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Abstract— This paper considers the problem of cooperative
search and task response in a heterogeneous team of unmanned
aerial vehicles (UAVs) with limited communication. The UAVs
are engaged in a mission to search and verifiably destroy targets
in an uncertain environment. The UAVs do not have access
to centralized information, and each UAV makes its decisions
based on subjective information obtained through observation
and communication with other UAVs. We present a strategy for
information sharing and fusion, and study the impact of this
strategy’s parameters on the performance of the UAV team.

I. INTRODUCTION

Autonomous vehicles are currently used for difficult and
hazardous missions such as space exploration, mine-clearing
and aerial surveillance. With technological improvements
reducing costs, they are likely to find extensive use in broader
areas such as disaster relief and environmental monitoring.
An especially promising possibility is that groups of such
vehicles might work cooperatively to accomplish complex
tasks over extended areas. Developing efficient algorithms
for such cooperative behavior is, therefore, an important and
active area of research [1].

In this paper, we consider the case of unmanned aerial
vehicles (UAVs), engaged in a cooperative search and destroy
mission over an extended region. Individual UAVs scan
the region, searching for targets, verifying their existence,
attacking them with appropriate munitions, and confirming
their destruction. However, rather than operating separately,
they cooperate in two ways: 1) by sharing information among
the team; and 2) by coordinating their tasks. In general, such
coordinated scheduling is computationally prohibitive, but
heuristic methods have been proposed by many researchers
to achieve reasonable performance [2], [3], [4], [5], [6], [7],
[8].

In our previous work, we have reported on an algorithm
where UAVs autonomously make cooperative task allocation
decisions using a common information base, providing them
with a global view of the mission [7], [8]. The focus of the
approach is on the use of very simple decision-making rules
by individual UAVs rather than solving a global optimization
problem. However, the assumption of a centralized informa-
tion base represents a serious limitation from the viewpoints
of efficiency, practicality and security. In this paper, we report
on a decentralized version of our approach.

The decentralized system we describe requires the speci-
fication of three components:
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1) The information-sharing policy (ISP): Who commu-
nicates what to whom, when and how?

2) The information-fusion policy (IFP): How is re-
ceived information combined with the existing subjec-
tive information base (SIB)?

3) The decision-making algorithm: How does each
UAV use its SIB to make its decisions?

The main contribution of this paper is to define an
information-sharing policy based on three communication
contingencies, an information-fusion policy comprising four
fusion cases and an estimation component supplementing the
decision algorithm. The goal is to bring the UAV team’s
performance as close as possible to that achieved by the
centralized algorithm with noise-free, instantaneous commu-
nication.

II. PROBLEM FORMULATION

A. Scenario

The mission scenario considered throughout this paper
comprises the following elements:

• A bounded Lx × Ly mission environment in which the
UAVs operate. The environment is represented in the
UAVs’ information bases as a grid of cells:

{(x, y), x = 1, . . . , Lx, y = 1, . . . , Ly}.
• M stationary targets, Ti, i = 1, . . . , M . Of the M

targets, Mk are suspected initially while Mh = M−Mk

need to be discovered gradually through search. The
value of M or Mh is unknown a priori. The targets
are drawn from MT types. It is assumed that each cell
contains at most one target, and that targets do not cross
cell boundaries.

• N heterogeneous UAVs, uk, k = 1, . . . , N . The
characteristics of the UAVs are described in detail in
Subsection C below.

The mission of the UAV team is to discover, identify and
verifiably destroy all targets in the environment.

B. Environment Description

Each cell, (x, y), has a target identifier, J(x, y, t) =
j, j = 0, . . . ,MT , indicating that cell (x, y) has a target
of type j at time t. A value of J(x, y, t) = 0 denotes the
absence of a target in (x, y). The target identifiers are not
known to the UAVs, and their estimation is a primary mission
task.
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A canonical task set, G, defines the tasks that the UAVs
can undertake at cell (x, y). Here

G = {Search, Confirm, Attack, BDA}
where BDA stands for battle damage assessment. UAVs
cooperatively search the environment for unknown targets
and seek to confirm the existence and type of any that are
suspected. Once a target is confirmed and identified with
sufficient certainty, an appropriately armed UAV proceeds
to attack it. The results of the attack are verified through a
BDA task, where a UAV scans the target location to assess
damage.

The search task is termed an automatic task, since every
UAV automatically scans each cell it passes through. The
other three tasks — confirm, attack and BDA — are termed
assignable tasks, since they are assigned to a specific UAV
that must go to the designated location and execute the task.

