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We study dynamical reversibility in stationary stochastic processes from an information theoretic
perspective. Extending earlier work on the reversibility of Markov chains, we focus on finitary pro-
cesses with arbitrarily long conditional correlations. In particular, we examine stationary processes
represented or generated by edge-emitting, finite-state hidden Markov models. Surprisingly, we
find pervasive temporal asymmetries in the statistics of such stationary processes with the conse-
quence that the computational resources necessary to generate a process in the forward and reverse
temporal directions are generally not the same. In fact, an exhaustive survey indicates that most
stationary processes are irreversible. We study the ensuing relations between model topology in
different representations, the process’s statistical properties, and its reversibility in detail. A pro-
cess’s temporal asymmetry is efficiently captured using two canonical unifilar representations of the
generating model, the forward-time and reverse-time ǫ-machines. We analyze example irreversible
processes whose ǫ-machine representations change size under time reversal, including one which has
a finite number of recurrent causal states in one direction, but an infinite number in the opposite.
From the forward-time and reverse-time ǫ-machines, we are able to construct a symmetrized, but
nonunifilar, generator of a process—the bidirectional machine. Using the bidirectional machine, we
show how to directly calculate a process’s fundamental information properties, many of which are
otherwise only poorly approximated via process samples. The tools we introduce and the insights
we offer provide a better understanding of the many facets of reversibility and irreversibility in
stochastic processes.
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Asymmetries, symmetries, and invariances are

among the most elemental characteristics of phys-

ical systems and structures. Their understand-

ing invariably leads to profound and fundamen-

tal insights. Any mathematical model of value

must capture the modeled system’s basic symme-

tries. Gaining an understanding of the origin and

nature of an invariance proves invaluable when

devising models of physical systems. Concerned

with dynamical systems, asymmetries and invari-

ances with respect to time are naturally of primal

interest.

In this paper, we study the curious case of tem-

poral asymmetries in stationary stochastic pro-

cesses from an information theoretic perspective.

At first, this may seem a dull endeavor, as station-

ary processes, by definition are invariant under

time shifts. In other words, observing a station-

ary process at times t and t′ 6= t, we have no way

of knowing whether t was before t′ or after. Col-

loquially speaking, stationary process looks the

same at any time point of observation. Surpris-

ingly, however, stationary processes look starkly

different when looking at them in the forward and

reverse direction. In fact, for the overwhelming

majority of stationary stochastic processes, for-

ward and backward evolution in time can be con-

sidered as two different stochastic processes, that

necessitate different generating models and give

rise to different causal explanations and we iden-

tify this phenomenon as dynamical irreversibility.

Specifically, we show that a system’s causal

structure and information storage depend on

time’s arrow, while its rate of generating in-

formation does not. Fusing the process’s for-

ward the reverse generating models, we then de-

velop a time-symmetric representation—the bi-

directional machine—that allows one to directly

determine key informational and computational

properties, including how much stored informa-

tion is hidden from observation, the number of

excess statistical degrees of freedom, the amount

of internal information that anticipates future be-

havior, and the like. We summarize the analy-

sis via a new irreversibility classification scheme

for stochastic processes. Overall, the result is an

enriched view of irreversibility and its compan-

ion properties—a view that enhances our under-

standing of the relationship between energy and

information and of the structure of the physical

substrates that carry them.

I. INTRODUCTION

Dynamical systems, by definition, evolve in time.

Practically all of what we may know about a system is

derived from careful observation of its change in time.

In their attempt to understand underlying mechanisms,

physicists cast observations in the language of mathe-

matics, spelling out “equations of motion” to model how

a system’s temporal behavior arises from the forces act-

ing on it. Ideally, such modeling allows for forecasting

a system’s behavior given its current state, but also al-

lows for tracing its evolution backward in time. This

endeavor necessitates the study of temporal asymmetries

and invariances, in short, a process’s reversibility, and

their influence on our ability to forecast and retrodict a

system’s evolution.

In layman’s terms, a process is called reversible, if,

when shown a movie of the process’s natural evolution,

one cannot determine whether the movie was played in

reverse or not. In other words, system behavior that can

be observed in the movie played backwards could have

just as easily been observed in the movie played forward.

On the other hand, for irreversible processes, one can

make a clear distinction between the movie played in for-

ward and reverse direction.

In a closed system, entropy never decreases. Gas ex-

pands when the volume of its container is increased,

a pendulum comes to halt under the influence of fric-

tion and a glass dropped from the table shatters on the

kitchen floor. When shown a movie of such phenomena,

we can immediately tell whether it has been played back-

wards based on an assertion of whether entropy has been

decreased or not. Never will we be able to observe a shat-

tered glass assemble itself spontaneously and jump back

onto the kitchen table—even when watching the kitchen

for a very long time. However, irreversibility in these sys-

tems is essentially a consequence of the non-stationarity

of the processes. We could have decided the direction in

which the movie is played based on the first and last

frame in the movie shown, because the movie has an

obvious beginning and end. This begs the question of

reversibility in stationary processes, those without and

obvious beginning or end, which are the subject of this

paper.

In particular, we focus on stationary stochastic pro-

cesses exhibiting nontrivial, nondeterministic symbolic
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dynamics. Developing an information-theoretic perspec-

tive, we study the reversibility of such processes; specifi-

cally, the influence of reversibility on our ability to make

assertions about a process’s past from current and fu-

ture observations. We contrast the act of reconstructing

a process’s past based on current and future observa-

tions (retrodiction) with that of forecasting a process’s

future based on past and current observations (predic-

tion). We show the two tasks exhibit a number of un-

expected and nontrivial asymmetries. In particular, we

show that predicting and retrodicting a stochastic pro-

cess’s evolution may come at very different computa-

tional costs. This is in stark contrast to the many dy-

namical systems governed by deterministic equations of

motion for which the forward and reverse evolution can

be computed at the same computational cost—solving a

differential equation—independently of whether the ac-

tual process dynamics is reversible or not.

More precisely, we show that the canonical generators

of stochastic processes, their “equations of motion” so

to speak, are generally far from invariant under time re-

versal. Via an exhaustive survey, we demonstrate that

irreversibility is an overwhelmingly dominant property

of structurally complex stochastic processes. This asym-

metry shows that depicting processes only by either their

forward or reverse generators typically does not provide a

complete description. This leads us to introduce a time-

symmetric representation of a stochastic process that al-

lows a direction calculation of key informational and com-

putational quantities associated with the process’s evo-

lution in forward and backward time directions. With

these tools at hand, we are then able to establish a novel

classification of stochastic processes in terms of their re-

versibility, providing new insights into the diversity of

information processing embedded in physical systems.

Of fundamental importance for our discussion is the

notion of the “state” of a probabilistic process and the

use of state-based models—the so-called generators—to

describe stochastic processes. We introduce these in

Section II. Continuing in more familiar territory, Sec-

tion III reviews reversibility in processes whose genera-

tors have states which can be directly observed—the so-

called Markov chains. Section IV expands the discussion

to a broader class of models, the hidden Markov mod-

els (HMMs), whose states cannot be directly observed.

There, we utilize the information measures from Ref. [1]

to describe ways in which a process hides internal struc-

ture from observations. Then we draw out the differences

between models of processes with and without observable

states. In this, we confront the issue of process structure.

This leads Sec. V to introduce a canonical representa-

tion for each process—the ǫ-machine. At this point, irre-

versibility of HMMs becomes necessarily tied to proper-

ties of the ǫ-machine. There, we introduce the ǫ-machine

information diagram which is a useful roadmap for the

various information measures and corresponding process

properties. A number of example processes are analyzed

to help ground the concepts introduced up to this point.

A new representation is required to go further, however,

and Sec. VII introduces and analyzes a process’s bidi-

rectional machine using Ref. [1]’s information measures.

Finally, we conclude by drawing out the thermodynamic

implications for these notions of irreversibility and com-

menting on its role in applications.

II. PROCESSES AND GENERATORS

To keep our analysis of irreversibility constructive,

our focus here is on discrete-time, discrete-valued sta-

tionary processes and their various alternate represen-

tations. This class includes the symbolic dynamics of

chaotic dynamical systems, one-dimensional spin chains,

and cellular automata spatial configurations, to men-

tion three well-known, complex applications. Histori-

cally, one-dimensional stochastic processes were studied

using generators—models that reproduce the process’s

statistics in a time-ordered sequence. The tradition of

using generators is so strong that their time-order is of-

ten treated as synonymous with the process’s time-order

which, as the following will remind the reader, need not

exist. Much of the following requires that we loosen the

seemingly natural assumption of time-order.

To begin, we define processes strictly in terms of prob-

ability spaces [2]. Consider the space AZ of bi-infinite se-

quences consisting of symbols from A, a finite set known

as the alphabet. Taking X to be the σ-field generated by

the cylinder sets of AZ, we assign probabilities to sets in

X via a measure µ. The 3-tuple (AZ,X, µ) is a probability

space that we refer to as a process, denoting it P.

Let Xi denote the random variable that describes

the outcomes at index i. As a convenient short-

hand [3], we denote random variable blocks as Xi:j =

XiXi+1 · · ·Xj−1, j ≥ i. When j = i, the block has length

zero and this is used to keep definitions simple.

For example, consider a process with alphabet A =

{a, b, c} for which the word w = abc has the correspond-

ing cylinder set {x ∈ AZ|X0 = a,X1 = b,X2 = c}. The

probability of w is defined to be the probability of its

cylinder set in X:

P(X0:3 = w) = P(X0 = a,X1 = b,X2 = c)

= µ
(
{x ∈ AZ|X0 = a,X1 = b,X2 = c}

)
.

Notice that time does not appear explicitly in the def-

inition of a process as a probability space. Indeed, the
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indexing of Xi can refer, for example, to locations on a

spatial lattice.

