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On a vertically vibrating fluid interface, a droplet can remain bouncing indefinitely.
When approaching the Faraday instability onset, the droplet couples to the wave it
generates and starts propagating horizontally. The resulting wave–particle association,
called a walker, was shown previously to have remarkable dynamical properties,
reminiscent of quantum behaviours. In the present article, the nature of a walker’s
wave field is investigated experimentally, numerically and theoretically. It is shown
to result from the superposition of waves emitted by the droplet collisions with the
interface. A single impact is studied experimentally and in a fluid mechanics theoretical
approach. It is shown that each shock emits a radial travelling wave, leaving behind
a localized mode of slowly decaying Faraday standing waves. As it moves, the walker
keeps generating waves and the global structure of the wave field results from the
linear superposition of the waves generated along the recent trajectory. For rectilinear
trajectories, this results in a Fresnel interference pattern of the global wave field. Since
the droplet moves due to its interaction with the distorted interface, this means that it
is guided by a pilot wave that contains a path memory. Through this wave-mediated
memory, the past as well as the environment determines the walker’s present motion.

Key words: drops, Faraday waves, pattern formation

1. Introduction

The structure named a walker is a recently discovered entity that associates, at
macroscopic scale, a particle and a wave (Couder et al. 2005b; Protière, Boudaoud &
Couder 2006). The particle is a droplet bouncing on the free surface of a vertically
vibrated fluid layer and the wave is a surface perturbation generated by the droplet
impacting the surface. The walker’s existence relies on three main factors.

(i) The possibility of bouncing. A droplet can be maintained bouncing on a fluid bath
if the vibration amplitude is large enough to allow a periodic lift of the droplet (Couder
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et al. 2005a). This is observed from acceleration amplitudes comparable to gravity
up to the Faraday instability threshold where the interface itself destabilizes (Protière
et al. 2006).

(ii) The sustainability of the waves. As known since Faraday’s experiment, forced
standing waves appear on the surface of a fluid subjected to a harmonic vertical
vibration (Faraday 1831). They form when the oscillating acceleration exceeds a well-
defined threshold (Douady & Fauve 1988; Douady 1990). Sustained by parametric
forcing, they have a frequency half that of the imposed vibration and their spatial
structure usually depends on the container geometry (Ciliberto & Gollub 1984;
Keolian et al. 1984; Douady 1990). The spatial pattern may also depend on the
presence of a multi-frequency forcing (Edwards & Fauve 1994).

(iii) A coupling between the two processes. When the forcing amplitude is increased,
the bouncing of the drop becomes subharmonically modulated. This is reminiscent
of an elastic (Guckenheimer & Holmes 1983) or inelastic (Pieranski 1983) ball on a
vibrating plate where periodic, period doubling and chaotic behaviours have been
described. In our experiment, there is a range of droplet sizes for which the period
doubling becomes complete so that the droplet bounces on the surface only once in
two periods. The waves generated by this bouncing have the Faraday frequency and
a larger amplitude. Correspondingly, a symmetry breaking occurs: the droplet starts
propagating spontaneously on the liquid bath (Couder et al. 2005b; Protière et al.
2006). The walker (the droplet and its associated wave) forms a coherent self-propelled
structure.

Two previous experiments investigated the response of the walker when its spread-
out wave is split in diffraction experiments (Couder & Fort 2006) or partly transmitted
through a barrier (Eddi et al. 2009). In both cases, an apparently random response of
the droplet was observed in one single realization while it turned out to be statistically
deterministic when the experiment was repeated. These results were recovered by a
phenomenological model (Couder & Fort 2006) which relies on the superposition of
waves generated by the droplet’s previous impacts. The resulting path memory creates
for the walker a specific type of temporal non-locality. It has recently been shown that
this phenomenon can produce a quantization of possible orbits for a walker subjected
to a Coriolis force (Fort et al. 2010).

The walker is a steady dissipative structure sustained by the forcing. The transfer of
energy to the walker is mediated in two ways, the oscillation of the substrate providing
energy to both the wave and the droplet. The system being tuned close to the Faraday
instability onset there is a direct parametric forcing of the waves. However, the tuning
being below the instability threshold, this direct input is not enough by itself to
sustain the waves. The drop also receives kinetic energy, being kicked upwards at
each bounce. At its next collision with the surface, the droplet transfers some of its
energy to the wave. Altogether, these two energy inputs counterbalance the dissipation
and a localized state of Faraday waves is formed. Its size will be shown to be a function
of the forcing amplitude.

The present article proposes a more precise characterization of the wave field
corresponding to the excitation of a wave in a local region of the bath (the rest
of the bath remaining undisturbed). This is a special case of a situation where
an extended system exhibits the formation of localized structures. Such structures
are known to emerge in different theoretical or experimental contexts. They are
usually found in dissipative systems near subcritical bifurcations (see e.g. Fauve 1998;
Burke & Knobloch 2006). In such systems, there is a range of values of the control
parameter for which two nonlinear stable equilibria can exist. When the system is
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spatially extended, the two states can coexist (Thual & Fauve 1988). Most of the
space being in one of the states, the localized structures are isolated islands in
the other state. It is worth noting that they can interact. When the main focus is
to analyse the dynamics of their interaction, they have been described as interacting
elementary particles (Aranson 1990). From an experimental viewpoint, localized states
are ubiquitous in various physical systems ranging from optics (Ramazza et al. 2002)
to thermal convection in binary fluid mixtures (Kolodner, Bensimon & Surko 1988),
reaction–diffusion systems (Liehr et al. 2004) and Faraday instability.

In the Faraday experiment, localized states exist in situations where the onset of
the instability is subcritical. They were first observed when the liquid was replaced by
a granular medium where localized objects have been called oscillons (Umbanhowar,
Melo & Swinney 1996; Tsimring & Aranson 1997). In normal fluids, an hysteresis
domain has been found where highly nonlinear propagating solitary states are
observed within the linear stable regime (Lioubashevski & Fineberg 2001). This
is quite different from the usual Faraday instability and appears when the thickness
of the fluid layer is decreased to the order of the boundary layer size. It is due to the
highly dissipative character of the flow in this experimental setting (Lioubashevski &
Fineberg 2001). However, in the usual Faraday experiment, no localized states are
observed below the linear instability threshold since the bifurcation is generally
supercritical. For such instabilities, the flow evolution below threshold is simple:
once perturbed, the system oscillates but relaxes to its unperturbed base state with a
characteristic damping time. The difference in our experiment is that the droplet acts
as a local wave exciter.

In this paper, we first describe the experimental set-up (§ 2) and the observed
evolution of the walker wave field with increasing excitation (§ 3). In § 4, we present
a phenomenological model of the walker wave field resulting from the superposition
of waves emitted. We then measure the formation and decay of the wave resulting
from a single impact on the interface (§ 5), with and without periodic forcing. A fluid
mechanical approach (§ 6) demonstrates how this disturbance can excite, below the
Faraday instability threshold, a localized mode of Faraday waves. These results are
shown (§ 7) to provide an understanding of the main characteristics of the wave field
of a walker and the path-memory effect.

2. Experimental set-up

Our experiments were performed on the free surface of a fluid contained in
a square cell shaken vertically by a vibration exciter (Bruel and Kjaer 4808). A
190 mm × 190 mm cell filled with a liquid layer of depth h0 =4.1 mm was used,
except for the wave field measurements which were performed in a Perspex cell
of smaller size (80 mm × 80 mm). The present set of experiments were performed
using a silicon oil (Rhodorsyl oil 47V20) of viscosity µ = 20 × 10−3 Pa s, surface
tension σ =0.0209 Nm−1 and density ρ = 0.965 × 103 kgm−3. The vibration exciter
was sinusoidally driven. The forcing frequency was set to f0 =80 Hz, which is optimal
for the observation of walkers with this oil (Protière et al. 2006). An accelerometer
measured the amplitude γ of the forcing acceleration.