Every cell, (x, y), has a task status, τ(x, y, t) ∈ G, at
time t. Each assignable task has a task assignment status,
ς(x, y, t), drawn from the set

H = {Available, Associated,Assigned,Active}.
The assignment status indicates whether the task is open for
volunteering (available), has been provisionally assigned to
some UAVs but may still be re-assigned (associated), has
been firmly assigned to a UAV (assigned), or is currently
being executed by a UAV at the location (active).

Together, the J(x, y, t), τ(x, y, t) and ς(x, y, t) describe
the task environment in which the UAVs operate.

C. UAV Model

The state, L(uk, t) = {Λ(uk, t),Γ(uk, t)}, of UAV uk at
time t comprises two parts: the physical state, Λ(uk, t), and
the functional state, Γ(uk, t).

1) UAV Physical State: The physical state Λ(uk, t) in-
cludes the following:

• A unique ID, uk, used to tag information sent out to
other UAVs.

• An expertise matrix, Ξuk(t) = {ξuk

j,τ (t)} where ξuk

j,τ (t)
indicates UAV uk’s capability for performing task τ on
a target of type j at time t. In the current model, we
assume a fixed expertise matrix, Ξuk = {ξuk

j,τ}.
• Position (xuk(t), yuk(t)), speed vuk(t) and heading

angle ψuk(t). UAV uk moves on a continuous trajectory
modelled with a widely used kinematic model [9].

2) UAV Functional State: The functional state, Γ(uk, t) =
(xuk

D (t), yuk

D (t), τuk

D (t), ϕuk(t)), indicates the current desti-
nation (xuk

D (t), yuk

D (t)) of UAV uk (if any), the task τuk

D (t)
it must perform at that destination, and the corresponding
commitment status ϕuk(t). The commitment status, ϕuk(t),
of UAV uk takes a value from the set:

K = {Open, Competing, Committed, Executing},
indicating whether the UAV has no commitment (open), is
volunteering for a task or has been associated with one (com-
peting), is assigned to a task (committed), or is performing

it (executing). The UAV’s commitment status matches the
assignment status of its destination task.

3) UAV Actions: As UAV uk moves in the environment,
it performs an action at each cell it visits or scans. The
canonical action set is:

A = {null, sense, attack}.
• If the action is sense, the sensor system on the UAV re-

turns an observation value buk(x, y, t) ∈ {0, 1, ...,MT }
indicating that UAV uk detects a target of type j in
cell (x, y) at time t. The sensor model used here [9]
considers possible sensor inaccuracy and has a fixed
rectangular footprint.

• If the action is attack, the UAV fires a munition at time
t, trying to destroy the target in cell (x, y).

• If no action is taken on cell (x, y), UAV uk has a null
action. The state of the cell is left unchanged in that
case.

D. Subjective Information Base

As mentioned earlier, each UAV in the decentralized
model carries its own subjective information base (SIB),
representing its view of the mission status. Information
in a UAV’s SIB comes from two sources: 1) Information
generated by the UAV’s own actions; and 2) Information
received from other UAVs. Due to constraints such as limited
communication range and periodic (rather than continuous)
transmission, a UAV’s SIB is expected to have inaccuracies
and uncertainties, and the SIBs of two UAVs will not, in
general, be identical.

The SIB, Iuk(t), of UAV uk at time t consists of the
following components:

• The target occupancy probability (TOP) map,
Puk(x, y, t) = {Puk

j (x, y, t), j = 0, . . . ,MT }∀(x, y) at
time t, where Puk

j (x, y, t) is the estimated probability
that a target of type j is present at (x, y, t). The
probabilities satisfy the constraint

MT∑

j=0

Puk

j (x, y, t) = 1. (1)

The TOP map is used by the UAV to estimate J(x, y, t)
and τ(x, y, t).

• The task environment estimate (TEE), Υuk(x, y, t) =
{Juk(x, y, t), τuk(x, y, t), ςuk(x, y, t)} ∀(x, y) at time
t, where Juk , τuk and ςuk are the UAV’s estimates
of the target type, task status and assignment status at
(x, y, t), respectively. The TEE is used by the UAV to
make decisions on which tasks to volunteer for.

• The UAV map, Luk(us, t) = {Λuk(us, t),Γ
uk(us, t)}

∀us at time t, where Λuk(us, t) and Γuk(us, t) are
estimates of UAV us’s physical and functional states,
respectively, by UAV uk.

