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INFORMATION STRUCTURES, CAUSALITY, AND
NONSEQUENTIAL STOCHASTIC CONTROL I:
DESIGN-INDEPENDENT PROPERTIES*

MARK S. ANDERSLAND! AND DEMOSTHENIS TENEKETZIS*

Abstract. In control theory, the usual notion of causality—that, at all times, a system’s output
(action) only depends on its past and present inputs (observations)—presupposes that all inputs and
outputs can be ordered, a priori, in time. In practice, many distributed systems (those subject to
deadlock, for instance) are not sequential in this sense.

This paper explores the relationship between deadlock freeness, a less restrictive notion of causal-
ity, and the properties of a potentially nonsequential generic stochastic control problem formulated
within the framework of Witsenhausen’s intrinsic model. A property of the problem’s information
structure that is necessary and sufficient to ensure deadlock-freeness is identified and shown to be
sufficient to ensure that all of the problem’s control policies possess expected rewards. It is also
shown, by example, that there exist stochastic control problems for which all sequential policies are
suboptimal.

These results subsume Witsenhausen’s “causality” condition (property C), suggest a framework
for the optimization of unconstrained nonsequential stochastic control problems, and provide an
intuitive design-independent characterization of the cause/effect notion of causality. The results also
have game theoretic implications—they suggest, for instance, necessary and sufficient conditions for
a finite game to possess an extensive form.

Key words. information structures, causality, deadlock-freeness, nonsequential stochastic con-
trol.

1. Introduction. In control theory, the usual notion of causality—that, at all
times, a system’s output (action) only depends on its past and present inputs (observa-
tions)—presupposes that all inputs and outputs can be ordered, a priori, in time. As
it becomes increasingly attractive to decentralize the control of large systems, it has
become clear that many important systems—distributed data [5], communication [13],
manufacturing [11], and detection networks (Appendix A), for instance—need not be
sequential in this sense.

The distinguishing feature of these nonsequential systems is the impeossibility of
ordering their control actions a priori, independently of the set of control laws, called
the design (or control policy), that determines the actions. In the simplest case, a
system’s actions can be ordered a priori, given any design, but the order varies from
design to design. More generally, for at least one design, the order implicitly depends
on the system’s uncontrolled inputs—e.g., action a may depend on action § under
some circumstances while # may depend on « under others. In the worst case, for
some design, and for some uncontrolled input, no “causal” ordering of the actions is
possible because two or more actions are mutually dependent—e.g., action « depends
on action 3 and vice versa. This last phenomenon, unique to nonsequential systems,
is known as deadlock.

In this paper we explore the relationship between deadlock-freeness, a property
that generalizes the usual notion of causality, and nonsequential stochastic control.
We begin by defining deadlock-freeness (Definition 1, §3.1). Given this definition
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we consider the following question: Under what conditions is it possible to pose well-
defined nonsequential stochastic control problems? This question is of interest because
there exist problems for which all sequential designs (designs whose actions can be
ordered a priori) are suboptimal (see Appendix A).

Witsenhausen’s intrinsic model [19], [21] provides the framework for our results.
This model, which was originally used to investigate a related causality question,
encompasses all systems in which (1) the uncontrolled inputs can be viewed as an
element of a measurable space (€2, B); (2) the number of actions to be taken is finite,
say N; (3) the kth action, k = 1,2, ..., N, can be viewed as an element of a measurable
space (U*,U4*) in which the singletons are measurable; and (4) the possible designs can
be viewed as N-tuples v := (v1,792,...,v") of J* /U*-measurable functions v*, k =
1,2,...,N, where the subfield J* of the product field B ® (@Y, 1) denotes the
maximal information (knowledge) that can be used to select the kth action.

Within this framework, we identify a property of the information subfields 7%, k =
1,2,...,N, (property CI, §3.2) that is necessary and sufficient to ensure that every
N-tuple v of J* /U{*-measurable functions v,k = 1,2,..., N, is deadlock-free. More-
over, we show that this property is sufficient to ensure that an expected reward can
be defined for every N-tuple, and consequently, that the problem of maximizing a
generic system’s expected reward, given a probability measure on (€, B), and a re-
ward function, is well-posed. The property is design-independent in the sense that it
holds for all designs +.

These results subsume Witsenhausen’s “causality” condition (property C) [19],
suggest a framework for the recursive optimization of unconstrained nonsequential
stochastic control problems [1], and provide an intuitive characterization of the cause/
effect notion of causality. In essence, this characterization says that a system is causal
if and only if for each tuple of uncontrolled inputs there exists an ordering of the
system’s actions such that no information that may be used to determine an action
depends on that action or subsequent actions.

There are other approaches to the modeling of nonsequential systems. None, how-
ever, are as well suited to examining the relationship between deadlock-freeness and
nonsequential control as the intrinsic model. Most game-theoretic models that accom-
modate nonsequentiality are variations of Kuhn’s extensive form [12], a “game tree”
representation that precludes deadlock by definition (cf. [19, §2]). The discrete event
models that accommodate nonsequentiality are, for the most part, state transition-
(e.g., [6], [16]), algebraic equation- (e.g., [9], [10], [15]), or logical calculus- (e.g., [4],
[8], [14], [17]) based representations of the action sequences (traces) that a system
can generate; consequently, they are incompatible with the usual control theoretic
representations of uncertainty and information.

The remainder of the paper is organized as follows. In §2 we introduce Witsen-
hausen’s intrinsic model and formulate our generic nonsequential stochastic control
problem. In §3 we define properties DF (deadlock-freeness) and CI (causal imple-
mentability), and prove that property CI, a condition that is necessary and sufficient
to ensure deadlock-freeness, is sufficient to ensure that unconstrained versions of the
generic problem are well defined. In §4 we consider the relationship between property
CI and Witsenhausen’s “causality” property C. Section 5 contains our conclusions.

2. Problem formulation. To examine the relationship between deadlock-free-
ness and nonsequential stochastic control it is necessary to represent nonsequential
systems in a framework in which each action can be viewed as depending on some sys-
tem information, for instance, an observation of the system. The “conventional” con-



INFORMATION STRUCTURES AND CAUSALITY I 1449

trol theoretic models—controlled difference, or differential equations modeling time-
indexed “states” and “observations”—provide such a framework; however, they pre-
suppose a fixed ordering of the system’s control actions. In this paper, as in [19] and
[21], we relax this assumption.

2.1. Preliminaries. Consider a generic stochastic system in which the number
of control actions and uncontrolled inputs are both finite (Fig. 1). From a game-
theoretic perspective (cf. [18]), the control actions can be viewed as being the actions
of N distinct decision-making agents (computers, devices, processes, etc.). Likewise
the uncontrolled inputs can be viewed a single action of nature (chance).

To couple the agents’ actions without preordering their decisions, suppose that
nature’s action w := (W% w',...,w"), the kth agent’s observation y*, and the kth
agent’s action u*, take values in, respectively, the measurable spaces (92, B), (Y*, V¥),
and (U*,U*). Let U := Hfil Ut and U := ®f;l U*; constrain the system’s kth
observation to be a measurable function

(2.1) e (QxU,BQU) — (Y* V%)

of the system’s intrinsic variables, w and u := (u',4?,...,u"); and constrain the kth
agent’s decision policy, to be a measurable function

(2.2) g*: (Y5 V5) — (UK Ub)

of this observation.

wo

Initial Uncertainty

Uncontrolled
Inputs
w? — ~u?
SYSTEM
oV — — N
Control
Actions

Observations J l o l
y'y? yY

FiG. 1. A generic stochastic system.

With respect to the “conventional” discrete-time, finite horizon models of stochas-
tic control, this representation entails no loss of generality. The system’s uncontrolled
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inputs—its initial state, state and observation noises, and so on—can always be viewed
as a single uncontrolled input w € Q). Moreover, the kth observation—normally as-
sumed to be a measurable function of some subset of the system’s control actions,
states, and random inputs—can always be viewed as a measurable function of the
system’s intrinsic variables.

The advantage of this representation, as opposed to the conventional models, is
that as long as the superscripts on y and u are not assumed to index time, it permits
interdependence among a system’s control actions—e.g., given a fixed control policy
7= (4 9%...,7"), v may depend on u* (through y’) for some w, and vice versa
for other w. Consequently, it is possible to model nonsequential stochastic control
problems, that is, problems in which a causal ordering of the control actions cannot
be determined a priori because the ordering is policy, and possibly, w-dependent.

