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An approach o information storage and retrieval being

an extension of our previous papers is presented. In particular

we use methods of formalized languages.

System przechowywania 1 wysznkiwania informacji

Podstawy matematyczne, cz. I

Przedstawiono podejsoie do gysteméw wyszukiwania informa-

'cji oparte o matemaiyczng teorie jezykéw sformalizowanyche.

CucTeMa XDaHGHUY ¥ NMOMCKA AHGODMANMH

MaTeuaTugeckue OCHOBH, 4acTh I
/
B paoTe maeTcs NOAXOX K CHCTeMAM NOUCKA MH()ODMALMI,

OCHOBaHHHY HA MA&TEMATHUSCKO#l TeOopHM {OPMANBHHX A3HKOB.




In this paper we present new mathematicel approach %o
some problems occurring in informatiorn storage and retrieval
{i+8er.)} systems. By an i.s.r. system ) we mean @ quadruple
consisting of set of objects X (like books, documents, etc.)
together with the set of descriptors A,‘ the set of attributes

I, and the function U which associates a subset of X to

eech descriptor from A. Attributes are to be understood as

sets of clements of 4, all of the same "type", e.g. descriptors:

green, blue, brown, and black ferm the attribute colour.
Thus each object from X may be described in our system

by a vector of descriptors from A exhasusting all possible
attributes from I. Sometimes "incomplete™ descriptions (in
the sense that not all possible attiributes are specified in
the description of an object) are of interest, however we co
not consider the case here.

Qur first goal is to describe precisely some fundsmental
facts about i.8.r. systems. To do so we introduce in the first
place a formal language t;ilored to deal with the problem.
This language ié a sort of intermediate language between
propositional and predicate calculi. We further show that
the language is adequately chosen for our aims. We show how
the language may be'used to prove theorems about i.s.r.

systems.
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Then we introduce the noticn of a descriovable set of
objects and find necessary and sufficient cordition %o determine
whether all sets are describavie in ‘3 or not. Since in general
not all subsets of X are describable in C) we investigate
the structure of the family of describable seis.

Since not &ll the subsets of X are - in general -
describable and we may wish %o have a more fine description
cf objects in our systems we sometimes have to add some
stiributee or/and descriptors. If - on the other hand - our
gystem is "too fine" we may remove some attributes and/or
descriptors from the system. The set of objects in the systems
may slso be varying; it may increase or decrease.

In order to take into account the dynamics of the system
{in the sbove sense) we introduce éome algebraic tools i.e.
ope?ations on i.8.r. systems, and study properiies of the
systems thus changed.

Pinally = computer im?lementation algorithm resulting
from our cohsiderations is briefly discussed and somz other

problems rised by our theory ars steted ai the enc sf the

Throughout the psper we accept standard mathematical
nota&ion and assume the resder to be familiar with ift.
In particular ¥ (X} denotes the power set of X, £ ¥
is the restriction of. f to T and we distinguish descriptors
(elements of A) from theif neme by underlining the latter.,
The end of the proof is denoted by [ |
¥e express our gratitude to Prof. A. Blikle, Mr. ¥. Lipski, Jr.,

.and Prof. A. Mazurkiewicz for valuable discussions.

§ 1. Syntax

Let A be a nonempty set and let R Dbe g fixed equiva-
lence on A. We assume that all equivalence clesges ol R

are finite. Since R generates s partition ﬁAi}iéI of A

into femily of equivalence classes, A = (_ A i435 =
i€l

AN Aj = § it is reassonable to call R, Rre

il

In the sequel A will be referred to as the set of descrigtors'

and'I will be called the set of attributes. With each get A

we associate tbe description language AC <
Definition 1.1. (Alphabet of the Language =-,). #e define an

alphabet of the language QL'A as follows:

o - . ’ . .
17 lonsvanis g (for eact az¢ &)

fa)
= *

songvants T, F

z




[o] -
3° Constants V, A (Truth values, respectively truth and
falsity)

4© Symbols ~, -, T =l
50 Symbols <, v, ~ , =>

4°  Symbol =

Definition 1.2. (Terms of the language 4 ,)» The set T of
terms is the leas set T satiefying 1° and 2°
1° Te?, FET, a e T

c ; v § g
2° 1f t,,t, €I then ~ % t, o+t EEN

r -
t1—» tz € 2

As (t will turn out later the order of the sum is immaterial

and so we shall abbreviate bigger sums ss .2:; t
1ed i°

-

7

Definition 1.3. {Formulas of the language .LA). The set 7+
of formulas is the least set P satisfying 1° and 2°.

1° I ¢ % - )
10 tp € £ them 't, =t €F, VEF, A€F

2° 1f ¢, crF ~& s & z -
@1!__2 F then Ty PP o §1v§2.@1=§@2éz

In the sequel the letters s,t (possibly with indices) will.

anenote tsrm ¢ &, ¥ ibl i ingdi )
e and &, Y (possibly witk indices; formulss.

Defipidior J.3. [txiomsiic}

We assume as gxionms:

=} - . . .
4 Substisution of

2°  substitution of the axiome of Booleszn algebrsz
Yurstowski, K. Mostowski, A. 1967 ) for terms {including

equality axioms)

¢ 3
3° a8 =% zp_:bR_raAb;éaﬁ
(this is sometimes noted as a = 2 bl

br-2
b # a

As an inference rule we take modus ponens.

Note that the restriction of 32, namely that ail equivalence

classes of it are finite 1s egsential in 30. “n case when scne

4 is infinite, the expression > b i b R =@ i may e

———

senseless. We could overcomethis obstacle allowing iafinits

sums operator into the lsnguage. This leads To parailsi, mere

general theorye. Ye shall not however pursue ihe maiier in =hz

paper.