• The uncertainty map, χuk(x, y, t),∀(x, y) at time t,
quantifying how much UAV uk does not know about the
environment. It is used to direct the search for targets
if no assignable task is available.
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• The history buffer, ∆uk(x, y, t)∀(x, y)at time t, which
has the following information for each cell: 1) A ref-
erence TOP-task pair, πuk(x, y); 2) A reference time-
stamp, t̄uk

x,y , which is the time at which the reference
TOP was actually generated; and 3) All internal or
received sensor readings for cell (x, y) generated since
t̄uk

x,y.
• The broadcast buffer, δuk , which records information

to be sent out to other UAVs in the next broadcast.
It consists of: 1) sensor readings, bus(x, y, t′x,y), for
various cells, (x, y), taken by UAV, us, at times t′x,y

associated with the source UAV ID, us, and time
stamp, t′x,y, for each reading; 2) the UAV’s own state,
L(uk, t−), at t−, the time just prior to t,tagged with
UAV ID; and 4) single cell TOPs, P̂ (x′, y′, t∗x′,y′), for
some cells, (x′, y′) with corresponding task transitions
τuk(x′, y′, t∗x′,y′) at t∗x′,y′ (see below).

III. INFORMATION BASE DYNAMICS

UAV uk’s SIB is updated continually to reflect its cur-
rent knowledge of the environment. Updates to the SIB
are triggered in two ways: 1) Autonomous updates, based
on the UAV’s own actions; and 2) Communication-based
updates, caused by information received from other UAVs.
In this section, we describe the procedure for updating each
component of the SIB in all circumstances.

A. Autonomous SIB Updates

1) TOP Dynamics: When UAV uk makes an observation
or executes an attack at location (x, y), it updates its TOP
map by using a simplified version of the Bayesian update
function previously developed by us [7], [8].

2) TEE Update: UAV uk’s new estimate of a target’s
presence in the cell is explicitly reflected by its TOP map.
The task assignment status is updated according to uk’s
commitment status.

The dynamics of the task state in each cell, (x, y) is also
determined by changes in the TOP map . This is modelled
as a deterministic automaton, gh, whose transitions depend
on threshold crossings in P (x, y, t)(Fig. 1),

τuk(x, y, t) = gh(τuk(x, y, t−), Puk(x, y, t); ρ̄), (2)

where the parameter vector ρ̄ represents the set of threshold
values used for transitions. More details can be found in our
previous work [7], [8].

3) UAV Map Update: The states of other UAVs are
updated based only on information received through com-
munication, and has no autonomous component.

4) Uncertainty Update: The uncertainty, χuk(x, y, t), rep-
resents the UAV’s uncertainty about two things: 1) the exis-
tence of a target in (x, y); and 2) the type of the target. The
uncertainty is a passive function of the TOP, Puk(x, y, t),
and does not have its own dynamics. Thus, it is updated

Confirm

Search BDA

Attack

P <= ps <= P <= pepr

P < pr

P > ps

P <= ps

< P <= pcps P > pc
P > pe

P > pe

P <= pe

Fig. 1. Task Dynamics: ps=suspicion threshold, pc=certainty threshold,
pe=exit threshold, pr=resolution threshold.

each time the TOP is updated, using the definition:

χuk(x, y, t) = gu(Puk(x, y, t)

= ωχ[−Puk

0
(x, y, t) log Puk

0
(x, y, t)

− (1 − Puk

0
(x, y, t)) log(1 − Puk

0
(x, y, t))]

+
(1 − ωχ)

log MT

[

MT∑

l=1

(−Puk

l (x, y, t) log Puk

l (x, y, t))], (3)

where ωχ is a parameter between 0 and 1. The first term of
the equation (3) is the entropy of target existence, while the
second term is the entropy of target type.

5) History Buffer Update: Autonomous updates of the
history buffer for cell (x, y) occur as follows:

• Whenever UAV uk makes an observation, buk(x, y, t)
in (x, y), it is added to the history buffer.

• When a TOP update leads to a task transition in
τuk(x, y, t), the resulting TOP-task pair is stored in the
history buffer as the reference, π(x, y), along with its
time-stamp as the reference time-stamp, t̄uk

x,y , and all
sensor readings for that cell are cleared from the buffer.

6) Broadcast Buffer Update: An autonomous update to
the broadcast buffer is straight forward. To put sensor read-
ings, uk’s current state and/or reference TOP-task pairs into
the buffer.