While one need not interpret a process in terms of time,

temporal interpretations are often convenient. The ran-

dom variable block leading up to “time” t is referred to

as the past and denoted X:t ≡ . . . Xt−3Xt−2Xt−1. Ev-

erything from t onward is referred to as the future and

denoted Xt: ≡ XtXt+1Xt+2 . . .. We restrict ourselves to

stationary processes by demanding that P yield the same

probabilities for blocks whose indices are shifts of one an-

other: P(X0:L) = P(Xt:t+L) for all t and L. When con-

sidering generative models, we work with a semi-infinite

sequence of random variables, but due to stationarity,

the distribution can be uniquely extended to a probabil-

ity distribution over bi-infinite sequences [2].

Generators are dynamical systems and so time, as a

concept, is fundamental. That being said, there are two

natural and, generally, distinct ways of generating a pro-

cess. When the time order of the generator coincides

with the process’s index, which increases (a priori) left-

to-right, the model is a forward generator of the process.

When its time order is the opposite of the process’s index,

the model is a reverse generator. In general, there can

be many forward (reverse) generators of a process, and

we refer to the set of models which reproduce the statis-

tics of the process, in the same time-ordered fashion, as

presentations of the process.

III. GENERATORS WITH OBSERVABLE

STATES

We review basic results about Markov processes, their

reversibility, and their models—Markov chains. In

Markov chains, the states of the system are defined to

be the system observables and, so, Markov chains are

models of Markov processes whose states are observable.

For a more detailed treatment see Ref. [4].

A. Definitions

A finite Markov process is a sequence of random vari-

ables X0X1, . . . each taking values from a finite set A.

However, the sequence is constrained such that the prob-

ability of any symbol depends only on the most recently

seen symbol. Thus, for x, y ∈ A, w ∈ AL−1, and L ∈ N,

we have:

P(XL = y|X0:L = wx) = P(XL = y|XL−1 = x).

1 0

1

2

1

1

2
(a)

1 0

1

2

1

1

2
(b)

FIG. 1. (a) An irreducible Markov chain M of the Golden
Mean Process, which consists of all binary sequences with no

consecutive 0s. (b) Its time-reversed chain M̃ which, in this
case, is the same as the original chain.

Assuming stationarity, a finite Markov process is

uniquely specified by a right-stochastic matrix:

T (x, y) ≡ P(X1 = y|X0 = x).

This matrix defines the model class of Markov chains.

As an example, consider the Golden Mean Process [5],

whose Markov chain is shown in Fig. 1(a). It has state

space A = {0, 1} and its state transitions are labeled by

T (x, y). This Markov chain is irreducible since from each

state one can reach any other state by following succes-

sive transitions. We work only with irreducible Markov

chains in the following.

Every irreducible finite Markov chain has a unique sta-

tionary distribution π over A obeying:

π(y) =
∑

x∈A

π(x)T (x, y) for all y ∈ A.

In matrix notation, we simply write π = πT . The

Golden Mean Markov chain has stationary distribution

π = (2/3, 1/3), where P(X0 = 1) = π(1) = 2/3.

We calculate the probability of any word x0:L by fac-

toring the joint probability P(X0:L = x0:L) into a prod-

uct of conditional probabilities. An application of the

Markov property reduces the calculation to:

P(X0 = x0, X1 = x1, . . . , XL−1 = xL−1)

= π(x0)T (x0, x1)T (x1, x2) · · ·T (xL−2, xL−1)

= π(x0)
L−1∏

t=1

T (xt−1, xt).

More generally, one considers order-R Markov pro-

cesses for which the next symbol depends on the pre-

vious R symbols. (See App. A.) Although these can be

shown to be equivalent to a standard Markov chain over

a larger state space, we avoid this approach and consider

the Markov order as a property of the process. When the

next symbol depends on the entire past, though, then R

is infinite and the Markov chain, in effect, has an infinite
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number of states. In Sec. IV we show how hidden Markov

models can be used to represent many such chains, while

utilizing only a finite state space.

B. Reversibility

A intuitive definition of a reversible Markov process is

that it should be indistinguishable (in probability) from

the same process run backwards in time. Thus, we define

a Markov process as reversible if and only if for all w ∈

AL and all L ∈ N, we have:

P(X0:L = w) = P(X0:L = w̃) , (1)

where w = w0 . . . wL−1 and w̃ = wL−1 . . . w0 is its rever-

sal.

Given a Markov process, if the transition matrix of its

unique chain obeys:

π(x)T (x, y) = π(y)T (y, x), (2)

for all x, y ∈ A, then we say the Markov chain is in

detailed balance. Note that the uniqueness of the chain

allows us to associate detailed balance with the Markov

process as well. The Markov chain representation of the

Golden Mean Process in Fig. 1(a) is in detailed balance.

It turns out that a stationary, finite Markov process is

reversible if and only if its Markov chain, as specified by

T , is detailed balance [6]. To see this in one direction,

assume detailed balance, then:

P(X0:L = w) = π(w0)

L−1∏

t=1

T (wt−1, wt)

= π(wL−1)
1∏

t=L−1

T (wt, wt−1)

= P(X0:L = w̃) .

Conversely, if the Markov process is reversible, then by

considering only words of length two we have P(X0 =

x,X1 = y) = P(X0 = y,X1 = x). This is exactly the

statement of detailed balance.

Given a Markov chain, we can use the condition for

detailed balance to define another chain that generates

words with the same probabilities as the original chain,

but in reverse order. If T is the state transition matrix of

an irreducible Markov chain and π is its unique stationary

distribution, then its time-reversed Markov chain has a

state transition matrix given by:

T̃ (x, y) ≡ P(X0 = y|X1 = x)

=
π(y)T (y, x)

π(x)
. (3)

It is easy to see that if π is stationary for T , then it is also

stationary for T̃ . Figure 1(b) shows the time-reversed

chain for the Golden Mean Process. It is the same as the

forward-time chain and, thus, is also in detailed balance.

Considering the time-reversed Markov chain as a gen-

erator, we interpret:

π(x)T̃ (x, y)T̃ (y, z)

as the generator’s probability of seeing x followed by y

followed by z. In its local time perspective, we can repre-

sent this as X̃0:3 = xyz. By construction, our expectation

is that this probability should be equal to the probability

(as calculated by the forward generator) of seeing x pre-

ceded by y preceded by z. That is, X0:3 = zyx. And so,

we can justify the designation of being the time-reversed

Markov chain by demonstrating that it does, indeed, gen-

erate words in reverse time:

P(X̃0:L = w) = π(w0)

L−1∏

t=1

T̃ (wt−1, wt)

= π(wL−1)

1∏

t=L−1

T (wt, wt−1)

= P(X0:L = w̃) .

This result provides an alternative characterization of re-

versibility in Markov processes: A Markov process is re-

versible if and only if:

P(X0:L = w) = P(X̃0:L = w). (4)

Note that while Eq. (1) is a self-comparison test, Eq. (4)

is a comparison between two distinct Markov chains.

Also, observe that if a Markov chain is reversible, then

T = T̃ , due to detailed balance. Thus, a reversible

Markov chain is identical to its time-reversed Markov

chain. We return to this point when we define reversibil-

ity for hidden Markov models.

What about irreversible Markov processes? A simple

example will suffice. Consider the process that gener-

ates the periodic sequence . . . ABCABCABC . . .. Note

that the time-reversed Markov chain differs: the forward

generator will emit AB but not BA, while the reverse

generator produces BA but not AB. Also note that this

process is deterministic (non-stochastic) and invertible.

The reader should be aware that reversibility is not the
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same as invertibility.

Finally, we comment briefly on the difference between

a Markov process and its associated Markov chain. The

Markov process exists in the abstract, describing a mea-

sure over bi-infinite strings. The Markov chain is a one-

sided generator representation taking the form of a sin-

gle matrix. Within this class of representations, each

stationary and finite Markov process has exactly one

finite-state Markov chain. Markov processes can also be

represented in another model class—the hidden Markov

models—and within that model class, we will see that a

given Markov process can have multiple representations.

IV. GENERATORS WITH UNOBSERVABLE

STATES

In a similar manner, we now consider models of pro-

cesses whose states are not directly observable, also

known as hidden Markov models. Though rather less

well understood than Markov processes, much progress

has recently been made; for example, see Ref. [7]. Along

the way, we highlight differences between hidden Markov

models and Markov chains—differences that force one to

consider questions of structure very carefully.

A. Definitions

We begin with a Markov chain R0R1R2 . . . over a fi-

nite state set R, the state alphabet. This chain is inter-

nal to the hidden Markov model. Then, a finite-state

hidden Markov model (HMM) is a sequence of outputs

X0X1X2 . . ., each taking values from a finite set A that

we now call the output alphabet. The output sequence is

generated by the internal Markov chain through a set of

transition-output matrices—one matrix for each symbol

x ∈ A. Each matrix element Tx(α, β) gives the tran-

sition probability from (internal) state α to state β on

generating output x ∈ A. That is,

Tx(α, β) ≡ P(X0 = x,R1 = β|R0 = α) .

Note that the internal Markov chain’s transition matrix

is the marginal distribution over the output symbol:

T (α, β) =
∑

x∈A

Tx(α, β)

= P(R1 = β|R0 = α) .

If, for each x ∈ A and α ∈ R there exists at most one

β ∈ R such that Tx(α, β) > 0, then we say the hidden

Markov model is unifilar. An equivalent statement is

that given the current state and symbol, the next state

is known with certainty: H[R1|R0, X0] = 0.

The hidden aspect of a hidden Markov model refers

to the fact that the internal Markov chain is not di-

rectly observed—only the sequence of output symbols

X0X1X2 . . . is seen. Note, the process associated with

a hidden Markov model refers only to the probability

distribution P(. . . X0X1X2 . . .) over the output symbols

Xt and not over the joint process (Rt, Xt).