§ 2. Semantics, interpretation of ierms and formuias

Definition 2.1. (Basic definitionj. an information storage

and retrieval system (i.s.r.:system) is a quadrugle

N o= X, A, R, U » wnere
N - - . A\, N ~ -
X 4is some set called carrier of U snd elements ci =&

are referred to as objecis of Yy . 4 is the set of descrip-

1

tors in ‘2 ané RI ig ar equivzlence on A. U Tagps A

into (X)) (U : & — P(X)} and satisiies the foillowingz
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1° If &R bt A~ e#b then Ula) U(b) =4 (a) ;]v,‘}§= YV, [NAH= A
I ' SNEAT
o | . . '
2 (_/{Uf®) : bRy aj =X  (for each ac 4) {v 12 fHtg lly = iy iy
The conditions 1° and 2° may be expressed equivalently as ; (v) I t1 ® t2 “5 =
e o k A otherwise
’
17° If 1€I, aeh, beA, afb then Ula)AU(b) = ¢ : (v gyt A
. (c) Bl =
2 U ule) =1 (for each i €I) 1= &1y
aeky A ' A g U fly=v

Definition 2.2. (Valuation of terms) Let ) = <X,A,RI,'J > (a) For other connectives we extend our definition in

be an i.s.r. system. We define inductively the value of a natural ways

term t in O, Theorem 2.4, {Adequacy of axiomatic) If @ is an axiom,

It !10 as follows; then Il & “5 . V.
(a} liz lin = Ufa) Proofs As our valustion was defined in a way to make first
(b} il~t{i,b =X -]t “,3 two groups of axioms true, it is enough to check the axiom

() ity o tolin= fItylynlityll,

-

three. Therefore we need to show that H &= "'§ > ”53 v
18

(a) ey + £5liy=Jltylinu ”*‘z“o bea
. iees according to 2.3 (b) that
(ed ity =2t lly= (X - 11 t, “/))U”tz”g

(£} (B ly =4 Hetin =l 2l
%p;a Q
(&) “T“g =X : . béa

easy transformation, according to 2.2(b) and (c) reduces the

-

Definition 2.3. (Valuetion of formulas). Unlikely wo 3he Terms, :
: problem to checking |l a H/D =X - &JUQ !/,3
<8

bya
This however is easily seen to be equivalent io 2.1. 1° and 2°

formulas wWill take ae values truth values V an. A

P RO : B ;
P 2la {we assume that . T i . i alread

define zpductively

lElLined .
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There is nothing strange in the fact that we used in our
proof only conditions 2.2.(a}, {b) and (¢}, since other

connectives may be expressed with help of ~~ and +.

pefinition 2.5. Let ) = (X, A, Rr, U > be an i.s.r. system.
Let x€eX.
(e) 4n informetion on x in ) is a fumction f_: I —4

guch that for all i€l fx(i) €A,

; and x&eU(£ (1))

(b) 4 description of x in ) is s term &, = Q £2(1)
An informatiomn om X in 7)) determines several terms, all of
them provably equivalent {They differ only in that, that
order of constants occurring in them may be different), this
explaine our usage of one symbol, +t_.

X

This leads to naturali

Definition 2.6. 4An i.s.r. system ) is pelective iff for all
x€X, Htxll,3-= {x}.
Thus selective system is one in which different elementis have

neceesarily different descriptions i.e. are distinguishable.

§ 3. Completencss properties of i1.8.r. Eystems

Since we introduced in the § 1 ern zxioms system and the rule
cf inferences we 2are able 3¢ prove ruuv las. We dznote Dy B ¢

act tnat L nee the proc

-3 -

theorem 2.4 and ‘the fact that thev rule modus ponens is preserve

ed under || - {5 (cfe 2.2 for definition of |i-Ily) (i.e.
1¢ly=7 and || @ = ¥ il=7 implies I Fly=Vy

that tbhe following lemmas holds:

Lemma 3.1. (Adequacy of inference} If |[— C_TI_) then, for =il

i.ser. systems O | {3({5 V.

We shall also obtain converse result soon.

Definition 3.2. We define relations < and =~ on 5 as
follows : t4¢ t, iff there is a term t, such that
b=ty =ty 4ty

1=‘l:2.

i iff — ¢
Lemma 3«3. {a) £ is reflexive and transitive

{(b) =~ is an equivalence

{e)

o~

has antysymmetry property with respect %o

1.8

R

Proof: (a) is obviocus
| (b) follows immediamtely from the fact that we accepted
equality axioma v
{c) Assume 1‘.1 sty and ¢
there are terms t3 and t4 such that t——tz - t1+t3

2 £ t1 i.es aBsume that

and b= ty = t,+t,. Substituting we get



- 15 =

- 14 -
_ Definition 3.7, (a) We define g° =g g =~g
}—tz.t2+t3+t4. Thuaf—t2+t4-t2+t3+t4+t. .
, , _ (b) A term t is called primitive iff
Using the axiom i+t = £ we get 1;2 + t4 a t2 + 1.+ %, ——, €
But - 1t 3 4 t=‘ )%thereeach;{jis U or 1.
v gt tp =%y and tp + 85+ 1, = t,. So we get 3&d
- 4, = t, di.e. G~ 1. . . {c) A term t is in normal additive form
1 2 1 2 ¥ —
Tann | . iff t = t. wh . i
Each i.8.r. system /) generates relations < and = as ?"3 J ere each %y e
2 2
follows ' primitive
s e . y .
Definition 3.4+ (a) %, N to &> il by, Slt, (d) A term t is in positive form if ~ , —>
b : : does not occur in t.
S N - 1 LN AN
Lemma 3.5. Ty < 5, (Vﬁ) T, ‘<5t2 Theorsm 3+8. (ﬁomal form I) (a) If + is a term then there
tox b, = ( YA) — is term t in normal additive form such thet I t = t,
1 % t 1. .
2 1 "/3 2
: (b) If t is a term then there is term %, in positive normal
Proof: As in 3.1.'
. additive form such that t— £ = t,.
This leads to the following: :
Proof: (a) A reasoning used in this cese is & standard one;
Definition 3.6. t, <“t, <=> (VY -
1 2 (¥ b g/)'°2 we refer reader to Lyndon R. 1966 .
tyxtr, => (VA) ty :::‘stz. ‘ {(6) By (a) we may assume that t is already in normal

gdditive form. Using the exioms X =y = ~ X = ~ F,~~X = X

v, determines smaller set then t, does. Similarly t, ~t o and 1.3, 3° we get ~ & z% b. Substituting the right
2 ) 18
- b#a

Notice thet 't1 < t2 means that in every interpretation,

mesns thet in every interpretation both terms determine the
hend side in every place where left hand side occurs we

same Bet.
eliminete negation from ’c1- Consecutive appiication of

Thus 3.5 saye thet o * *

< and =~ <

I

- ; T L distributive law makes the rest.
ir tpne sequel we shall prove converse inclusions.
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Definition 3.3 (2) 4 primitive term +t 1is called complete

iff for every 1€1 there is exactly one =z A, such that

a occurs in .

{b}] 4 term t is in complete positive normal additive form
iff t = S 1,
Ver £

" primitive term.

and each %, ie complete positive

Theorem 3.10. (Normsl form II) If I ig finive shen for

eack term 1 there is term ¢ in complete positive normsl

]
s

gdditive form such that +— ¢ = t3.