Witsenhausen’s intrinsic model [19], [21] simplifies the preceding representation.
The crucial observations are (1) that the system’s control actions are solely deter-
mined by the intrinsic variables (e.g., u* = (g* o h*)(w,u) for all k = 1,2,...,N); and
(2) that for reasonable observation functions, the kth observation, k = 1,2,..., N,
can only affect the kth control action via the information subfield it induces on the
space of intrinsic variables (i.e., via [h*¥]71(V*) c B@U'). Accordingly, it is unneces-
sary to model the observations explicitly if the control agents’ actions are viewed as
measurable functions of the intrinsic variables.

2.2. The intrinsic model. Formally, the intrinsic model has three components:

1. An information structure T := {(Q, B), (U*,U*),J% : 1 < k < N} specifies
the system’s allowable decisions and distinguishable events.

(a) N €N denotes the number of control actions to be taken.

(b) (22, B) denotes the measurable space from which a random input w is drawn.

(c) (U*,U*) denotes the measurable space from which u*, the kth control action,
is selected. It is assumed that card(U*) is greater than one,? and that U* contains
the singletons of U*. The product space containing the N-tuple of control actions,
w:= (ul,u2,...,uN), is denoted by (U,U) := ([Tr., U', @i, U).3

(d) o-field J* C B ® U characterizes the maximal information that can be used
to select the kth control action.

2. A design constraint set I'c constrains the set of admissible N-tuples of control
laws, v := (71,72,...,7"), called designs, to a nonempty subset of I' := [[V, I,
where I'*, k = 1,2,..., N, denotes the set of all J*/U/*-measurable functions.

3. A probability measure P on (€2, B) specifies the mixed (randomized) decision
policy to be used by nature to select w.

Note that the intrinsic model does not exclude the possibility of an agent employ-
ing a mixed decision policy, or a policy that occasionally dictates that the agent not
act. To model the mixed policy, randomizing devices can be included as factors in

1 {f]=1 denotes the inverse image of the function f, [f]~1(C) := {[f]~1(4) : A € C} denotes the
set of inverse images induced by the sets in C. Since inverse images preserve unions and complements,
the inverse image of a o-field is always a o-field.

2 Although the assumption card(U*) > 1 was not made by Witsenhausen, it does not constitute
a loss of generality. Any agent k for which card(U*) = 1 has no decision to make; consequently, that
agent can be deleted from the model without effect (naturally, the remaining agents’ information
fields—defined in 1(d)—must be adjusted to account for the kth agent’s deletion—i.e., for all j #
k, J7 must be replaced by Jj|uk, the uF-section of JJ.

3 X @ Y denotes the product o-field of the o-fields X and Y—i.e., X @ ¥ := o([rx]| (X)L
[ry]=2()), the smallest o-field of X x Y for which the canonical projections wx (7 x(z,y) = z) and
ny (my (z,y) = y) are both measurable.
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(Q, B, P), and the effects of the devices’ outputs can be specified in J*. To model the
occasional inaction, the agent can be allowed to make decisions that have no effect.

2.3. A generic problem. Within this framework we can formulate the following
generic stochastic control problem.
(P) Given an information structure Z, a design constraint set I'c, a probability
measure P, and a bounded, nonnegative, B ® U-measurable reward function
v,

Identify a design < in I'c that achieves

sup E,[V(w,u])] exactly, or within € > 0.4
velc

Is this generic problem well defined? Since the problem may be nonsequential
there are two issues: “deadlock-freeness” (Is every v € I'c deadlock-free?) and “math-
ematical wellposedness” (Does every design v € ' possess an expected reward?).

In general, nonsequential problems of the form (P) need not be deadlock-free or
well-posed. Suppose, for instance, that for some design v € I'c, and some random
outcome w € €, the control actions

(2.3) w =~ (w,ul,. ..k ul),
and
(2.4) kb =~k w,ul, .l ),

are interdependent. Then a deadlock arises, and consequently, the problem is not
deadlock-free. Alternatively, suppose that for some design v € I'¢, and some random
outcome w € €2, the closed-loop equations

(2.5) ub =AW, ... ), k=12,...,N
fail to possess a unique solution
(2.6) ul = (ul

Then the reward V(w,u}) induced by w under v need not be unique, the expected
reward E, [V (w,uY] need not exist, and consequently, the problem need not be well
posed.

The primary objective of this paper is to identify conditions sufficient to ensure
that problem (P) is deadlock-free and well-posed. Since there exist problems of the
form (P) for which some, but not all, nontrivial designs are deadlock-free and possess
expected rewards (Appendix A)—two classes of conditions can be considered: con-
ditions based on the problem’s design-independent properties (properties that hold
for all v € T'), and conditions based on the problem’s design-dependent properties
(properties that may only hold for specific designs v € T'). In this paper, conditions
based on the problem’s design-independent properties are explored. Conditions based

on the problem’s design-dependent properties are introduced in a companion paper
[3].

4 The notation ug, indicates that u depends on w through v (see §3.1).
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3. Design-independent conditions. In this section, necessary and sufficient
conditions for problem (P) to be well-posed and deadlock-free are developed under
the assumption that the problem’s design set is unconstrained (i.e., Ic = T'). The
conditions are design-independent in the sense that they are solely based on properties
of the problem’s information structure Z.

3.1. Properties DF, S, and SM. To ensure that problem (P) is deadlock-free
it suffices to require that its information structure Z possess property DF (deadlock-
freeness).

DEFINITION 1. An information structure 7 possesses property DF (deadlock-free-
ness) if for each v € T, and for every w € (2, there exists an ordering of 4’s N control
laws, say y°1(@) s2(@)  ~sn(@} such that no control action u*~),n =1,2,...N,
depends on itself or the control actions that follow.

Note that the ordering in Definition 1 may depend on the design v € I and the
random input w € Q. For instance, for some v € I' a triggering random event may
determine the identity of the initial control action (see Appendix A).

When 7 possesses property DF, for each v € I" and for all w € Q, v is deadlock-
free in the sense that, given w, u*1“) can be determined; given w and w1 (@), y%2(w)
can be determined; given w, ©**) and u*2>(¥), 453 can be determined; and so on.
Hence, property DF generalizes the usual notion of causality in the sense that it does
not presuppose that the actions’ order is fixed.

To ensure that problem (P) is well-posed, it suffices to require (i) that for each
v € T and every w € 2 there exist a unique u := (u*,u?,...,u"V) € U satisfying the
system of equations

(3.1) uf =~+¥w,u), k=1,2,...,N,

and (ii) that each of the solution maps 7 : @ — U induced via these solutions
(i.e., ¥V(w) = u}, where v, = v(w,u))) be B/U-measurable. Then, for each v € T,
V(-,£7(-)) is B-measurable, and consequently, F, [V (w,X7(w))] exists. Systems that
satisfy (i) are said to possess property S (solvability) while systems that satisfy (ii)
are said to possess property SM (solvability /measurability) [19]. In fact, property S
often implies property SM [2].

3.2. Property CI. Property SM holds when, for each v € ', and each uncon-
trolled input w € €2, every agent’s action is uniquely determined and the actions’
w-dependence is B-measurable. Since property SM does not rule out the possibility
that, for some w € €2, agent N’s information depends on agent 1’s action, and for all
k=1,2,...,N — 1, agent k’s information depends on agent k + 1’s action, property
SM is not sufficient to ensure property DF (cf. [19], Thm. 2). That is, although prop-
erty SM holds, for some w € Q, every agent’s information may depend on every other
agents’ actions, and consequently, for that w, no agent can act without precognition.

Property DF suggests that such deadlocks cannot arise if for each w € €, the
agents can be ordered such that each agent’s information only depends on w and
its predecessors’ actions. To formalize this observation it is convenient to adopt
the notation in [19]. For all k = 1,2,..., N, define Sk to be the set of all k-agent
orderings—i.e., all injections of {1,2,...,k} into {1,2,...,N}. Forall j =0,1,..., N,
andk=j,5+1,...,N, let Tf : 8y — S; denote a truncation map that returns the
ordering of the first j agents of a k-agent ordering—i.e., Tf restricts s € Sy, to the
domain {1,2,...,5} or to @ when j = 0. Finally, for all s := (s1,82,...,8%) € Sk, and
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k=1,2,...,N, define P; to be the projection of & x U onto £ x (Hf:1 Usi)—i.e.,
(3.2) Ps(w,u) = (w,u’,u®?, ... u’), Pg(w,u) := (w).

Then, we can characterize deadlock-freeness as follows.