Figure 1 is a phase diagram showing the different types of bouncing of drops as a
function of their diameter D and the forcing amplitude γ /g. In order to obtain drops
of a controlled size, we dip a conical pin into the vibrating bath and remove it swiftly
(Protière et al. 2006). The breaking of the resulting liquid bridge between the bath and
the pin generates a single drop. Its size is a simple function of the initial immersion
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Figure 1. Phase diagram of the behaviours of the bouncing droplets as a function of
their diameter D and the forcing acceleration γ /g. The fluid is a silicon oil of viscosity
µ= 20 × 10−3 Pa s and the forcing frequency is f0 = 80Hz. For weak values of γ , the drops do
not lift from the surface and coalesce with the substrate (light grey region). In region B, the
drops bounce at the forcing frequency on an initially flat interface. In the region marked PDB
(for period doubled bouncing), their vertical motion becomes subharmonically modulated. In
the region W (for walker), the period doubling is complete and the drops touch the interface
only once in two periods. Correspondingly, a drop of a given size becomes propagative when
γ exceeds a walking onset γW . If the forcing amplitude is increased, the wave field of the
walker evolves. The points a, b and c correspond to the three wave fields shown in figure 2.
Finally, for larger forcing, the Faraday instability appears at a threshold γF . In the dark grey
region F (for γ > γF ), the whole fluid surface is thus covered by Faraday waves. The bouncing
of the drop on the corrugated surface becomes chaotic, usually leading to coalescence.

depth of the cone tip. The diameter of the drop is then checked by optical means.
This phase diagram is of the same type as that obtained previously by Protière et al.
(2006), who had used an oil of viscosity µ = 50 × 10−3 Pa s and a forcing frequency
f0 = 50 Hz. For low forcing amplitude, the droplet bounces on a flat interface.
As the forcing acceleration is increased, the bouncing becomes subharmonic. For
drops having a diameter in the range 650<D < 820 µm, this period doubling becomes
complete so that the drop touches the interface once in two periods. This occurs at
an acceleration onset γ = γW where the drop couples to the wave, the whole structure
becoming a propagative walker. Above a second threshold (γ >γF ), the fluid surface
destabilizes spontaneously and a global pattern of standing waves forms. This is
the parametrically forced Faraday instability where the waves have a frequency
fF = f0/2. In our experimental conditions, γF = 4.1 g, where g denotes gravity. The
measured Faraday wavelength λF = 4.75 mm corresponds to the value computed from
the surface wave dispersion relation ω(k):

ω2(k) =

(

gk +
σ

ρ
k3

)

tanh (kh0). (2.1)

This relation also provides the wave velocities: their frequency being fF = 40 Hz, their
phase velocity is Vφ =189 mms−1 and group velocity is Vg =241 mms−1.
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The experiments performed in the present work were done using droplets of a
typical diameter D =760 ± 10 µm. The interesting phenomenology occurs when the
system is tuned very close to the Faraday threshold. This requires that in the absence
of a drop, the surface of the bath remains undisturbed everywhere. For this purpose,
the cell has been carefully manufactured and set perpendicular to the vibration axis.
Its fine-tuning was monitored by checking that, at threshold, waves appeared on the
whole surface simultaneously.

Several experimental techniques were used (standard and high-speed cameras,
correlation techniques) to analyse the motion of the walker and the structure of its
wave field. The surface was illuminated from above with a diffuse light gradient. A
semi-transparent mirror, set at 45◦, was placed between the light source and the fluid
bath providing a non-distorted top-view image of the surface.

In order to obtain quantitative measurements of the wave field of the walker we
used a recently introduced image correlation technique called the free-surface synthetic
schlieren (FS-SS, Moisy, Rabaud & Salsac 2009). This technique, described in detail
in this reference, provides an excellent measurement of the instantaneous topography
of a disturbed interface. It is based on the comparison of two refracted images of
a random dot pattern as observed through the disturbed and undisturbed interface
respectively. Using a digital image correlation (DIC) algorithm, the displacement field
between these two images is obtained. It can be shown (Moisy et al. 2009) that to first
order in paraxial angles, in surface slopes and in relative deformations, the surface
gradient is simply proportional to the displacement field. This gradient field is then
integrated to obtain a reconstruction of the surface height of the interface. This is
done by a least-square inversion of the gradient operator.

In practice, we use a specifically designed cell, the bottom of which is a thick
Perspex plate. A white screen covered with randomly disposed black dots is glued
under this plate. It is photographed from a large distance (1.3 m) to minimize the
paraxial effects. The optical distance between the interface and the dotted screen is
the sum of the optical thickness of the oil and Perspex layers, their refractive indices
being similar. This distance between the interface and the screen is chosen to obtain
an optimum strain of the refracted image. It has to be as large as possible to increase
the resolution, but still to remain smaller than the critical distance for which caustics
would appear. It has thus to be chosen as a function of the observed surface slopes.
With typically five dots per square millimetre and a distance between the interface
and the screen of 25 mm we thus obtain the shape of the wavepacket of the walker
on a typical area 45 mm × 45 mm (1000 × 1000 pixels) with a resolution of 0.5 µm
vertically and 0.3 mm horizontally.

3. Characterization of a walker

At each bounce, the droplet hits a surface distorted by the waves produced at
previous impacts. Protière et al. (2006) have shown that the vertical bouncing of
a droplet becomes unstable when the amplitude of the wave on which it bounces
becomes large enough. A symmetry-breaking bifurcation then arises: the droplet
becomes spontaneously propagative on the bath surface with a mean horizontal
velocity VW (Couder et al. 2005b). In practice, when the forcing amplitude increases,
the bouncing becomes subharmonic but the period doubling is not complete. In a
finite range of droplet sizes (0.720 < D < 0.820 mm), this period doubling becomes
complete: the droplet impacts the interface once in two vibration cycles. The amplitude
of the waves then increases abruptly since the droplet becomes a source of waves at
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(a) (b) (c)

Figure 2. Photographs of the wave field associated with the same droplet of diameter
D = 0.76 mm for three different forcing accelerations in the walking regime (points a, b
and c of the phase diagram, see figure 1). The drop propagates from left to right. (a) Wave
field observed at point a, where Γ =(γF − γ )/γF = 0.17, i.e. Γ −1 = 5.9. (b) Wave field at b,
where Γ = 0.07, i.e. Γ −1 = 14.3. (c) Wave field at c, where Γ =0.018, i.e. Γ −1 = 55.5. The value
of Γ −1 gives an order of magnitude of the number of bounces which contribute to the wave
field interference pattern.

the Faraday frequency. This complete period doubling occurs when the acceleration
exceeds a well-defined acceleration γW which depends on D. The droplet moves
spontaneously on the bath in the whole complete subharmonic bouncing regime,
γW <γ <γF , with a velocity VW which increases with γ . Note that for smaller
droplets, the bouncing dynamics is more complex, and the trajectory is not rectilinear
(0.650 <D < 0.720 mm).

In the walking regime, the wave pattern created by the walker evolves when the
forcing acceleration γ increases. Figure 2(a–c) displays photographs of the wave field
of the same walker with a rectilinear trajectory for three different values of γ , getting
closer to γF . To avoid finite size effects, experiments were performed far away from
the cell boundaries. The aspect of the wave field is controlled by the non-dimensional
distance Γ = (γF − γ )/γF to the Faraday threshold. Immediately above the walking
threshold (Γ = 0.17, in figure 2a), the wave field remains approximately circular with a
slight Doppler shift. For larger forcing (Γ = 0.07, in figure 2b), it develops a horseshoe
aspect. Finally, for a forcing close to γF (Γ =0.018, in figure 2c), waves extend further
away, have a larger amplitude and a long lasting and complex interference pattern
appears behind the droplet.

As discussed in Fort et al. (2010) and below, this structure results from the
interferences of waves that keep surrounding the previously visited points. Because
of the proximity of the Faraday threshold, these waves are almost sustained and kept
synchronous by the forcing. The observed interference structure (see § 7.3) contains
information about the walker’s recent trajectory. This is a path memory that will be
determinant since the droplet’s motion is generated by the wave structure.

In the following (§ 5), using single disturbances, we measure, for γ < γF , the non-
dimensional damping time τ/TF of the Faraday waves. In the case of repeated
collisions it is a measure of the number of past collisions that keep contributing
to the wave field. For this reason we call the dimensionless number Me = τ/TF , the
memory parameter. We are in the vicinity of a supercritical bifurcation which is
described by a Mathieu equation. It is shown in § 6.1 why the relaxation time of a
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disturbance is expected to be proportional to Γ −1 the inverse of the distance to the
instability onset. In the single impact experiments, we found that the proportionality
coefficient is approximately equal to 1. For this reason, Γ −1 can be used as an
approximation of Me in the walker’s situations where the measurement of τ/TF

cannot be done directly. In this approximation, the wave fields exhibited in figure
2(a–c) correspond to increasing values of the memory parameter Γ −1 =6, 14 and
55, respectively. The finite size of the bath does not allow the possibility of getting
nearer to the Faraday instability threshold: when γ reaches γF , Me diverges. In this
situation, the waves generated by the drop are no longer damped: they reflect on
the cell’s boundaries and finally form a standing wave pattern in the whole cell. The
wave field is now defined by the cell geometry and the droplet is no longer its source.
The lock-in phenomenon is then lost and the bouncing becomes temporally chaotic,
usually leading to the coalescence of the droplet with the bath.