Proof: It iz cleer that it is enough to find such & term for
positive primitive fterm (by 3.8 (b)). Since (- ~g = b
DA~8

T brs
therefore we have é b =T Using in turn
-8

= t. Assume no b {for b€a,)

S

~t-T =1t we get -

occurs in t then { = t+«b . Thus we diminished in $

DEA, .
s number of i such that mo b (for b EAi) oceurs in .
Since I 1is finite this gives an inductive procedure to make
our nesk.;

Kotice thet 1 18 unique up io poseible order of primitive

2
-~
terme and poseibie order withir the terms.

Theorem 3+1%. {Completeness propersy for serms} Assume I
finite. Thex {a) %, 3 S-S N

. .
{%) .~ T ifs? L=
t 3

ny
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Proof: Clearly (b) follows from (a).
(a)} => was already proved in 3.5.

{a) & hssume %, "t

2" We may assume that both t1

snd t are in complete normal positive esdditive form.

2

It is clear thaet if every primitive term occwrring in Ty

occurs also (n tz then t1 Y Tse Thus it is enough to show

the this first properiy holds. Assume it is not true. lLet to

be primitive ferm occurring in t1 but not in t2. We construct .

7/
a L.8eTe Bystem 7) in which || tol( ¢ #. Using the fact

)
{which we laave to the reader) that different primitive complete
positive terms have digjoint values we find out that “t1\LN/
is not included in || t, |~ which contrsdicts t, ¢~ t,.

20y 1N "2 )
Alpart of additive normal form one may - as usuaily introduce
multiplicative normal form.
4 construction from the proof of the theorem 3.11 suggests
the following question: Is there on i.s.r. system {5 such
that 243 is identical with ~o 7
In fact there is one. A conatruction of it strongly resembles
constraction of the family {An % such that all components

corregpondéing +“c it are nonempty (cf. Euratowski, K., Hostow-

gl Aoy 1967[«

_1g -

1
PR
i

[0l

Construction: Let each 4, be in the form é a; ree &
We produce Cartesian product = 4, and define C) as
;1 % max

follows

S
Y pax = < = b, A B, T >

where Ula) = {fé Jcr A e £{1) = a, for unique i such

N 7
thet aé€ Aif .

We leave to the reader checking that the system {) max has

the property that each complete primitive poeitive term has
in <>max non void value.

Before we prove completeness theorem for.formulas we need

some terminology and facts.

1) By a similar procedure to that applied in case of iransfor-
mation of a term into normal form, we are able to transform
every formula into the following form: (jD 1= CE1 A..Mé_ﬁk
where each q;i ig of the form ‘+’i1v ...v‘f/ij and esch
%q' is of the form t, = t  or of the form 1, # t, for

gome terms8 % Dbeing in normal, positive, esdditive, complete

s .

form. We desoribe this fact symbolically as P = AW/

2} Another fact needed in proof is the following:
t = 8 is equivalent %o conjunction of equations of the

; .
Torm %3, = F +4s T =T,



Indeed gssume both t and 8 are (+ ke oosgiiive normal

additive complete form. Then t = T. +... and

B = 84 teest Bye There sre possidly some primitive serms

0y - " L4 - .
which appear in both expansions, L&t 1.,,see,%- D8 prim

tive terms which appear in either + c¢cr s Ddut zotl @~

both. We leave to the reader that — (i=g!&> (3
t); = F)n
Similarly ¢ # 8 <= (t1' # Fueee v, £ F)

3) Finally let us note thet if <§ :=x§4A...A@k then &

3

for sl 1¢j¢k — ..
Y

Theorem 3,12, {Completeness theorem for formuliag).

& iff forall A, @ |a=7

Proof: = was already proved in 2.4 (adequacy thecrem)

<& By our remark 1) we may assume thet & is O\ W/ ¥
- J

where each W/j is of the form tm = ts or of the form

N
b

iy
12

t, # t,. We want to prove that ~ C . By the remarx 3) it

sufficient to show that - V(/Sgg. We shell transform W + .
J .

o

i

to certovn form which finally allows tc find 2 proof Ior it.

Indeed, using remark 2 we may substitute fzr ¥ ., either
° o

conjunction (%, = FA sees Aty = F) or aliernative
1 ks
[t. £ F, ...vrtj # F) depending whether Y . ig = =
xl'ﬂl m i)

or else t # 8.

u

8
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Thus instead of the proof of P Uri we need a proof of certain
: Y < 3 : 3
formule | - built from the primitive formulas of the form

t = F and 3%, # F where each % is in primitive, pogitive,

complete form.

—

Uging our remark 1)once more we find 8 formula -9 in

. . . ~— 'y x

conjunctive normal form equivalent to ,-,. Since in the process
of building of conjunctive normal form ne new atomic formula
. . s . .

is used therefore we find that our formuls -~ , hag the form

l--—"I

/ v/ . .
SN\X/ & where each Qm is of the form t, =F or £F
and %, -are in primitive, positive, compk te, normal form.
D FARY, , , .

Since N/ T; was valid in every i.s.r. sysien therefore

so ie % V.. Thus also |- and are valid in all ie.Bar.

7
3 [ —
gystems since transformetion used in above reascning preserves
validity. Thus /X\\X/@m is valid in every i.s.r. system.
This in turn is equivalent to the fact that /& is velid

in every i.s.Te. system. But \X/@m ig of the form:

L4 >
f. = Fv oaes v, = F vt # FPv oaee Vi 4 F
Y Y ] X+
i we soow a proof foxr Vi than we are done.

. : - - . - - Y ’/_r‘ .
Sews ip mein siep of the proof: We claim thes if W is

+ guch thet boiz t = F sné 1 # F ocecur among &J .