DEFINITION 2.  An information structure Z possesses property CI (causal imple-
mentability) when there exists at least one map ¢ : Q x U — Sy such that for all
k=1,2,...,N, and (w,u) € A x U,

(3:3)  T*NI[Pry ()] (Pry (o(w,u) C{D, [Pry (o] (Pry (5)(w,u)}

when s := (81, 82,...,8N8) = V¥(w,u).
¥ is a function that maps every intrinsic outcome (w,u) € Q x U into an N-agent
ordering.

(34) [Pry (o] (Pry (W, 0)) = [Pry (o] Hw,u™, . u*1)

is the cylinder set induced on  x U, when the intrinsic outcome is (w,u), by the
actions of nature and the first kK — 1 agents in s := (sy, 82,...,s5) = ¥(w,u). Since

(3.5) T*N[Pry (9] Py (o (w,w))

denotes the trace of the sith agent’s information field on this cylinder set (i.e., J** N
C:={ANC : A e J%}), (3.3) constrains the cylinder set to be a subset of all
events containing (w,u) in the sxth agent’s information field J**—i.e., no event in
J®* containing (w, ) may depend on u®*, u**+1 ... or 4°¥. Accordingly, property CI
ensures that for all outcomes (w, u) € QxU, there exists an order s := (s1, 82,...85) =
¥(w,u) such that, for all k = 1,2,..., N, the sith agent’s information, at the point
(w,u), only depends on the actions of nature and its predecessors in s.

Property CI implies property SM and is a necessary and sufficient condition for
all v € T to be deadlock-free. Theorem 1 states this formally.

THEOREM 1. Let T be an arbitrary information structure, then

(i) Z possesses property SM if T possesses property CI, and

(ii) T possesses property DF if and only if Z possesses property CI.

Proof. See Appendix B. O

Theorem 1 ensures that problem (P) is well defined (deadlock-free and well-posed)
when it satisfies property CI. Its proof hinges on the following observation. When
7 is an order function such that T possesses property CI, for arbitrary but fixed
(w,u) € AxU,and k =1,2,...,N, (3.3) and the fact that A{* contains the singletons
of U* imply that, at the point (w,u), all J** /U*-measurable functions y** € I'**,
s := (s1,82,-..,5N) = ¥(w, u), do not depend on the components sy, sgy1, - .., and sy
of w. This suggests that, for fixed v € I', a unique B-measurable solution X7 : @ — U
to the closed-loop equation u = y(w,u) can be obtained by the following recursion.
Fix w € Q, let r € U be an arbitrary reference element, let LY : @ x U — Q x U be
defined as

(3.6) LY (w,r) = (w,¥(w, 7)),
and let L) : @ x U — Q x U be a k-fold composition of L7—i.e.,

(3.7 Li(w,r):=(L70---0 L7 )(w,T).

k times



1454 M. S. ANDERSLAND AND D. TENEKETZIS

1. After one iteration, the components of L] (w,) corresponding to agents whose
information, at the point (w,r), does not depend on r, become invariant to subsequent
iterations. By property CI, the set A;(w) C {1,2,..., N} indexing (by agent) these
components is nonempty since at least agent (y(w,r))1’s information does not depend
on r.

2. After two iterations, the components of L](w,r) corresponding to agents in
{1,2,...,N}\ A;(w) whose information, at the point L](w,r), does not depend on
the components of agents in {1,2,..., N} \ A;(w), become invariant to subsequent
iterations.> By property CI, the set A2(w) indexing (by agent) these components is
nonempty when card(A; (w)) < N since at least agent (¥(L](w,7)));’s information,

(3.8) j=min{m € {1,2,..., N} : ($(L{(@,7)))m & A1(w)},

does not depend on the components of agents in {1,2,...,N}\ A;(w).

k. After k iterations, the components of L](w,r) corresponding to agents in
{1,2,...,N}\ Uf__fll A;(w) whose information, at the point L} ,(w,r), does not
depend on the components of agents in {1,2,...,N} \ Uf;ll A;(w), become invari-
ant to subsequent iterations. By property CI, the set Ag(w) indexing (by agent)
these components is nonempty when card(Ui-:l1 Ai{w)) < N since at least agent
(Y(L]_;(w,)));’s information,

k-1
(3.9) j= min{m €{1,2,...,N}: W(L]_1(w,7)))m & U A,-(w)}

does not depend on the components of agents in {1,2,...,N}\ Ufz_ll A;(w).

and so on.

Since property CI ensures that, until all agents’ components are invariant, at least
one new component becomes invariant after every iteration, the recursive procedure
must converge in, at most, N iterations—i.e., the unique solution to the closed-loop
equation u = vy(w,u) is my (L} (w,r)), where 7y denotes the canonical projection
of @ x U onto U (ny(w,u) = uw) and r € U is an arbitrary “seed” that starts the
recursive solution process. Since 7, Ty, and v are, respectively, BQU/B-, BQU /U-,
and B®U /U-measurable, L7, and by composition, L} and 7y o L}, are, respectively,
BU/B®U-, BU/BRU-, and BOU/U-measurable. It follows, since all u-sections
of B®U /U-measurable functions are B/U-measurable, that the induced solution map
Y = ny o LY |- is necessarily B/U-measurable.

The above recursion has an obvious physical interpretation. For fixed v € I" and
w € §, suppose that we conduct the following thought experiment: decouple the
agents and record in succession, C;(w), the indices of those agents that act given w

5 For sets A,BC X, A\B:={z€ A:z ¢ B}.
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alone; Ca{w), the indices of those agents that act given w and the actions of agents in
C1{w); C3(w), the indices of those agents that act given w and the actions of agents
C1(w)UC>(w); and so on. Clearly, Ax(w) = Cx(w) forallk =1,2,...,N. Accordingly,
if for all k we ignore all components of my (L) (w,r)) but those corresponding to the
agents indexed in A (w), the preceding recursion outlines the partial ordering of agent
actions that a passive observer would record, given w, if the design ~ were implemented
in a “maximally” concurrent fashion.

Although the preceding recursion implicitly demonstrates that property CI im-
plies property DF, it is far easier to establish sufficiency by a direct appeal to property
CL For all (w,u) € @ x U and k =1,2,..., N, property CI implies that at the point
(w,u), all J*¢ /U**-measurable functions y** € I['** s := (s1,82,...,8n) = Y(w,u),
do not depend on the components s, Sk+1, - - ., and sy of u. Consequently, no agent’s
information depends on its own action or the actions of its successors—i.e., the system
must be deadlock-free.

The fact that some design v € I' must deadlock when property CI fails to hold is
also a direct consequence of property CI’s definition. When property CI fails, for some
outcome (w,u) € @ x U and for all N-agent orderings s € Sy, (3.3) fails for at least
onek € {1,2,...,N}. Since there are at most Ncard(Sy) = N(N!) k, s combinations
for which (3.3) can fail, and since all agents may take at least two distinct actions, it
is always possible to construct a design 7 that possesses all of the interdependencies
that cause (3.3) to fail—i.e., a design « such that for all s € Sy, when the sith
agent’s information depends on the actions of its successors in s, v°* (w,u) depends
on the sith agent’s successors’ components of u. Accordingly, it is always possible to
construct a design that deadlocks.

4. Property CI’s relationship to property C. Witsenhausen was the first
to develop conditions sufficient to ensure a system’s deadlock-freeness (he termed it
“causality”). Specifically, he introduced the following property.

DEFINITION 3 ([19]). An information structure Z possesses property C (causal-
ity) when there exists at least one map ¥ : @ x U — Sy such that for all s :=
(81,82,...,Sk) € Sk, k=1,2,...,N,

(4.1) T*NILY 0 g1 (s) € F(Tg_4(s)),

where F(s) denotes the cylindrical extension of B® (®f:1 U*) to Qx U for all s € S,
k=12...,N.S
He then proved the following theorem (DF is our terminology).

THEOREM 2 ([19]). Let T be an arbitrary information structure; then

(i) T possesses property SM if T possesses property C, and

(ii) Z possesses property DF if T possesses property C.

Proof. See [19, §§6 and 7). Q

Since property C implies property DF (Theorem 2(ii)), and since property DF
implies property CI (Theorem 1(ii)), the following is clear.

COROLLARY 1. Property C implies Property CL.

Proof. See Appendix C for a direct proof. O

This corollary suggests that the 1/-dependent umpire recursion that Witsen-
hausen used to prove Theorem 2 ([19, §7]), is not fundamental—i.e., to prove The-
orem 2, it suffices to compose 7 |, with itself N times (i.e., to form my o LY, |,) as

6 Here, in contrast to [19], ¥ is a mapping from Q x U to Sy and F(@) is the cylindrical extension
of Bto Q x U (see [21]).
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described in §3. The corollary also raises the following question: Are properties C
and CI equivalent? Equivalence would imply, by Theorem 1(ii), that Z’s possession
of property C is both a necessary and sufficient condition for deadlock-freeness. Non-
equivalence would imply that property C is, in general, only a sufficient condition for
deadlock-freeness.