B. Communication-Based SIB Updates

Communication-based updating of the SIB can be seen in
terms of two components: 1) an information-sharing policy
that specifies what is communicated to whom under what
conditions; and 2) an information-fusion policy that specifies
how new information is merged with existing information to
update the SIB. Both of these are discussed in this section.

1) Information-Sharing Policy: Communication between
UAVs is assumed to occur over a network that is noise
free and instantaneous. However, communication is range-
limited. The communication range of UAV uk is defined as
γuk

c . We assume that all UAVs have the same communication
range, γuk

c = γc, k = 1, . . . , N , so that UAVs within range of
each other can communicate mutually. Thus all links, when
they exist, are undirected, and the communication between
UAVs is mediated by a continuously changing undirected
graph.
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The information-sharing policy we use comprises three
communication contingencies as follows:

• Regular broadcast: Each UAV sends out the contents of
its broadcast buffer δuk every tb seconds, and reinitial-
izes the buffer.

• Event-triggered broadcast: When a sensing action at
time t by UAV uk causes a task transition in cell
(x, y), or the UAV executes an attack leading to a
consequent change in the TOP and task of the cell, it
immediately sends out the updated TOP, P̂ (x, y, t∗x,y),
the corresponding new task status, τ(x, y, t∗x,y), and the
transition time stamp, t∗x,y , for cell (x, y).

• Opportunistic SIB Exchange: UAVs uk and us exchange
their entire SIBs if: 1) they are closer than a threshold
distance γo at time t; and 2) they were outside of the
threshold γo at time t−.

For the present, the lengths of the history buffer and the
broadcast buffer are assumed to be unconstrained, though we
are also considering the finite-length cases.

2) Information Fusion Contingencies: The communica-
tion contingencies described above lead to a UAV uk possi-
bly receiving four kinds of information, thus requiring four
protocols to incorporate the information into its own SIB.

The four kinds of information are:

• The state,L(us, t
−), of a UAV us at t−, the time just

prior to t, and UAV ID, us;
• A sensor reading, bus(x, y, t′x,y), for a cell (x, y), along

with the time stamp, t′x,y, and the ID, us;
• An event-generated TOP-task update π(x, y, t∗x,y) along

with the update time stamp, t∗x,y;
• An entire SIB, Ius(t−).

These are merged as follows:
Single UAV State:

• Accept the new update as is if uk and us are within
communication range of each other;

• Otherwise extrapolate last received state of us to esti-
mate its current one.

Sensor Readings:

• Check History Buffer ∆uk(x, y, t) for sensor reading
bus(x, y, t′x,y).

• If t′x,y ≥ t̄uk

x,y , and the reading is not found, update uk’s
SIB according to the dynamics in Autonomous Updates,
and add the reading to the history buffer; if not, discard
the reading.

Thus, if the received reading is recent enough to belong
in the history buffer but is not found there, it is considered
novel, and is treated like an observation by the UAV itself. It
is discarded if it is found to be a duplicate (so it has already
been incorporated in the current TOP), or if it pre-dates a
subsequent event-driven TOP update.

If multiple sensor readings are received for the same cell,
they are applied sequentially by iterating TOP Dymamics.
This is possible because the TOP update function is com-
mutative with respect to updates (see [7] for details). The
other components of SIB update accordingly.

However, if the TOP update caused by received sensor
readings leads to a task transition, it won’t be treated as an
Event since such a transition is only uk’s estimate.

Event-Generated Single-Cell TOP-Task Update:

• If the received TOP’s time-stamp is more recent than the
current (x, y) reference time-stamp, t̄uk

x,y , of the history
buffer:

– Replace the existing reference TOP, reference
task status and reference time-stamp in the his-
tory buffer with the received values, P̂ (x, y, t∗x,y),
τ(x, y, t∗x,y) and t∗x,y , respectively.

– Update the TOP Puk(x, y, t) with sensor readings
in the history buffer whose time-stamps are later
than t∗x,y .

– Update the task status τuk(x, y, t) based on the
updated TOP, and adjust the TEE Υuk(x, y, t)
accordingly.

– Discard all sensor readings for cell (x, y) with time-
stamps earlier than t∗x,y from the history buffer.

– Add the received TOP, task status and time-stamp
to the broadcast buffer.

– Update the uncertainty map, χuk(x, y, t) according
to the updated TOP map.

• If the received TOP is not more recent than the current
reference time-stamp, discard it.