Non-Markov processes differ from Markov processes

in that they exhibit arbitrarily long conditional corre-

lations. That is, the probability of the next symbol may

depend on the entire history leading up to this symbol.

Due to this, non-Markov processes cannot be represented

by finite-state Markov chains. One signature of (and mo-

tivation for) hidden Markov models is that they can rep-

resent many non-Markov processes finitely. So, when-

ever a process (Markov or not) has a finite-state hidden

Markov model representation, then we say that the pro-

cess is finite.

There are a number of hidden Markov model vari-

ants. One common variant is a state-emitting hidden

Markov model [8]. Another variant is an edge-emitting

hidden Markov model. State-emitting hidden Markov

models output symbols during state visitations, while

edge-emitting hidden Markov models output symbols on

the transitions between states. The two variants are

equivalent [2] in that they represent the same class of

processes finitely. In the following, we always refer to

the edge-emitting variant.

As before, we restrict our attention to hidden Markov

models whose underlying Markov chain is irreducible.

Thus, a hidden Markov model has a unique stationary

distribution π satisfying π = π
∑

Tx = πT and, for

α ∈ R, π(α) represents the stationary probability of be-

ing in internal state α.

For comparison, Fig. 2(a) displays a hidden Markov

model for the Golden Mean Process. The internal state

set is R = {A,B} and the output alphabet is A = {0, 1}.

The transitions between the states sport the labels p|x,

where p = Tx(α, β).

The probability of any word is calculated as:

P(X0 = x0, . . . , XL−1 = xL−1)

=
∑

ρ0,...,ρL

π(ρ0)Tx0
(ρ0, ρ1) · · ·TxL−1

(ρL−1, ρL).

In matrix form, with Tw ≡ Tw0
· · ·TwL−1

, we have

P(X0:L = w) = πTw1,

where 1 = (11 . . . 11)t.

The states R and observations A were synonymous in

Markov chains. The consequence of this was that every
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FIG. 2. (a) The Golden Mean Process as a hidden Markov
model. The internal state set is R = {A,B} and the obser-
vation alphabet is A = {0, 1}. The transitions between states
specify p|x where p = P(X0 = x,R1 = β|R0 = α). (b) Its
time-reversed hidden Markov model is not the same. It is
nonunifilar, while the forward representation is.

finite Markov process was uniquely characterized by its

transition matrix T . With hidden Markov models, this is

no longer true. A given process, even a Markov process, is

not uniquely characterized by a set of transition matrices

{Tx}. To drive this point home, Sec. V provides an ex-

ample process that has an uncountable number of hidden

Markov model representations on a fixed, finite number

of states. This demonstrates the need for a canonical

representation, which is also introduced in Sec. V.

B. Reversibility

In comparison to Markov chains, the literature on

reversibility for hidden Markov models is substantially

smaller and not nearly as detailed—see, for example,

Ref. [9].

Reversibility for Markov processes was defined, in

Eq. (1), such that the probability of every word equaled

the probability of the reversed word. We take this as

a general definition, applicable even to non-Markov pro-

cesses. Thus, a process is reversible if and only if for all

w ∈ AL and all L ∈ N, we have:

P(X0:L = w) = P(X0:L = w̃), (5)

where, as before, w̃ is the reversal of w.

Detailed balance plays a central role in Markov chains

and their applications. The analogous local-equilibrium

property for hidden Markov models is more subtle and in-

teresting. We define detailed balance for a hidden Markov

model to mean that the following must hold for all x ∈ A

and all α, β ∈ R:

π(α)Tx(α, β) = π(β)Tx(β, α) . (6)

Trivially, if a hidden Markov model is in detailed bal-

ance, then its internal Markov chain must also be in

detailed balance. The converse, however, is not true.

Also, whenever a hidden Markov model is in detailed

balance, one can show that the process it generates is

reversible. But unlike the Markov chain case, detailed

balance is not equivalent to reversibility. And, quite gen-

erally, the process generated by a hidden Markov model

can be reversible even if the model is not in detailed bal-

ance [10]. The Golden Mean Process of Fig. 2(a) gener-

ates a reversible process, but it is not in detailed balance.

The contrapositive is perhaps more intriguing: Every ir-

reversible stationary process generated by a finite-state,

edge-emitting hidden Markov model is not in detailed bal-

ance [11].

We can use the condition of detailed balance to in-

spire a definition for the time-reversed hidden Markov

model. If Tx are the labeled transition matrices of a

hidden Markov model and π is its unique stationary dis-

tribution, then its time-reversed hidden Markov model

has labeled transition matrices given by:

T̃x(α, β) ≡ P(X0 = x,R0 = β |R1 = α)

=
π(β)Tx(β, α)

π(α)
. (7)

The time-reversed HMM for the Golden Mean Process is

given in Fig. 2(b), which is now nonunifilar.

As before, if π is stationary for T =
∑

Tx, then it is

also stationary for T̃ =
∑

T̃x. To justify its designation

as the time-reversed hidden Markov model, we demon-

strate that it does indeed generate words in reverse time

and, thus, generates the time-reversed process:

P(X̃0 = x0, . . . , X̃L−1 = xL−1)

=
∑

ρ0,...,ρL

π(ρ0)T̃x0
(ρ0, ρ1) · · · T̃xL−1

(ρL−1, ρL)

=
∑

ρ0,...,ρL

π(ρL)TxL−1
(ρL, ρL−1) · · ·Tx0

(ρ1, ρ0)

= P(X0 = xL−1, . . . , XL−1 = x0) .

This result provides an alternative characterization of re-

versibility which parallels that for Markov chains given

in Eq. (4). That is, a hidden Markov model is reversible

if and only if for all w ∈ AL and all L ∈ N, we have:

P(X0:L = w) = P(X̃0:L = w), (8)

indicating that the two hidden Markov models agree on

the probability of every word; cf. Eq. (5). Also, note

that if the hidden Markov model is in detailed balance,

then it equals the time-reversed hidden Markov model:

Tx = T̃x. We see that detailed balance is a structurally

restrictive property.

For Markov chains, determining if a process is re-
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versible amounted to checking for detailed balance. The

situation is more complicated for hidden Markov mod-

els but, curiously enough, there exists a straightforward

procedure to check if two hidden Markov models generate

the same process language. This is known as the identi-

fiability problem [12], and its solution [2, 13, 14], though

20 years old now, does not seem to be as well known.

A crude test is to verify that the hidden Markov model

and its time-reversed hidden Markov model agree on the

probabilities of every word of length L, where L < 2|R|

and |R| is the number of states in the model [2].

Another interesting question is whether or not the re-

versibility of the internal Markov chain has any effect

on the reversibility of the observed process. As it turns

out, the answer is no. Jumping ahead a bit, we note

that the forward ǫ-machine in Fig. 10 has a reversible

internal Markov chain, but the observed process is irre-

versible. Additionally, to any irreversible Markov chain,

we can simply assign the same symbol on each outgoing

edge. This creates a period-1 process that is definitely

reversible. So, the reversibility of the internal Markov

chain can make no statement on the reversibility of the

observed process.

V. STRUCTURE AND CANONICAL

PRESENTATIONS

Rarely does one work directly with a process. Need-

less to say, specifying the probability of every word at

every length is a cumbersome representation. Instead,

one works with generators. However, one must be careful

in choosing a representation for the latter. For example,

the class of processes representable by finite-state hidden

Markov models is strictly larger than the class of pro-

cesses representable by finite-state Markov chains [15].

So, one cannot use Markov chains in many cases.

As previously noted, when the process can be repre-

sented by a finite-state Markov chain, then that represen-

tation is unique. If the process has no finite-state Markov

chain representation, however, then there is a challeng-

ing multiplicity of possible hidden Markov model repre-

sentations to choose from, many with distinct structural

properties. Fixing a process and time-order, its various

generative models are referred to as presentations of the

process, relative to the time-order. As an example, Fig. 3

gives a continuously parametrized set of hidden Markov

models for the forward scanned Golden Mean Process.

Each value of z = P(B, 0|A) ∈ [ 12 , 1] defines a unique

hidden Markov model that generates the same Golden

Mean Process. That is, P(X1 = β|X0 = α) is indepen-

dent of z and equal to the matrix T (α, β) that defined the

Markov chain in Fig. 1(a). Note that this is only a two-

A B

z|0

−2z
2
+3z−1

2z
|1

1

2z
|1

2z−1

2z
|11−z

2z
|1

FIG. 3. The Golden Mean Process as a continuously
parametrized hidden Markov model. The internal state set
is R = {A,B} and the observation alphabet is A = {0, 1}.
Each value of z = P(B, 0|A) ∈ [ 1

2
, 1] defines a unique hidden

Markov model that generates the same process as the models
in Figs. 1(a) and 2(a).

state hidden Markov model. It is possible to construct

similar families with even more states. (The technique

for constructing such continuously parametrized presen-

tations for a given process will appear elsewhere.)

This degeneracy serves to emphasize why a process’s

structure and that of its presentations deserve close at-

tention. To appreciate this concern more deeply, we de-

tour and examine structure explicitly. Then, we intro-

duce ǫ-machines and show how they provide a canonical

presentation that, in addition to other benefits, resolves

the degeneracy. Finally, we discuss additional notions of

reversibility that are more closely tied to and calculable

from ǫ-machines.

A. Decomposing the State

Reference [1] presented an information-theoretic anal-

ysis of the relationship between a hidden Markov model’s

states and the process it generates. One of the main con-

clusions was that the internal-state uncertainty H[R0]

can be decomposed into four independent components.