When N < 2, properties C and CI are always equivalent. Corollary 2 states this
formally.

COROLLARY 2. Property CI implies property C when N < 2.

Proof. By Theorem 1(i) property CI implies property SM which, in turn, implies
property S. The coroliary follows since property S implies property C when N < 2
([19, Thm. 2]). O

When N > 2, it is not known (in general) whether property CI implies property
C; the implication, however, holds in at least two important special cases (Thms. 3
and 4).

DEFINITION 4. An information structure 7 is said to be sequential when property
CI holds for some constant order function 1.

THEOREM 3. All constant order functions v such that T possesses property CI are
order functions such that T possesses property C; consequently, property CI implies
property C when T is sequential.

Proof. See Appendix D. O

Note that an unconstrained problem of the form (P) is sequential (in the sense
discussed in §1) if and only if its information structure is sequential. Witsenhausen
defines an information structure to be sequential when property C holds with a con-
stant order function v ({20, §3]). Accordingly, Theorem 3 ensures that, as far as
unconstrained problems of the form (P) are concerned, sequentiality, as defined in
this paper, is equivalent to Witsenhausen’s sequentiality.

When 7 is nonsequential, even if Z possesses property C, order functions for which
7 possesses property CI need not be order functions for which Z possesses property
C.

Ezample 1. Consider a nonsequential information structure Z of the following
form:

3a
U'=0%?=0U%={0,1},
= u' =u? = = {0,{0},{1},{0,1}},
(4.2) J' = {0, {(w,u):wu? =0}, {(w,u) :wu® =1},Q x U},
J? = {0, {(wu):wu' =0}, {(wu):wu' =1},Qx U}, and

™ D=2
|

VAR {@,{(w,u):w=0},{(w,u):w=1},Q><U}.7
Although
_ (1,2,3) whenw=0
4.3 1.2 .3y
(4.3) P(w,u',u®,u’) { 2.1,3) olse

7 T denotes the binary complement of x € {0,1}—i.e., ¥ =1 — .



INFORMATION STRUCTURES AND CAUSALITY I 1457

is an order function such that Z possesses properties CI and C,

(1,2,3) whenw=0
(4.4) P(w,ut,u?,u®) =¢ (3,2,1) when wu® =1
(2,1,3) else

is an order function such that 7 possesses property CI, but not property C ({(3.3) fails
when k = 1 and s = 3 € 9, for instance, since [T} o 4] 71(3) = {(w,u) : wu® = 1} ¢
F@)=Bx{92,U}).

The fact that there exist nonsequential information structures Z, and order func-
tions ¥, such that 7 possesses property CI, but not property C, implies that general
proofs that property CI implies property C (if such exist) must be constructive—i.e.,
given a 1 such that Z possesses property CI, but not property C, we must be able to
construct a new order function 1/3 (obviously distinet from ), such that Z possesses
property C.

Given the generality of the intrinsic model, such constructions are, at best, te-
dious. Consider Example 1. By simple combinatorial arguments it can be shown that
316 of the 66 possible order functions for Z are order functions for which Z possesses
property CI. Of these 316 order functions, only 25 are order functions for which Z pos-
sesses property C.2 Any proof that property CI implies property C, under conditions
satisfied by the Example 1’s information structure, must produce, as a byproduct,
a construction that maps every one of the 3! order functions for which Z possesses
property CI to one of the 25 order functions for which Z possesses property C.

One such construction (Appendix E, (E.6)-(E.11)) can be used to prove the fol-
lowing theorem.

THEOREM 4. Property CI implies property C when Q, and U*, k = 1,2,...,N,
are countable sets, and B contains the singletons of Q.

Proof. See Appendix E. o

Since the success of this construction hinges on the fact that for all s € Sy,
k=0,1,...,N, F(s) is the cylindrical extension of the power set of {2 x (I-[f:1 Usr)
(a property that only holds under the conditions of the theorem), other constructions
must be developed to establish that property CI implies property C under more
general conditions.

5. Conclusions. In this paper we have introduced conditions necessary and suf-
ficient to ensure that a generic stochastic system, represented within the framework
of Witsenhausen’s intrinsic model, is deadlock-free. The main results concern the fact
that I’s possession of property CI is

(1) A necessary and sufficient condition for all 4 € I" to be deadlock-free (Theorem
1(ii)); and

(2) A sufficient condition to ensure the existence, for all v € T', of a unique B/U-
measurable function 7 mapping all w €  into unique solutions u, of the closed-loop
equation y(w, u) = u (Theorem 1(i)).

8 There are (3!)16 = 616 possible order functions 9 : @ x U — S3 since card(2 x U) = 16
and card(S3) = 3!. Only 316 of these satisfy the conditions of property CI since 4! must precede
u? when w = 0 and vice versa when w = 1 (for each (w,u) this rules out half of the 3! possible
orders). Only 52 of the order functions satisfy the conditions of property C since [T o 9]~ 1(s)
must be F(@)-measurable and [T3 o 4]~1(s) must be F(T?2(s))-measurable for all s € Sz (when
w = 0, only Yjw=0 = (3,1,2) and |01 € {(1,2,3),(1,3,2)} are acceptable; when w = 1 only
Plw=1 = (3,2,1) and ¥|,,—1 ,2 € {(2,1,3),(2,3,1)} are acceptable).
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These results subsume the principal result in [19 Theorem 1], and provide a necessary
and sufficient condition for unconstrained stochastic control problems of the form (P)
to be well-posed and deadlock-free.

The remaining results establish

(3) That I’s possession of property CI ensures, for all v € T', that the function X7
can be determined recursively, starting from an arbitrary “seed” r € U, by composing
Ylw with itself N times (see the discussion following Theorem 1);

(4) That property CI implies property C in a least three special cases (Corollary
2, Theorem 3, and Theorem 4); and

(5) That any general proof that property CI implies property C (i.e., that property
C is a necessary condition for causality) must be constructive (see Example 1 and the
discussion that follows).

Note that nowhere in the paper was any property of the reward—Ilet alone the
implicit assumption that agents cooperate to maximize this reward—ever used to con-
struct a definition or derive a result; consequently, the results of this paper apply to
games as well as controlled systems. For instance, by Theorem 1, a game involving a
finite number of decisions chosen from decision spaces satisfying the constraints im-
posed by the intrinsic model, has an extensive form (i.e., a “game tree” representation,
see (12]) if and only if its information structure possesses property CI.

Appendix A.

A. Decentralized detection: An example. This appendix concerns a decen-
tralized detection network in which the optimal control policies must make explicit
use of the fact that the network’s control actions can be nonsequential. By exam-
ple, it is shown that the introduction of nonsequentiality into the network can, under
some circumstances, give rise to deadlocks, and under other circumstances, improve
network performance.

A.1l. The problem. Consider the problem of designing a simple decentralized
detection network (Fig. A.1) consisting of two detectors, D1 and D2.

Programmable Sensor

Detector D1
>I Mo I y! Data vl e {0,1}

I

-

1\ Encoding

Random Event 2 Passive

w € {a,b,c,d}

— o =77

1 Coordinator

"i M1 |
v
v
'{ MO]% Data R

1

Encoding v? €{0,1}

Detector D2
crector Programmable Sensor

F1G. A.1. A simple decentralized detection network.
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A.1.1. Observations. Each detector is permitted to make a single noisy ob-
servation, y* € {4, B}, k = 1,2, of a random event w € {a,b,c,d} using one of two
distinct configurations (Fig. A.2) of a programmable sensor possessing two operational
modes m* € {0,1}. Formally, for k = 1,2,

(A1) y* = how (w, m*),
where o € {1,2} indexes detector Dk’s sensor configuration.

Configuration 1:
(w,m*) € {(a,1),(d,1)}

w=c mode
(w, m¥) € {(a,0), (d,0)}
w=b

hl(wvmk) =

W W oo

a b ¢ d
random event ®

Configuration 2:
(w,m*) € {(b,1),(c, 1)}
(w,m*) € {(6,0),(c,0)}

w=d

h2(w7 mk) =

oW o

F1c. A.2. Available sensor configurations.

A.1.2. Data encoding. Once a detector has made its observation, it transmits
a one bit summary, v® € {0,1}, to a passive coordinator over a noiseless channel.
Formally, for k = 1, 2,

(A-2) vt = g ("),
where g* can be any function mapping {4, B} to {0,1}.