In order to get a quantitative measurement of the wave fields, we used the above-
described image correlation technique (Moisy et al. 2009). The comparison of two
experimental fields obtained with a droplet of diameter D = 760 µm is presented in
figure 3(a,b) for two forcing accelerations corresponding to Γ −1 ≃ 5 and Γ −1 ≃ 17,
respectively. In the former, the wave is approximately isotropic while, in the latter, an
anisotropy appears. The relative positions of nodes and antinodes of the structure are
better observed in figure 4(a), which is a surface map corresponding to the same wave
field as figure 3(b). Along the direction of propagation, we observe the horseshoe
structure, the waves of largest amplitude being emitted in two well-defined lateral
lobes. The horseshoe is limited behind the drop by a line of destructive interference
(see § 7.3). Behind this line, the wave field exhibits a pattern of nodes and antinodes,
distributed symmetrically on each side of the walker’s past trajectory.

We can also examine the evolution of the walker velocity VW as a function of γ

for a droplet of diameter D = 790 µm (see figure 4b). Near the onset, velocity VW

grows as the square root of the distance to threshold, i.e. VW ∝ (γ − γW )1/2. This
has already been observed and documented by Protière et al. (2006). In that article,
a simple model showed that the interaction of the bouncing droplet with waves of
increasing amplitude leads to a pitchfork bifurcation at which the motionless droplet
becomes propagative. The control parameter is proportional to the amplitude of
forcing while the order parameter is the mean horizontal velocity VW . The square root
dependence was thus predicted and experimentally checked. As shown in figure 4(b),
for accelerations larger than γ = 3.8 g the velocity saturates and remains constant at
a value V max

W = 11.5 mm s−1. This is an effect of the superposition of waves along the
axis of propagation. In the bouncing region, the contribution to the slope of the older
sources is cancelled out by destructive interference, so that they do not contribute to
the forward motion.

4. Phenomenological model and its results for the walking regime

4.1. Phenomenological model

To understand the dynamical properties of walkers, a phenomenological approach
was developed. It relies on a simple modelling of the coupling between the droplet
and the fluid surface. The wave characteristics are imposed without being connected
to the full fluid dynamics description. In spite of its simplifying assumptions, this
model led to simulations where the diffraction of walkers (Couder & Fort 2006) or
their orbital motion in a rotating system (Fort et al. 2010) have been reproduced
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Figure 3. Measured wave fields of walkers (a droplet of diameter D = 760 µm) for two
forcing accelerations. The walkers move in the direction given by the arrows. (a) γ = 3.25 g
(Γ −1 = 4.8): the wave pattern around the walker remains close to circular and the droplet
moves at VW = 7.53 ± 0.05 mm s−1. (b) γ = 3.75 g (Γ −1 = 17.2): the associated waves are more
intense and take a horseshoe aspect, and interferences are visible in the wake behind the
droplet, which moves at VW = 11.05 ± 0.05 mm s−1.

with a good accuracy. In § 6, we a develop a theoretical model. This fluid mechanical
approach will identify the exact wave characteristics.

The motion of the droplet is computed iteratively bounce after bounce. It is first
assumed that the vertical motion of the droplet is decoupled from its horizontal
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Figure 4. (a) Experimental measurement of the wave field with a walker of diameter
D = 760 µm moving at VW = 11.05 ± 0.05 mm s−1, with (Γ −1 = 17.2). (b) Non-dimensional
experimental velocity VW/Vφ of a walker as a function of non-dimensional acceleration γ /g.

Experiment with a droplet of diameter D = 790 µm and an oil of viscosity µ= 20 × 10−3 Pa s.
Dots are experimental values and the dashed line is an interpolation. (c) Wave field obtained
by numerical simulation (δ/λF = 1.6, Me = 30, A/λF =5 × 10−2, 0.4τF ). (d ) Non-dimensional
velocity VW/Vφ in a numerical simulation of the model as a function of the characteristic
memory time τ .

motion and that the take-off and landing times are determined by the vertical
oscillation of the liquid bath as if the collision was inelastic. For a range of forcing
accelerations, the vertical motion is periodic of period TF =1/fF . At each take-off,
the droplet is given a vertical velocity equal to the surface velocity.

The droplet horizontal velocity is computed separately at each bounce. It is given
by adding two terms to the velocity before the bounce.

(i) A factor that models the viscous damping due to the shearing of the air film
separating the drop from the bath.

(ii) An increment of speed due to the impact on a slanted surface. This kick is
proportional to the local slope of the surface: it is zero if the surface is horizontal.
After its take-off, the droplet retains a constant horizontal velocity and has a free
parabolic motion. The velocity at take-off determines the elementary horizontal
displacement δrn during the free flight of the droplet and thus the landing point.

The core of the computation is in the calculation of the interface slope at the point
of landing. More generally, one wants to compute the whole topography of the wave
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field, i.e. the height ξ (r, ti) of the interface at point r and time ti . Here one assumes
that it results from the linear superposition of in-phase waves originated at previous
impact points. To compute the slope under the droplet, we need to give an explicit
expression for the wave emitted at each bounce. Our model uses circular waves at
the Faraday frequency and centred at the points rn where the droplet has previously
impacted on the interface. Taking into account the vertical forcing and the resulting
memory effect, we add up the contributions of the previous bounces and compute the
surface height:

ξ (r, ti) =

i−1
∑

n=−∞
Re

[

A

|r − rn|1/2
exp

(

− ti − tn

τ

)

exp

(

− |r − rn|
δ

)

exp

(

i
2π|r − rn|

λF

+ φ

)

]

,

(4.1)
where Re denotes the real part, A stands for the wave amplitude at each impact
and rn stands for the positions of the previous impacts at times tn = ti − (i − n) TF

with n< i. We use a sinusoidal dependence to account for the spatial oscillation. It is
necessary for the accuracy of these simulations to introduce two independent damping
factors. The localized nature of the wave field was introduced in the simulations by
an algebraic decay that accounts for the wave radial propagation and an exponential
spatial damping. This spatial decay, due to the viscous dissipation of the front of the
disturbance, is characterized by the length scale δ. The temporal decay time concerns
the Faraday standing waves triggered by this disturbance. Since the system is tuned
below but close to the Faraday instability threshold, each elementary wave is almost
sustained: its amplitude declines with a typical decay time τ . In this model, the
non-dimensional damping time is the memory parameter Me = τ/TF . It is tunable,
being determined by the distance to the Faraday instability threshold. The origin of
these two dampings will be detailed in § 5.

4.2. Walking regime

A first verification of the model is to obtain the walking bifurcation. In the experiment,
the control parameter is simply γ . In the model, several free parameters (A, δ, τ ) are
related to γ but their dependences are not simple. In order to study the walking onset,
we assume that the walker has a very small horizontal velocity (about 10−4Vφ), and
we compute the time evolution of its horizontal position for 5000 bouncing cycles.
For weak values of the wave amplitude A or large damping τ−1, the droplet stops and
remains motionless. Increasing A or decreasing τ−1 leads to the walking transition.
This walking bifurcation is analogous to the pitchfork bifurcation experimentally
observed (Protière et al. 2006).

Experimentally, the velocity VW saturates when the memory effect increases. For
this reason, we performed a series of simulations changing the memory parameter τ .
Figure 4(d ) is a plot of the non-dimensional asymptotic velocity VW/Vφ as a function
of the memory parameter τ . If the characteristic damping time τ is larger than a
threshold value τW = 0.53, the droplet starts moving. Its velocity increases with τ and
saturates to a value about V max

W = 0.14 Vφ . Such large asymptotic velocities correspond
to the case of large droplets in the experiment. In the numerical simulations, the
value of V max

W depends on the chosen amplitude A. The wave fields produced by these
simulations reproduce quite accurately the experimental observations, as can be seen
by a comparison of figure 4(c) with figure 4(a).

