enable the
acquisition of timely information and facilitate a decisionmaker’s
more effective use of information resources gleaned from the network
for the performance of mission functions.

Accessing Information

A decision network must provide the decisionmakers in a cluster the
ability to gain easy access to information needed to support deci-
sionmaking. Whether the information is ‘pushed’, as from sensors
and sources, or ‘pulled’, as with queries over the Internet, the degree
to which the information is accessible is an important measure of a
network’s effectiveness. Because accessibility is closely related to the
completeness of information, we begin the development of the acces-
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sibility metric from the completeness metric developed in the previ-
ous chapter.

The metric developed earlier for the completeness of the infor-
mation set shared across the cluster is simply a ratio of counts: [avail-
able required information elements] to [total required information
elements]. Therefore, no attempt was made to assess the degree to
which we can really expect to receive the information element, i.e., the
degree to which the network allows the cluster to access information
in the network, or information accessibility. A metric that does this is
the ratio of [the aggregate expected degree of critical information
access] to [the total number of information elements across the net-
work]. Such a metric accounts for the uncertainties associated with
retrieving needed information. For our CEC cluster example, in
maintaining an enemy missile track, the ‘distance’ required informa-
tion must travel from source to destination might be used to assess
the strength of the connectivity between the source and the destina-
tion for a given information element.4 If we calculate the connectivity,

  kl , for information element al  in such a way that   0 kl 1, we arrive
at a connectivity value k n , with the equality holding only when the
distance is negligible and the connectivity is robust. As before, n is the
number of critical information elements for which at least one report
has been made available. In this case, k = f (kl ) .5 Although not
technically a probability, connectivity calculated in this way does
reflect the uncertainties associated with moving information through
a network.

Another way to look at it is in terms of transmission costs. Re-
placing the binary accounting for information elements as was done
in the completeness score, with a connectivity score based on a dis-
tance function of this sort, recognises the cost imposed by the path
the information must take through the network to arrive at the clus-
ter requiring it. That is, if, for a given network configuration, a speci-

____________
4 Distance in this context refers not only to the physical separation between source and des-
tination, but may also include other factors such as the time required to move information.

5 It is understood that the information element is critical to node i at time t. However, for
ease of exposition, we omit these two subscripts.
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fied type of information follows an ‘expensive’ path in getting from
its source to the cluster requiring it, that source’s contribution to the
supply of information to the cluster takes a value lower than one that
is less expensive. Consequently, the accessibility is diminished.

Distance and Connectivity

The distance function can be something as simple as the number of
links in the path from source to sink. A more complicated function
might take into account the individual capabilities of each link and
node in the path. Because both nodes and links comprise a path’s
length, the more realistic assessment considers both. For now, we
defer the mathematical construct of the distance function and focus
on its use in constructing a connectivity metric. For any cluster
information element, al , we are interested in the shortest path from
source node to destination node,     d l 1, however calculated.6 The
quantity, d l , represents the expense incurred by moving information
element al  from source to destination. This value is now used to cal-
culate the connectivity value,  kl , for information element al  as fol-
lows:

    
kl =

1

d l
l

,

where l 1 is the rate at which kl  varies with changing values of the
distance function by reflecting the importance of the distance   d l . To
adequately determine a suitable value for   l , it is necessary to assess
the relative importance of obtaining reports on information element
al . Given that a costless direct connection between two nodes results
from a distance cost score of   d l =1, a strong connectivity score of

    kl =1 results. As the distance cost increases, the connectivity value
approaches 0. If no path exists between any source of information
element xl  and its destination, then   d l  and   kl = 0 .

____________
6 The restriction that the path distances always exceed 1.0 accounts for the fact that, for con-
nectivity to exist at all, at least one link must exist between source and destination. The case
in which no links exist implies an infinitely long path resulting in 0 connectivity.
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The strength of the connectivity among all the nodes in a path
must take into account the vulnerability of path elements (links and
nodes) to attack or failure. We can account for this using the connec-
tivity score described above by examining its value as we remove each
node, link, or both, one at a time from a given path (which we
assume here is the shortest path and has rl  nodes). For simplicity, we
consider only the loss of nodes along the path.7 We define the value
jkl  as the connectivity value for information element al  with the jth
path node removed. We create a depletion vector, L l , whose
elements are measures of how much connectivity is lost by the
removal of each node, or 

  
L l = [l l 1,l l 2 , ,l lrl

]T , where l lj = kl
jkl  and   rl

(as already noted) is the number of nodes in the shortest path that
delivers information element al  from any source to its destination.

The vector L l  represents the vulnerability of the shortest path
and as such expresses the degree of uncertainty associated with re-
trieving information element al  from network sources. The next step
is to reduce the vector L l  to a scalar that can be used to reduce kl ,
that is, to reflect the path uncertainty in terms of its connectivity
value. A logical choice is the vector norm defined as

    
L l = L l

T L l .

The vector norm measures the magnitude of the vector and
therefore in this sense measures the magnitude of the potential deple-
tions based on the shortest path. A large norm indicates that the de-
pletion associated with removal of nodes from the shortest path is
considerable. This means the connectivity associated with the shortest
path is tenuous and should therefore be reduced accordingly. Con-
versely, if the norm is small, it reflects the fact that the shortest path is
fairly robust and the reduction in the connectivity score should be
minimal. Taking this into consideration, the adjusted connectivity for
information element al  from network sources to a single destination
is calculated to be

____________
7 This approach, however, is equally valid if applied to links or both nodes and links.
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kl = kl 1
L l

L l
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,

where 
    
L l  is the cardinality of the vector L l  and 0 < 1 is the edge

expansion parameter of the network that reflects the reliability of the
network (Davidoff, Sarnak, and Valette, 2003). The edge expansion
parameter is a generalisation of the clustering coefficient of a net-
work, moving from considering single nodes to clusters of nodes. For
example, Watts uses the clustering coefficient as part of the charac-
terisation of small world networks (Watts, 1999).

The most reliable network is one in which every node is directly
connected to every other node. Such a network is called ‘complete’
and leads to a value of   =1. A value of  near to 1 thus implies that
there are redundant paths in the network and, hence, high reliability.
The edge expansion parameter  is calculated by considering clusters
of nodes and how well they are connected to the rest of the network.
Formally, for a finite network V, consider a subset U of V and let |U|
and |V| represent the number of nodes in U and V, respectively. Let
E V V  be the edge set of V. For a given node v in V, define the
neighbours of v as   (v)= {u V ;(v,u) E } . For the cluster U, we can
then define the neighbours of U as   (U )= v U (v). The boundary
of the cluster U is defined as the neighbours of the cluster U less those
nodes actually in the cluster U, i.e.,     U = (U ) U . Finally, the edge
expansion parameter  is calculated by looking at the ratio of the size
of the boundary of a cluster to the size of a cluster, considering all
clusters within the network. In fact, we need only to consider clusters
up to half the size of the total network to do this; thus,

    

= min
U

U
:U V ;0 < U

V

2

 

 
 

  

 

 
 

  

.

Figure 5.1 illustrates three simple cases, which are fragments of a
larger network, for which the edge expansion parameter is = 0.5.
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Figure 5.1
Three Simple Connectivity Assessments

RAND MG226-5.1
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 dl = 2

 kl = 0.5

 Ll = [0.5,0]

  ||Ll|| = 0.5

    kl = 0.5(1–0.5/2)2

     = 0.281

*

 dl = 2

 kl = 0.5

    Ll = [0.5,0.25]

  ||Ll|| = 0.559

    kl = 0.5(1–0.559/2)2

    = 0.259

*

 dl = 2

    kl = 0.5

     Ll = [0.5,0.17]

  ||Ll|| = 0.527

    kl = 0.5(1–0.527/2)2

     = 0.271

*

We assume that the distance function, d l , for information element
al  from a single source is measured as the number of nodes between
the source and the destination. In addition, we set the decay factor as

l =1.
In all three cases, the initial connectivity score is 0.5. In case 1,

removing the source (node 1) results in a total loss of connectivity
reflected in the first entry in L l . Removing node 4 results in no loss
of connectivity because there exists an alternative path, not including
node 4, of the same length. This is reflected in the second entry in
L l . In the second case, removing node 1 has the same effect as in case
1, but removing node 6 has the effect of reducing connectivity by
0.25. The entries in the vector     L l  reflect results from the removal of
both nodes in turn. In the last case, removing node 6 results only in a
loss of 0.17 because of the existence of a shorter alternative path.