A.1.3. Sensor programming. Each detector can monitor the other’s trans-
missions; accordingly, either may elect to program its sensor (i.e., set m* = 0 or 1)
based on the other’s summary. Formally, for k = 1,2,

(A.3) mk = fE (o),

where f* can be any function mapping {0,1} to {0,1}. When f* is a constant func-
tion, the sensor programming is static—i.e., the mode in which detector Dk’s sensor
is operated is determined a priori. When f* is not a constant function, the sensor
programming is dynamic—i.e., the mode in which detector Dk’s sensor is operated
may depend on detector Dk’s one bit summary (k denotes the binary complement of
k € {0,1}). It is the possibility that both detectors’ sensors may be programmed dy-
namically that makes this decentralized detection network nonsequential—i.e., when
neither f! nor f2 is constant, the detectors’ data summaries may be interdependent.

A.1.4. Passive coordinator. The passive coordinator, given the detectors’ data
summaries v! and v2, attempts to correctly detect (identify) the uncertain outcome
w € {a,b,e,d}. Formally, the coordinator generates an estimate of w,

(A.4) @ = (v, v?),

using any function  mapping {0,1} x {0,1} to {a,b,c,d}.
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A.1.5. Objective. Given a probability distribution for w, the objective is to
select an estimation policy for the passive observer, and sensor configurations, sensor
programming policies, and data encoding policies for the detectors, that collectively
maximize the probability that the coordinator can correctly identify w. Formally, the
objective is to

Identify a design(ad, o2, f1, f2,g*, %, b, h,n)
(A.5) that achi PloeQ:w=c tly.”
at achievesmax i ¢x ok pr . P{w € Q:w = &} exactly.

,2

A.2, Deadlock. Clearly the preceding detection network is susceptible to dead-
lock. Suppose, for instance,

(1) That both detectors’ sensors are in configuration 1 (i.e., o = o? = 1),

(2) That each detector programs its sensor based on the other’s data summary
(e.g., m! = u2, and m? = u!), and

(3) That neither detector’s data encoding policy is constant.
Then, when w € {a,d}, detector D1’s observation depends on detector D2’s data
summary and detector D2’s observation depends on detector D1’s data summary;
consequently, neither detector can generate a data summary without precognition—
i.e., the network is deadlocked.

A.3. A solution. Although the possibility of deadlock can be completely elim-
inated by constraining the network’s design to be sequential (i.e., by prohibiting at
least one detector from programming its sensor based on the other detector’s data
summary and thereby eliminating the possibility of nonsequentiality), this “fix” ig-
nores the possibility that nonsequentiality may improve network performance. In
fact,

(1) There exists a deadlock-free nonsequential design that enables the coordinator
to correctly identify, with certainty, all uncertain outcomes w € {a, b, c,d}, and

(2) No sequential design permits the coordinator to correctly identify, with cer-
tainty, more than two of the four uncertain outcomes w € {a,b, ¢, d}.

In other words, in this case, optimal network performance can only be achieved by
exploiting the nonsequentiality of the network.

A.3.1. An optimal nonsequential design. Consider, for instance, the follow-
ing design:

9 Note that, although it is tedious, it is not difficult to transform this problem into an uncon-
strained problem of the form (P) (§2.3). By setting w = w € Q = {a,b,¢,d},u! = ol € Ul =
{1,2},v? = o € U? := {1,2},v® = m! € U3 := {0,1},u* = m? € U? := {0,1},u5 = o! €
U5 = {0,1},u® = v? € U® := {0,1},u” = & € U" := {a,b,c,d}; by translating the informa-
tional constraints imposed (by the original problem formulation) into constraints on the information
subfields J%, k = 1,2,...,7, of 22XV (eg., ! = {@,Q x U} since u! = o' must be a constant,
J? = {0,9} & (®f=1{®, U'he 2% g {@,U7} since u® = m! can only depend on 4% = v2, and
so on); and by setting V(w,u) = I;,_,7} (the indicator of the event {w = u7}), one can transform
the original problem into an unconstrained 7-agent problem in which the first two agents’ decisions
determine the detectors’ sensor configurations, the third and forth agents’ decisions correspond to
the detectors’ sensor programming decisions, the fifth and sixth agents’ decisions correspond to the
detectors’ data sumimaries, the seventh agent’s decision corresponds to the passive coordinator’s
estimate.
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Detector D1:

m! = fl(v?) = v? (D1’s mode = D2’s data summary),
yt = hi(w, m?) (D1’s sensor in configuration 1), and
1

1 _ 10,1\ 1y
v—g(y)_{o y

—

(A.6)

i

(D1’s data summary).

i

&

Detector D2:

m? = fi(v!) = o! (D2’s mode = D1’s data summary),
(A7) y? = ha(w, m?) \ (D2’s sensor in configuration 2), and
v? =g%(y?) = { (1) ZQ Z g (D2’s data summary).
Passive Coordinator:
a (v,0) = (0,0)
A 1,2y _ b (1)1,’1)2) = (07 1)
(A.8) w=nv,v) = ¢ (v,v?) = (1,0)
d (vhv?) =(1,1).

It is not difficult to verify that:

When w = a, D2 transmits v? = 0 first,

D1 transmits v! = 0 second, and
the passive coordinator sets @ = a;

When w = b, D1 transmits v! = 0 first,
D2 transmits v? = 1 second, and
the passive coordinator sets @ = b;

When w = ¢, DI transmits v = 1 first,

D2 transmits v?> = 0 second, and
the passive coordinator sets @ = ¢;

When w = d, D2 transmits v? = 1 first,
D1 transmits v* = 1 second, and
the passive coordinator sets @ = d.

Since the order in which the detectors transmit their data summaries cannot be pre-
specified, this design is nonsequential. Since both detectors can transmit data sum-
maries, without precognition, for all w € {a,b,c,d}, the design is also deadlock-free.
Finally, since the passive coordinator can correctly identify, with certainty, all uncer-
tain events w € {a, b, ¢,d}, the design is optimal.

A.3.2. No sequential design is optimal. Since the selection of an estimation
policy n: {0,1} x {0,1} — {a,b, c,d} and data encoding policies g* : {4, B} — {0,1}
and g2 : {4,B} — {0,1} is equivalent to the selection of a mapping ¢ : {4, B} x
{4, B} — {a, b, ¢,d}—Dbecause

(A.9) @ =n(',v?) =n(g' ("), 8*(%%))

—to0 establish that no sequential design is optimal, it suffices to show that, as long
as the mode of at least one of the detectors’ sensors is fixed a priori, there is no
way that the other detector can program its sensor (in either configuration) so as to
ensure that every uncertain outcome w € {a, b, ¢, d} induces a unique element (yl, y2)
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TABLE A.1
A (graphical) proof that sequential designs are suboptimal.

configuration 1 configuration 1 configuration 2 configuration 2
mode 0 mode 0 mode 1
=A B -B abcd ® abcd ®
configuration 1
mode 0 ab d a d b d ab
abcd ®
a d a cd cd a ¢
configuration 2
mode 0 [ b d cd bed bec
abcd @
configuration 2
mode 1 : ab a c¢ bc abe
abcd ®

in {A, B} x {A, B}. Since each sensor has two configurations and two modes, and
since there are two detectors, there are 16 cases to consider (eight if we exploit the
fact that the sensors available to each detector are identical).

These 16 cases are succinctly summarized in Table A.1. The table can be read as
follows. The rows correspond to the possible sensor configurations and fixed modes of
the detector that is constrained to act first. The columns correspond to the possible
sensor configurations and modes that can be associated with the first detector’s uncer-
tain event (i.e., {a,b,d} in row 1, {a,c,d} in row 2, etc.) when the second detector’s
sensor configuration and sensor programming policy are appropriately chosen. The
table entries correspond to those uncertain outcomes that cannot be distinguished
under the stated conditions (i.e., those outcomes that cannot be associated with a
unique element of {A, B} x {4, B}). For example, suppose

(1) That detector D1 is constrained to use sensor configuration 1 mode 0,

(2) That detector D2 uses sensor configuration 2, and

(3) That the composition of D2’s programming policy with D1’s encoding policy
(i-e., f2 0 g') maps event B (D1’s uncertain event) to mode 0.

Then, as one can easily verify, the uncertain outcomes b and d are indistinguishable
(row one, column three).

Since there is an entry for every possible combination of sensor configurations and
modes, under all circumstances, at least two uncertain outcomes are indistinguishable.
It follows that no sequential design permits the coordinator to correctly identify, with
certainty, more than two of the four uncertain outcomes w € {a, b, c,d}.