Agsume this is not truse. He consirucy g L. r. ZyEvex O in

T

Indeed such a system is produced from <the previously consiruct-

ed system ’:_\, nax by throwing out generalized components

L1 L]
corresponding to tkﬁ""’tk-@m‘ Then since none t' is

"
%_ , in this particular system ) t:_ #F for ail
. ”
1¢ 5<%k, end in the same time i = F for all k1 ¢r {k+m.
thus (| &5 = F 0 = F vt £ Py ' 4 Ea N
us 1 = Voese vk- v el v .chvvk_(_m?—"/:, =4\ g

contradicting validity of \X/@m' Therefore there must be
primitive term + such that both t = F and t # P occur

among & g Since however formula t = F v t # F is provable
therefore so is formula \X/@m. Since all alternatives W& o

are provable so is AW & g Thus WY ig provable,
veing equivalent to provable formula. So finally A \X/‘Vj is
provable and thus @ " 5
Let us notice, that as in eny formalized systems we may coneider
theories based on some additional axioms. (We ahall encoumter
this situstion in the sequel). In such enwiched gystem we may

ag well prove theorems. Let us denote the fact that the proof,
using eventually additional axioms from T existe by T+ @ .
By the reasonings virtually identical with that of 3.11 and

3.12 we prove

Theorem 3.11° {Generalized completeness property for terms)

T %, =%, Lff for every i.s.T. system N puch that
;
T T = g t. o= % = 7




Theorem 3.12° (Generalized completeness property for farmules)
T~ Y iff for every ie.s.r. system ) such that (VO deT
':7,”@;;/\;\/) = il*{/il/>=V' |

4 .
hs 8 corollary we get the following
Theorem 3¢13. Let "3 be an i.s.r. system. Then there is a single
formuls Q-) o such that, for all formulas ¥

¥l Ve C:D_-,b:—— ¥

Theorem 3.13 was slso proved - using different reesoning by
Y¥r. We Lipsii.
Definition 3.14s Tet O and D’ be i.s.r. systems.
We say that 7D is equivalent to D { D =D’ ) irf for every @

I @l = 1@y
Obviously = 18 an equivalence relation.
The equivalence classes pf = are determined (ac‘cording- to
3.13) by some special formulas. In fact the formule W
determining equivalence class of = is of the form

At = B YA (A L7 ¢ ) where ¢, are those primitive complete

i

pogitive terms whose value ir "> is empiy, woereas t are

[EARS

. - N AN . - - P - N
those whose value in 'O ig nonempty. Using this remark we have -
Tneorem 3¢15. In every = - equivalsnce clase there is exactly

cne {up to isomerpnism selective system. Thue for every

eyeTem - there ig ¢ selective syeoten . 3uck thsr -

We also get - as a corollary - the following fact:
Wie are not able to express within the focmmal language of

ieBers the power of the i.s.r. system.

§ 4. Algebraic properties of i.s.r. syszems

Definition 4.1. Let /5)( = { X, &, Ry, Uy, > and

N
-”

¥

/DYz < Y, B, RJ; Uy > be twWo i.s.r. systems. We say tha¥

Dy € Oyiff a) TCY

(o) AcB

(c) Ry~ 22

= R~
1
{d) \V U {al~ X =T

Sfa]
a€A Y

>

Let us note that whenever A <B. then ‘CA £ ‘CB' Thus the

~

terms of oL o are,in particular terms of oL

8..
The adequacy of our definition is shown by the following
Lemma 4+2. If 0)( < OY and t is a term of the language

L
, then Htli,bxatftu,)Y,\X.

Proofs By induction on complexity of t. If t is 3z <hen
the desired esquality is nothing else but 4.1 {(d). In case of
F asnd T 1he condition is seen immediately. Assume now
that 1 1is ~t1.

We have | ¢, = ll~ %, Ha = I = i3, Ha
Sy R HERRS S

by inGuciive assumption Wwe nave (| = o m oA = {X ~ o,



\
/

(X 1 Sytiny )= XAY = (XAt

4
<t
Ll
1

[}
=
'

) Cy = it~
(1;1;.,3y,,..x = X~ t1”/>r'

if t = t1 . 1:2 then we have:

I ”/-\’x n “’1“');‘ 1] t2i56x= i€t1 !i/)‘fh =~ 'T'EH/_\_,—" X (here inductive
assumption is used) thus | 1 “’bx = | t‘“')Y LPYN, X =

gy o tplly AZ o= sl A X

1

The case when 1 = "51 + t2 is similar. Finally when

%= t1 — b, we eliminste the case using equality t1 -t

= (~t1) + 1, and then applying inductive assumption.

-

Definition 4.3. {a) ., € 4

¥
X iff ‘é'ng% and X = Y

Y
()

lls]

6 . C» -,
y it /SX‘Q.Y and A = B.

X

. €
Fact 4e4. If Dy % /S;Y then Ry = R;

Proof: Immediate by 4.1 {c)
Theorem 4.5. {Interpolation property). If 6"X E/S:T then

there are gystems A snd O " such that. the following holde:

s1fs
(
<

20 /\‘; . ; > < S,
. A - - . VAN
troof: Define 'O as fellows: > = <Y, A, By, ¥ »  where
. ~ N fo1T . - = n L .
U = Uv( 4 end > 28 follgws: _ = - X, E, R;, U ~ where
hi 3, ar
U (v} = ’-_,Y{b}n I.

i
U
S}

i

It is enough to check that 7O <« < 6/ , ’5/ €Dy
/*Jxlé 0”) /’bﬂs /bw( because all remaining conditions hold
by our construction. ths however is only direct computation. g
Definition 4.6, Let 7 = (¥, 4, Ry, U > be an i.8.Ts
system. Let { Iy }jeJ be apartitionof the set I. in

induced family {/3 J‘ jcg OF ieser. systems is formed as

follows:

/53 = (X, A, RIj, Uy > where

(a) o=/ A
3‘.EIj

(v) R'Ij = RI«(Ai,x af)

{c) Uy = ol ad

<t
N
s

Lemme 4.7. Under the assumptions of 4.6, for each j&€J , 3.
v

Prosf: Since universe of -'S ig X 4if is enough to prove
that 53. < N

(d) are seen easily to be satiﬂfied.'

But all the conditions 4.1{b}, (¢} and

Since each subset I'g I induces pertition I = I o (I-I j
therefore we naturally get restriction of '51 af ) to

< I and complementary system S 1-7"




'
n
[}
1

Definition 4.8. Let {/)j} jed be e family of i.s.r. systems with
the same carrier ("Sj =< x, 43, RIj' Uj>) and suppose
moreover that i # j = oA ad= g
Define @ A, as follows:

I

QBJ/‘SJ = (Xt 4, RI’ u>

Je
U & . N,
h A= A% = u U= [
where ;\éJJ » By st RIJ-' eI
Lerms 4+9. Under the assumptions of 2.8 /bj - é.é 63‘

moreover if the family {/Sj}jeJ is obtained ae in 2.6« then

A= Das,

jeg ¢

We leave the proof to the reader. I

Definition 4.10. Let R, S be equivalences on s set I we

say thet S< R iff S ¢R i.e.
¥x) (V) (xsy => xRy)

It is clesr that < 1is e partial ordering (i.e. that it is
reflexive, entysymmetric and transitivej.
Defimition 4.11. (e) Let R e an equivelence on Z. Z/g

7

consists of sll equivelence classes of K in  Z.

i
ni
i

(b) Let S Vbe an equivalence on 2 =and R an 2quivalsnce

on 2/ « We define & relation R=<3 on 2 as follows
)

x R* Sy &=> (x/s\R(y/s)

Lemme 4.%12. {2} Upnder asgumptions of 4.11 R*S is an

equivalence relsiion on 2.