Here, we summarize the decomposition, assuming a min-

imal amount of information theory. Reference [16] should

be consulted for background not covered here. Famil-

iarity with the block entropy, entropy rate, and excess

entropy as developed in Ref. [1] is also assumed.

By splitting a process’s bi-infinite sequence of random

variables into a past X:0 and a future X0:, we isolate the

information that passes through the present state R0.

As developed in Refs. [17] and [18], the statistical re-

lationships among these three (aggregate) variables are

concisely expressed using the information diagram tech-

nique of Refs. [19] and [20]. Said briefly, a process’s

Shannon entropies and mutual informations [21] form

a measure over the associated event (sequence) spaces.

Given this, the set-theoretic relationships between the

measure’s atoms are displayed in the Venn-like diagram.

For a three-variable information diagram, we have

three circles representing H[X:0], H[X0:], and H[R0]. In
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H[X:0] H[X0:]

H[R0]

Cµ

H[X:0]

H[X0:]

Cµ

H[R0]

χ

E

ϕ

ζ

FIG. 4. Information diagram capturing all possible relation-
ships between the past X:0, the future X0:, and the present—
the current internal state R0. The statistical complexity Cµ,
excess entropy E, crypticity χ, oracular information ζ, and
gauge information ϕ appear as unions and intersections of
the resulting atoms.

total, this means that there are 7 atoms to consider.

However, since every hidden Markov model has an in-

ternal Markov chain that governs generation, the past

and future are shielded from each other given the cur-

rent state. This is a probabilistic statement, but when

phrased in terms of conditional mutual information, we

have I[X:0;X0:|R0] = 0. A moment’s reflection shows

that this is a way of saying that the hidden Markov model

generates the process. This quantity can be nonzero only

if we compare a process to the states of a hidden Markov

model that generates a different process.

The information diagram is shown in Fig. 4. There,

H[X:0] is represented by everything contained in the or-

ange circle [22]. The purple circle represents H[X0:] and

the black circle, our focus, represents state information

H[R0]. The figure contains an additional blue circle

that can be ignored until ǫ-machines are introduced in

Sec. VB. So, absent the blue circle, we see that the state

information decomposes into four quantities. Specifically,

H[R0] = E+ χ+ ζ + ϕ , (9)

where we have the:

1. Excess entropy : E = I[X:0;X0:],

2. Crypticity : χ = I[X:0;R0|X0:],

3. Oracular information: ζ = I[R0;X0:|X:0], and

4. Gauge information: ϕ = H[R0|X:0, X0:].

Excess entropy is a by-now standard measure of com-

plexity [23–27] that captures the shared information

z = P(B, 0|A)

FIG. 5. Decomposition of the state information H[R] con-
tained in the parametrized Golden Mean Process presenta-
tion family of Fig. 3. As a function of z = P(B, 0|A) ∈ [ 1

2
, 1],

the excess entropy E, crypticity χ, oracular information ζ,
and gauge information ϕ are stacked such that the top of the
curve is their sum H[R], the state entropy of the presentation
for the given value of z. The miniaturized information dia-
grams are special cases of Fig. 4 tailored to z-values. From
left-to-right, we have z = 1

2
, z = 3

4
, and z = 1.

between past and future observations. Crypticity is

a relatively new measure of structure introduced in

Refs. [17, 18, 28]. In comparison to the apparent in-

formation that excess entropy measures, crypticity mon-

itors how much of the internal state information is hid-

den. Oracular information, introduced in Ref. [1], mea-

sures how much information a presentation provides that

can improve predictability, but that is not available from

the past. Finally, gauge information, also introduced in

Ref. [1], quantifies how much additional structural infor-

mation exists in a presentation that is not “justified” by

the past or the future. Taken together these quantities

provide an informational basis useful for analyzing the

various kinds of structure a process or a process’s pre-

sentation contains.

To see this, we can apply these structural complexity

measures to the Golden Mean Process presentation fam-

ily of Fig. 3. For each value of z = P(B, 0|A) ∈ [ 12 , 1],

Fig. 5 plots E, χ, ζ, and ϕ stacked in way so that their

sum H[R0] is the top curve. One immediately sees that

E is independent of z. This is as it should be since E is

a function only of the observed process and, by construc-

tion, the parametrized presentation always generates the

Golden Mean Process. All of the other measures change

as the presentation changes, however. Let’s explore what

they tell us.

Beginning with z = 1/2, we recover the Markov chain
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presentation of Fig. 2(a). In this presentation, all of the

state informationH[R0] is contained withinH[X:0]. This

is represented by the leftmost information diagram at the

top of Fig. 5. Loosely, we say that the state information

contains only information from the past. However, one

must keep in mind that the presentation still captures E

bits of information, and this information is shared with

the future. The gauge and oracular informations vanish.

It turns out that the z = 1/2 presentation is the process’s

forward ǫ-machine, but more on this later.

As z increases, so do the gauge and oracular informa-

tions. With this change, the information diagram circle

for H[R0] straddles H[X:0] and H[X0:], as shown in the

central information diagram atop Fig. 5. This indicates

that the state information now consists of historical in-

formation, oracular information, and also gauge informa-

tion. For all values of z, the overlap that H[R0] has with

the intersection of the past and future is constant. This

is because each presentation generates the process and so

each must capture E bits of shared information.

Finally when z = 1, the circle for H[R0] is now com-

pletely contained inside the future H[X0:]. Now, the

information diagram resembles the right-most one atop

Fig. 5. There is no crypticity, no gauge information, but

there is oracular information. The interpretation is that

the state information, apart from E, consists only of in-

formation from the future. As we will see, the z = 1

presentation corresponds to the time-reversed HMM of

the reverse ǫ-machine. And, since the Golden Mean Pro-

cess is a reversible Markov chain, the z = 1 information

diagram mirrors the diagram for z = 1
2 .

B. ǫ-Machines

We discussed processes in the context of generators, as

represented by Markov chains and hidden Markov mod-

els, but another important aspect concerns prediction.

As we will show, ǫ-machines are a natural consequence of

this perspective, and they provide a much richer analysis

of irreversibility. Additionally, their uniqueness provides

a solution to the multiplicity of HMM presentations.

Consider again a process’s output sequence and, now,

interpret time as increasing with the index. The result is

a time-series . . . Xt−1XtXt+1 . . .. Our goal is to construct

a model that predicts future observations. Specifically,

we want to find sufficient statistics that preserve our abil-

ity to predict. Translating this into a concrete procedure,

we first remove redundancies in the time-series, by group-

ing histories that lead to the same distribution over fu-

tures:

x:0 ∼ x′
:0 ⇐⇒ P(X0:|X:0 = x:0) = P(X0:|X:0 = x′

:0) .

X0 X1 X2
. . .X

−1X
−2X

−3· · ·

S0 S1 S2
. . .

FIG. 6. The dynamic over the causal states is induced by
the dynamic over the (semi-infinite) histories. For example,
a history X−1: ending at t = −1, maps to causal state S0.
When a new symbol X0 is appended to the old history, we
induce a new causal state S1.

The grouping defines an equivalence relation over his-

tories and, thus, partitions the space of histories. This

partition is the coarsest one that provides optimal pre-

diction. It is called the process’s causal state partition.

Each equivalence class is known as a causal state and,

thus, to each causal state, there is a unique distribution

over futures [5, 29, 30]. The set of causal states is denoted

S.

Now, consider a semi-infinite history X:0 = x:0 which,

by the causal state equivalence relation, induces causal

state S0 = σ0. If we append a new observation, we get

X:1 = x:0x0 which, in turn, induces S1 = σ1. In this

sense, there is a natural dynamic over the causal states

that is induced by the dynamic over the observed se-

quences. This dynamic is represented in Fig. 6. The

pair of causal states and transition dynamic is called a

process’s ǫ-machine.

Generally, the set of causal states can be uncountable,

countable, or finite; see, for example, Fig. 17 in Ref. [5].

Even when the set is not finite, the set that is visited in-

finitely often may be finite. The infinitely visited subset

defines the recurrent causal states. All other states are

transient causal states and not the subject of our discus-

sion here. Now, when the set of recurrent causal states is

finite, then the ǫ-machine—obtained by partitioning his-

tories for the purposes of prediction—is representable as

a finite-state unifilar hidden Markov model. We denote

the transition matrices in the same way, except that we

use S as the state random variables, which take on values

from S:

Tx(α, β) = P(X0 = x,S1 = β|S0 = α) .

ǫ-Machines with a finite number of recurrent states gen-

erate a subset of the finitary processes—processes with

finite excess entropy. This subset represents a strictly

larger set of processes than finite-state Markov chains

since it includes processes with measures over strictly

sofic [31] shifts.

The ǫ-machine is the unique presentation of a process

in the class of unifilar hidden Markov models [29, 30]

and, thus, it defines serves as a canonical presentation
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for a given process. There are other benefits. For one,

ǫ-machine unifilarity allows one to directly calculate the

process entropy rate. Early on, Shannon pointed out that

this is always possible to do with Markov chains. It was

soon discovered that it is not possible using nonunifilar

hidden Markov models [12]. Nonunifilarity makes each

presentation state appear more random than it actually

is. For a more detailed treatment of ǫ-machines, see

Ref. [29].

We pause briefly to point out that the unifilarity prop-

erty of the ǫ-machine is a consequence of the equivalence

relation. It has been known for some time [5, 18, 32] that

there are nonunifilar hidden Markov models of processes

that can be smaller, sometimes substantially smaller,

than the process’s ǫ-machine. However, finding a canon-

ical presentation within the class of nonunifilar hidden

Markov models is a task that has evaded solution. One

obvious choice is to focus on the hidden Markov model

that minimizes the state entropy; see Ref. [32] for fur-

ther discussion. Since our goal is to analyze the role

that structure plays in irreversibility, having a canonical

presentation is essential. So, our focus on ǫ-machines is

based, in part, on practicality since one can calculate the

ǫ-machine from any alternative presentation. It is also

theoretically useful since many quantities—such as the

process entropy rate and excess entropy—are not exactly

calculable from nonunifilar presentations. Additionally,

the states of nonunifilar presentations are not sufficient

statistics for the histories. The consequence is that one

cannot forget the past and work with an individual state

in a general hidden Markov model—instead, one must

work with a distribution over the states [33].