A.4. Summary. By example, it has been shown that nonsequentiality can, un-
der some circumstances, give rise to deadlocks (§A.3), and under other circumstances,
improve network performance (§A.4).
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Appendix B: Proof of Theorem 1. Proof of (i). Fix v € I" and suppose that
v is an order function such that Z possesses property CI. To prove that 7 possesses
property SM it suffices to show that the closed-loop equation u = y(w, u) possesses at
least one solution, uY, € U, for all w € Q; that for each w, this solution is unique; and
that the mapping X7 : Q — U, induced by these unique solutions (i.e., ¥V (w) = ul)
is B/U-measurable (see §3.1).

Existence. Fix w € Q and r € U. Let my denote the canonical projection of & x U
onto U, let L7 : Q@ x U — §) x U be defined as

(B'l) L’Y(wﬂ") = (w’ ’Y(OJ,T')),

let L} : @ x U — Q x U be a k-fold composition of L7,

(B.2) Ll(w,r):=(LY0---0 L") (w,r),
|ktimes|
and let
(B.3) §:=(81,82,...,8n) = P(L}(w,7)).
To establish the existence of a closed-loop solution v}, € U, it suffices to show that
YLy w,r) = mu(L(wr))

(B.4) = my(w, Y (L{_1(w,7)))
= ’Y(L’IYV—I(“‘J’ ’l")),

or, equivalently, that

(B.5) YHLY (W, ) =v* (LY _1(w,T))

forall k=1,2,...,N.
Since property CI holds with order function %, for all k =1,2,..., N,

T* N [Pry (o)) Pry (5 (L} (W, 7)) CH{D, [Py ()] T (Pry (o) (LR (w, )}
(B.6)
Since U* contains the singletons of U* for all k = 1,2,..., N, (B.6) implies that, at
the point L), (w,r) € Q x U, all J** /U**-measurable functions, including v**, do not
depend on components (s +1), (sg+1+1), ..., and (sy +1) of L} (w, r); consequently,
to establish (B.5) it suffices to show that components 1, (s; + 1),(s2 + 1),..., and
(8k—1+ 1) of LY (w,r) and LY, _;(w,) are identical—i.e., it suffices to show that

(B7) PTév_l(s)(L;(,(w,r)) = PT&_I(S)(LX’—I(W’T))‘
When k= 1,TY ,(s) = @, and

Po(Ly(w,r) = Pglw,v(Ly_i(w,r)))
= ()
(B'S) = ,P¢(w”y(L’IYV—2(w’7')))
= P¢(L7V—1(w’r))'
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For k > 1, suppose that (B.7) holds. Then, due to (B.6), (B.5) holds; accordingly,

Pry o (Ly(w,r) = (Pry (o)LL (w,r),v* (L (w,7)))
(B.9) = (Pry (s (LR—1 (@, 7)), v (LY _1(w, 7))
= Pry)(Ly_1(w,n)).
It follows, by induction, that (B.7) holds for all £ = 1,2,..., N; hence, (B.5) holds
for all k=1,2,..., N, and consequently, (B.4) holds—i.e., my (L}, (w, 7)) satisfies the

closed-loop equation.
Uniqueness. Fix w € £ and r € U, and once again, let

(B.10) s:=(s1,82,...,8n) = P(L}(w,7)).

To establish that my (L} (w,r)) is the unique solution to the closed-loop equation
u = y(w, u) it suffices to show that, L} (w,7) = L}, (w,7) for all ¥ € U, or, equivalently,
that

(Bll) ,PT,f"_l(s)(LXI(w’T)) = 'PTéV_I(s) (L}(w,?))
when k= N +1. When k=1, TN ,(s) = @, and

Po(Ly(w,r) = Pplw,y(Ly_1(w,7)))
(B.12) = (w)
= Pplw,v(Ly_1(w,7)))
= 'PQ’(L’I(I(‘”’F))'

For k > 1, suppose that (B.11) holds. Then, just as (B.6) and (B.7) imply (B.5),
(B.6) and (B.11) imply that

(B.13) V(LY (w,r)) =7 (LY (w,7));
accordingly,

Pryvoy(Lxw,m) = (Pry (oy(Lx(w,7)), 7 (Ly(w, 7))
(B.14) = (Ppy (LY, 7)), 7" (LY (w,T)))

= ’PTéV(s) (L’Iy\l(wa 7))

It follows, by induction, that (B.11) holds for allk = 1,2,..., N+1; hence, L}, (w,r) =
L} (w,7) for all ¥ € U, and consequently, the unique solution u, to the closed-loop
equation u = y(w,u) is 7y(L}(w,r)), where r € U is the (arbitrary) “seed” that
starts the recursive solution process.

Measurability. Fix r € U and let ny and mq denote, respectively, the canonical
projections of @ x U onto U and €. To establish the B/U-measurability of the induced
closed-loop solution map X7 : Q — U, it suffices to show that the u-section of ny o
LY, my o LYy, is B/U-measurable—because, for fixed r,

(B.15) Y (w) = (ry o LY|r)(w) = (my o LY) (w, 7).
To begin, note that (B.1) implies that

(B'16) L’Y(wv"') = (Wﬂ(w’u)a')'(w, T))
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By definition, 7 and 7y are, respectively, B&U/B- and B ® U /U-measurable. Like-
wise, v,k = 1,2,..., N, is J*/U*-measurable, accordingly, v := (v},72,...,7") is
B ® U /U-measurable (since J* ¢ B®U for all k). It follows that L7, and by com-
position ({7, Thm. 13.1]), L} ((B.2)) and ny o L}, are, respectively, BQU/B @ U-,
B®U/B®U-, and B ® U/U-measurable. But all u-sections of B ® U /U{-measurable
functions are B/U-measurable ([7, Thm. 18.1]); consequently, ¥¥ = ny o L}|, is
B/U-measurable.

Proof of (ii).

Sufficiency. Fix v € T', and suppose that 1 is an order function such that 7
possesses property CI. To prove that v possesses property DF, it suffices to show that
for each w € (1, the agents can be ordered, such that no agent’s decision depends on
itself or the decisions of its successors.

Fix w € Q. By (i), the closed-loop equation v = 7(w,u) possesses a unique
solution Y € U. Let

(B17) §:= (31a327"'asN) =¢’(w»u2)
Since property CI holds with order function ¢, for all k =1,2,... N,
(B18) J%* n [’PT,iv_l(s)]—l(’PT,iv_l(s)(waU’ZJ)) - {®7 [PTliv_l(s)]_l(’PTév_l(s)(wa UZ))}

But (B.18) implies that, at the point (w,u]) € @ x U, all J** /U**-measurable func-

tions, including 4**, do not depend on components (sx+1), (sg+1+1),. .., and (sy+1)
of (w,u?); consequently, for all k = 1,2,..., N, the sith agent’s decision does not de-
pend on the decisions of agents sg, $k+1,- .., and sy. This proves sufficiency.

Necessity. Suppose that Z does not possess property CI for any order function
1. Then there exists at least one outcome in 2 x U, say (w*,u*), such that for all

N-agent orderings s := (s1,82,-..,8n) € SN,
(B.19) J**N[Pry (o] Py (oW* u*)) C{D, [Pry (o] (Pry (o Ww* u*))}
fails for at least one k € {1,2,...,N}. To prove necessity, it suffices to construct a

design v € T that does not possess property DF.
For all s € Sy,and k= 1,2,..., N, let

(B20) £hi={Ae T (W u") € 44N Chw",u) & {0,CHw,u)}},
where
(B.21) CEw*,u") = [Pry (9] (P (o (", ")),

When (B.19) holds, £F = @. When (B.19) fails, £¥ contains those events in J°* that
contain (w*,4*) and depend on the decisions of agents that have yet to act under the
decision order s—i.e., those events containing (w*, u*) that, under the decision order
s, cannot be distinguished without precognition.

Forall s€ Sy,and k=1,2,...,N, set

(B.22) A% = U® when Lk = @,
set

(B.23) A=A Ac Lk, A#Q, when LF # 0,
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k

let 7 # u** be an arbitrary reference element in U* (such an r* exists since

card (U*) > 1), and let

wt  (w,u) € ﬂ Ak
(B.24) 'Yk(wa u) == { . s'€SN

T else.

Since card(Sy) = N!, and A% € J* for all s € SN, ¢g, A% is T*-measurable;
accordingly, v* is a J*/U¥*-measurable function for all k = 1,2,..., N, and conse-
quently, v := (v1,42,...,7") is an element of T.