The examples in Figure 5.1 all have a single source for the
information element   al . A more realistic example would be one in
which there are several sources for the same information element.
Figure 5.2 examines two networks with three source nodes.
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Figure 5.2
Connectivity Assessments with More Than One Source Node

RAND MG226-5.2
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In case 1, the shortest path is from 3 to 8 to 9. If node 3 is
eliminated, the shortest path has four links. The same thing happens
if node 8 is removed, which results in a depletion vector that reflects a
loss of half the connectivity score for both nodes. The effective con-
nectivity drops from 0.5 to 0.338. In case 2, the addition of the link
between nodes 4 and 9 provides an alternative path that is as short as
the original path. This means that there is no loss in connectivity.

Accounting for the quality of information contained in accessi-
bility,     X (k) entails replacing the binary count of the number of
required information elements available in completeness with a con-
nectivity score for each of the cluster critical information elements, or

    

X k( ) =

k

C
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1         otherwise

 

 
 

 
 

,
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where     k = kl
*

l=1
C  and C is, as before, the total number of information

elements needed to render a decision within the cluster.8

Network Redundancy

Network redundancy focuses on the reliability of the network—i.e.,
its ability to enable the delivery of information in the face of node
loss, system outages, inefficient operating procedures, or some com-
bination of all these. At the same time, a network can encourage the
excessive delivery of information, thus causing delays as a result of the
time and resources required to process it all. Consequently, network
redundancy can be both a cost and a benefit of the network informa-
tion flow.

In Figure 5.3, for our CEC cluster example, we assume that the
node in the centre of the diagram is a decision node within the clus-
ter, deciding an appropriate response to an incoming missile threat.
The three nodes labelled a1  provide position and velocity informa-
tion;     a2  provides missile type information; and     a3 provides status
information on friendly response systems (go, no-go). The nodes
labelled     a4  and     a5  are also providing information; however, this
information is not necessary to the node’s decision to select a weapon
system to engage the enemy missile.

The command nodes receive reports on the missile’s position
and speed from three sources. Because both will change over time, we
can expect multiple reports from each. These multiple reports require
combining in some way. We reflect the uncertainty associated with
the position and speed of the missile by assuming they are random
variables with known probability distributions, as discussed earlier.
One method that allows for the sequential updating of probability

____________
8 Note that this formulation assumes that all information elements are equally important
and that they are independent. We discuss dependent information elements in Chapter
Three.
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Figure 5.3
Node-Centric View of  Information

RAND MG226-5.3
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distributions is the one we have chosen: Bayesian updating.9 What-
ever method used, the degree to which the reports contribute to esti-
mates close to ground truth and to narrowing the distribution vari-
ance can be considered a benefit in terms of redundancy.

However, all things being equal, the more sources of required
information and the more frequent the reporting, the longer it takes
for the decision node within the cluster to get a coherent view of the
situation. This results from the fact that it takes time to process
information that may or may not contribute to improving the quality
of the estimates—essentially what is referred to as ‘information over-
load’. In addition, some of the sources may provide disconfirming
evidence. The value of the disconfirming evidence can be good or bad
depending on the degree to which it reflects ground truth. Neverthe-
less, its presence increases uncertainty, requires time to evaluate, and

____________
9 In addition to Bayesian updating, the Dempster rule of combination and moving averages
may be used to combine multiple observations. See Pearl (1987) and Shafer (1976).
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therefore may decrease the quality of the estimates. Finally, it is also
possible that raw data are processed before being sent, thus arriving at
the command node as information that is time stamped with the time
at which the processing ended. This possibility introduces an addi-
tional latency that contributes to uncertainty.

Unneeded Information

Dealing with information that is not needed is treated as a pure
cost.10 In Figure 5.3, the two information elements, a4  and a5 , pro-
vide no useful purpose to the missile tracking and response mission.
The costs of dealing with information of this type increases with the
number of different information elements arriving at the command
node and with their redundancy.

The Combined Effects

In the next section, we develop metrics for the measures just dis-
cussed. The result will be an overall metric for network plecticity. For
networks with inadequate information flow, as with excessive infor-
mation flow, we would expect low plecticity scores. The goal is to
configure the information flow and clustering over a network with
established link connectivity so as to maximise plecticity as measured
in terms just discussed. If we assume a normalised plectic score, with
0 representing no plecticity and 1 representing maximum plecticity,
then Figure 5.4 illustrates how the costs and benefits affect this score.

• Minimal flow. The first flow depiction in Figure 5.4 represents
minimal information flow and a set of isolated nodes. Although
depicted as having no information flow, in reality we would
expect that there are a few sources of required information.
However, there is no opportunity to share information, and we

____________
10 This is not always the case. In a rapidly evolving combat situation, information not
needed at one moment can become crucial the next. In this case, it is important that the
network be capable of adapting rapidly. However, there is still some cost associated with
accepting and processing information that is not needed to prosecute the current operation.
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Figure 5.4
Overall Network Plecticity

RAND MG226-5.4
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assume that the decision nodes need not consult with each other
before acting. The result is no benefits, no costs, and therefore a
low plectic score.

• Excessive flow. Turning to the last flow depiction in Figure 5.4,
the effects of information overload resulting from too much
required and/or unneeded information results in low plectic val-
ues as well. The high benefits associated with a rich information
flow are offset by the high costs of processing excessive informa-
tion. Information can be shared directly among all the nodes.

• Adequate flow. Finally, the centre flow configuration in Figure
5.4 depicts reasonable redundancy of required information and
limited unneeded information sources, thus resulting in optimal
plectic values. The high benefits are associated with just the
right amount of information flow and the costs associated with
processing excessive information are therefore very low. The
connectivity is rich, allowing for direct and indirect information
sharing. The fewer channels per node result in fewer network
ties and, therefore, a more manageable network.

The Benefits of Redundancy

As mentioned earlier, redundancy has both cost and benefit aspects,
each requiring definition in metric form. Multiple reports of required
information from several sources can increase the reliability of the
estimates of information elements. At the same time, too many
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reports coming into, and being shared around, a cluster incur a cost
because of information overload, reports of unneeded information,
and possible disconfirming reports. We address the benefits first, but
before beginning, we recognise the possibility that because the source
of a rendered report is extremely reliable, its benefit might be consid-
ered equivalent to several reports from less reliable sources. This adds
a complicating factor because the reliability of the sources of all
reports must be assessed. Assuming the data are available to make this
assessment, we can provide for this phenomena through suitable
weighting.

First, we let     ri ( i )  be the benefit accruing from obtaining
reports on the value of information element ai  from pi  sources,
where i = i , jj=1

pi , and 
    i , j [1, )  measures the assessed reliability

of the report on information element ai  from source     s j (1 j pi ).
This formulation ensures that     i 1, as long as at least one report is
received for information element ai . Also, if all sources are minimally
reliable, then ri ( i )= ri ( pi ) , since     i , j =1 for all sources   s j . As with
the accessibility metric X, we restrict     ri ( i )  to be between 0 and 1. In
this case, ri ( i )= 0  implies no benefit from redundancy. This result is
equivalent to the case in which a reported estimate for information
element   ai  emanates from a single, marginally reliable source
( i , j =1), or if no report is rendered, ri ( i ) 1 for some number of
sources. A suitable model that reflects this behaviour is

ri i( ) =
1 e i i 1( ) pi 1

0 otherwise

 
 
 

  
.