Our discussion of processes began by pointing out

that time is merely an interpretation of the indices

on a set of random variables. Thus far, we described

ǫ-machines from the forward perspective—yielding the

forward ǫ-machine, denoted M+. Similarly, following

Refs. [17, 18] one can partition futures for the purposes

of retrodiction, and this partitioning induces a dynamic

over the reverse causal states. The resulting unifilar hid-

den Markov model is known as the reverse ǫ-machine,

denoted M−. To differentiate the states in each hidden

Markov model, we let S+
t represent the random variables

for the forward causal states and use S−
t for the reverse

causal states. The equivalence relations used during par-

titioning, ∼+ and ∼−, are generally distinct. We use

ǫ+ : x: 0 → S+ to denote the mapping that takes a his-

tory and returns the forward causal state into which the

history was partitioned. Similarly, we use ǫ− : x0: → S−

to denote the mapping from futures to reverse causal

states.

To orient ourselves, Fig. 7 places the relevant random

variables on a lattice. The X variables denote the ob-

PresentPast Future

X0 X1 X2X
−1X

−2X
−3

S
+

0 S
+

1 S
+

2
S

+

−1S
+

−2

S
−

0 S
−

1 S
−

2
S

−

−1S
−

−2

. . .. . .

. . .. . .

. . .. . .

FIG. 7. Hidden Process Lattice: The X variables denote the
observed process; the S variables, the hidden causal states.
If one scans the observed variables in the positive direction—
seeing X−3, X−2, and X−1—then that history takes one to
causal state S+

0 . Analogously, if one scans in the reverse di-
rection, then the succession of variables X2, X1, and X0 leads
to S−

0 . The colors indicate which variables participate in the
information measures of Fig. 9.

x:0 x:1

σ
+

0 σ
+

1

M
+

x0

x0

ǫ
+

ǫ
+

x0: x1:

σ
−

0
σ
−

1

M
−

x0

x0

ǫ
−

ǫ
−

FIG. 8. Each ǫ-machine operates distinctively on the hidden
process lattice, where x and σ represent symbol and causal
state realizations. For the forward ǫ-machine M+, every past
x:0 maps to a unique next past x:1 on symbol x0. By the
forward-looking map ǫ+, each past x:0 corresponds to unique
causal state σ+

0 . This many-to-one correspondence induces
a dynamic on the causal states such that σ+

0 transitions to
σ+

1 on symbol x0. Similar statements hold for the reverse
ǫ-machine.

served process of the hidden Markov model, which is

broken up into the past (orange) and future (purple) ob-

servation sequences. The hidden causal states are repre-

sented by the S variables. In the present, we have S+
0

and S−
0 straddling the past and future. If one scans the

observed variables in the positive direction—seeing X−3,

X−2, and X−1—then that history takes one to causal

state S+
0 . Analogously, if one scans in the reverse di-

rection, then the succession of variables X2, X1, and

X0 leads to S−
0 . Generally, the forward and reverse

ǫ-machines can be considered as commuting diagrams

which operate on the hidden process lattice. Figure 8

demonstrates these operations.

Finally, we gather the forward and reverse ǫ-machines

in Fig. 9. Together, they provide complementary views of

the process. For example, the minimal amount of infor-

mation one must store in order to generate the process in

the forward direction defines the forward statistical com-

plexity C+
µ ≡ H[S+]. This information, in general, is not

equal to the minimal amount of information one requires

for retrodiction C−
µ ≡ H[S−] [17, 18, 28]. Notably, the

ǫ-machine has no gauge information since it is minimal
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Eχ
+

χ
−

H[X:0] H[X0:]

C+
µ

C−

µ

FIG. 9. Information diagram for the forward and reverse
ǫ-machines.

and, also, no oracular information since it is unifilar. Re-

ferring briefly back to Figs. 4 and 5, when z = 1
2 , we

have the forward ǫ-machine. When z = 1, we have the

time-reversed HMM of the reverse ǫ-machine M̃−. The

interpretation is direct: The crypticity χ− of the reverse

ǫ-machine becomes oracular information ζ in the time-

reversed HMM.

Our preference, from now on, is to use the forward and

reverse ǫ-machines. Given the forward ǫ-machineM+, we

can construct, via Eq. (7), a reverse generator of the pro-

cess M̃+. However, this is just one presentation among

many possible reverse generators of the process. So, we

operate on that reverse generator, using techniques from

Ref. [18], and obtain the reverse ǫ-machine M−. To-

gether, the forward and reverse ǫ-machines serve as the

basis for understanding processes through the use of gen-

erators. In Sec. VII, we unify the two ǫ-machines into a

single machine and discuss its meaning in the context of

the decomposition of state information.

C. Finite State Automata

One interesting property of ǫ-machines, and hidden

Markov models in general, is that they are intimately re-

lated to automata in formal language theory [34]. Here,

we briefly review their relationship.

Given a process P, we can examine the set of all words

that occur with positive probability. This set is known as

the support of the process’s stochastic language. Strip-

ping away the transition probabilities of any finite-state

hidden Markov model leaves a finite-state automaton

that generates the support of the process language. So,

we see that the support of a process generated by finite-

state HMM always corresponds to a regular language. If

the hidden Markov model was unifilar, then the result-

ing structure, without probabilities, is equivalent to a

deterministic finite automata (DFA). Similarly, nonunifi-

lar hidden Markov models map to nondeterministic finite

automata (NFA).

However, it is necessary to point out that there are

quite drastic differences between formal and process lan-

guages. While DFAs and NFAs are equivalent in the set

of formal languages that each can represent using a finite

number of states, the same is not true of hidden Markov

models. In fact, there are finite-state nonunifilar HMMs

that have no corresponding finite-state unifilar counter-

part. One well known example is the Simple Nondeter-

ministic Source of Ref. [5]. It can be represented as a two-

state nonunifilar HMM, but its ǫ-machine—the smallest

unifilar HMM generating the same process—requires a

countably infinite number of states.

Since it will be useful to compare topological proper-

ties to statistical properties, we define M+
∅ and M−

∅ as

the deterministic finite-state automata corresponding to

the forward and reverse ǫ-machines with all probabili-

ties removed. Note that these DFAs need not be the

minimal deterministic finite-state automata [34] gener-

ating the support, and this fact highlights the differ-

ence between the causal-state equivalence relation and

the Nerode state-equivalence relation in formal language

theory. If we subsequently minimizeM+
∅ andM−

∅ , we are

left with the minimal and unique DFAs that generate the

support, respectively denoted D+ and D−.

Also, we mention that there is a large body of liter-

ature in formal language theory concerning k-reversible

languages [35–39]. This topic does not relate directly to

our notion of reversibility and is rather closer to address-

ing a process’s Markov order; cf. Ref. [40].

One can view ǫ-machines as probabilistic counterparts

to DFAs. In fact, the relation between formal language

theory and stochastic languages can be extended. Just

as there is a hierarchy of models in formal language the-

ory, one can consider a hierarchy of stochastic models as

well. See, for example, the process hierarchy proposed in

Ref. [5].

D. Reversibility Revisited

By focusing on ǫ-machines, we side-step the represen-

tational degeneracy of hidden Markov models. Recalling

the uniqueness of the forward and reverse ǫ-machines,

we note that properties of the ǫ-machine can also be in-

terpreted as properties of the process. This also allows

us to consider additional measures of reversibility that

are based on structural properties of the ǫ-machine. So,

while each of the forthcoming definitions can be stated

strictly in terms of the process’s probability distribution,
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we prefer to use equivalent definitions in terms of the

forward and reverse ǫ-machines. This is akin to studying

formal languages through the use of the minimal DFAs.

As Ref. [2] demonstrated, there is a finite procedure

for determining whether two finite-state hidden Markov

models generate the same process language. By Eq. (8),

this technique also provides a method for determining

whether a process is reversible or not. An alternate tech-

nique involves the forward and reverse ǫ-machines. With

them, one simply asks if the two machines are identi-

cal to each other. If so, then the process is reversible.

In Ref. [18], this property was termed microscopic re-

versibility and we write: M+ = M−.

We can also consider several weaker forms of reversibil-

ity. For example, as we noted, the process that repeats

ABC . . . indefinitely is not reversible, but the ǫ-machines

are essentially the same in that the amount of informa-

tion one requires for prediction equals the amount re-

quired for retrodiction. Following Ref. [18], a process is

causally reversible if and only if C+
µ = C−

µ .

In terms of topology, we say that a process is sup-

port reversible if and only if D+ = D−, where equality

means that DFAs must be identical under an isomor-

phism over the states. Finally, we also consider symbol

isomorphisms. If there exists an isomorphism from the

output alphabet of M+ to the output alphabet of M−

that renders the two machines equal, then we say that the

process is reversible under symbol isomorphism, denoted

M+ ∼= M−. Similarly, the process is support reversible

under symbol isomorphism if and only if D+ ∼= D−.

VI. EXAMPLES

This section exercises the preceding theory, giving

a number of additional results and illustrating them

through example processes and presentations. We start

with an exploration of which kinds of reversibility there

can be. Then we analyze in detail two example ir-

reversible processes, one with a rather counterintuitive

property. The analyses give a concrete understanding

of how irreversibility arises and what its structural con-

sequences are for a process. The section closes with a

survey that demonstrates the dominance of irreversibil-

ity among processes.