Since the phenomenological model is based on a superposition of waves emitted at
each bounce, we were led to analyse experimentally and theoretically the wave struc-
ture emitted by one bounce when γ approaches the Faraday instability threshold γF .
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(a) (b)

(c) (d)

Figure 5. Photographs of the wave field generated on the bath by the fall of a steel ball
of diameter d = 2 mm. Pictures are taken at times t1 = 51 ms (a,c) and t2 =173 ms (b,d ) after
the collision. In (a) and (b), the bath is not vertically oscillated. In (c) and (d ), the vertical
acceleration is very close to the Faraday instability onset Γ ≃ 0.01 or (Γ −1 = 100).

5. Experimental wave field generated by a single impact

In the set of experiments presented in this section, a steel ball (of size comparable
to the droplet) was dropped into the bath where it immediately sank. It thus disturbed
the interface by only one single impact. The assumption is that the localized hollow
generated at short times is larger but somewhat similar to the localized hollow created
by a single bounce of a droplet. Figure 5 shows the general aspect of the resulting
waves at times t = 51 ms and t = 173 ms in the absence (figure 5a,b) or in the presence
(figure 5c,d ) of forcing vibration. As shown in figure 5(a,c), the initial disturbance
is the same, but in the absence of forcing, the splash generates only a radially
propagating wavepacket similar to that of a stone thrown in a pond. In the presence
of forcing (Γ −1 = 100), a similar propagating wavepacket is initially generated but,
behind this wavepacket, the interface does not immediately return to rest. Standing
waves of wavelength λF =4.75 mm are observed to continue oscillating and finally
slowly decay (figure 5d ).

Measurements of the spatio-temporal evolution of these waves can be done using
the digital image correlation technique. Figure 6 displays three-dimensional (3D) plots
of the temporal evolution of a radial cross-section of the interface for three different γ ,
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Figure 6. Spatio-temporal 3D reconstruction of the wave propagation away from the point
of impact of a steel ball on the bath (at time t = 0). The liquid height is measured with
an accuracy of 5 × 10−4 mm. The bath is subjected to vertical accelerations such that
(a) (Γ −1 = 1.25), (b) (Γ −1 = 5) and (c) (Γ −1 = 32). In all three cases, the radial propagation of
a similar wavepacket is observed. In the presence of oscillations, sustained Faraday waves are
triggered by this disturbance. Their amplitude and temporal extent increase as Me increases.
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Figure 7. The temporal evolution of the liquid height at a point located 5.3 mm away from
the ball impact. The bath is subjected to a non-dimensional acceleration Γ = 0.2. It takes 95 ms
for the disturbance to reach the point of measurement (region a). In region (b), the propagating
capillary wave passes the measurement point. A Faraday wave then survives, damped on a
typical time τ . The inset shows a log-linear plot of the amplitude of the wave in region (c),
confirming an exponential decay with τ = 110 ms. The measured non-dimensional damping
time τ/TF = 6.25 is the real value of the memory parameter. It is close to the expected value
Γ −1 =5.

increasingly close to γF . These measurements confirm the coexistence of two types of
waves. The initial disturbance always generates a wavepacket of travelling waves that
propagate away. The mean wavelength observed in this wavepacket is related to the
ball size. With a ball of diameter D = 2 mm, the mean wavelength is a few times the
capillary scale of order λcapil ≃ 1.5 mm. When the forcing is large enough (figure 6b,c),
the fluid, after the wavepacket has passed, keeps oscillating and a stationary wave
pattern remains which decays slowly. It oscillates at frequency fF and has Faraday
wavelength λF .

The spatial and temporal decay of the oscillation can be obtained from these
measurements independently. We can first measure the spatial decrease of the capillary
waves wavepacket away from the point of impact. In a non-dissipative situation, this
amplitude should only decrease because of its radial propagation. In reality, the
measured spatial decrease exhibits an exponential decay due to the added effect of
viscous dissipation. We checked that this spatial decay rate depends on the fluid
used for the experiment. In our experimental conditions, we find a typical damping
distance δ =1.6λF .

The temporal decay of the oscillation can be investigated independently by a
measurement of the surface disturbance at a fixed point as a function of time.
Figure 7 presents the temporal evolution of the liquid height at a location situated
5.3 mm away from the ball impact. This corresponds to the case shown in figure 6(b),
the bath being subjected to a non-dimensional distance to Faraday threshold Γ = 0.20.
It takes 95 ms for the disturbance to reach the point of measurement (region a in
figure 7). In region (b), the propagating capillary wave passes the measurement point
disturbing the interface. A slowly decaying Faraday wave then survives in region (c).
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The log-linear plot in the inset (figure 7) shows the exponential decay of the amplitude
in region (c). The measured temporal decay rate, Me = τ/TF = 6.25 ± 0.5, is the real
memory parameter Me. Its value is close to that expected from the distance to the
Faraday threshold Γ −1 = 5. When the same measurement is done in the case shown in
figure 6(c), where Γ = 0.032, we find Me = τ/TF = 25 ± 5, a value close to Γ −1 = 31.
More generally, for all the cases measured, we found the value of the non-dimensional
decay time τ/TF to be close to Γ −1. This could be expected: it corresponds to what
is observed in systems that are unstable by a supercritical bifurcation scenario. When
disturbed immediately below their instability threshold, these systems respond by an
oscillating behaviour that is damped with a damping time τ/TF inversely proportional
to the distance to threshold. At threshold, the decay time diverges and the oscillation
is sustained. Here, the control parameter being the non-dimensional acceleration, the
expected damping time is τ/TF ∝ ((γF − γ )/γF )−1. A more complete analysis given in
§ 6.1 confirms this result.

Finally, it can be noted that at each point of the surface, the initial amplitude of the
Faraday oscillation is determined by the amplitude of the capillary wave that reaches
this point and triggers these oscillations. This observation justifies the necessity of
introducing both a decay length and a decay time in the phenomenological model (4.1).

6. Single impact on a vibrating bath: a fluid mechanics point of view

In this section, we propose a simple fluid mechanical model that contains the main
building blocks of the wave dynamics presented in the experimental sections. We
consider an incompressible liquid of depth h0 contained in a tank vertically located
at z = z0 cos(ω0t). The horizontal size of the tank is assumed large compared with
the size of the localized structure. This corresponds to the experimental situation
and ensures that the tank boundaries do not play a role. The tank undergoes an
acceleration in the vertical direction of −γ cos(ω0t), with γ ≡ z0ω

2
0 . By dynamical

equivalence, the fluid motion satisfies an equation governing a layer in a tank at
rest subjected to a time-dependent acceleration −g + z0ω

2
0 cos(ω0t). In the following,

the function z = ξ (x, y, t) quantifies the vertical displacement of the free surface with
respect to rest, at time t and horizontal location (x, y).

The originality of this process with respect to the standard Faraday experiment is
the presence of the drop acting as a periodic generator of perturbations on the surface.
The droplet dynamics itself depends on the surface dynamics through the impacts. This
system can be viewed as a nonlinear coupling between two sub-systems: an extended
dynamical system (the liquid layer) sustaining waves and a ‘particle’ governed by an
ordinary differential equation (ODE). This coupling changes the dynamics of both
sub-systems. It is possible to distinguish two stages during the time evolution of the
complete phenomenon: a first stage when the drop is almost in contact with the surface
and exerts a pressure force that deflects the liquid; a second stage when the drop,
being away from the surface, is in free fall and the surface of the liquid is decoupled
from it. It is clear that during the first stage, highly nonlinear interactions take
place. Even in the steady setting of a bath at rest, the bouncing of a drop is
complex (Gopinath & Koch 2001, 2002; Bach, Koch & Gopinath 2004). It necessitates
massive direct numerical simulations for two reasons: a large range of spatial scales
(millimetre drop and micron-sized air film thickness hfilm(t) separating drop and liquid
layer) and a large range of time scales (pressure increase below the drop is quite
sudden and evolving as h−3