The parameter   i  reflects the relative importance of the information
element   ai . If a single report from an extremely reliable source
arrives, it can be given a large weight so that i = i ,1 is large and

    ri ( i ) 1 for a single report. This metric therefore not only measures
the effects of redundancy but also reflects the adequacy of the source
of the report. Figure 5.5 illustrates how the value of the constant   i

influences how rapidly redundancy and adequacy scores contribute to
convergence.
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Figure 5.5
The Effect of  i  and  i  on the Benefits of Redundancy

RAND MG226-5.5
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The table below the figure records the data used to construct the
graphs. Note that for the third entry, only a single report source
(    p3 =1) exists, but it is considered more reliable than the two and
three sources for entries 1 and 2. However, regardless of the redun-
dancy scores, the impact of the information element importance
scores is dramatic.

Having determined a redundancy benefit for each information
element in a cluster’s information set, we now combine the scores to
arrive at an aggregate score for the required information set available
across the cluster. Recall that the total number of required informa-
tion elements across the whole network is N; the number critical to a
cluster is C, where   C N ; and the number of required information
elements available within the cluster is n, where  n C . If we let the
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vector 
      = [ 1, 2 , , C ]T  represent the value of reports received

from the 
  
P = [ p1, p2 , , pC ]T  sources, we can construct a suitable

normalised aggregate metric,     R( ), as follows:11

    

R( ) =
1

n
ri i( )i=1

C

= 1
1

n
ie

i i 1( )
i=1
C

,

where     i =1 if     pi 1 and 0 otherwise. No penalty is assessed for miss-
ing information. This is accounted for in the accessibility score dis-
cussed earlier. In the case in which   n =C = 0 , we must have that

    i = 0 and therefore R( )= 0—i.e., there is no redundancy benefit,
even though the accessibility score is     X (k)=1.

Combining the Benefits

The next step is to combine the beneficial effects of information
access, X, and redundancy, R, into a single metric for the cluster. To
do this, we choose a conditional model. The benefits of redundancy
depend on the information elements received by the cluster, in addi-
tion to the number of sources for each. The conditioning, however, is
quite weak. For example, it is possible for a cluster to have perfect
information access and score 0 for redundancy. Conversely, a cluster
with very limited access can have a rather large redundancy score. But
it is impossible to obtain positive redundancy benefit unless there is at
least one report on at least one information element. A simple ratio,

    R( )/ X (k), exposes the desired relationship. However, the ratio is
only bounded between 0 and 1 when     R( ) X (k) and   X t (k) 0. We
can modify the ratio using parameters to avoid a zero denominator

____________
11 Implicit assumptions in this form of aggregation are that (1) the value attributed to the
reports is linear and (2) there is no value associated with the interactions among the reports.
We discuss the issue of multi-attribute aggregation in Chapter Three.
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and ensure the combined metric is bounded on [0,1]. We begin by
setting

    

B R( ) | X k( )[ ] = c
+ R( )

X k( )
+ d .

In this formulation, the parameter  >1 ensures a nonzero
denominator and the parameter   0 with the two constants c and d
are used to ensure the combined metric is bounded between 0 and 1.
The parameters,  and , reflect the relative importance placed on
redundancy and completeness. The desired boundary conditions are
B(0 | 0)= 0  and B(1|1)=1. That is, obtaining the maximum redun-
dancy given maximum access produces a maximum combined score,
whereas it is impossible to achieve any redundancy given no access to
the critical information elements.12 The first condition yields

B 0 | 0( ) = c + d = 0  and d = c ;

hence, we get

    

B R( ) | X k( )[ ] = c
+ R( )

X k( )
c .

The second boundary condition yields

    

B 1|1[ ] = c
+1

1
c =

c +( )
1( )

=1;

therefore,

____________
12 Two other ‘edge’ conditions might be considered as well: B(1 | 0) , and B(0 | 1) . The for-
mer is not possible because it is impossible to accrue any benefit from redundant reports if
critical information is inaccessible. The latter is equally impossible because it suggests that no
benefit from redundancy is possible even though critical information is totally accessible. If
at least one source reports on each critical information element, then     R( i )> 0 .
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c =

1( )
+

 and 
    
d =

1( )
+

.

This gets us the final relationship,

    

B R( ) | X k( )[ ] =
1( ) X k( )+ R( )[ ]
+( ) X k( )[ ]

,

which is bounded between 0 and 1 and exhibits the required depend-
ency between accessibility and the benefits of redundancy. Substi-
tuting

  
X k( ) =

k

C
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1

n
ie

i i 1( )
i=1
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The Costs of Information Within a Cluster

The contribution of costs to plecticity within a cluster arises from
three sources: (1) information overload, (2) disconfirming evidence,
and (3) incomplete information. The latter cost is included in the
calculation of the benefits associated with information accessibility.
Disconfirming evidence has been covered previously as well. It arises
as an issue when reports for disparate sources and sensors must be
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combined to create a common operating picture. In this section, we
focus exclusively on the costs of information overload. As mentioned
earlier, information overload arises from too many sources of needed
information and any source of unneeded information, which are both
functions of redundancy. We begin with the costs of unneeded
information.

Costs of Unneeded Information

In this analysis, the supply of unneeded information places a burden
on the node receiving it and sharing it around the cluster. It has an
immediate negative impact in that it must be processed or, at a
minimum, interferes with the receipt of needed information. How-
ever, as more of it is supplied, its marginal impact is reduced in the
same way email spam is dealt with in a modern office environment.
Thus, a good function to model this behaviour is the exponential

U m( ) =1 e m,

where m is the number of sources of unneeded information and  is a
scaling parameter that reflects the rate at which unneeded informa-
tion contributes to cost. This calculation then indicates the effect
across the whole cluster, rather than at an individual affected node. In
this case, no distinction is made between multiple sources of the same
unneeded information and multiple sources of different information
elements. Thus, the same cost results from the same information ele-
ment supplied x times or x different information elements supplied
once each. We show the influence of  on the cost in Figure 5.6. As

 increases from zero, the saturation point is reached more rapidly.

Costs of Redundant but Needed Information

We now examine the effects of the cluster receiving too much needed
information. As mentioned earlier, an overabundance of needed
information contributes to information overload, increases the likeli-
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Figure 5.6
Cost of Unneeded Information

RAND MG226-5.6
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hood that some of the information will be disconfirming, and there-
fore may cause delays in processing. The costs of information over-
load associated with needed information are generally minimal for
low levels of redundancy. Indeed, at these levels, the benefits far out-
weigh the costs, as discussed earlier. However, at some point, costs
rise sharply so that the marginal cost of an additional source of
information is greater than the previous source. At some further
point, this cost then levels off so that the marginal costs are minimal.
This behaviour is best described using a logistics response function
such as the following:

    
g i pi( ) =

e i+ i pi( )

1+ e i+ i pi( )
.

In this formulation, the   pi  values are the number of sources for
information element  ai  as before and   i  and   i  are shaping parame-
ters. We illustrate the influence of these parameters in Figures 5.7 and
5.8. The actual values will depend on the effects of receiving extra
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Figure 5.7
The Costs of Redundancy for     i =1
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Figure 5.8
The Costs of Redundancy for i = 6
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needed information. They can be assessed based on the point at
which the extra sources of needed information begin to have a detri-
mental effect on operations at the node, the point at which the mar-
ginal cost of redundant information increases rapidly, and how soon
after this the saturation point is reached—i.e., the point at which the
marginal costs become negligible.

As was the case in calculating the overall benefit of redundancy,
the costs of oversupply of each needed information type can be com-
bined in a variety of ways. For simplicity, we expressed it here as a
simple sum.13

G P( ) =
1

n
g i pi( )i=1

C

        =
1

n
i

e i + i + pi( )

1+ e i + i + pi( )i=1
C

,

where 
  
P = [ p1, p2 , , pC ]T  and 

    
i =

1  if  pi 1

0 otherwise

 

 

 

.