The design v, however, is not deadlock-free. Consider the outcome (w*,u*), fix
s € Sy, and let k* denote a k for which (B.19) fails. By construction (w*,u*) satisfies

the closed-loop equation (i.e., u* = y(w*,u*)); moreover, L # @. Tt follows from
(B.23) that A%* € £*" and A% # @; accordingly,

e @) 0 CF (@, ur) = ( N Aif‘) N CF (w,ur)

s'ESN
(B.25) ¢ {9,C (w,u")}.

However, (B.25) implies that, at the point (w*,u*) € Q x U, agent si«’s decision
depends on the decision of agents that have yet to act under s. Since the same
argument applies for all s € Sy, does not possess property DF. This proves neces-
sity. g

Appendix C: Proof of Corollary 1. Although this corollary is an immediate
consequence of Theorems 2(ii} and 1(ii) (property C = property DF = property CI),
it is instructive to prove it directly.

Suppose that 9 is an order function such that Z possesses property C. It suffices
to show that v is also an order function such that Z possesses property Cl—i.e., that
(4.1) of property C (with s = TN (¢(w,u)) € S), implies (3.3) of property CI (with
s =¢P(w,u) € Sn), for all (w,u) e A xU and k=1,2,...,N.

Fix (w,u) € Q@ x U and k € {1,2,...,N}, and let

(C.1) s:=(81,82,...,8N) = VY(w,u).
Since T (s) € S, and T ; =TF _, o TN, (4.1) of property C implies that
(C.2) TN o g7 HTY () € F(TL4(s)).
Restricting both sides of (C.2) to
(C.3) [Pry (o))" (Pry (s)(w, )
yields the desired result—(3.3) of property CI—if
(T o 9] M (T () NPy, (o)) Py (o) (W, w))

(C.4)
= [Pry () Py (o) (wsw))
and
F(TL () NPry (o)) Pry (o) (w,w))
(C.5)

={0,[Pry (5] (P (sy(w,w))}-
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Equation (C.5) follows from the definition of (T} ,(s)),
k-1
(C.6) FTE1(8)) = [Pry (9] (B ® (®Uai>),
i=1

and the fact that inverse images preserve intersections—i.e.,

Pry ol ™ <B ® (éé;usi)) N [Py, )7 Py (5)(w,w))
(C7) = {0, [Pry (o] (Pryv (o) (w,0))}-
Equation (C.4) follows from the observation that
(C.8) [T o] ™H(T3 (5)) € F(Til1(s))

(to see this substitute  x U € J*¢ for J*¢, and € for C, in {(C.2)), (C.5), and the
fact that

(C.9) [T o ]~ H T () N[Pry )] ' (Pry (o) (wsw) # O

since both sets contain (w, u). O

Appendix D: Proof of Theorem 3. Suppose that 7 is sequential. Then there
exists a constant order function 1 such that 7 possesses property CI. It suffices to
show that 1 is also an order function such that Z possesses property C—i.e., that for
all k=1,2,..., N, the fact that (3.3) of property CI holds for all (w,u) €  x U with
s = s* € Sy constant, implies that (4.1) of property C holds for all s € Sy.

Fix k € {1,2,...,N} and let

(D.1) ¥ = (81,85, ...,8N)

denote the constant order induced by 1. Since

(D.2) TN o y)~1(s) = {QgU when :lsze TN (%)

for all s € Sk, and since T ; = TF | o TN, to prove that (4.1) of property C holds
for all s € S, it suffices to show that

(D.3) J*% C F(TY (%))

By definition, J** is a subfield of

N
(D.4) BoU= [PT;VV(S*)]*(B@ (@usi‘)).

Since (3.3) holds for all (w,u) € Q@ x U when s = s*, all events in J* must be of the
form

N
(D5) [PTI{JV(S*)]_I (A X (H Us;) > ,
i=k
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where A C Q) x Hf;ll U*i; accordingly, J* is also a subfield of

N k—1
Cor = a([’PTg(s*)]_l (A X (H U83>) cAcox ] Us%')
i=k

=1

k—1
(D.6) = a([PTév_l(s*)]‘l(A) Acax ] Us:)

i=1

—the cylindrical extension of the power set of £ x Hfz_ll U* to Q x U. However,

k—1
Bouy(\Cr = [PT,L(S*)]”(B@(@U“Z))
(.7) = FEY (M)

consequently, J% C F(T ,(s*)). 0

Appendix E: Proof of Theorem 4. Suppose that v is an order function such
that 7 possesses property CL It suffices to construct an order function 1& such that 7
possesses property C.

To simplify property C’s verification, it is convenient to construct ’lZJ recursively.
The recursion has N steps, the kth of which, k¥ = 1,2,..., N, corresponds to the
construction of a function

(E.1) fo:QxU— 8

with the following properties:

(1) Forall j € {1,2,...,k—1},Tf o f = f;, and

(2) For all s := (51, 82,...5k) € Sk, T N [fi] 7 (s) C F(TE_1(s)).
Property (1) suffices to ensure that fi, = [T} o fy]; consequently, property (2) suffices
to ensure that 7,[3 = fn is an order function such that Z possesses property C (see

Definition 3 in §4).
For all (w,u) € Q x U,
(E.2) s:=(s1,82,...,8k-1) € Sk-1,
and k=1,2,...,N: let
(E.3) Cs(w,u) = [Ps] ™ (Ps(w, u))
denote the cylinder set induced on € x U by (w,u®', ... u%*1); let

(E4) {{s)) = ((sh1, ({s))2, -, ({8))w) € Snv

denote the unique element in Sy for which T}V | (({s))) = s, and {({s))x < {(s))k+1 <
-+ < {(s))n; and let

(E.5) 8, ((8))5 = (81,82, -+, 5k-1, ((5)))

j = k,k+1,...,N, denote the concatenation of ((s)); to s. Then the recursive
construction of v, given ¥, can be described as follows:
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1. For all j =1,2,...,N, let

(E.6) filw,u) =37
when
(E.7) (w,u) € Co([T{" o ¢]"1(j))\(U Co([T) o ¢]_1(i))) 10

k. Forall s€ Six_q,and j=k,k+1,...,N, let
(ES) fk(wa ’LL) =S, <<3>>J

when

(w,u) € [fima] (s) N (Cs([TéVW]_l(s,((s})j))

(E.9) \(U Cu([T7Y °¢’]—1(3,<<5>>i))))-
i=k

N. For all s € Sy_1, let

(E']-O) fN(w»u) =8, <<3>>N
when
(E-11) (w,u) € [fv—1]""(s) N Co(ITH_1 0 ¥] 7 (s, {(s))w))-

To verify that the preceding constructions give rise to legitimate functions it
suffices to check, for all k = 1,2,..., N, that {[fx] 1(s) : s € Sk} partitions Q x U.
The following facts will be used without comment:

¢ Unions and intersections are distributive.

o Inverse and direct images preserve unions and inclusions.

o {[TN oy]71(s) : s € Sk} partitions @ x U for all k¥ = 1,2,..., N; moreover,
since

N
(B.12) TE1] 72 () = s, ((s))a),
i=k
for all s € Sx_1,k=1,2,...,N,
[T 047 (s) = [T¥4 0Ty oy (s)
= [T oy N (TE L] N(s))
N
(E.13) — I oy (U(s, <<s>>¢))
i=k

N
U o w1~ . (o))

i=k

10 For sets A,B€ X,A\B:={zxc A:z ¢ B}.
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e When A, B,C, D, E are sets,
AU(B\A)=AUB, AUBU(C\(AUB))=AUBUC,and so on, and

(E.14) AN(B\A)=0,CN(E\(AUBUCUD))=,and so on.
When k =1,
N
[A)7HS) = [A]7] (U{J})

171()

<C¢([T1 o)™ J))\(U Co(IT1 0 9]” 1(Z))))

I
C=
=

.,
I
—

[
C=

.
il
NS

Co([T1 0 9] 71 (5))

C=

(E.15) =

.
i
-

N
C¢<U[va owrl(j))

= C¢(Q><U)
D QxU.

Moreover, (E.6) and (E.7) imply that for all m,n € {1,2,...,N},m <n,
A7 m) O A1) = (cqj(mN : zp]—l(m))\( U Col( o ww»))

N (Cg([T_{V o] 71 (n)\ (U?;ll Co(IT1" Owl‘l(i))>)

(E.16) C Cy(ITy" o 9] (m))
N (C¢([T1N o]~ (m))\ (U?;f Co([TY o w]‘l(i))>>
= 0.