A. Causal Reversibility Roadmap

Given these various notions of reversibility, a natural

question comes to mind: What combinations are possi-

ble? To this end, we state a number of straightforward

relationships:

M+ = M− ⇒ C+
µ = C−

µ (10)

M+ = M− ⇒ D+ = D− (11)

M+ = M− ⇒ M+ ∼= M− (12)

M+ ∼= M− ⇒ D+ ∼= D− (13)

D+ = D− ⇒ D+ ∼= D− (14)

Now, let us restrict attention to just the causally re-

versible processes (C+
µ = C−

µ ) and examine microscopic

and support reversibility, with and without symbol iso-

morphisms. That is, we consider the combinations of

the four properties (i) M+ = M−, (ii) M+ ∼= M−,

(iii) D+ = D−, and (iv) D+ ∼= D−. Of the 16 possi-

ble Boolean-vector combinations, only 6 are possible due

Eqs. (10) - (14).

Table I gives example forward and reverse ǫ-machine

pairs for each of the 6 possibilities. What we learn from

these examples is that causal reversibility indeed captures

a larger class of processes than microscopic reversibility.

However, it also captures a bit more, including processes

that are not isomorphic to one another under a sym-

bol isomorphism. The table also demonstrates that irre-

versibility is not only a topological concern—the forward

and reverse DFAs can be identical while the generated

process languages are not.

B. Causal Irreversibility

Irreversible processes are ubiquitous, even among those

represented by finite-state ǫ-machines. In our first ex-

ample, we ground intuitions with a process whose irre-

versibility is driven topologically. The example is par-

ticularly illustrative since its ǫ-machines have a finite

number of causal states. In the second example, we ex-

amine an irreversible process whose forward and reverse

DFAs are identical; this demonstrates that irreversibil-

ity can arise purely probabilistically. Then, in the third

example, we see the extent to which probability aggra-

vates irreversibility when it causes a finite-state forward

ǫ-machine to become an infinite-state reverse ǫ-machine.

1. Support-Driven Irreversibility

The first example we consider shows that a process can

have different, but finite, numbers of forward and reverse

causal states. Formally, Ref. [18] provides the technique

for calculating the reverse ǫ-machine via operations on

the graph structure of the forward ǫ-machine but, for

pedagogical reasons, both the forward and reverse causal
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TABLE I. Diversity of causally reversible processes (C+
µ = C−

µ ): Example presentations for forward and reverse ǫ-machine
pairs, with the same number of states, for the 6 possible combinations; all other combinations are impossible.

states are constructed in terms of Xt only [41].

Consider the time series over the alphabet {0, 1, 2}

whose forward (M+) and reverse (M−) ǫ-machines are

shown in Fig. 10. As we will show, the process language

generated by M+ is irreversible and, additionally, this

irreversibility is due to an underlying topological irre-

versibility. That is, D+ 6= D− implies that M+ 6= M−.

To see the topological irreversibility note that in M+

w = 01 is a valid word: Start in A, see 0 and stay in A,

then see 1 and go to B. However, w̃ = 10 is not a valid

word. We can also see this in a slightly different light by

noting that w is valid in M+, but not valid in M−.

To understand the forward causal states, consider the

distribution of X0 = (0, 1, 2) conditioned on length-1 his-

tory suffixes:

P(X0|X−1 = 0) = (1/2, 1/2, 0),

P(X0|X−1 = 1) = (0, 1/2, 1/2), and

P(X0|X−1 = 2) = (1/2, 1/2, 0).

We see that the time series generated by this machine has

the following characteristics: Every history that ends on

symbol 0 or 2, is followed by either 0 or 1, with probabil-

ity 1/2, but never by symbol 2. Hence, with regard to the

distribution of a one-step future, all histories ending on 0

or 2 are equivalent and we denote this class of equivalent

histories as causal state A. The distribution of symbols

following words ending on symbol 1 is different. They are

followed by either symbols 1 or 2 with probability 1/2,

but never by symbol 0. All histories ending in 1 are hence
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FIG. 10. The forward (top left) M+ and reverse (bottom left) M− ǫ-machines for a causally irreversible process. Note that
D+ 6= D− and, thus, M+ 6= M−. The forward causal states S+ (top right) partition all allowable histories . . . X−1. In this
example, the states are uniquely characterized by specifying the most recent symbol X−1. For example, any valid history ending
with a 0 or 2 maps to state A, and the possible futures can begin with a 0 or 1. The incoming edges of M+ correspond to
histories (X−1), while its outgoing edges correspond to futures (X0). The reverse causal states S− (bottom right) partition all
allowable futures X0.... In this example, the states are uniquely characterized by specifying the earliest symbol of each future.
For example, any valid future beginning with a 0 maps to state C and the associated histories must end with a 0 or 2. The
incoming edges of M− correspond to futures (X0), while its outgoing edges correspond to histories (X−1).

equivalent with respect to the distribution of a one-step

future and we denote their equivalence class as state B.

States A and B partition of the entire space of al-

lowable histories. The fact that the equivalence class of

a history is determined solely by the last symbol is re-

flected by the time series of symbols having Markov order

1. The reader should verify that, in this particular exam-

ple, Markovity also means that the partition obtained by

examining one-step futures is equivalent to the partition

obtained by examining arbitrary L-step futures. From

this, we see that S+ = X:0/ ∼+ consists of:

A = {. . . 0, . . . 2} and

B = {. . . 1},

where an ellipsis stands for any valid past.

The partition is represented graphically in the matrix

at the top-right of Fig. 10. In it, we independently rear-

ranged the histories and futures so as to cluster the block-

structures within the matrix. For each history X−1, the

distribution over futuresX0 is (topologically) represented

as a column. Histories with the same column colorings

belong to the same equivalence class under the forward

equivalence relation ∼+. Finally, note that the futures

are not partitioned by the forward equivalence relation

since X0 = 1 is allowable from both A and B.

To understand the reverse causal states, we examine

the distribution of symbols preceding the future. Since

the Markov order does not change when analyzing the

time series in the reverse direction (App. A), the equiv-

alence class of a future is determined solely by the first

symbol of the future. Additionally, equality of distribu-

tions over length-1 histories implies equality over arbi-

trary length-L history distributions. Thus, for X−1 =

(0, 1, 2) conditioned on a length-1 future, we have:

P(X−1|X0 = 0) = (1/2, 0, 1/2),

P(X−1|X0 = 1) = (1/4, 1/2, 1/4), and

P(X−1|X0 = 2) = (0, 1, 0).

Any word starting with symbol 0 can only be preceded

by symbols 0 or 2 with probability 1/2 each, but never

with symbol 1. Correspondingly, all futures starting with

symbol 0 are equivalent and their equivalence class is de-
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noted as reverse causal state C. Furthermore, any word

starting with symbol 1 is preceded by symbols 0 or 2

with probability 1/4 each or is preceded by symbol 1

with probability 1/2. All futures starting with symbol 1

are equivalent with respect the distribution of preceding

symbols and subsumed as reverse causal state D. Fi-

nally, words starting with symbol 2 can only be preceded

by symbol 1. The equivalence class of futures starting on

symbol 2 is denoted reverse causal state E. From this,

we see that S− = X0:/ ∼− consists of:

C = {0 . . .},

D = {1 . . .}, and

E = {2 . . .},

where an ellipsis now stands for any valid future.

States C, D, and E partition the space of allowable

futures. They are represented in the lower-right matrix

of Fig. 10. In it, we rearranged the histories and futures

so as to cluster the block-structures within the matrix.

For each future X0, the distribution over histories X−1 is

(topologically) represented as a row. Each row coloring

is distinct, reflecting the fact that each future belongs to

a distinct reverse causal state under the reverse equiv-

alence relation ∼−. Finally, note that the histories are

not partitioned by the reverse equivalence relation since

X−1 = 0, for example, is allowable from both C and D.

Note how the space of histories is partitioned into

only two equivalence classes, while the space of futures

is partitioned into three equivalence classes. Any first-

order Markov chain on k symbols has at most k causal

states. That we only have two forward causal states is

due to the fact that the future distributions after see-

ing symbols 2 and 0 are equivalent. This equivalence,

however, does not hold in the reverse direction and, so,

there are three reverse causal states. The asymmetry

is further exemplified by the forward ǫ-machine having

smaller statistical complexity than the reverse ǫ-machine:

C+
µ = 1 bit < C−

µ = 3/2 bit. For this particular process,

it takes 1/2 bit more memory, on average, to generate

the same string of symbols from right to left than from

left to right.

Comparing the causal states as represented in Fig. 10,

we see that each equivalence relation also defines a par-

tition over the set (X−1, X0). This, in turn, extends to

a partition over bi-infinite strings. So, we can think of

the forward (reverse) ǫ-machine as the restriction of this

partition to the set of histories (futures). The partition

over the bi-infinite strings must be such that when it is

restricted to histories (futures) it induces a unifilar dy-

namic over equivalence classes. This particular point will

be important when we discuss the bidirectional machine

in Sec. VII.
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FIG. 11. The forward (top) M+ and reverse (bottom) M−

ǫ-machines of an irreversible, order-2 Markov process. The
process is irreversible since M+ 6= M−. However, the support
is reversible since the underlying topologies of each ǫ-machine
are the same: M+

∅ = M−
∅ .

2. Probability-Driven Irreversibility

In our second example, we show that irreversibility can

have purely probabilistic origins. We do this with an ir-

reversible, order-2 Markov process that has a reversible

support. Figure 11 presents the recurrent components

of the forward and reverse ǫ-machines, M+ and M−. To

see that the support is reversible, note that the ǫ-machine

structures, without probabilities, are equal: M+
∅ = M−

∅ .