Combining the Costs of Information for a Cluster

In considering the overall costs, a balance is struck between costs of
needed and unneeded information. Unfortunately, the two are not
independent. That is, the presence of one can greatly affect the cost of
the other. For example, dealing with redundant needed information
in the absence of any extraneous, noncontributing reports is clearly
different than if the unneeded reports are present. However, the
nature of the dependency is not clear. Consequently, we use a simple
weighted linear sum of the two, or

      
O U m( ),G P( )[ ] = U m( )+ 1( )G P( ),

where   0 1 is a relative weight parameter.

____________
13 The same assumptions made for the benefits of redundancy apply here as well.
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Some may argue here that two functions have been used to
model what is essentially the same cost: information overload. How-
ever, it is considered that these two types of information overload
have different impacts on cluster effectiveness. Needed information
affects the amount of information that needs to be processed, but
there is also a greater chance of conflicting information, which places
an additional burden on the cluster. Unneeded information is more
easily dismissed, given that it is not essential to the user’s needs.

Combining Costs and Benefits

The next step is to combine the costs and benefits of network plec-
ticity for a cluster within the network, associated with the mission at
hand. The term ‘costs’ suggests a simple cost-benefit analysis might
be appropriate. In such a case, the benefit is divided by the cost,
resulting in an assessment of the cost for a unit of benefit. However,
in this analysis, we are not dealing with a true cost in the cost-benefit
sense, but rather a cost more closely described as a penalty. We began
this chapter by describing the characteristics of the network-plecticity
metric, as illustrated in Figure 5.4. We assume each of the clusters in
the network is logically connected to support a given mission. Plec-
ticity for a cluster is then associated with the flow of information
associated with that cluster. Both minimal (inadequate) flow and
excessive flow should result in low plecticity, whereas ‘optimal’ (ade-
quate) flow should result in high plecticity. Therefore, for each cluster
W in the network, the measure of network plecticity   C(B,O) is calcu-
lated as follows:

      

C B,O( ) = B R( ) | X k( )[ ] 1 O U m( ),G P( )[ ][ ]

=
1( ) R( ) + X k( )[ ] 1 U m( ) 1( )G P( )[ ]

+( ) X k( )( )
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Overall Network Performance

The last step is to combine this redundancy-based plecticity with the
benefits of collaboration to produce a metric that will assess the per-
formance of networked decisionmaking headquarters. Collaboration
measures the effects of information sharing across a cluster on infor-
mation completeness and accuracy (i.e., bias and precision), whereas
redundancy-based plecticity measures the effects of redundant infor-
mation and the degree of information access. The former assesses the
dynamic nature of the operation conducted on the network; the latter
measures the effects of the underlying network structure and is there-
fore systemic. All the dependencies among the several components of
collaboration and plecticity are not generally well understood. How-
ever, we know that high-quality performance requires good cluster
knowledge and the means to share it and that scores in either category
are penalised by deficiencies in the other. Therefore, the measure of
total network performance is taken to be

      
,K Net( ) = C i B,O( )K i ,[ ]i=1

L i
,

where     i =1i=1
L  and L is the total number of clusters across the net-

work.
For values of       ( ,K Net ) close to 1.0, the network is performing

well by producing the information required to take decisions within
each of the clusters when required. However, this is not the whole
story. The next step is to assess how well the combat mission is
accomplished. As important as good decisions are, good combat out-
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comes are the ultimate measure of the value of network-centric opera-
tions.

Summing Up

In assessing the effects of networking headquarters on increasing deci-
sionmakers’ knowledge and therefore improving decisions, we have
analysed the network in terms of its static structure and of the
dynamics associated with performing the operational mission. The
former resulted in the development of a structural ‘plecticity’ metric
for each cluster, and the latter in a dynamic ‘knowledge’ metric for
each cluster. Both these metrics were developed by viewing a network
of connected headquarters as a set of clusters within each of which all
decision nodes (headquarters) share information. They are then com-
bined to form a metric of overall network performance.

In the process of developing these metrics, we have appealed to
information sciences, probability and statistics, estimation theory,
complexity theory, combinatorics, and, of course, a large measure of
heuristics. In the process, several terms were introduced as shaping
parameters. For the most part, these parameters are designed to reflect
the behaviour of both physical and cognitive phenomena. Where pos-
sible, we suggest methods for assessing reasonable values for these
parameters. Nevertheless, we recognise that establishing methods for
assessing these values is an open research question that will require
considerable experimentation.

The aim of the work presented in this chapter is to contribute to
the development of a theory of such complex information networks
in order to stimulate both further theoretical development and
experimentation. Although we include an application of the measures
and metrics in Appendix C, there is still much more work to be done
in progressing this new science.
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CHAPTER SIX

Conclusion

At the outset, we argued that it is important that military planners
responsibly test the emerging network-centric concepts before their
adoption. Several observers concerned about the ‘irrational exuber-
ance’ surrounding the claimed benefits of network-centric operations
support this view as well.1 They argue, as we do, that the claimed
benefits may prove to be true but that analysts should strive to assist
the military community in assessing them. This recommendation
implies employing the full range of analytic techniques: models,
simulations, exercises, and experiments. The problem, however, is the
paucity of tools that will allow us to quantify the benefits of local
collaboration and clustering across an information network. Although
we make no claim that the methods reported here are definitive, they
do represent an approach that draws on several disciplines to assess
how well alternative operating procedures and network configurations
contribute to the decisions made by headquarters that share informa-
tion and thus develop shared awareness and collaboration.

The approach taken brings together two key ideas. The first idea
comes from previous work by RAND that shows how Shannon
entropy can be used as the basis of a quantified measure of the
knowledge resident within a cluster of decisionmakers who share
information. Such an approach allows the concept of full shared
awareness to be precisely defined in terms of such clusters and also

____________
1 See, for example, Giffen and Reid (2003) and Barnett (1999).
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permits the measure of benefit to be lifted from the information
domain to the cognitive domain in terms of our process model of
information age warfare. The second idea comes from Dstl research
on the representation of command and control (and the other associ-
ated elements of C4ISR) in aggregate constructive simulation models
of conflict. This concept has resulted in the Rapid Planning Process,
which gives a basis in terms of mathematical algorithms for the repre-
sentation of expert decisionmaking in fast-paced, fluid circumstances.
These ideas are brought together using the idea of ‘plecticity’ drawn
from our view of the network as a complex system. Combining col-
laboration and plecticity results in a total measure of the benefits and
costs associated with a particular local collaboration and clustering
across such a network. The measure captures the ability of the clusters
to support the decisionmaking process at a key decision point, in
terms of determining to what extent the distributed decisionmakers
are within their ‘comfort zones’ in relation to the values of their key
decision elements, which are shared across the clusters.

We have adopted an approach that first deals with the concep-
tually simplest case, when the information elements forming the basis
of the decisionmaking in a cluster of the network all have the same
distribution of uncertainty (hence, we assume they are all normally
distributed). In this case, with full shared awareness across the cluster,
the knowledge available to the cluster can be quantified on the basis
of the variance of the key decision elements and their covariance,
which builds up over time. This first part of the work highlights in
particular the benefit to local knowledge of such covariance (i.e., the
degree to which one element of information relates to another) in
quantifying such knowledge. Such a measure thus relates closely to
‘commonsense’ ideas of knowledge in terms of understanding how a
number of elements relate one to another.