Since an event-generated update represents information
coming directly from the UAV responsible for the update, it
is accepted at face value unless there is an even more recent
update available. However, UAV uk may also have received
(or generated) readings for cell (x, y) in the time after the
update’s time-stamp (and incorporated them in its current
TOP). The TOP is recalculated by incorporating these recent
readings into the received update, and the resulting TOP and
task status are to replace the current TOP map and the TEE
for cell (x, y).

Entire Subjective Information Base:
When uk receives the entire SIB from another UAV, us, it

updates every component of its SIB except the broadcast
buffer, since there is no newly generated information to
broadcast by uk. The update proceeds as follows.

For each cell, (x, y):

• Accept the more recent reference TOP, task status and
time-stamp.

• Merge all sensor readings without duplication; discard
all sensor readings with time-stamps earlier than the
updated reference time from the history buffer.

• Update the reference TOP with sensor readings in
the updated history buffer and replace the current
Puk(x, y, t) with this value.

• Update the task status τuk(x, y, t) based on the updated
TOP, and adjust the TEE Υuk(x, y, t) accordingly.

• Update the uncertainty map, χuk(x, y, t) according to
the updated TOP map.

For other UAVs’ states, accept the information originated
from the source UAV then estimate its current situation.
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IV. COOPERATIVE DECISION MAKING

The approach taken by the UAVs to make control decisions
is to 1) maintain their SIB as well as possible (as described
above); 2) estimate unknown or incomplete information,
including the current status of other UAVs and targets.
This, along with the SIB, comprises the subjective situation
estimate (SSE); 3) make a decision based on the assumption
that the information in the SSE is correct.

The motivation for step (1) is obvious. The degree of
completeness in the SIB is balanced against the cost of
communication and security considerations, as discussed
earlier. Step (2) is required because information in the SIB is
not up-to-date, and a UAV cannot make its decision without
knowing (or estimating) what the current status of other
UAVs and targets is. Step (3) is simply based on practicality:
Once it has made its best effort to obtain an accurate SSE,
the UAV has no choice but to treat it as true.

To obtain its SSE, UAV uk treats itself as us in order to
estimate the actions of us and their results. The estimated
information is taken as correct until the true status is received
by uk. In this way an estimated SIB Īuk(t) is obtained.

In general, the decision making algorithm is realized as
follows. First, UAV uk selects a candidate assignable task
from the estimated TEE Ῡuk(x, y, t). If no assignable tasks
are available, the uncertainty map χ̄uk(x, y, t) is used to
guide the search task.

In order to cooperate with other members, UAV uk

searches through its UAV map L̄uk(us, t). UAV uk calculates
each UAV us’s cost value, huk

s,i, with respect to all available
or associated assignable tasks, τuk

i ∈ τuk(x, y, t):

huk

s,i = ωcd
uk

s,i + (1 − ωc) exp(−ξus

τ
uk

i

), (4)

where ωc is a parameter valued in [0,1], duk

s,i is the normalized
distance between UAV us and the location of task τuk

i , and
ξus

τ
uk

i

is the expertise of UAV us for task τuk

i .
UAV uk works as if it is the central controller, and

uses a semi-greedy bipartite matching algorithm to match
UAVs with tasks. UAVs that are within distance Da of
their matched task are assigned the task and are given
the committed status, while UAVs that are further away
are associated with their matched tasks and are given the
competing status. We allow only one UAV to be assigned

to a task but up to na UAVs can be associated with one
task. Similarly, each UAV can only be committed to a single
task, but we allow it to be competing for up to ma tasks.
When a UAV has no task to choose, it has open status and
follows a path of maximum local uncertainty, i.e., one that
takes it through cells with the highest uncertainty in its local
neighborhood — within turning constraints. The purpose is
to maximize the benefit from search in a greedy way, and
the path followed is termed a search path.

After such an initial assignment, UAV uk moves toward
its own task and assumes that all other UAVs move ac-
cording to its commands: each UAV with an assigned task
moves towards that task, UAVs with no assigned task move
towards their lowest-cost associated task, while the rest

follow search paths. UAV uk takes sensor readings as it
moves and updates its own TOP. When UAV uk reaches
its assigned task, it performs the task and updates its own
TOP there. A new task (possibly the same as the previous
one) is then cued according to the transition function, and
the UAV uk’s status reverts to open. Each new assignable
task is cued with an available status. All changes in UAV
uk’s SIB are communicated according to the communication
contingencies.