{b) Moreover S<R*S

Proof: (a) is a simple computation.
(o) sssume xRy , then x/p, then x/g = 3/5 and so,
by reflexivity of S we get x/R 3 _«;/;1 ia.e,

x S«<Ry

]

Lemma 4.73. Assume 3 & (T»R] is defined. Then (SxT)~R
is defined and S »(T=R) = {S« T}~ R

Proof: Assume T is defined on A/p and S defined on
(a/g¥Ts Then S+ T is defined on A/p eand so (S« T)~R
is defined,

Let x S5#(T» R)y. Then (x/n)p S(y/p/ge Having in mind
that (x/T}/R consists of all y/p which are (with x/q)

in relation T we find thst

wnich ip the desgired resuli.

lemma 4.%4. I° S< R shen thers is unique 2T @uch that:
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Proof: Ue define T as follows:

(x/g)T(y/g) iff xR y.
It is enough to prove that T is an equivalence. Clearly
? 4is both reflexive and symmetric. If { x/{)T(y/g) and
¥/g T /g then x By and y Rz di.e. (x/g)T(z/g.

The uniqueness of T is easily proved e.g. by contraposiiion.

pefinition 4.15. Let S be an equivalence om 4, S< RI,
/5 =< X, A, I,,ﬁ > Dbe an i.g.r. system. We define quotient

system 2 /g ae follows
0 c/s = (xy A/S’ TI, U/s>

Where ‘_(a.) 7; is the unique relation such that Ry # T;«8
(v) uv/gla/g) ={_/{U(b) : bSa}

Note that the equivalence classes of T may be indexed by
I which makes our 4.15 {e) ressonable.

Clesrly 75/5 «ieftemines ite language L (a/g)e

Let us form now D & D /ge The language correaponding to
this system oonsists. of constants g for ac¢4 and a/S
for alg € A/g.

The system obtained is such z way is denoted by /53.

Lemma 4.16. If S sgatisfies the assumptions of 4.15, O

ig the resulting system then | alg = > 3“58 =7
' b3a

Proof: We need only to show that |l a/gll &g = L_/Hp_flé
bSa
-8
vut since [Ibll A ={b ”{) therefore the right hand side is
8

‘ﬁjnpn,) i.e0 U{ U(p) : vfal} On the other hend
a

lla/g ”’35 = ‘19/5“6/3 i.e. U/g(a/g) which is by definition
i -
{1 0(b) & bs»a_{».ﬂ

The full power of the operation @ and in the saeme time the

generality of our approach allowing including of hierarchical

approach is seen after theorem 4.18.

Definition 4.17. et 5S4 < wee X sn < RI be an increasing

sequence of equivaelence relations on 4, we define 3 -

as follows ;

n
s =Oe (1631 s )

1.0.

Let T.]]-c-,T be equivalences such that 3; = T, 43,

n=1

Theorem 4.18

Ha/. =
lt‘a'siﬂ v

G4
.‘.-‘.

Sy

e a2

Troof: It is clear thst iv L8 enough %o zive the proo



+the case S1< S2<RI’ 82=T*S1.

N
Indeed, for a€ 4 |l 8/g = 43[16 = V¥ and so,
2 b 2B 32

le/s, = b; plla o =7

172

Similarly lla/g = %5-8 ‘vl A =V
1 1 3152

Since however Sy < 5, therefore we nave, for a ¢ 4

“2/81“/53 S el 8/52 PN S

152 152
Using the idempotence laws we get
’l a/ = é_ b/ “ =V
n=is -'s e}
2 bo,e 1 54355

Mere are indentical terms on the right hané side and grouping
them together we find that they correspond exactly to the
equivalence classes of the relation T, which gives <the
deeired equation. l

T™he hierarchical construction 6 /S ig used when our

gystem is "too fine". Similar conmstruction works wnen the

syster ie "to crude”.

As introduced, for each 1€1I {U(a) toachy i 1is a decompo-
sition of X. Let Ti be an equivalence relation (on X}
corresponding to this decomposition.

Agsume now, that for each i¢ I there is an equivalence W,
on X such that W, < T4.

The family | LIRS generates an - <. 7. . gystem
AW /

5 = 4+ X, B, Hj’ Vv » as follows:

B = k.//{x/w :iEI}
icI i

RJ = {(x/wi s y/wj) : i ="j j

V(x/'i)a{y:ywix}

Theorem 4.19. 4 i isomorphic to certain quotient gystem
w .
of 6 .
Proof: It is enough to give the relation S such that D
w
is isomorphic to 4 /S' .
Since for each 1¢1I Wi < Ti therefore there is unique 35,
such that T, = S« ¥,. Put S = \J 5.

w
%We lesve to the reader details of the proof that "3 /S

ig isomorphic o 3 .

Iimilariy we aave:
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" Theorem 4.20. If S < RI then there is W such that

(/5/5)“(" is isomorphic to D .

" § 5, Describable sets

Definition 5.1. Let D = (X, &, Ry, U D> be an i.s.r. system,
Let Y ¢ K.v
(a) Y is said to be describable within 7 iff there ie

a term t .such thaf "tﬂ,b-: Y
(b)  B(A) is the femily of all subsets of I demcribable

within 6 .
Lemma 5.2+ {a} Describable subsets of X _f,om a Boolsun
algebra.

L 4 -

{v) Moreover if Y is describable subset of X then descri-

bable in X subsets of Y also form 2 Boolean algebra.

Proof: (a) follows directly from the choice of the axiome
for our aystem.
{b) follows from the fact that if t 1im a description
of Y in O (i.e. |tiiy = ¥) then the values of
terms of the form 1i-8 (é ranging over | )

form a Boolean slgebrsa.

Lemma Se3. If 7 is & finite selective i.s.r. system, then

B(DN) = ZX {Recall that 2% is Boolean algebra of all sub~

ot 2® X)),

Proof: Assume t_ 1is a description of x in 6 {(i.e.

z

5y ”’b ={xj) then ty = > éy is a description of ¥
yel

in /3 . !

Remark: Here is a point in which & difference between finite
snd infinite i.s.r. systems occurs. Indeed assuming the
language L N finitary {i.e. allowing only finitary conjunc=-
tions and disjunctions) with A infinite it is easy to
produce infinite selective system with underscribable subset

{by cardinality argument).