We then deal with the more general case of when the informa-
tion elements shared across a cluster have more general distributions
of uncertainty. A number of approaches to this case are examined
based on a mixture of empirical and theoretical ideas. By combining
these ideas, it is possible to form a complete chain of quantifica-
tion—from an initial network architecture and local collaboration,
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through the formation of clusters across the network, through to the
overall plecticity and performance of such a network. In this way, dif-
ferent possibilities for collaboration (and hence different future head-
quarters structures based on such distributed clustering and local
decisionmaking) can be compared in terms of their total network per-
formance. This comparison measures the ability of such distributed
decisionmakers to make better decisions, based on better under-
standing of the critical information elements shared across collabo-
rating clusters in the network.
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APPENDIX A

The Rapid Planning Process

Gary Klein’s Recognition Primed Decision (RPD) model emphasises
situation awareness (SA) (Klein, 1989). The goal of the SA process is
to provide the decisionmaker (the command agent) with an under-
standing of what is happening in the outside world. In particular, the
command agent, through SA, tries to answer the question: ‘Is the
situation that I perceive in the outside world one that I recognise?
Because if I do recognise the situation, then my experience (long-term
memory) tells me immediately which course of action (CoA) I should
adopt, given this situation.’

The focus of the SA process is thus on pattern matching—
analysing the information available about the outside world and try-
ing to match the perceived state of the world to one of an existing
array of patterns held in the command agent’s long-term memory.
Each pattern is a representation of a situation, and each situation is
linked directly to a CoA appropriate to that situation. This linkage,
held in the command agent’s long-term memory, represents the
command agent’s experience and is what enables the command agent
to make decisions rapidly without recourse to extensive option
generation and evaluation.

We model this behaviour through the Rapid Planning Process.
The model thus comprises four main stages: (1) observation analysis
and parameter estimation, (2) situation assessment, (3) pattern
matching and preferred posture selection, and (4) posture transition.
We discuss the first three in the context of a simple land operation
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example. The headquarters model is concerned only with the overall
process up to the decision.

Stage 1: Observation Analysis and Parameter Estimation

Stage 1 involves analysing the command agent’s current observations
of the battlespace, which comprise data received by the command
agent via its sensors. The analysis of these data consists of data
smoothing and parameter (mean and covariance) estimation. Where
the variables are normally distributed, the data analysis is performed
by a collection of dynamic linear models (DLMs). A DLM is a
mathematical structure for short-term forecasting, modelling, and
analysis of time-series processes with normal errors. (DLMs are fully
described in West and Harrison, 1997.)

A Simple Land Operations Example

Figure A.1 illustrates the details of stage 1 of the Rapid Planning
Process for this example. We assume decisionmaking is based on the
perceived combat power ratio (PCPR) (see stage 3). The command
agent deduces the PCPR from observations (via sensors) of two quan-
tities in the local area of interest,1 namely enemy combat power and
friendly-force combat power. These two data input streams are ana-
lysed independently within the command agent via a pair of DLM
class II mixture models—one model tracks the enemy combat power
values while the other model independently tracks friendly-force
combat power values.2 In general, each class II mixture model com-
prises four separate DLMs: a ‘standard’ DLM, an outlier-generating
DLM, a level change DLM, and a slope change DLM.

____________
1 The command agent’s local area of interest is a circular region centred on the agent. The
radius of this region is user specified. The agent’s recognised picture covers only this region
and is thus ‘mobile’—that is, it moves with the agent.

2 See West and Harrison (1997), §12.3.
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Figure A.1

Stage 1: Observation Analysis and Parameter Estimation

RAND MG226-A.1
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In each case, we look at a time series of observations of force lev-
els (as assessed by a set of sensors or fed to the commander by an
information source). Each DLM represents a predisposition by the
commander to look at the series of estimates in a particular way, tak-
ing account of other contextual knowledge that may be available to
him.

• The ‘standard’ DLM represents the assumption by the com-
mander that nothing much is changing; he expects that the time
series of observations will carry on at about the same level.

• The outlier DLM makes the assumption that the current
observation is a significant deviation from the observations seen
so far (causing a much higher variance in the series) but that the
series is expected to settle back to the previous level.
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• The level change and slope change DLMs represent an assump-
tion by the commander that there will be significant change in
level or slope (rate of change) of the series. For example, if the
commander has access to his superior commander’s plan, he
may know that, at a certain time, additional friendly-force ele-
ments will move into his area of interest. He will thus be predis-
posed to look out for this when tracking the value of his own
force strength over time.

Each of these DLMs is equivalent to a corresponding hypothesis
by the commander about what is happening in his local area of inter-
est while tracking the critical information element of force level over
time: no change; a blip, which can be ignored; a step change; or a
change in slope (growth or decay). When we have a vector of critical
information elements making up the commander’s conceptual space
(also called the common relevant operating picture, or CROP), these
hypotheses relate to the likely behaviour of the values of the critical
information elements that form a vector characterising the conceptual
space.

The ‘standard’ DLM is a first-order polynomial DLM, repre-
senting a system model     M 1 that describes a constant level time series.
The parameters estimated by the DLM are the mean and variance of
the time series level denoted, at time t, by     m(t ) and   C(t ), respectively.

The other three DLMs in the mixture model are all second-
order polynomial DLMs. The outlier-generating DLM represents a
system model,     M 2 , that describes a transient in the time series. The
level change DLM represents a system model,     M 3 , that describes a
step change in the time series. The slope change DLM represents a
system model,     M 4 , that describes a slope change in the time series.
The parameters estimated by each of these three DLMs are the mean
values of the level and the growth rate of the time series denoted, at
time t, by vector    m(t ), and the associated covariance of the level and
growth rates denoted, at time t, by matrix       C(t ).
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The Common Relevant Operating Picture

The CROP (the local conceptual space) is spanned by the set of criti-
cal information elements. For our simple example, these relate to the
local force ratio. In each case, the DLM formulation updates the
assessment of where the commander perceives he is located within the
space described by the vector of information elements. This corre-
sponds to a multivariate normal distribution. The commander’s fixed
patterns correspond to particular ‘areas’ within this space that he con-
siders important, such as good own force level and poor perceived
enemy force level locally. To each of these fixed patterns is associated
a particular mission, such as ‘advance’, representing the direct link
between situation assessment and choice of feasible CoA required by
the RPD approach. The overlap between the output from the DLM
and the fixed patterns is used to update the probability that each of
these patterns is the most relevant.3

In more detail, and taking as an example enemy and own force
strengths as the factors forming the recognised picture, each DLM
mixture model operates on an input time series, i.e., a sequence of
observations received from external sensors.4 For one mixture model,
the input time series comprises observations of the enemy combat
power in the command agent’s local area of interest; this series is de-
noted by Ye(t ) in Figure A.1 and comprises the sequence

      
Ye 0( ),Ye 1( ), ,Ye t 1( ),Ye t( ){ }.

For the other mixture model, the input time series comprises observa-
tions of the friendly-force combat power in the command agent’s
local area of interest; this series is denoted by     Yo(t ) and comprises the
sequence

      
Yo 0( ),Yo 1( ), ,Yo t 1( ),Yo t( ){ }.

____________
3 An example of how this can be implemented is shown in Chapter 2 of Moffat (2002; also
see p. 38).

4 In this example, we focus on only a single critical information element: combat power.
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Note that the observations in the two time series need not necessarily
coincide because they are independent input streams.

Each DLM mixture model processes its associated time series of
observations in the same way (and independently from the other
DLM mixture models). We describe this process below for the enemy
combat power time series; an analogous process operates in parallel
for the friendly-force combat power time series. Figure A.1 shows the
state of the parameter estimation process after the observations up to,
and including, Ye(t 1) have been processed by the DLM mixture
model and before the next observation,   Ye(t ), is processed. To process
the next enemy combat power observation,     Ye(t ) is fed into the DLM
mixture model and analysed. The DLM algorithms follow the Baye-
sian methods developed in West and Harrison (1997). At each stage
of the process, a probability is computed for each of the commander’s
hypotheses (corresponding to one of the DLMs). These probabilities
are tracked over time to assess whether we are approaching the
boundary of the ‘OK’ state, i.e., the probability of no change has
declined significantly. The following are key outputs of the mixture
model:

• Updated estimates of the system model parameters. These
estimates now take into account the new observation Ye(t ).
There are four sets of these estimates, denoted    (me (t ),Ce (t ))k ,
where k [1,4] is the DLM type. One set of estimates is pro-
duced by each DLM in the mixture model. The particular val-
ues       (me (t ),Ce (t )) j  are the current estimates of the mean and co-
variances of the enemy combat power (level and growth) on the
assumption that system model  M

j  represents the time series
seen to date.