This implies that D+ = D−, but it can also be seen

directly since the topologies, in this example, are al-

ready minimal deterministic finite automata. The prac-

tical consequence of having a reversible support is that

P(w) > 0 if and only if P(w̃) > 0.

Beginning with the forward causal states, we exam-

ine the distribution of symbols that succeed histories.

Since the process is order-2 Markovian, we calculate fi-

nite histories and futures instead of semi-infinite histo-

ries and futures. Specifically, partitioning length-2 his-

tories based on the conditional distributions of length-

2 futures yields the same result as partitioning semi-

infinite histories based on the conditional distributions

of arbitrary length futures [42]. We directly calculate

P(X0, X1|X−2, X−1) as a right-stochastic matrix, find-
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ing:

P(X0, X1|X−2, X−1)

=




01 02 10 12 20 21

01 0 1/2 0 0 1/4 1/4

02 0 0 1/2 1/2 0 0

10 0 0 0 0 0 1

12 1/2 0 1/4 1/4 0 0

20 0 0 1/2 1/2 0 0

21 0 1/2 0 0 1/4 1/4




.

The forward causal states are groupings of histories and,

in this matrix representation, they correspond to group-

ings of identical rows. For example, the rows corre-

sponding to 01 and 21 are identical and, so, are grouped

into the same equivalence class. Translating these his-

tory suffixes back into semi-infinite histories, we find that

S
+ = X:0/ ∼+ consists of:

A = {. . . 02, . . . 20},

B = {. . . 01, . . . 21},

C = {. . . 10}, and

D = {. . . 12}.

The reverse causal states are similarly obtained, but

now we consider the distribution of symbols that precede

futures. Once again, we work with finite-length histories

and futures. Using a right-stochastic matrix, we calculate

P(X−2, X−1|X0, X1) directly as:

P(X−2, X−1|X0, X1)

=




01 02 10 12 20 21

01 0 0 0 1 0 0

02 1/4 0 0 0 0 3/4

10 0 1/2 0 1/4 1/4 0

12 0 1/2 0 1/4 1/4 0

20 1/4 0 0 0 0 3/4

21 1/12 0 2/3 0 0 1/4




.

The reverse causal states are groupings of futures, and

this corresponds to groupings of identical rows in the

matrix. Translating these future prefixes into semi-

infinite futures, we find that the reverse causal states

S
− = X0:/ ∼− consist of:

E = {02 . . . , 20 . . .},

F = {10 . . . , 12 . . .},

G = {01 . . .}, and

H = {21 . . .}.

Since there are multiple perspectives involved, we de-

tour briefly to translate the matrix P(X−2, X−1|X0, X1)

onto the reverse ǫ-machine shown in Fig. 11. One per-

spective, the global perspective, is the process lattice of

Fig. 7 that defines forward as a left-to-right movement

and reverse as a right-to-left movement. The other per-

spective, the local perspective, is from the ǫ-machine’s

vantage point that is concerned only with its own local

time. That is, the causal-state dynamic always proceeds

“forward” in time, irrespective of how forward is defined

in the global perspective. For the reverse ǫ-machine, this

means its outgoing transitions translate to right-to-left

movements on the lattice. To demonstrate, consider the

element:

P(X−2 = 2, X−1 = 1|X0 = 2, X1 = 0) = 3/4.

The joint word is x−2x−1x0x1 = 2120. To verify that

this is a valid word in the process, one scans the word

from right-to-left following transitions on M−. Focusing

only on x0x1 = 20, if we begin in reverse causal state F ,

then we transition to state G on symbol 0 and, finally, to

state E on symbol 2. This is precisely the statement of

the reverse causal-state partition: any future beginning

with 20 leads (when scanned from right-to-left) to reverse

causal state E. Continuing from E, we see x−2x−1 = 21

first by transitioning to state F on symbol 1 and then

again to state H on symbol 2. The total probability of

this conditional path is 3/4.

To understand where the irreversibility arises, we first

note that the matrix P(X0, X1|X−2, X−1) implicitly con-

tains the information about the dynamic over the forward

causal states. For example, from x−2x−1 = 01, we can

see x0x1 = 20 and x0x1 = 21 each with probability 1/4.

Marginalizing and using the forward causal-state parti-

tion, this means that state B = ǫ+(. . . 01) can see symbol

2 with probability 1/2 and when it does, we transition to

state D = ǫ+(. . . 012) = ǫ+(. . . 12).

Our goal is to understand why the edge from F to H

on symbol 2 occurs with probability 3/4 instead of prob-

ability 1/2 [43]. From the reverse causal-state partition,

any future beginning with X0X1 = 10 will lead into state

F = ǫ−(10 . . .). If we then see x−1 = 2, we move to state

H = ǫ−(210 . . .). In the matrix for P(X−2, X−1|X0, X1),

we now look at the row labeled 10. There, the columns

labeled 02 and 12 correspond to histories with x−1 = 2.
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The probabilities are 1/2 and 1/4, respectively, which

sum to 3/4. So, indeed, the process is irreversible, de-

spite having a reversible support.

3. Explosive Irreversibility

Our final example shows that, although a process can

be represented by a finite number of causal states in one

direction, its ǫ-machine in the reverse direction may re-

quire a countably infinite number of states. The sup-

port of this process language corresponds to a strictly

sofic shift [31] and, thus, the process is not Markovian.

The consequence is that we must use a hidden Markov

model representation if we want to represent it finitely,

at least in the forward direction [44]. The recurrent com-

ponents of the forward and reverse ǫ-machines are shown

in Fig. 12.

Let us again study the distribution of symbols suc-

ceeding histories. Since the process is not Markovian, we

cannot expect to obtain the causal states by examining

finite-length histories. And so, we must focus attention

on semi-infinite histories and their suffixes.

The presence of synchronizing words [40] makes the

analysis a bit easier. In this example, w = 0 and w = 2

are minimal synchronizing words and, so, after observ-

ing one of these words, the state of the ǫ-machine is

known with certainty. ǫ-Machine unifilarity then guar-

antees that on each next symbol we will still know the

state of the machine. This allows us to read the distribu-

tion of X0 directly off the forward ǫ-machine’s outgoing

edges.

Thus, any history ending in symbol 0 will be followed

by symbols 0, 1, or 2 with probability 1/3 each. The

equivalence class of histories containing X:0 = . . . 0 will

be denoted forward causal state A+. Looking at the ma-

chine, we see that the distribution of next symbols re-

mains unchanged whenever we see a 1 from state A+.

So, any history ending in a 0 followed by an arbitrary,

but finite number of 1s also belongs to equivalence class

A+. Similarly, any history ending with 2 will be followed

by symbols 1 or 0 with probability 1/2 each. The equiva-

lence class of histories ending in 2 will be denoted forward

causal state B+ and, from the machine, we can also see

that B+ includes any history ending with a 2 followed by

an arbitrary, but finite number of 1s. A history consist-

ing entirely of the symbol 1 is best understood by taking

the limit of finite histories which also consist entirely of

1s. When one does this, the history will be followed by

symbols 0 or 1 with probability 1/2 each. Concretely, for

X0 = (0, 1, 2) and k ≥ 0, the conditional distributions

for every valid history are:

P(X0|X:0 = . . . 01k) = (1/3, 1/3, 1/3),

P(X0|X:0 = . . . 21k) = (1/2, 1/2, 0), and

P(X0|X:0 = 1∞) = (1/2, 1/2, 0).

And, from this, we see that S+ = X:0/ ∼+ consists of:

A+ = {. . . 01k} and

B+ = {. . . 21k, 1∞}.

The distribution of symbols preceding futures is more

complicated. First, we consider futures beginning with

1k2, k ≥ 0. These futures cannot be preceded by symbol

2. The probability of observing a 0 or another 1 preced-

ing these futures is 2/3 and 1/3, respectively. We denote

the equivalence class of all futures starting with 1k2 as

reverse causal state B−. Now, consider all words start-

ing with 1k0, an arbitrary number of 1s followed by 0. A

short calculation shows that such words can be preceded

by a 0, 1, or 2 with the probability depending explicitly

on the number of 1s at the beginning of the future. Thus,

there is one reverse causal state for every k, and we de-

note these states as A−
k . As before, the future consisting

entirely of 1s is most easily understood by taking limits;

one finds that it is not possible to precede the future with

a 0 and that 1 and 2 precede the future with probabil-

ity 1/2 each. This limiting distribution coincides with

limk→∞ A−
k and, so, we label its equivalence class A−

∞.

Formally, for X−1 = (0, 1, 2) and k ≥ 0, the conditional

distributions for every valid future are:

P(X−1|X0: = 1k2 . . .) = (2/3, 1/3, 0),

P(X−1|X0: = 1k0 . . .) =
(2k+2, 2k+1+3k+1, 3k+1)

6(2k+3k)
, and

P(X−1|X0: = 1∞) = (0, 1/2, 1/2).

From this, we see that S− = X0:/ ∼− consists of:

A−
0 = {0 . . .},

A−
1 = {10 . . .},

A−
2 = {110 . . .},

...

A−
k = {1k0 . . .},

...

A−
∞ = {1∞}

B− = {1k2 . . .}.

Again, we leave it to the reader to verify that, for this

particular example, a partition of futures into equiva-
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FIG. 12. Explosive irreversibility: Despite the forward ǫ-machine M+ (left) having just two recurrent causal states, the reverse
ǫ-machine M− (right) has a countable infinity of recurrent causal states. Transitions for M− make use of: an = 2n+1(3zn)

−1,
bn = 1− (an+ cn), cn = 3n(2zn)

−1, and zn = 2n+3n. The dashed state labeled A−
∞ is an elusive causal state [2]; it is infinitely

preceded, but neither reachable (from the omitted start state) nor recurrent. See App. B.

lence classes with respect to the preceding symbol will

not change when considering longer strings of preceding

symbols.