Theorem 5.4. If )) is a finite i.8.r. system then 6 is

selective iff I3 (D) = Zx

Proof: => was proved in 5.3.

& Since & {A) = Zx then in particular fx}e 8(5).

#e need to show that I t_ . = ; x{, {where T, wes

introduced in 2.5}, Let ¥4 = :x{. ¥z may assume that

T

T is in compleve positive zdcitive normel form, Thus

T o= 1 where each 1 is primitive term. if, for each I

sceurring in %, Mt i #ix! then, since s, < %,
’ ot 3 i 3 EAEN A,
Wwe neve ., 1 i = ¢ and 80 i t4 = 4, But this is not the

~

>zpe gnd so Ier some 1,
<

o

TN S Thus 3 ig degCrip=-

: o~




Theorem 5¢5. (8) If D is an i.s.r. system and Y ¢ X then
there is 5 such that D & O and v e B (D)

(b) If %D is an i.s.r. system and &5 a Boolean algebra

X
such thet BiAY e B €2
then there is >  such that A ¢ A and B (AN = R
Procf: (a) If Y is describable in Hput 5 = A . Assume

4

Y not describsble within ’:) . - Add two new elements & and a
(both not in A.I) to the set A. Define R on 4 via,a’}
as follows -

B = B o {<a,a’ ), Cal,es , {a,ad, <B', 8'>}
form ’ as follows

/5’=<X, Ausa,e'j, E, T >
where U"(b) = U(b) whezever b ¢ A

5(a) = ¥

T’(a’) = X-Y,

{b; Let us rotice the following easy facti Zrom the theory

of Boolean elgebrss.

i ye B, (e B (L, B Boclean algebras of sets) then
tne smallest Beolean szlgebrs conteizing (L and ¥, ( O, Y]

ig inciuaed in B .

Now we proceed as follows. We order the elements of B -%B(4]

into (possibly transfinite) sequence | Y; i and form an

K(P
increasing family of i.s.r. systems \./Saﬁ_ua as followa:
/ . v

/wa is /So‘ {Operation was described in the proof
of 5.5) if Y _ ¢ Bl or D i ¥ & Bl
In the limit step A we take a limit of Vg  ge A
Using the fact mentiioned at the beginning of the proof we
find that for all o< R , B /bp) ¢ J3 and since

X ¢ B(/50\4L)’ and B (/5).5 B(/)_g) for all « <f3

‘we get

B8N U {m ¢ (U BA) ¢ B

=<p =*<R
‘thus J B(/BP) < B
pee
But, by construction, the left hand side is R (4e) and
S € Ng

The construction glven in § 3, as we mentioned resembles
that of componentsv(cf. Kuratowski K., Mostowski A., {1967)).
?he pelectiveness of the i.s.r. system means that easch gene-
ralized component (i.e. value of primitive complete positive
term) is at most one element zet, If each of the zomponents
is nonempiy ther the system is isomorpaic with the universal

syetem, corgirucsted in § 3. 1% 13 clear zhat every zonempsy



aet of the set of components determines selective system and
conversly. Lo this way we are able calculate power of the

family of 21l selective systems (up to ipomorphism) over &

ané I« 3
Indeed let I = i0.esk} ., & =n;« Then we have
£z,
Theorem Yets There is exactly 21:0 - 1 of nonempiy selec-

sive gsvetem: over A and R..

k
rroducing an isomorphic copy of each {)i, 0 << o)1

i=0 *
we =sre able %o produce a finite system {in extended language)
such that each 7. is isomorphic with certain subsystem of O .

<

Cne may even produce an infinite sysiem f) universal in the

sbove sense for all finite {even non selective) systems over

=
[
ct
j =4

s remark that B (/) is a Boolean algebra of subsets
of I generated by ({itlx where 1 is8 primitive complete,
positive normal term. This fact has deep implementational
consegquences. ¥nile performing < operation generalized
components change; but by our previoue remark they are

unicns of new generalized componentis.

Trils performing ¢ opersiion generaiized components Go not
~ngnge irn tne sense thet the trace of z generalizel component

.x nex gyeren or the carrier of oldé systemw i1g zgsin ez gene-

e
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In the hierarchical operatiocns ’f)/S and D ¥ the compo-
nents are glued together {in the first cage) and split in

parts (in the second).

§ 6, Implementationm, combinatorial problems

The gyntactical approach ae we did suggests the following
implementational proposal: We store in the memory documents

as fcllows; documents belonging to the: some generalized
component sre stored "together™”. Then, any query is trane-
formed into the alternative.of the description of generalized
components; th%s we need only’to find’the generslized compo-
nents.

4 quasi-practicel suggestion is the following: In the linearly
ordered memory, the documenin are stored such that the genera-
lized components form segmenis in the ordering. Then, esch
component ie determined by the sddress of 1ts beginning and
the end, Thus, while the guery is received we transform i1

e E
AT

normel, poeitive complete form and f£ind the azddresses

4

g

I n
5oy 363

e d

corresponding %o the primitive components of the term obtained.

Similaerly the gquestion in the form of ststement aboul our




to the conjuncticn <f altermatives of terms of the form

t; = F or tj ¥ * where t; and t. ere primitive complete
positive terms =nd thus checked.

Definition 6«1s et < T, ¢ > ©be a lineariy ordered set

and let A = (X, 4, Bry U > be an i.s.r. system.

. -
(a) A function ¥ : P 220

> X 1is called enumeration of 4 .,

{b) A function ¢ :

of A ..

oanto .
T E P X is called one-one enumeration

Roughly speaking enumeration is a listing of element of X
in certain order possibly with repetition.

Definition f.2. A term t 1is called segmential in the
enumeration ¥ iff there is a megment W ¢ T such that the
image of W, YxW is fi t D
It is obvious that segmential terms are particularly useful
in the i.s.r. processes. We need therefore some criterious
to find whether we may find an enumeration in which given
term is segmential.

Lemma 6.3, There zlways is a linearly ordered set T, £>

ané¢ enumeration ~ such that all terms T < J are

segmential.

o . ¥ - - Crud -
Proof: List all terme + (t<7J) eand consequtively order

However ithie enumeraticn can be useful «xly in case of very
simple 1.8.r. eystems. In fact there will be a lot of repeti-
tions, and so the memory will be used completely unaconomically.

Thz most important case is when the eaumeration used is one-ong.