• Likelihood estimates for each system model. This is the likeli-
hood that the observation   Ye(t ) would have been obtained from
each system model. There are four of these, one for each DLM
in the mixture model. The likelihoods are denoted

    L(Ye (t ) | M k ,De (t 1)) , where   De (t 1)  represents all observations
seen up to, but not including, the current observation,     Ye(t ).
This is repeated for the friendly-force estimates.
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• Posterior probabilities that each hypothesis is correct. The pos-
terior probabilities p(M k | De (t )) are the probability that model
  M

k  best describes the time series of observations seen up to time
t. This is repeated for the friendly-force estimates.

The posterior probabilities     p(M k | De (t )) (for the enemy combat
power observations) and   p(M k | Do(t )) (for the friendly force combat
power observations) are updated on a continuous basis as part of the
command agent’s sensing cycle.

Stage 2: Situation Assessment

The means, covariances, likelihood estimates, and posterior probabili-
ties are input to stage 2 in the Rapid Planning Process. Figure A.2
illustrates the processes in this stage. At each command and control
cycle (which runs independently of the sensing cycle), the command

Figure A.2
Stage 2: Situation Assessment

RAND MG226-A.2
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agent performs an SA to decide whether the perceived situation,
based on the sensor observations made to date, is currently ‘OK’ or
‘Not OK’. The situation assessment is performed in two steps.

Step 1—OK/Not OK Assessment

The first step of the SA considers the enemy combat power and
friendly-force combat power observations separately, as follows.
Examining each DLM mixture model:

• If the ‘standard’ DLM has the highest posterior probability, the
situation is deemed OK. This conclusion is based on the fact
that the combat power observed is currently showing a steady
level.5

• If any of the other three DLMs (the outlier, the level change, or
the growth change models) has the highest posterior probability,
the situation is deemed Not OK. This conclusion is based on
the fact that the combat power observed has changed from a
steady level.

Step 2—Initial Situation Assessment

Step 1 generates an OK/Not OK result from each DLM mixture
model. In the second step, we combine these results, using Table A.1,
to determine an overall assessment of the current situation. This
corresponds to the ‘storytelling’ level of SA discussed by Klein (1989).

____________
5 In West and Harrison’s version of the DLM class II mixture model (West and Harrison,
1997, §12.3), the ‘standard’ model is the linear growth model (the second-order polynomial
DLM). It should now be clear why, in our case, we actually need the standard model to be
the constant model (the first-order polynomial DLM), representing a system model that
describes a constant level time series. It is because a linear growth model used as the standard
model (the OK model) might remain the most likely model throughout—so that we would
interpret the situation as remaining OK—while actually tracking a steady drift of combat
power values across a wide range—so that the situation therefore might not always be OK
from a PCPR perspective. The only OK situation is the one in which the combat power
observations are remaining more or less constant—hence the use of the constant (first-order)
DLM.
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Table A.1
Initial Situation Assessment Matrix

Enemy Combat Power Mixture Model

Friendly-Force Combat
Power Mixture Model

OK Not OK

OK OK Not OK

Not OK Not OK Not OK

Thus, the overall SA is OK only if the situation is OK with
respect to both the enemy and friendly-force combat power observa-
tions. In each of the other cases, one or another, and possibly both, of
the SAs are Not OK because there has been a significant change in
the enemy and/or friendly-force combat power and the overall SA is
deemed Not OK.

The idea behind the SA described here is to provide an initial
OK/Not OK alert to the command agent. If the situation is OK, the
command agent carries on doing whatever it is currently doing—it
remains in its current posture; there is no need to do any (stage 3)
pattern matching and preferred posture selection, because everything
is currently OK.

If, however, the situation is Not OK, then only in this case does
the command agent need to go into stage 3 of the Rapid Planning
Process and do some pattern matching to find out if a change in
posture is required.

If the situation is Not OK, the command agent invokes stage 3
of the Rapid Planning Process model. Some key data items6 are
passed to stage 3—namely me (t ) and mo(t ), the current best estimates
of the enemy and own force combat power values, respectively, and
their associated variances,     C e (t )  and     Co(t ) . These ‘best’ estimates are

____________
6 In this version of the Rapid Planning Process model, only the means and variances of the
combat power values are used in stage 3. We do not forward to stage 3 any of the additional
information that is actually available at the end of stage 2, namely the growth rate and its
variance (in the case of second-order polynomial DLMs) and knowledge of which system
models are the better descriptors of each combat power time series. Future enhancements to
the model will likely make use of this additional information.
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the values output by the DLM, in each mixture model, which cur-
rently has the highest posterior probability.

Stage 3: Pattern Matching and Course of Action Selection

Stage 3 of the Rapid Planning Process model attempts to recognise
the extant battlespace situation, based on the data received by the
command agent, and identify the posture (CoA) appropriate to this
situation. Figure A.3 illustrates the process.

As mentioned earlier, the inputs to stage 3 are the current best
estimates of the enemy and own force combat power values, respec-
tively, and their associated variances. From these, we calculate the

Figure A.3
Stage 3: Pattern Matching and Course of Action Selection
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PCPR at the current time t, denoted     PCPR(t ) . The     PCPR(t )  is a ran-
dom variable with probability density having a time-dependent mean,
µz (t ) , and a standard deviation, z (t ) . We depict these elements in
Figure A.3. The     PCPR(t )  distribution characterised by its mean and
standard deviation is input to the main pattern-matching process.

The pattern-matching process (denoted by symbol  in Figure
A.3) compares the   PCPR(t )  distribution against a number of
patterns, denoted P(k). Each pattern is a representation of one
possible situation that could exist in the battlespace. Comparing is
aimed at selecting the most likely pattern given the   PCPR(t )  being
compared. The comparison (pattern match) of PCPR(t )  against a
given pattern,     P(k), yields two outputs:

•     L(PCPR(t ) | P(k)): The likelihood that     PCPR(t )  would have
been obtained had the situation in the battlespace been the one
represented by pattern P(k).

• p(P(k) | D(t )): The posterior probability that pattern     P(k) is the
one that best represents the situation in the battlespace, given
the time series of (enemy and own force combat power) observa-
tions seen up to time t (i.e., the current situation).

Having calculated the posterior probability of each pattern

      P(1),P(2), ,P(n), we select the pattern     P(k) with the highest
posterior probability as the one that best represents the situation
extant in the battlespace. The situation has now been ‘recognised’.

The next step—and the essence of the RPD model of decision-
making—is to invoke the decisionmaker’s experience and map the
recognised situation to an appropriate CoA. In Figure A.3, experience
is represented by the set of one-to-one mappings between patterns

    P(i) and     CoA(i) for all     i [1,n] stored in the command agent’s long-
term memory. Thus, the selected pattern     P(k), representing the rec-
ognised situation, leads directly to the selection of an appropriate
CoA, namely     CoA(k).

    CoA(k), selected in this way, is referred to as the preferred
posture. It is the posture that the command agent’s experience says is
most appropriate, given the situation recognised in the agent’s local
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area of interest. The preferred posture is then passed into stage 4
(posture transition) of the Rapid Planning Process model. We do not
make use of stage 4 of the Rapid Planning Process in the method
proposed in this report. Our processing terminates with the selection
of CoA(k).

Moffat (2002) details the mathematical development of these
algorithms for the general case of a conceptual space with several fac-
tors.

Application

The following is an example application. The modelling test bed used
is CLARION+, an experimental test bed developed by the Defence
Science and Technology Laboratory (Dstl) to examine the effect of
such decisionmaking on combat behaviour. Figure A.4 is a screen

Figure A.4
CLARION+ Screen Image of Land-Air Interaction
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image from CLARION+ that shows a campaign-level land-air inter-
action between two forces (Red and Blue) in which Red, using a bold
command strategy developed by a genetic algorithm, fixes Blue in the
south and then flanks north to exploit a hole in Blue’s defence. The
boxes with a single diagonal line marking are airborne sensors that
help to generate the operational picture and assessment of enemy
intent on which the plan is based.