film(t)). For the present unsteady case, the simultaneous drop
and surface deformations lead to an even more involved problem. However, one
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could further assume that the drop vertical motion is decoupled from the surface
wave dynamics since the experimental ratio between surface deflection and maximum
tank displacement z0 is always less than 0.25. In this approximation, the surface is
flat at each impact, which simplifies the problem but a global restitution coefficient
for the drop must still be computed. This latter quantity is now dependent on two
variables: the relative drop velocity and the phase of the tank acceleration at the
moment of impact. This function is not presently available and it would require a huge
numerical effort. A model based on a lubrication approximation exists (Vandewalle
et al. 2008) but it assumes that the liquid layer surface does not deform. In this
experiment, a non-negligible part of the drop energy loss is here contained in the
wave generation by impact. Almost certainly, the dependence of the restitution
coefficient on the phase is important to obtaining the lock-in behaviour between
drop and wave in the walker experiment: indeed, the vertical motion of the drop
is always periodic with double the forcing period. The system thus seems robust
and away from the chaotic behaviour. A contrario, a model where a coefficient of
restitution is phase dependent, produces a vertical chaotic behaviour within the range
of experimental tank accelerations. Such a chaotic regime is experimentally observed
for other parameters (drop sizes, oil viscosity or forcing frequency) but the walker
dynamics is not present in such instances (Protière et al. 2006). Recently (Gilet &
Bush 2009a, b), this chaotic bouncing has also been studied when the drop bounces
over a soap film (in that instance the drop deformation is not considered). Another
extreme model corresponds to a completely inelastic shock: the drop is in free fall
away from the surface and when on the ‘surface’, it waits until the relative acceleration
−g + γ cos(ω0t) becomes positive. In that case, the times for impact and rebound
can be precisely computed as a function of tank accelerations. This model, which
has been studied by Pieranski (1983), produces a periodic, subharmonic and robust
complete period doubling as observed experimentally. This model is satisfying in
many aspects except that the complete rebound arises at acceleration 4.8 g instead
of the experimental observation γ = 4.1 g. This discussion explains why it is almost
impossible to get, based on an analysis of the physics, the whole coupled systems
before a precise study of the bouncing is attempted. We prefer here to focus on the
wave pattern and introduce the drop impact, i.e. the first stage, in a crude way using
some hints from experimental observations. However, we demonstrate below that this
method is sufficient to get the physical patterns observed in experiments.

6.1. A single impact: the fluid mechanical model

Below the Faraday instability threshold, the evolution of a single bump is the necessary
ingredient to describe the more complex pattern produced by the walker. This specific
pattern is obtained by computing the time evolution of a single impact located at
the origin of space and at time tinit . This single event can also be compared with the
experiment in which a ball is hitting the surface of the oscillating liquid, thus creating
a unique perturbation.

An axisymmetric localized perturbation ξBump(r), with r2 = x2 + y2 centred at the
impact location, represents for the liquid layer the outcome of the first stage. It is
chosen such that

ξBump(r) = Apert

[

− exp

(

− r2

A2
1

)

+
A2

1r
2

A4
2

exp

(

− r2

A2
2

)]

. (6.1)

This ansatz represents a bump on the free surface with the average fluid elevation
equal to zero. It corresponds to a structure similar to that expected after impact and
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from experimental observations: a hollow surrounded by a ring protruding above the
surface at rest. The three parameters Apert , A1 and A2 are assumed to scale with the
drop radius Rdrop . We set Apert = Rdrop , A1 =β1Rdrop and A2 = β2Rdrop with β1 = 1.7,
β2 =2.4. With the above values, the radius of curvature at r = 0 is twice the drop
radius Rdrop , as imposed in Gopinath & Koch (2001) to comply with the continuity
of pressure. Actually, up to a scaling factor, the global amplitude Apert plays no role
in our model because of the assumed superposition principle (see below). Moreover,
the precise shape produced by the drop, i.e. the precise coefficients β1, β2, does not
modify the qualitative dynamics.

During the second stage, the surface evolves freely. Since we are studying a Faraday
instability below threshold, it is reasonable to assume that the surface wave is well
described by the linear theory. The solution ξ (x, y, t) is found as in Benjamin & Ursell
(1954) and Drazin & Reid (1981), the surface boundary conditions are linearized and
the flow in the liquid layer is assumed irrotational. Since at t = tinit the perturbation
is axisymmetric ξ (x, y, tinit ) = ξBump(r), it retains this characteristic because the tank
boundaries are supposed far away. For pure numerical reasons (necessity to use
discrete transforms, see below), we impose a radial cutoff rc: the function ξ (x, y, t)
is assumed to be localized in a finite interval r ∈ [0, rc]. Since the physical structures
that are obtained are localized, the presence of such a cutoff does not change these
solutions if the numerical domain is large enough. In that case, the general solution
(see (4.87) in Drazin & Reid 1981) reads as

ξ (r, t) =

∞
∑

m=1

am(t)Sm(r) with �Sm(r) + k2
mSm(r) = 0, (6.2)

where am(t) satisfies an ODE (see below) and Sm(r) is a complete set of
orthogonal axisymmetric eigenfunctions of the two-dimensional Laplace operator
with eigenvalues km. This implies that Sm(r) are related to the standard Bessel
functions J0(r). The radial cutoff imposes that function Sm(r) vanishes at r = rc. This
leads naturally to the Hankel transform expansion

ξ (r, t) =

∞
∑

m=1

am(t)J0

(

αm

rc

r

)

, (6.3)

where αm, m =1, . . . , ∞ are the zeros of the Bessel function J0(x). Note that km = αm/rc.
By introducing expansion (6.3) into the linearized hydrodynamic problem, one reduces
the partial differential problem to a finite system of Mathieu equations that govern
the dynamics of coefficient am(t):

d2am

dt2
+ (ω2(km) − km tanh(kmh0)γ cos(ω0t))am = 0, (6.4)

where pulsation ω(k) satisfies (2.1). We modify the above system by introducing a
phenomenological term that accounts for the damping due to viscosity

d2am

dt2
+ 2νphenk

2
m

dam

dt
+ (ω2(km) − km tanh(kmh0)γ cos(ω0t))am = 0. (6.5)

The second term that contains the kinematic phenomenological viscosity νphen (in
m2 s−1) is necessary to get a threshold for Faraday instability and to operate close
to but below the instability region. This form of the damping term mimics the
internal dissipation from the Navier–Stokes equation in this ODE. Though simple,
this approach provides a sufficient description for modes and threshold (see Kumar &
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Tuckerman 1994 for a critical analysis). Finally, the initial conditions are given by
the coefficients am(tinit ) evaluated by a discrete Hankel transform of function (6.1).
Similarly, an inverse Hankel transform gets back the surface at time t from the
coefficients am(t).

In the numerical simulations, the parameter values corresponding to the experiment
are h0 =4 mm for thickness of the liquid layer, σ = 0.0209 Nm−1 and ρ = 965 kg m−3

for surface tension and density of silicon oil, ω0 = 2π 80 rad s−1 for the forcing
frequency. From now on, all quantities are non-dimensionalized using the following
two characteristic scales: time ω−1

0 and wavelength λF = 2π/kF (calculated so that
ω(kF )/ω0 =1/2, which gives λF = 4.755 mm). We thus have TF = 4π. All quantities
written in capital letters are assumed dimensionless. The function now reads as

Ξ (R, T ) =

∞
∑

m=1

Am(T )J0(αmR/Rc) (6.6)

and the Mathieu equation becomes

d2Am

dT 2
+ 2MK2

m

dAm

dT
+ (Ω2(Km) − Km tanh(KmH0)Z0 cos T )Am = 0, (6.7)

with

Ω2(Km) = KmG tanh(KmH0){1 + Λ2
capK2

m}, Km =
αm

Rc

, (6.8)

Λcap =
√

σ/(ρg)/λF , G = g/
(

λF ω2
0

)

, Z0 = z0/λF , M = νphen/
(

ω0λ
2
F

)

. (6.9)

Note that G = g/(λF ω2
0) = 8.18 × 10−3 and the capillary length 2π

√
σ/(ρg) is twice

the Faraday length, since Λcap =0.31. For numerical simulations, we truncate (6.6) to
N terms

Ξ (R, T ) =

N
∑

m=1

Am(T )J0(αmR/Rc) (6.10)

and solve the Mathieu equations governing the first N modes. Typically, we have
chosen N =800–1000 with a cutoff radius Rc = 20–30. If the cutoff Rc is larger,
we need a large enough N to ensure that the expansion (6.10) with N coefficients
Am(T ) fairly well approximates function (6.1). The coefficients Am(T ) and the surface
Ξ (R, T ) are obtained via a discrete direct or inverse Hankel transform from the GNU
scientific library 1.8 (Galassi et al. 2009).