[}

Definition 6.4+ A family of terme ¥ is samissible over

T, £ > 3and one-one enumeration ¥ of

if there is 2 set &

A in T such that for ell t¢ H, 1t is segmential in ¥ .

We nsve importent:

/

Thecrem 5.5, If for asll 44, £ H, t, # Ty Tty RPN

then H is admissible over D .

Sroef: Iet us list all elements of H and order them

consecutively, the elements of X - / iy are listed
$€H

at the end.

Corollary 6e.6. The family of primitive complete, positive
normal terms is admiegsible over every i.s.r. sysiem D .
Proof: Tney satisfy assumptions of ©.5. 1

erinition 6.7. Let = Dve a Family of terms,. Subb{Hk im

s ?amily of all primitive, normel, complete posgitive tsrms

- s Sy TTE
w. & Sungig!

which are implicants of =slemeris 2f 4 1le€e

b 5 S ig primitive normel, complete positive and tonare
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Tneorem b.6. If H ig edmissible then alsoc H~¢Subj(H> im
admisgsible.

Procf: Let ¥ vbe one~one enumeration of X in which all
elemente of H were segm;nﬁal. We ghow how to change < in
such a way that all generalized components of terms occurring
ic H Dbecome segments., Indeed the component may be split
into the segments; then we figx one of them and transform

zll oiner into it;

It is immediste that all generalized components - when such
gn operstion ie conseculively applied become segments.
Therefore we mey conclude that in order tc know whether

o> not given family H of terms is admissible over ) it

is enoug:z tc check whether or not this family sdmissible over
unique {up o isomorphism) s2lective system with the pame
theory.

Questiorn whether or not given family H of terms over

ie admissible or not may be reduced to the problem of so
calle¢ incidence grephs {cf. Boland J. Ch., Lekkevkerker

Ce Ta 19EZ25.

Ir Bolené J. Ch. Lekkerkerker 1962 there is 2 condition

uncer which & gresh 18 an isomorphic to the incidence graph

Thus congidering a family H. Sub,(H) we are able to find

2
whetﬁer it is admissible of not. The method given there,
together with our theorem 6.8. allows to check admissibility
of H. We shall not pﬁrsue the matter in this paper.

If however H 18 not admissible, the problem of chosing of

an enumeration (which is not one-one then} optimal (for

instance with respect to the power of T) occurs.

§ 7. Dynamical ireatment

One can remark that our approach allows to see an il.ser.

gystem in ™"microscopic" i.e6. static gituation. Yet in a

nreal® situation, we have to modify our system according

to requireménts which may consist of:

{a) Changing of the set of documents -~ increasing or
“decreasing

{b) Adding or delating of attributes (and so descripters
%00}

(c) Changing a descriptors within the attributes.

Let us note that relations ¢ , > » § 5, 2 serve to

=nable us %o Bpezi asbout first two problems; ihe third one

Lz 3rested gs followsy With thé nelp of hierarchical relation=-

gnip we are able to meke the attribuzes “mérs crude” and

%t in the nelp of divigion relstionship “more fine”.



. Thus we want to express the following "mets -theorem™,

We

= : w T Ad
Relations: < 1 3 20 /5/3 » 7O are sufficient

«iNy

to describe whet happens in real time while the i.8.Tre 8ystem

ig subjected to accommodation chenges.

§ 8. Problems

The following general question seems to be of great importance:

Q1 How should be the memory of a computer organized to
simpiify the implemsntation of i.s.r. pystems?

The importent results in this direction were recently obtained

by Mr. V. Lipski Jr. and will be published soon.

Another problem whicn seeme to be of great practical imﬁor—

tance is the fcllowing:

1In the axiome of i.s.r. systems we assume thet the classifi~

cation is complete i.e. every elemeni of our i.s.r. has full

description. Thus:

Q2 What propertiee of our theory are prescrved if we admit
thet some elements are not fully classified?

Again some results were obtained in this direction by

Ir.,
Mr. W. Lipski ané the first author.

-i3 -
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Avpendix 1

While the i.S8.T» system is implemented, 1t is n2cessary to

enumerate the zeneralized components. If ii =n, (ieI)

5
then there is exactly M n, of generalized components.
i€l
We may assume that I = {1 eee kK3 (iese I =k
Thus generalized components may be viewed as sequences
{by ees b,V s where 0] £b1 < ny=1 cee o] 4’bk < nk—1
k

We know that the set of all these sequences has power 1 n,

: i=1
and so is equipollsnt with the set | 0,...,ni..;nk-1}
However we should be able to decode in some simple way, £rom
the number O fa<njely see nk-1 the sequence S b1,...,bk‘7
it codes,
We mey assume that each oy % 1 since if n; = 1 then
in the representing sequence there will be always O at

i-th position.

We define

uo = n1'...-nk
u1 = na-n.-nk
Ukt =-0

u, = 1

By our assumpiion Uny>Uq7Us>eee > Uy

—45 -

Theorem Al. For every integer O.§0”<n1...nk-1 there is

exactly one sequence < b1""'bk > puch that

(a) 0¢b, ¢ 41-1

{b) a = E by Uy (ncte the sum is taken from i=1)
N 1=

Proof: Existence Define bi ag follows

bs = BE{ =)
1 g

=i

n+1 \ u

n+1 /

(where E 1is “entier"-function).
We prove firet O0{b, {n;=1
This we show by'simultaneous induction together with
m=1
(=) 0<a - g;; by < T (1.0 u _4-1)

Indeed, for n = 1

Then O (E{ B} = Efoetmmm—m) Y oo S S G G
L Naeeell, Dye weli 1
4 i X 2 [
leee O 5b1 ¢ n1—1
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80
Let us assume now ,
0 a - 3 o uy élur -1
o < Bret $Bpeq =1 9=
L
e Yow we prove a =/ b, u,
‘m Jd o d

Then

thus

k-1 k=1
p-Sendl § Bl §
thus 2a = %: bj uj + bk = %- bj u;j + bk u, = 3_ bj uj .