For one of the brigades in the circle, the dynamics of the Rapid
Planning DLMs used to assess the level of enemy force strength in the
local area of interest of the brigade are shown in Figure A.5.

At the top left-hand part of the figure, the mean values of enemy
force strength assessed in the local area are shown for each of the four
mixture models (standard, outlier, level change, slope change).7 These
values vary with time along the x-axis and grow as the brigade
encounters an enemy group in its local picture.

Figure A.5
Rapid Planning Type II Mixture Model Depiction

____________
7 In Figure A.5, these models are called constant, outlier, level, and growth, respectively.
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The bottom left-hand corner of the figure displays the time-
varying Bayesian probabilities that each of the four models is a correct
assessment of the situation. These probabilities also vary with time
along the x-axis. The most likely hypothesis moves from the standard
model, through the outlier model, to a realisation that there is a level
change in enemy combat power occurring in the local area. The con-
stant model later supersedes this again.

At the top right is a display of the probability that each of the
fixed patterns (and hence the associated CoA) is the best pattern
match for the current perceived situation, for that brigade, at the time
the simulation test bed was paused. The possible courses of action are
advance, attack, defend, delay, or withdraw. The figure shows that at
the time the simulation was paused, the local commander favoured
advancing or attacking.
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APPENDIX B

Information Entropy

Claude Shannon first introduced information entropy in 1948. In the
early 1940s, it was generally believed that noise limited the flow of
information through a channel. That is, if one decreased the prob-
ability of error in the received message, the true rate of data transmis-
sion decreased. Consequently, an error-free message could only occur
if transmission ceased! Shannon disproved this theory. He was able to
show that, in fact, if a channel had nonzero capacity (calculated from
the noise of the channel), an arbitrarily low probability of error could
be achieved as long as the transmission rate was below the channel
capacity. He also argued that random processes such as speech and
music had an irreducible complexity below which signal compression
was impossible. He referred to this as entropy and further claimed that
if the entropy at the source of a communication channel was less than
its capacity, an arbitrarily low error rate could be achieved.1

It is this reference to communications as a stochastic or random
process that leads to its application in the field of statistics. In his
book on information theory, Solomon Kullback (1978, p. 1) cites
several sources to support his argument that the statistical theory of
communications is synonymous with communications theory and
that communications theory and information theory are also syn-
onymous. Because probability distributions describe the uncertainty
associated with mutually exclusive and collectively exhaustive events,

____________
1 This summary draws on Cover and Thomas (1991), Blahut (1987), and Kullback (1978).
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it is natural to ask about uncertainty’s complement, that is, what is
known, or the amount of information available. This leads us to the
modern use of information theory as a measure of the average infor-
mation available in a probability distribution.

A Statistical Theory of Information

Suppose 
      X = {x1,x2 , ,xn }  is a discrete random variable with

probability mass function P(X = xi ) = pi . Each of the  xi  represents an
event (as do conjunctions and disjunctions of the xi ), the occurrence
of which imparts information. What we seek is a measure for the
amount of information imparted. It seems logical to assume that this
amount, whatever it is, is inversely proportional to the likelihood that
the event will occur, or

I xi( )
1

pi

.

For example, the fact that the sun rose this morning imparts no
information, because we knew it all along. That is, the likelihood of
its occurrence is 1.0. Conversely, being told that you have just won
the lottery conveys considerable information because it is an unlikely
event.

In a 1928 paper, Ralph Hartley was the first to suggest the use
of the logarithm in a measure of information by defining a measure
of information to be the logarithm of the number of possible symbol
sequences (Hartley, 1928). Shannon picked up the idea of using the
logarithm as the proportionality constant and suggested that the
amount of information in the occurrence of an event is

    

I xi( ) = log
1

pi

 

 
 

 

 
 = log pi( ) .

This was a particularly good choice because it is closely related
to the concept of data compression, as we shall see next. Shannon was
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concerned with the output of a discrete information source where
each of the  xi  represents a source output that occurs with probability
pi . For this reason, the base 2 logarithm was used and information

was measured in terms of bits.2 However, in this work and elsewhere,
we use the base e and measure information in terms of ‘natural units’,
or nats.

The next step is to assess the average or expected information in
the probability distribution. This quantity is referred to as informa-
tion entropy or Shannon entropy and is calculated as

    
E log P X( )( )[ ] = H X( ) = pi log pii=1

n .

The quantity H (X ) represents the mean information content in

    P(X ) or the amount of uncertainty in     P(X ). The latter interpretation
implies that information entropy is a function of the variance of a
distribution. This is the case and is readily evident in continuous dis-
tributions. If the base 2 logarithm is used, it is also the number of bits
required, on average, that are used to describe the random variable, X.

It is interesting to note that for discrete random variables,
entropy is indeed bounded. A lower bound (maximum certainty)
occurs when     pi =1 and 

    
p j = 0  for all   j i . In this case,

    
H X( ) = 1log1 n 1( )0log 0 = 0 .3

Therefore, the average information is 0 nats when there is no un-
certainty. This is consistent with the earlier definition of information.
At the other end of the spectrum, complete uncertainty exists when
all events are equally probable. The entropy calculation in this case is

____________
2 It turns out that one bit of information is the minimum information required to resolve
the uncertainty in a situation with two equally probable alternatives.

3 It can be shown that

    

lim

x 0
x log x = 0 .
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H X( ) =

1

n
log

1

n
i=1
n

=
1

n
logn = logni=1

n .

Consequently, for discrete random variables, the average
information of the probability mass function is bounded, or

    H (X ) [0,logn]. We show later that this is never true for continuous
random variables; that is, the entropy for continuous random vari-
ables is unbounded.

Differential Entropy

The foregoing discussion assumed that the random variable was dis-
crete, and we were able to show that the entropy of its probability
mass function was bounded. In information theory, this is the
equivalent to stating that the information source is discrete and that it
generates discrete information at a finite rate. In contrast, the entropy
of the density function for a continuous random variable is un-
bounded. In information theory, this is equivalent to a continuous
information source that can assume any one of an uncountable infi-
nite number of amplitude values, thus requiring an infinite number
of binary bits for its complete specification. Because this is never pos-
sible, its entropy is unbounded.

Suppose now that X is a continuous random variable with prob-
ability density function f (x). The differential entropy of X in nats is
defined to be

    
H X( ) = f x( ) log f x( )dx .

Unlike the entropy of a discrete random variable, the entropy of
a continuous random variable is unbounded. We can illustrate this
fact by approximating the continuous probability density, f (x), with
a probability mass function, p(x) , that is constant on intervals of
width   x . The approximating probability density function has prob-
ability 

  
p j  on the jth interval. To ensure that
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p j =1

j

,

we set 
    
p j = p(x j ) x , where  x j  is a point in the jth interval such that

    
p(x j ) x  is the area under p(x)  in the jth interval. The entropy of the

approximating probability distribution is

    

H p( ) = p j log p j
j

= p x j( ) x log p x j( ) x[ ]
j

= p x j( ) x log p x j( )[ ]
j

p x j( ) x log x[ ]
j

= p x j( ) x log p x j( )[ ]
j

log x[ ].

Now, if we let     x 0 , the summation converges to an integral,
but log[ x] . Because there is no way to avoid this divergence,
the entropy of a continuous random variable is always unbounded.

Differential entropy can also be negative. For example, consider
a random variable, X, distributed uniformly from 0 to a. Its density
function is

    

f x( ) =
1/a  if 0 x a

0   otherwise  

 
 
 

.

The differential entropy therefore is

H X( ) =
1

a
0
a log

1

a
dx = log a .