In order to get the value of M or, equivalently, the value of νphen , the Faraday
instability threshold, which depends on the dissipative parameter, is computed. For
the experimental forcing frequency ω0 = 80 Hz, the instability threshold is evaluated
for the various wavenumbers Km =αm/Rc with respect to the relative acceleration
Z0/G: the dynamics of each amplitude Am(T ) is computed at large times in order
to determine if mode Km exponentially increases or decreases. In figure 8, the curve
giving the forcing threshold (Z0/G)F is shown as a function of wavenumber Km.
Different curves correspond to different dimensionless viscosities M . As expected, the
most unstable mode tends towards the Faraday wavenumber KF = 2π for vanishing
viscosities. Experimentally, with silicon oil of viscosity µ = 20 × 10−3 Pa s, the observed
threshold is (Z0/G)F = 4.1. Comparing the thresholds with the experimental values,
the dimensionless value M = 2.7 × 10−3 is chosen. If we were to assume that all
dissipation is a bulk dissipation, i.e. can be modelled by a factor 2νk2

m with ν being
the true kinematic viscosity of silicon oil, one would obtain the crude approximation
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Figure 8. Instability threshold (Z0/G)F = γF /g as a function of the mode wavenumber Km

in the case of a forcing frequency of 80 Hz for various values of dimensionless viscosity M .

M = 1.76 × 10−3. Since there exist other origins for the dissipation (e.g. boundary
layers), the identified value is reasonable.

Below the Faraday instability threshold and in its vicinity, in the case of a
supercritical problem, it is justified to use the linear theory, i.e. the Mathieu equation of
the principal mode KF (the less damped one, see (6.7)). First, let us change variables:

B(t) = A(t) exp
(

− MK2
F t

)

, (6.11)

d2B

dT 2
+

(

Ω2
1 − KF tanh(KF H0)Z0 cos T

)

B = 0, (6.12)

with

Ω2
1 (KF ) = Ω2

1 (KF ) − M2K4
F . (6.13)

Near the instability threshold, we can use the asymptotic technique presented in
Bender & Orszag (1978, pp. 560–566) to compute an asymptotic value for instance
(11.4.15) in Bender & Orszag (1978). This gives the dominant term of B(t), hence
A(t), which is written in dimensional variables as

A(t) ∼ exp
((

ǫωF − νk2
F

)

t
)

, ǫ ≡ tanh(kh0)kz0/2, (6.14)

if we denote ǫc = νk2
F /ωF ,

A(t) ∼ exp((ǫ − ǫc)ωF t). (6.15)

This imposes that

τ/TF = 1/(2π(ǫ − ǫc)). (6.16)

Hence, we recover the classical prediction used in § 5:

τ/TF ∝
(

γF − γ

γF

)−1

. (6.17)

6.2. A single impact: spatio-temporal evolution

In figure 9, the evolution Ξ (R, T )/Apert of a single bump generated at time T = 0 is
displayed for time 0 <T < 3.5 and for two different radii Rdrop . Two structures can
be observed: a front that moves out from the point where the bump is created and a
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Figure 9. Evolution Ξ (R, T )/Apert for time 0 < T < 3.5 of a single bump generated at time

T = 0 with a forcing amplitude Z0/G = 0 (Me = 0) (a,d ), Z0/G = 1.52 (Γ −1 =0.6) (b,e), or
Z0/G =4.05 (Γ −1 =82) (c,f ). Plots (a–c) are obtained with the droplet size Rdrop = 0.5 mm,
which corresponds to the experimental situation. Plots (d–f ) are obtained with a larger droplet
Rdrop = 1 mm. The forcing frequency is fixed at 80 Hz. The dimensionless dissipation is set to

M = 2.7 × 10−3 to ensure that the instability threshold is located at (Z0/G)F = 4.1.

standing wave pattern that spreads behind the front. Without forcing (see figure 9a,d ),
only the propagating front is present: this is the usual localized perturbation formed
by a capillary front propagating outwards. The structure in the wavepacket depends on
the wavelengths available in the initial bump ξBump(R). The velocity of the wavepacket
is the group velocity. The main crest inside this wavepacket moves at the Faraday
phase speed Vφ . In the presence of forcing (figure 9b,c,d,f ), this propagating front
is still present. However, when getting closer to the Faraday instability threshold
(Z0/G = 1.52 or 4.05), a second type of pattern emerges behind the capillary front. It
is formed by damped standing Faraday modes. Wavenumbers close to the Faraday
modes are initially present in the spectrum of the propagating wavefront and are the
least damped afterwards. These structures survive while most of the other components
of the spectrum rapidly decay, as experimentally observed (see figure 5).

Note that for a droplet’s size similar to that used in the experiments (Rdrop = 0.5 mm),
the structure that emerges contains energy in the range of the Faraday wavelength, so
that the standing Faraday modes are more intense. A contrario, when a bigger drop is
used (figure 9d–f ), the Faraday wavelength is still present but weaker with respect to
the capillary part. This might explain why, when changing oil and forcing frequency,
the range of sizes corresponding to a walker is modified. Indeed, the appropriate
droplet size could correspond to the one capable of generating at each impact a
maximum energy content for the resonant Faraday wavelength.
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Figure 10. Numerical experiment with frequency 80Hz and droplet size Rdrop = 0.5 mm
(corresponding to the experimental situation). (a) Free surface height Ξn(R, T )/Apert at distance
R = 1 from the impact point as a function of time (the impact occurred at T =0). Forcing
amplitude Z0/G =3.3 (Γ −1 = 5.1). Inset: height as a function of time T in semi-log scale.
(b) Same as in (a) with Z0/G = 4.05 (Γ −1 = 82). (c) Free surface height Ξn(R, T )/Apert at time
T = 11.475 as a function of the distance R to the impact point. Forcing amplitude Z0/G = 3.3
(Γ −1 = 5.1). Inset: height as a function of R in semi-log scale. The envelope can be fitted by the
exponential function 2.27 × 10−2 exp(−0.305T ). (d ) Same as (c) with Z0/G = 4.05 (Γ −1 = 82).
The envelope can be fitted by the exponential function 7.9 × 10−3 exp(−0.019T ).

As in experiments, the surface amplitude at a fixed position is observed to decrease
in time (see figure 10a,b). In the insets, the semi-log scale indicates an exponential
decay with a characteristic time τ/TF = 3.28 (figure 10a) or τ/TF = 52 (figure 10b).
Here τ increases when getting closer to Faraday instability onset. Figure 10(c,d )
presents, at a fixed time, the standing Faraday pattern. It decreases radially and the
insets show an exponential damping. This indicates that a sum of such Bessel modes
constitutes the standing wave pattern rather than a single mode, since it would impose
an algebraic radial decay. This spatial damping is also confirmed in experiments.

6.3. Steady bouncing drop

As shown in § 3, the walkers appear on the bath when the complete period doubling
is achieved. Our aim in this section is to understand the role of this period doubling
in the walking bifurcation. Here, we look at the nature of the wave field generated
by a steady bouncing droplet in the framework of our fluid mechanics model. Note
that, in this section, the droplet is constrained to be in a regime of steady bouncing
without allowing for its propagation.

The drop impacts on the bath at specific times tn, the index n discriminating
between separate impacts. We choose the spatial origin at the impact location. Since
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Figure 11. Time evolution of the surface height Ξ (R, T )/Apert at a distance R = 1 from the

impact point. Forcing frequency 80 Hz, forcing amplitude Z0/G =3.3 (Γ −1 =5.1), viscosity
M = 2.7 × 10−3 and phase φ = 0. The dashed line corresponds to a single drop impact and
bold line corresponds to a steady bouncing at forcing frequency.

we assumed the linear theory to be valid for Faraday instability below threshold, the
superposition principle holds and the general solution for the wave field reads as

ξ (x, y, t) =
∑

n

ξn(x, y, t). (6.18)

The effect of a drop impact at time tn is identical to the single impact described above
(§ 6.2) shifted in time at t − tn. We have

ξn(x, y, t) = ξ (x, y, t − tn). (6.19)

This wave ξn(x, y, t) evolves freely for t > tn. We re-write this equation with non-
dimensional quantities:

Ξ (R, T ) =
∑

n

Ξn(R, T ) with R2 = X2 + Y 2. (6.20)

First, we focus on the case of steady bouncing at the forcing frequency. We
have Tn = 2πn + Φ in the sum (6.20), where Φ is the phase shift between the drop
impact and the bath oscillation. The results found were similar for different values
of Φ . In the steady state, the shape of the simulated pattern does not indicate the
presence of a standing wave. The wave amplitude generated by the steady bouncing
is smaller than that created by a single impact (see figure 11). This is also observed
in the experimental case: the superposition of two consecutive impacts Ξn(R, T ) and
Ξn+1(R, T ) is destructive as they are out of phase for Faraday instability.