At all times, UAV uk communicates with other reachable
UAVs, estimates their costs for all available and associated

tasks and changes its decision accordingly. All UAVs work
the same way as UAV uk does. The process continues
until the region is completely searched and all targets are
neutralized, or some time limit is reached.

V. SIMULATION RESULTS AND DISCUSSION

To evaluate the effect of the proposed strategy on the per-
formance of cooperative UAV teams, we conducted Monte
Carlo simulations using an event-driven simulator. The pur-
pose of the simulations was to investigate how the quality of
the information available to each UAV under the decentral-
ized approach was affected by: 1) the communication range,
γc, and 2) the broadcast interval, tb, for regular broadcasts.

In the simulations, we consider two types of UAVs: target
recognition (TR) UAVs and attack (A) UAVs, which are
characterized by the difference of their expertise matrices,
{ξuk

j,τ}. All UAVs are assumed to have sensors needed for
search, but with different sensing capabilities; only (A) UAVs
have the capability of accomplishing attack. The goal for
the UAV team is to detect and neutralize all targets as
rapidly as possible. Thus, we use this time, termed the target
neutralization time (TNT) as the measure of performance.

70 60 50 40 30 20 10 7 5 0
0

100

200

300

400

500

600

700

800

900

1000

Communication Range

T
im

e

Time to Neutralize All Targets

TNT
error bar

Fig. 2. The effect of communication range to the time in neutralizing all
targets

The first set of simulation results (Fig. 2) illustrates the
effect of different communication ranges to the performance
of a team of 2 TR and 2 A UAVs in an 50×50 environment
with 4 targets which are all suspected a priori. The commu-
nication range is varied from 50

√
2 (global communication)

to 0 (no communication). In this case, the communication
interval is fixed at 1 time unit. The graph clearly shows
how communication range will affect cooperation among
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the UAV team. When the UAVs have a perfect communi-
cation network, complete neutralization is achieved faster.
Not much deterioration in performance occurs when the
communication range drops from 50

√
2 to 50, since the UAV

team can still share information most of the time. When
the communication range decreases further, performance
begins to decline slowly. However, a significant loss of
performance does not occur until the communication range
is close to zero, where each UAV is operating entirely on
its own and all information sharing is achieved by observing
the environment. The latter situation is called stigmergetic
communication in the swarm literature [10], and our results
show that even a very limited active information-sharing
strategy can improve cooperative performance significantly
over purely stigmergetic communication.
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Fig. 3. The effect of communication frequency to the time in neutralizing
all targets

In the second set of simulations, the interval between
regular broadcasts by UAVs is varied, but communication is
assumed to be global. From Fig. 3, the following phenom-
ena can be observed: 1) As the communication frequency
changes from once every 1 time unit to once every 4 time
units, TNT does not increase too much. The reason is that
there is not much information accumulated in the buffer
within a 4- time-unit delay. 2) TNT increases almost linearly
as the frequency of broadcasts changes from once every 4
time unit to once every 8 time units. 3) Beyond a frequency
of once every 8 steps, TNT again becomes flat, indicating
that the benefits of information sharing have been largely
lost by this point, and each UAV is operating mostly based
on its own observation.

Though the results reported here are based only on limited
simulations, several interesting observations can be made:

1) Performance has a highly nonlinear dependence on
both communication range and frequency. In particular,
there seems to be a soft threshold for both parameters,
beyond which performance degrades rapidly by a fac-
tor of 2 to 3. This suggests that the benefits of cooper-
ation in the system studied have an approximately “all-
or-none” form. It may also be possible to link this with
ideas from critical systems and percolation theory [11]
and the theory of random graphs [12], [13]. However,

that requires further study of the connectivity features
of the virtual network defined by the UAVs.

2) Cooperation based on information exchange — even if
it is imperfect — leads to a very significant improve-
ment in performance. For example, there is almost
a 70% reduction in TNT when the UAVs go from
no communication to communicating over a small
transmission range of 10 units, or from communicating
once every 16 time steps to communicating once every
4 steps.

3) It is possible to use significantly less than global
communication range and to communicate less fre-
quently than once every time step without a serious
loss of performance. This indicates that a decentralized
approach can lead to significant savings in communi-
cation overhead and a reduction in the risk of detection
by adversarial surveillance.

VI. CONCLUSION

The reseach results indicate that significant improvements
in efficiency and security are possible by using a decen-
tralized scheme with limited communication, and provide
motivation for further research on selecting appropriate com-
munication parameters based on the UAV team composition
and mission characteristics.
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