r=1
/a - bj .\ .
o = 1 5 Zniguenegs. Instead of showing this directly which is also
D, * T | e e / means —_—
- ; u I . X -
\ r ; possible (by the method we employ later) we notice that denoting
rat E o= i0,eee,a5eeen =1 4 = {0,000 0500300z {Opsneen =11
8 = b, u,
a J J Mo e = g
, - We have & = 3
0§ e b, (1 |
u
r ur psroof of existence sxhibits 1-1 funciticn of 3 into A
r-1 --nce they bave the same power it has to be ontc, which showe

thus ¢ £ a- z;; bsu, = b, ouy <ur
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! \
: PRI “ P L2 ot dmA A s b, u, <
Let us notice that in the proof of existence we exhibited “r 5T .5.1.
d= =
effective, iterative procedure which for every 0«a gn.i-..-nkﬂ 4
- 4
3 3 W =%
gives the sequence < c.‘,...,bkv . e nave 0,4 &4
-1, s ‘ :
Let us write N {a) =Dy eee,by > ené

k
whexn g = /; . U,
=T

Guestion: what is the relation < defined as follows 1

- ’ ’ - ‘l'- Iz
{TypnersB S <b1,...,a£ > ¥ {Bgyeensby) € y‘{b;,-..,bg)

L i X

Theorem A2 ES ig lexicographic ordering of Ae ) h "—'\

e ———— ) Thus b, u,
: . "—:,ar d 9

Froof: Since < 1is connective therefore there is enough to

, & , ’
ghow that <t1,...,bk‘> f ez <b1,...,b.l__ >—7\;u1,....,bk >
, .’ N N < . . s .
£ < D;.‘,.-.,bk » {where < 1ex B lexicographic ordering
bur  {b.+tlu -1
" T T
or .

therefiore we ngve

i

Teeo <b1,!-0,bk>\<ux (‘b;,;o-,b-; )—‘7‘))/.51,...,bk)\(v(b;,oo.,bé }

Clearly it is enough to show T=r
. ’ N4 . . o
LypoeesB> < (BpreenyBy > = V{Eqreeesby )< V(;;,..,,th;

mayus we peei tc show thet under our assumpiion
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¥

- kL,
> bj uj < b-j LJ.
7eT J=;

As is clear from our comstructiom, V (b1""'bk) =

b.u,

<
1 a3
.

Since bj £ nj-1 therefore

J <
\)(b1c'obk)£ \)(n1-1,-...,nk—1) =;(nj-1_)uj = ni-..-nk-“

the last equality vis eagily provable by induction and we

legve it to reader. .

Let us finally note, that lexicographical ordering is specially
convenient when, while extending the language we increase the

numpber of attributes.

After finishing the paper we found that elementary conal dere-
tions of similar kim"lere already performed by Wong, E. and

Chiang T. Co 1971.

]
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Appendix B (by ¥W. Lipski Jr.)

An 1.8.r, Bystem can be given aiso a purely algebraic descrip-
tion in terms of algsbras (with three binary operations =+, <, —,
one unary operation ~ and two constants T, P) and homomorphisms
between them., We shall restrict ourselves to the part of the the-~
ory concerning terms and their valuation. The considerations will
be illustrated' by the {commutative)diagram depicied in Pig. 1.

T is the algebra of terms, i.e. absolutely free (+,-, —=,~,T,F) -
-algebre generated by A. Each other algebra f in the disgram is
ite image by some homomorphism h:T->f or, in other words, is

{up to isomorphism) of the form _,T/:;; where ~ is a congruence re-
lation on T . 41l homomorphisms in the diagram are epimoxrphisms. ’
R= T/~ ia the free Boolean slgebra {generated by &), i.e. +the
algebra of equivslence clesses of teﬁns provably equal in the theory
of Boolean algebras. L= T /= is the algebrs of' equivalence clamsses
of terms provably equal in the theory of i.s.r. gystems (from the
algebraic point of view it can be called the free i.3.r. system).
[ﬁs T/r;_,»5 ig the algebra of equivzliznce classes of terms equal.

in an il.s.r, system 3 s PyrPy and p, are canonical projections.
vi t Wt 1is the valuation of terms in -5 . Since YTy
there exisT unique homomerphisms Pi,sD,y 804 ¥,,7,e D is

the Boolean algebra of describesble sets in ) + Since -L/) = J/?fj

PR \ N N - . r
and YA = ker v , ) is cenonicelly isomorphic to <A . The compla=

tenesz theorem for terms and the ceonstruction of A nax (seeé
= 3 ~ -~ = o o) - 4 ul.l: m -}T- :}
imply that (;\ Ny e Dpax® Notice that bmex' . 7_{3(161 <

and ¥ {7} are isomorphic. The set T N X of equalities (treated 28

ordered pairs of %erms) can be viewed 23 a set of "specific featu~

- - . A
res" of N . Clearly :éma; = @#. If in an 1.8.r. system ) We rep-

w
(8]
[ ]
<
[*]

!
v = v we get 2n i.5.r. system ’b (with the carrier



—52_

f{ﬂ ) which is selective and equivalent %o S . The algebras
have isomorphic copies (¥ (2%), 60(1'2 A MFA(T)) and FP(RI(P(Q))
respectively, where ’
A= {81182,000-,8N "
T= {1,2,.0.,N }
?l; = { k: 8, €Ay }
. \ 7 =
R = {(i1,'12'ono,ln>: Elje AJ. I\V(Gi1 aiz cee ain} * ¢J' n =11
L A N sjeio,ﬂ,\( Vi,k,1)(E =€, = 1a4i,
~
k€A =>i=k)}
£ £
2 N
Q = {(61, 52,¢IlpEN>6T H V(a1 82 ses aN ) ¥ ¢ }
Notice that the elements of the above algebras can easily
be coded in the memory of a computer. The Bet Q or R can serve
as a complete characterization of an i.s.r. system {(up to equiva~

lence). Here are additional explanations concerning the diagram:

S ={v{a) : e€h},

SlA) = {'o'(lai1 aéz coe a;N) g51,52,...,5K€(0,1§Av(ai1 agz .
veo a;N) $e1i,

& (D) =4S €JMA): SED } for each DD,

e(t/zﬁ) = {se€ X S<itiiy f,
rp(k) = MnR  for each K¢ y(iemz %),

r5(8) = §n¢ for esch N é& X (T),
r4(?) = PaT for each P¢ 8(2A).
o e £Y () (5

1(42-.-&1 &z ses &g Q’.,’B)=i<€-1 reees Ex }54}?/—'}9

= ] -
I ( > asur 5.‘”:’ s00 E_.(r\ ) = ’l<l(r) I(Y) csesn l( > & | ‘:
2 i“ i is in L 1 2 y 1y S
Y
= c Y
13(:__ a‘-"ﬂ 8.0 seeas a_;(T'! ) = \(lgr',lé ,...,i(;/)?-fc’}ﬂR.
s “% 2 “n

Other nomomorphisms are determined by the above ones. The
arrowe >—> gnd >>> denotes epimorphisms and isomorphisms
respectiveiy, For the systemstic treatment of all algebraic

notions used here see for instance Cohn {1965).
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