In the case of bouncing at the Faraday frequency fF , the drop impacts every two
periods of vibration, i.e. Tn = 4πn + Φ , in the sum (6.20). The interferences between
Ξn(R, T ) and Ξn+1(R, T ) are in phase with the Faraday instability and consequently
become additive. The amplitude generated by this bouncing at half the forcing
frequency is larger than that of a single impact (see figure 12a,b). The pattern appears
and reaches a steady state after several bouncing periods. As we get nearer to the
threshold, this transient lasts longer. For instance, in figure 12(a), the saturation occurs
after 15 bounces (Z0/G =3.7), while in figure 12(b) (Z0/G = 4.05), it occurs after more
than 50 bounces. After this transient, one readily observes a standing wave pattern
with the Faraday frequency (see figure 12c). In addition, the amplitude in the steady
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Figure 12. (a) Time evolution of the surface height Ξ (R, T )/Apert at a distance R = 1 from
the impact point as a function of time. Forcing frequency 80 Hz, forcing amplitude Z0/G = 3.7
(Γ −1 = 10.2), viscosity M = 2.7 × 10−3 and phase φ = 0. Dashed line corresponds to a single
drop impact and bold line corresponds to a steady bouncing at the Faraday frequency.
(b) Similar to (a), but with Z0/G =4.05 (Γ −1 = 82). (c) Time evolution Ξ (R, T )/Apert of a
steady bouncing at the Faraday frequency. Forcing frequency 80 Hz and forcing amplitude
Z0/G = 4.05 (Γ −1 = 5.1), for different times T , M = 2.7 × 10−3. The amplitude vertical scale
has been rescaled to be easily seen. The thick curve corresponds to the time of impact.
(d ) Amplitude in the steady state at point R = 1 as a function of the forcing amplitude
Z0/G = z0ω

2
0/g. Forcing frequency 80 Hz, viscosity M = 2.7 × 10−3 and φ = 0.
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Figure 13. The surface height Ξ (X, Y, T ) of a walking droplet. (a) Forcing amplitude
Z0/G =3.7 (Γ −1 = 10.2), velocity VW/Vφ = 5.0 × 10−2. (b) Forcing amplitude Z0/G = 4.05

(Γ −1 = 82), velocity VW/Vφ = 6.3 × 10−2. For both plots the forcing frequency is set to 80 Hz

and the dimensionless viscosity M = 2.7 × 10−3.

state increases when we get closer to the onset (see figure 12d ). Actually, the
characteristic damping time is larger when Γ ≪ 1, and the number of contributive
impacts increases accordingly. This behaviour is similar for various Φ and,
quantitatively, it can be modified at most by a factor three. This increase of the
wave amplitude with the forcing acceleration is the signature of the memory effect.

6.4. Moving bouncing drop

In the experiments, the bouncing at half-frequency is associated with motion. In this
section, we compute the wave field ξW (x, y, t) of a walker by adding single impacts
with a moving source. We need to shift them both in time and space: the droplet
bounces on the surface each Faraday period and moves with constant velocity VW .
We assume that the droplet is moving along the x -axis. The source points, indexed
by n, are separated by a spatial distance ∆ = λF VW/Vφ (with ∆ ≪ λF as VW ≪ Vφ).
By a trivial choice of space–time origin, the walker is supposed to impact at times
tn = n/fF at xn = n∆. For ti < t < ti+1:

ξW (x, y, t) =

i
∑

n=−∞
ξ (x − xn, y, t − tn). (6.21)

We re-write this equation using non-dimensional quantities:

ΞW (X, Y, T ) =

i
∑

n=−∞
Ξ (X − Xn, Y, T − Tn). (6.22)

Figure 13 presents the results of these computations. Far from the Faraday onset and
with a slow walker, the wave field is approximately circular, with small variations of
the wavelength (see figure 13a). Closer to the onset, a walker with a higher velocity
creates a wave field similar to the Fresnel pattern (see figure 13b). This confirms both
experimental observations and results obtained by the phenomenological model.
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Figure 14. Measurement of the non-dimensional wavelength λW/λF as a function of the
dimensional velocity VW/Vφ of the walker for various droplets. The triangles show the
wavelength ahead of the droplet, the crosses behind it. The dashed lines are the Doppler
shift values given by (7.2).

7. The walker’s wave field

We can now describe the walker’s wave field in detail. Both the experimental results
(§ 5) and the fluid mechanics theoretical approach (§ 6) have clarified the physics of
a single impact on a vibrating bath. They demonstrated the need to distinguish two
successive phases in the generation of waves by a bounce of the droplet. First, a
capillary wavepacket is emitted and radiated away. This propagative front is centred
on the bouncing point and travels at the group velocity Vg , while its main crest
propagates with the phase speed Vφ . As it is radiated away, this front leaves behind a
pattern of circular standing Faraday waves, which are almost sustained by the vertical
forcing. Their damping time depends on the distance to γF , and they are long lasting
when the system is tuned close to the instability onset. The global wave field results
from the superposition of the recently emitted propagative front with the interference
pattern of the synchronized standing Faraday waves generated by earlier bounces.
First, we focus on the propagative fronts, then we examine the standing waves, and
finally contributions of both effects are combined.

7.1. The propagating fronts: Doppler effect

If measurements are performed on the photographs shown in figure 2, they reveal that
the succession of the main wave crests does not have the same spatial periodicity in all
directions. Transverse to the motion, the pattern has exactly the wavelength expected
for waves excited at half the forcing frequency. Ahead of the droplet, the waves
appear compressed while they are dilated behind it. We measured the wavelengths λW

along the direction of propagation, ahead of and behind the droplet, as a function of
the walker’s velocity VW . These experimental results are presented in figure 14. They
correspond to a Doppler shift. Observation of the high-speed camera films shows that
in the vicinity of the bouncing droplet, the successive wave crests can be ascribed to
the successive propagative wave fronts of the latest bounces. These wave crests travel
with a phase speed Vφ and are generated by a source, the walker, that moves with
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a constant speed VW along the x -axis. We look at the wave pattern at time t0 = 0,

where the walker is located at x0 = 0. Each crest is centred on a given impact point
xn = n∆ (n< 0) and has travelled during ti − tn a distance |n λF |. The wave maxima
(xmax , ymax ) are thus located on circles:

(xmax − xn)
2 + y2

max = (n λF )2, (7.1)

with n being an integer. From (7.1), we can calculate the wavelength ahead of and
behind the droplet. The equation simplifies to

λ
th
W = λF ∓ VW TF . (7.2)

As seen in figure 14, this predicted Doppler effect (7.2) is slightly weaker than the
measured one. The origin of this discrepancy is not known.

7.2. The sustained wave field: a stored memory

We now focus on the standing waves by a trick whereby the existence of a path
memory, supported by a sustained wave pattern, appears clearly. On a clean liquid
interface, the lifetime of a walker is unlimited. However, the droplet will coalesce with
the bath instantly if it collides with a floating bubble. By generating micro-bubbles on
the interface, we can create a ‘minefield’ for the walker and observe with a high-speed
camera a close-up of its coalescence. Figure 15(a–d ) presents four successive images
extracted from such a recording, where each subfigure shows images taken before
the coalescence of the drop, at the coalescence, and surviving waves at times t = 5TF

and t =15TF after coalescence, respectively. At first sight, the wave patterns observed
before and after the walker’s disintegration appear very similar but they are actually
different.

In the presence of the droplet, the whole pattern moves with the particle at velocity
VW . At each step, the new impact generates a circular propagative front, which is
responsible for the translation of the whole pattern.

(i) After the walker disintegration, the capillary waves are radiated away and only
the Faraday waves remain. The wave field still exhibits a complex interference pattern
but the whole structure no longer propagates. The Doppler effect has disappeared
and the wavelength is now the same and equal to λF in all directions.

(ii) Through lack of the energy imput due to the drop bouncing, the localized mode
of Faraday waves decays with a typical time scale τ .

We recover the same three features in numerical simulations: we use the same
procedure as in § 6.4, but we stop adding the sources at a given time and let the
system evolve. The wave field becomes stationary and the wavelength changes ahead
of and behind the droplet (see figure 16).