Note that for   a <1,     H (X ) = log a < 0 .     H (X ) is also unbounded at

    a = 0.
Suppose X is a continuous random variable distributed exponen-

tially with mean  1/ . The density function for X therefore is

  
f x( ) = e x ,   x 0.
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The differential entropy is

H x( ) = e - x log0 e - xdx

= 1 log( j )

= log
e

j

 

 

 
 

 

 

 
 

The differential entropy for several probability distributions
have been tabulated by Thomas Cover and Joy Thomas and can be
found in their book, Elements of Information Theory (1991).
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APPENDIX C

Application to a Logistics Network1

This appendix records the application of both the plecticity and col-
laboration metrics, with some extensions, to the logistics example dis-
cussed in the main text. As mentioned earlier, it is important to assess
the effects of improved decisionmaking on combat outcomes. The
measures and metrics we have developed are designed to assess the
degree to which sharing information among headquarters in a clus-
tered network contributes to improved decisionmaking. The ultimate
measure of this effect is how well the friendly forces achieved their
mission, i.e., combat effectiveness. Consequently, Dstl has developed
a spreadsheet version of the information-sharing model, the Collabo-
ration Metric Model (CMM), which is used to calculate both the
plecticity and collaboration metrics described in the text for specific
clusterings of decisionmaking nodes across an information network.

Figure C.1 summarises a methodology for assessing alternative
command and control processes, using a combination of combat
simulation modelling and the CMM. Information flows recorded in
the simulation model are used as inputs for the CMM. The CMM
results may then be used to select preferred network structures as in-
puts to the simulation model, as depicted in Figure C.1 by the dashed
line. It is then possible to relate Measures of Command and Control

____________
1 The analysis presented in this appendix is primarily the work of RAND colleague Chris
Pernin while on secondment to Dstl.
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Figure C.1
Assessing the Effects of Information Sharing on Combat Effectiveness
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Effectiveness of the network clustering and Measures of Force Effec-
tiveness, thus illustrating the relationships between information
sharing and combat effectiveness.

The CMM can handle up to 10 decision nodes, 10 information
elements, and 10 information sources (see Figure 2.2 in Chapter Two
for illustrations of these different network elements). This capacity
allows a reasonable representation of a rather robust headquarters.
The metrics discussed in the text form the basis of the Overall
Network Performance metric calculated by the model and include
both the static systemic measures of plecticity and the dynamic
measures of collaboration. These are combined to arrive at a single
metric to assess the effects of collaboration and plecticity across a
cluster of information-sharing entities.

Cases Examined

Three logistics command and control structures were assessed using
the CMM. The decision made in all cases is the logistics allocation
decision described in Chapter Two; except that in this application,
the resupply of ammunition, not fuel, was the focus. The first case is
a supply-driven network similar to the ‘push’ sustainment model
depicted in Figure 2.3 in Chapter Two. In this case, denoted S, the
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Forward Support Group (FSG); the Air Assault Brigade, Brigade
Supply Area (AA Bde BSA); the Armoured Division, Divisional Sup-
ply Area (Armd Div DSA); and the Corps Artillery, Brigade Supply
Area (Corps Arty BSA) all form decision nodes, as shown by the rec-
tangles in Figure C.2. However, there is no information sharing to
form a common perception; thus, each of these decision nodes is a
degenerate ‘cluster’ consisting of one node, shown by the dashed
ellipses. Information on logistics demand is sent to these second and
third line units from the Attack Helicopter Regiment Forward Oper-
ating Base (AH Regt FOB); the Armoured Brigade, Brigade Supply
Area (Armd Bde BSA); the Mechanised Brigade, Brigade Supply Area
(Mech Bde BSA); and the Multiple-Launch Rocket System Regiment
Ammunition Control Point (MLRS Regt ACP). These information
sources are shown as circles in Figure C.2. The amount supplied is
based on a set expectation of use.

Figure C.2
A Supply-Driven Information Network: Case S
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The next two cases are demand driven and denoted as D1 and
D2. Demand driven means that the units anticipate their supply
requirements and decide how much resupply to request, or ‘pull’,
from their arbiters at the next command echelon. How well they do
this depends on their ability to share information, as we will see.

In the first demand case, D1, depicted in Figure C.3, each first
and second line unit (10 units in total) sends its demand for an asset,
which is met by the resource manager. The managers deal with each
demand separately (i.e., they do not cross-correlate demands from
different subordinate units). In this case, there are 10 decision nodes,
each of which forms an isolated cluster of size 1.

Figure C.3
A Demand-Driven Information Network with No
Information Sharing: Case D1

RAND MG226-C.3
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The second demand-driven network, case D2, is depicted in
Figure C.4. In this final case, each of the three second line logistics
units is clustered with its subordinates into a full information sharing
and shared awareness cluster. The superior units use their knowledge
of all their subordinates’ information elements to update their percep-
tion of the current status and needs of each unit.

The first two cases, S and D1, are extremes in logistic decision-
making. The first case uses doctrine to push materiel to the units,
regardless of unfolding events. The amount being pushed to the units
is decided a priori and is not updated over time. The second case uses
a daily update of what was consumed to resupply stocks to previous

Figure C.4
A Demand-Driven Information Network with Information Sharing:
Case D2

RAND MG226-C.4
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levels. The third case (D2) is a variant on the second case but con-
tains additional clustering of information. This case uses three clus-
ters that contain the 10 decision nodes.

Discussion and Results

Figures C.5 and C.6 show two metrics calculated by the CMM. Fig-
ure C.5 is the Overall Network Performance (combining collabora-
tion and plecticity) for each of the three options. These values can
range from 0 (very poor performance) to 1 (excellent performance).
The shaded region defines the minimum and maximum of the value
over the 24-hour scenario; the black bar shows the average over time.
From Figure C.5, we can see that the most significant difference
arises from the clustering of decision nodes. Cases D1 and D2 have
the same information elements and number of decision nodes. They
differ crucially in the number of clusters sharing information. In the
former case, each logistics unit is introduced to one information ele-
ment and develops an understanding of the logistics consumption
based on that information. In the latter, the decision nodes are able to
access information from neighbouring units that help build a better
understanding of the situation. Even though both demand cases seem
to have a much better understanding of the information elements
over time compared with the supply-driven case, it is only when the
information is shared among decision nodes that the increase in
Overall Network Performance becomes evident. In this example, the
sharing of information provides a greater increase to the overall ability
of the network to perform compared with the location of the deci-
sionmaking.

Figure C.6 records the knowledge derived from collaboration
only, that is, the dynamic elements of the information network. The
collaboration-based knowledge metric measures the knowledge
gained from the dynamics of the information network, as discussed in
Chapter Four.
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Figure C.5
Overall Network Knowledge
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Figure C.6
Collaboration-Based Knowledge
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There are two main differences among the three cases. The first
is the variation within each data set. A comparison of the three cases
reveals that the upper case (case D2) has much less variation between
adjacent points than the lower two cases (cases D1 and S). The
enhanced clustering in case D2 compared with D1 has perhaps
relieved the uncertainty of unexpected changes in the information
elements. A reduced sensitivity to changes in the information ele-
ments is reflected in a less volatile and smoother line. The knowledge
of three units engaged in a sudden change in their supply level will be
more understandable or palatable to a commander than if only one
unit experiences that change.

The second difference among the data is the level of
collaboration-based knowledge. Case S exhibits the lowest knowledge
level, reflecting the large differences between the average doctrinal use
compared with the actual use during combat. The two demand cases
provide enhanced knowledge compared with the supply case because
the baseline is much more closely related to the actual use. The differ-
ence between the two demand cases provides the value of shared
information between peers. The information elements and baselines
are the same in both demand cases. However, the system values cal-
culated through the dynamic linear models (see Appendix A) are
much closer, and hence have enhanced knowledge, in the case of the
more collaborative network. In this example, the three-cluster
demand-driven network (case D2) provides the clearest picture of the
consumption of the subordinate units.
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