It follows that {[f,]~'(s) : s € S} partitions Q x U.
For k > 1, suppose that {[fi_1]71(s) : s € Sx_1} partitions 2 x U. Then

[fe] 1(Sk) = [fk]_1< U 8')

8’ €S

==[fk<UU )

SESk_1 =k

N
= U UL W)

sESk_1 j=k
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N

= U U (Uk—l]‘l(S) N (Cs([Té" o Y] 71 (s, ((s))5))

8€8Sk.1 j=k

j-1
\(U Cs(ITy 0 9] (s, <<3>>i))) ))
i=k

N
= U ([fk_ll“l(S) N (U (Cs([TéVOt/J]'l(s,((s»j))

8€ESK_1 Jj=k

3—1
(E.17) \ (U Cs(IT 0"/"]—1(3’«3))1'))))))
i=k
N
= U ([fk—l]_l(s) N (U Co([TF oyl (s, <(8>)j))>)

8€SK—_1 j=k

N
= U ([fk_l]‘l(S)ﬂCs<U[T;§V°w]_1(s,<(S>>j)))

8€SK 1 Jj=k

- U ([fk_ﬂ—*(s)ncs([T,év_lowr%s»)

SESK_1

= ( U [fk—l]—l(s)) ﬂ( U Cs([Tzﬁlotﬁ]"l(S)))

8€SK-1 $€SK—1

= (@x0U) ﬂ( U Cs([Tév_lofﬁ]‘l(S)))

S€ESK_1

= U CulT 097 (s))

8E€ESK 1

> J IEiow] N9
SESK-.1
= OxU.

Moreover, for all 5,5 € S, such that s # 3, when TF_,(s) # TF_(3), (E.8) and (E.9)
and the induction hypothesis imply that

Fl 7N N ATIE) © Feoa) HTE(9) N foma] T (TE-1(3))
(E.18) = 9,

and when T} ,(s) = T¥_,(3) (implying that sp # Si), (E.8) and (E.9) and the
induction hypothesis imply that for some m < n (say sk = ((8))m, Sk = ((5))n)

[fel =) N [l *() C (Cs([Té" o P]71(s, {{s))m))
\ (UIZ? Co([TY o 9] (s, <<S>>i))))

N (Cs([T;§V°1/J]’1(s,<<S>>n))
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\ (U?;kl C.(IT 01/1]‘1(8,((8)%))))
C Co(ITY o Y171 (s, {(8))m))

(E.19) ( ST o ] 2(s, ((s))n))

\ (U . Cs [TN°¢]‘1(5,(<S>>1))))
Q.

Consequently, {[fr]~1(s) : s € S} partitions © x U. It follows, by induction, that for
allk=1,2,...,N,{[fc]1(s) : s € Sk} partitions @ x U.

Having established, for all k = 1,2,..., N, that f is a legitimate function, it
remains to show that f satisfies properties (1) and (2) (cf. the discussion following
(E.1)). To verify property (1) it suffices to prove, for all k = 1,2,..., N, that

(E-20) Te_1 0 fr = fr-1,

or, equivalently, that

(E.21) [T 0 fil 7 (5) = [fe-1] 7 (5)
for all s € Sk—;. Fix k€ {1,2,...,N}. By (E.8) and (E.9)
(E.22) [Fel 7 (s, {(8)5) € [fima] 7 (5)

for all s € Sy—1 and j = k,k+ 1,..., N; consequently, since {[fx—1]71(s): 5 € Sk-1}
partitions Q x U, for all 5,5 € Sx_; such that s # 3, and for arbitrary j € {k,k +
., N},

(E.23) [£e) 7 (s, {e0)3) N [fema] 71 (3) = O

However, {[fi] 1(s) : s € Sk} also partitions Q x U; accordingly, (E.23) implies that
for all s € Sk_1,

[T o ful™H(s) = [l o [TE4]7'(s)

N
[£e] ™! (U(s, ((s>>,~))

i=k

]

N
= Ul ((s0)s)

i=k

(E.24) = (U Ul (¢ )ﬂ[fk-l]‘l(S)

Sesk 1 i=k

( U [fk]—l(sl)) N [fe—1]""(s)

3’ €8Sy
@ xU) N [fr-1]7*(s)
[fo—1]7"(s)
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—i.e., (E.21), and, consequently, property (1) hold.

To verify property (2) (see the discussion following (E.1)) it is necessary to es-
tablish the following lemma.

LEMMA El. Suppose that Q, and U* k = 1,2,..., N, are countable sets, and
suppose that B contains the singletons of . Then if 1 is an order function such that
T possesses property CI, for all s € S, k=1,2,...,N,

(E.25) T% (\ Crs_ o (TY 0] 1(s)) C FTE, (s)).

Proof. By assumption, the o-fields B and U*,k = 1,2,..., N, contain, respec-
tively, the singletons of the countable sets 2 and U*,k = 1,2,..., N (U* contains the
singletons of U* due to §2.2, 1(c)). Accordingly, for all s := (sy,82,...,5%) € Sk, k=
1,2,...,N, the product field B® (®~_, U*) contains the singletons of the countable
set Q0 x (II¥_,U%), implying that B® (®f=1 U*1) is the power set of Q x (II¥_ U%+).
It follows, for all s € Sk, k=1,2,...,N, that

k—1
FEE(e) = [PT;_I(S)]*(B@(@L@))
i=1

k—1
(E26) = U([PT:_I(S)]—I(A) tAC X H U&;)

i=1

—i.e., it follows that F(T¥_,(s)) is the cylindrical extension of the power set of { x
AU to Q x U.

Fix k € {1,2,...,N} and s € S%. Since property CI holds with order function ¢,
(E.3), (3.3), and (E.26) imply that for all (w,u) € [T o1]71(s) and 4 € T**,

ANCr_ (ow,w) = ANPre (5] (Prs_ (o) (w,u)
(E.27) € {D,[Prs_ ()| (Prr_ (5w, 1))}
C  F(Tg_1(s)).

Since [T o 9]71(s) € 2 x U is a countable set, and since inverse .and direct images
preserve unions, it follows that

AN Crp_ (TR 0 g1 H(s))

I

AN CT,f_l(s)( U (wvu))
1=1(s)

(w,w)€[TN oy
(E28) = U (A ﬂ CT,?_l(s) (w’ u))
(w,w)€[TY oy]~1(s)
F(TE_1(5))-

m

This proves the lemma since (E.28) holds for all A € J*¢, and consequently, implies
(E.25). 0

Given Lemma E1, by induction, all f; can be shown to possess property (2). For
k=1, fixj€{1,2,...,N}. By Lemma El, for all A € J7,

(E.29) AN Cy(IT o] 71 (4)) € F(D).
Likewise, since Q x U € J* for all 4, for all i = 1,2,..., N,
(E.30) Co([T} 0 9] 7*(3)) € F(D);
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accordingly,
i-1
(E31) U Collry o9 )) € 7(0).
It follows, from (E.29) and (E.31), that
(E.32) ANAITIG) = AN (C¢([T1N o ¥]7(5))
\(U Ca(ry" o«p]-l(z'))))
(E.33) ) c FO)
Since (E.32) holds for all A € J7, f; satisfies property (2)—i.e., for all j € S,
(E.-34) TN [AI71G) € F(9).

For k > 1, suppose that fr_, satisfies property (2)—i.e., suppose that, for all
s € Sk—1,

(E.35) Tt () [fr-1]72(s) C F(TES (s)).
Then, since @ x U € Jt for all i = 1,2,..., N, for all s € Sy_1,
(E.36) [fi-1]"Y(s) C F(TR=5(s)) € F(s).
Fix s € Sy_; and j € {k,k+1,...,N}. By Lemma E1, for all A € J{Di
(E.37) AN (C(ITY o171 (s, ((5))5)) € F(s).
Likewise, since @ x U € J* for all 4, for all i = k, k+ 1,..., N,
(E.38) Co ([T o] (s, ((s)))) € F(s);
accordingly,
j—1
(E.39) JU,c Os([T7 o 9] 74 (s, ((s)):)) € F(s)-

It follows, from (E.35), (E.36), and (E.38), that

ANl ()) = ANl N (Cs([TéV o ] (s, ((s))5))

(E.40) \(U Co(ITY o] (s, <<5>)i))>>
i=k
e  F(s).
Since (E.39) bolds for all A € J®)5 f; satisfies property (2)—i.e., for all s € Sy
(E.41) T N [fel () € F(TE_1(s))-

It follows, by induction, that fi satisfies property (2) for all k = 1,2,...,N; con-
sequently, since all fi’s also satisfy property (1), 1/3 = fn is an order function such
that Z possesses property C (see the discussion following (E.1)). This proves the
theorem. O
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