In the long memory limit, this wave field results from the superposition of standing
waves surrounding sources distributed along the past trajectory. Since the droplet had
a rectilinear motion, these sources are aligned along the half-line behind the point
at which the droplet has disappeared. These discrete sources are close to each other
(∆ ≪ λF ). The waves are synchronized by the bath vibration and have an amplitude
declining with time. The number of sources which contribute to the wave field is
characterized by the memory parameter Me.

When Me tends to infinity, the wave field structure (figure 15c,d ) can be
understood by an optical analogy. A classical application of Huygens–Fresnel theory
of diffraction (Huygens 1690) is the computation of the near-field interference pattern
of a monochromatic plane wave impinging on the edge of a wall (Born & Wolf 1959).
Behind the wall, the wave field is computed by replacing the plane wave by virtual
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Figure 15. The disintegration of a walker. (a–d ) Four photographs extracted from a fast
camera film. If the origin of time is taken at the coalescence of the drop, the picture in
(a) at time t = −5TF shows the wave field of the droplet that moves at velocity VW = 14.1 mm s−1

with Γ −1 =50. In (b), the droplet collides with a small floating bubble and coalesces. The
photographs in (c) and (d ) taken at time t = 5TF and t = 15TF show the survival of standing
waves, damping slowly with time. The white segments have a length equal to λF .
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Figure 16. Two visualisations of Ξ (X, Y, T ) of a walker for a forcing frequency 80 Hz with
a forcing amplitude Z0/g = 4.05 (Γ −1 = 82), M = 2.7 × 10−3 and velocity VW = 0.2. The drop
has started to walk at time T = 0 and has disappeared at time T = 42. The wave field in (a)
was obtained at T = 41 and in (b) at T = 49.
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sources. These are in-phase sources of circular waves covering the unobstructed part
of the wall plane. The sum of their contributions is then obtained by the geometrical
construction of the Cornu spiral (Cornu 1874) or by the analytical calculation with
the tabulated Fresnel integrals. In the vicinity of the edge, interference is observed
while a plane wave is recovered far from it.

In our experiment, the previous points of bouncing are the centres of circular
waves that are synchronized and aligned. Their geometrical distribution is the same
as that of the virtual sources considered in optics, the equivalent of the wall being the
half-line that has not yet been visited by the walker. The difference is of course that
we have here real centres of standing waves instead of virtual sources of propagative
waves. This analogy allows a precise description in the case of long path memory:
after the drop destruction, the remaining memory field is a pure stationary Fresnel
interference pattern that damps out very slowly. In the spatial vicinity of the last
bounce of the drop, the nodes and antinodes are precisely predicted and a plane wave
structure parallel to the trajectory is observed far from it. In the case of moderate
path memory, the older sources generate waves of decreasing amplitude. In this case,
the interference pattern near the last bounce is maintained. Far behind it, the plane
wave part of the field vanishes.

7.3. The global structure of the wave field

Having presented separately the two components of a walker’s wave field, we can
return to its global description, taking into account the propagative fronts and
the standing waves together. We can now revisit the three photographs shown in
figure 2(b–d ). They correspond to wave fields with a characteristic memory of 6, 14
and 55 bounces, respectively. In these photographs, the circular waves are mainly due
to the successive capillary fronts emitted by the last few bounces and they exhibit a
Doppler effect. These waves superpose on the stationary waves sustained around an
increasingly large number of older collision sites (going from figures 2b to 2d ). As
already described, the interference of these Faraday waves produces standing plane
waves parallel to the trajectory behind the droplet. They are particularly well observed
in the situation of very weak damping (Me ≃ 100) in figure 17(a). The wave maxima
(xmax , ymax ) are located on lines ymax = m λF parallel to the trajectory, m being an
integer. The two types of waves being temporally synchronized by the forcing, their
superposition gives rise to an interference pattern which is similar to the Fresnel
interference pattern but includes a Doppler shift. Looking at the spatial phase of the
waves, we can calculate the position of the maxima (xmax , ymax ) of the wave field at
the intersections of the two sets of curves:

ymax = m λF ,

xmax = n∆ −
√

(n2 − m2) λF with n< 0.

}

(7.3)

All the extrema are placed along curves, drawn in figure 17(b). There is a good
agreement with experimental observations in the case of weak damping. This simple
model thus provides a good approximation of the wave structure.

8. Conclusion and outlook, the nature of the path memory

Several previous experiments on walkers have been dedicated to the question of
how a localized and discrete particle could have a common dynamics with its extended
associated wave. They revealed that, in spite of the huge gap between the systems,
analogies exist with some aspects of the particle–wave behaviour at quantum scale.
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(a) (b)

Figure 17. (a) Photograph of the wave field of a walker with Γ −1 = 100. (b) Sketch of the
wave field. The circles are the antinodes of the capillary waves generated by the most recent
impacts. The straight lines are the antinodes of the wave generated by the sources aligned
with the past trajectory. The dotted lines are the resulting antinodal lines of the interference
pattern.

For instance, the experiments on the diffraction of walkers (Couder & Fort 2006)
showed that an attempt to localize the wave generates an uncertainty in the velocity
of the droplet. A relation to quantum systems was also found in the quantization of
the possible orbits when a walker is subjected to a force giving it a circular trajectory
(Fort et al. 2010).

Early in the history of quantum mechanics, de Broglie suggested that elementary
particles could be guided by their association with a pilot wave (de Broglie 1926). In
an attempt to restore determinism in quantum mechanics, this idea was revisited by
Bohm (1952). Our system, in which a particle (the droplet) is guided by its associated
wave, appears as the first experimental implementation of the idea of a pilot wave and
it does lead to quantum-like behaviours. However, in our system, while the association
of the particle with the wave is a necessary condition to obtain those behaviours, it
is not sufficient. Their observation also requires that the waves contain information
on the droplet’s past trajectory, what was called (Fort et al. 2010) the wave-mediated
path memory of the system.

In many instances, the dynamics of physical systems depends on their history,
for example when retardation effects exist. It is also a dominant feature of growth
problems. For instance, in the case of a radially growing Saffman–Taylor viscous
fingering, the structure of the initial destabilization continues contributing to the
Laplacian field which determines the later growth (Couder 2000). Similarly, the high-
order Fibonacci organization observed in the capitulum of a sunflower is the
product of a sequence of successive bifurcations during the whole plant development
(Douady & Couder 1996). In those cases, the system is open and changes with time.

The relation of a walker to its history is different. The system remains the same but
its sensitivity to its own history is mediated by the existence of a recorded memory.
This situation is met in biology or anthropology more often than in physics. In
general terms, a memory requires the encoding of information, its storage and the
possibility of a later access to this information. Here, each bounce of the droplet, by
disturbing the interface, records information about the spatio-temporal localization
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of the collision. This information is stored because each bounce generates a sustained
localized state of Faraday waves. The information being stored in waves, the data
about the trajectory are cumulated in an interference pattern due to the waves’ linear
superposition. Later, as the drop collides again with the interface, it ‘reads’ this
cumulated information and the local slope of the distorted surface determines the
direction and amplitude of the next jump. The dual nature of the walker is contained
in the path memory dynamics: the wave nature lies in the coding while the particle
nature lies in the reading. The reading can be seen as a local integration of the
wavepacket at a single localized point. It can be noted that a related situation has
been observed recently in crack propagations (Goldman, Livne & Fineberg 2010),
where waves emitted in the past can return to act on the propagating crack at later
times.

The present article has addressed the quantitative characterization of this path
memory. We have first studied the excitation of Faraday waves by a single disturbance
below the instability threshold. Turning to the case of a linear moving droplet, we
have shown that its global wave field can be entirely described by the superposition of
waves excited along a straight line by the successive impacts of its bouncing. We have
thus shown that when a walker is far from any boundary, there exists a translating
global solution for both the droplet and the interference pattern of the wave field.

However, the memory has very drastic effects when the trajectory is not rectilinear.
When the walker is forced into a circular motion by an applied transverse force, only
certain trajectories are possible, generating a wave field with a fixed structure that
rotates with the droplet. This leads to a quantization of the possible orbits as shown
in Fort et al. (2010). Other dramatic effects of the memory are observed whenever
boundaries generate any kind of confinement of the walker. In these situations, the
waves emitted in the past and reflected by the boundaries lead to a complex structure
of the interference field and correspondingly to a disorder in the droplet motion
(Couder & Fort 2006). The present quantitative analysis will be an essential tool for a
further investigation of those situations where a forced spatial localization generates
an uncertainty in the walker velocity. Finally, the possible relevance of this type of
temporal non-locality to particle physics appears an interesting open problem.
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