The reverse causal states can also be obtained by ap-

plying the forward causal-state equivalence relation on

the time-reversed HMM of the forward ǫ-machine. That

is, (X0:/ ∼−) ∼= (X̃:0/ ∼+). For example, reverse causal

state A−
1 contains every future beginning with 10. Alter-

natively, we can associate A−
1 with “histories” (X̃:0) that

end 01. Since the support is reversible, this allows for a

direct comparison to the forward causal-state partition,

and so A−
1 is a subset of forward causal state A+. We

summarize the relationship [45] between the partitions as

follows:

A+ ∼= A−
0 ∪A−

1 ∪ · · · ∪A−
k ∪ · · · ,

B+ ∼= B− ∪A−
∞ .

Recall, M+
∅ and M−

∅ denote the forward and reverse

DFAs whose structure is defined by the forward and re-

verse ǫ-machines without probabilities. In this example,

M+
∅ 6= M−

∅ since they disagree on the number of states.

However, M−
∅ is not minimal and would be equal to M+

∅ ,

if it were minimized. This means that the support of

the process is reversible: D+ = D−. Thus, this exam-

ple also demonstrates probability-driven irreversibility,

but differs from the example in Sec.VIB 2, which had

M+
∅ = M−

∅ .

This example demonstrated that the ǫ-machines of ir-

reversible processes can be finite in one direction and

infinite in the other. The process has C+
µ ≈ 0.971 and

C−
µ ≈ 1.589 and, so once again, we see that it takes more

memory to generate the process from right-to-left than

from left-to-right.

C. Survey of Irreversibility

Reference [1] classified the space of hidden Markov

models in terms of unifilarity, synchronization, and mini-

mality. Figure 13 reproduces the essential components of

the hierarchy presented there, extending it several ways

[46].

At the outer-most level, outside the dashed ellipse

in Fig. 13, we have hidden Markov models that are

strictly nonunifilar. So, given the current state and

symbol, there is residual uncertainty in the next state:

H[R1|R0, X0] > 0. Moving inside the dashed ellipse we

encounter the strictly unifilar hidden Markov models for

which this quantity is exactly zero. Unifilarity is an im-

portant property since, among other reasons, it allows

one to calculate the process’s entropy rate directly from

the presentation.

However, unifilar hidden Markov models can have a

type of redundancy such that the state is not justified

by the process statistics. Such models have gauge in-

formation ϕ = H[R0|X:0, X0:] > 0. And, when we re-

strict to those with ϕ = 0, the hidden Markov models

become asymptotically synchronizing [47]. This class ex-

ists within the dotted ellipse of Fig. 13. One signature

of unifilar models with zero gauge information is that

the state uncertainty vanishes asymptotically for almost

every history in the process language [48].
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Unifilar

Asymptotically synchronizing

Exactly synchronizing

Minimal unifilar

Uniform transition probabilities

Topological ǫ-machines

FIG. 13. Structural classification of hidden Markov mod-
els: Models within the green ellipse correspond to the recur-
rent ǫ-machines. The shaded area is the subset of recurrent
ǫ-machines that are exactly synchronizing and, additionally,
have uniformly distributed transitions probabilities on the
outgoing edges of each state. This subset defines the topolog-
ical ǫ-machines. Areas in the diagram are not drawn to scale
and only show which classes are contained in other classes.

Within the class of asymptotically synchronizing hid-

den Markov models, there exists a subset for which the

state uncertainty vanishes in finite time for almost every

history in the process language [49]. Such hidden Markov

models necessarily have at least one synchronizing word.

In Fig. 13, this is delineated by the blue ellipse.

Another subset within the class of asymptotically syn-

chronizing hidden Markov models are the minimal unifi-

lar hidden Markov models. Any hidden Markov model

with these properties corresponds to an ǫ-machine of a

process language [50]. This is represented by the green

ellipse in Fig. 13. Generally, the set of ǫ-machines and the

set of exactly synchronizing hidden Markov models (blue

ellipse) are not the same, and their intersection defines

the class of exactly synchronizing ǫ-machines.

Reference [1]’s classification of processes and their pre-

sentations provides a natural setting for developing a re-

fined classification based on the irreversibility properties

just introduced. As a first step, though, it is perhaps

more helpful to develop a quantitative appreciation of

how common irreversibility is within the space of hid-

den Markov models. This is a difficult, if somewhat

open-ended challenge, but we can make some progress

by examining several subclasses. A systematic survey

of processes generated by hidden Markov models is gen-

erally difficult due to their probabilistic nature. How-

ever, if we restrict ourselves to hidden Markov models

with uniformly distributed transition probabilities leav-

ing each state—recall the red, wavy parabola in Fig. 13—

then we can systematically enumerate them. Essentially,

the task boils down to enumerating a particular class of

finite-state automata. Reference [51] provided an exhaus-

tive enumeration of exactly synchronizing ǫ-machines

with uniformly distributed transition probabilities leav-

ing each state. It is this class of processes—generated by

the topological ǫ-machines—that we survey in order to

develop an appreciation of how common irreversibility is

within the space of hidden Markov models.

Table II summarizes the survey, giving the number

Nn,k of topological ǫ-machines [51] and the number Cn,k

of irreversible ǫ-machines over n states and exactly k sym-

bols in the alphabet. (By “exactly k symbols” we em-

phasize that we excluded from the counts processes with

k = 3 that use only 2 symbols, for example.) The im-

mediate impression is quite striking: Irreversibility domi-

nates. It comprises over 98% of all topological ǫ-machines

and their associated processes. Indeed, the fraction of ir-

reversible ǫ-machines appears to rapidly increase toward

unity as the number of states increases. And so, what

might have initially appeared to be a counterintuitive

property—temporal asymmetry in the statistics of a sta-

tionary process—is the overwhelming rule in the space of

processes.

VII. THE BIDIRECTIONAL MACHINE

The bidirectional machine, introduced in Refs. [17, 18],

is a generator that unites the forward and reverse

ǫ-machines, providing an explicit accounting of the re-

lationship between them [52]. In doing so, the excess

entropy, a structural property of a process, becomes ac-

cessible through a simple calculation and, further, the

bidirectional machine contains all information necessary

to reconstruct the forward and reverse ǫ-machines. In

this section, we define the bidirectional machine and in-

terpret it through an example from the previous section.

A. Definitions

The hidden process lattice of Fig. 7 invites us to con-

sider a dynamic over joint causal states. We define an

aggregate state S± ≡ (S+,S−) as the 2-tuple of the for-

ward and reverse causal states with stationary distribu-

tion function:

π(αγ) ≡ P
(
S± = (α, γ)

)

= π(α, γ)

≡ P(S+ = α,S− = γ),
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n\k Nn,2 Cn,2 Nn,3 Cn,3 Nn,4 Cn,4 Nn,5 Cn,5 Nn,6 Cn,6

1 1 0 1 0 1 0 1 0 1 0
2 7 0 120 84 1,351 1,200 12,900 12,290 113,827 111,390
3 78 24 15,364 14,561 1,596,682 1,586,736
4 1,388 1,077 3,621,474 3,607,084
5 35,186 33,107
6 1,132,613 1,119,623

TABLE II. The number Nn,k of topological ǫ-machines [51] and the number Cn,k of irreversible ǫ-machines over n states and
exactly k symbols in the alphabet.

for α ∈ S+ and γ ∈ S−. Counter to typical usage ±

in the joint causal state is interpreted as forward and

reverse, rather than or. Note, that we purposefully over-

load notation and use π again, but it will always be clear

from context to which generator we refer.

Given the (stationary) distribution π, if we scan left-

to-right, we obtain a forward generator M± of the pro-

cess. If we scan right-to-left, we obtain the process’s

reverse generator M∓. These generators are generally

distinct. However, we will see that M∓ is equal to the

time-reversed HMM of M±. That is, M∓ = M̃±. For

that reason, we take M± as the starting point.

Having defined the states, the transition matrices for

the forward bidirectional machine M± are given by:

Tx(αγ, βδ) ≡ P
(
X0 = x,S±

1 = (β, δ) | S±
0 = (α, γ)

)

=

{
T̃x(γ, δ) if Tx(α, β) > 0,

0 otherwise,
(15)

where α, β ∈ S
+ and γ, δ ∈ S

−. The transition probabil-

ities of the forward bidirectional machine mimic the tran-

sition probabilities of the time-reversed reverse ǫ-machine

(M̃−), provided the transition is allowed in the forward

ǫ-machine (M+).

To see how Eq. (15) arises, first we note that:

P
(
X0,S

±
1 | S±

0

)

= P
(
X0,S

+
1 ,S−

1 | S+
0 ,S−

0

)

= P
(
S+
1 | S+

0 ,S−
0 , X0,S

−
1

)
P(X0,S

−
1 | S+

0 ,S−
0 ) . (16)

Following Eq. (15), we take S+
0 = α, S+

1 = β, S−
0 = γ,

S−
1 = δ, and X0 = x. Then, the first factor in Eq. (16) is

either 0 or 1, due to unifilarity of the forward ǫ-machine,

depending on if β is the unique causal state that follows

α on symbol x. The presence of S−
0 = γ and S−

1 = δ

in the conditional does not change this fact, so long as

(γ, x, δ) is a valid consecutive combination in the reverse

ǫ-machine—and this is implicitly handled by the second

factor.

The second factor reduces due to the shielding prop-

erty of hidden Markov models: the past and future are

independent given the present state. Focusing on the

reverse ǫ-machine, we express independence formally as:

P(X0: ,S
−
1: |X:0 ,S

−
:0 ,S

−
0 ) = P(X0: ,S

−
1: |S

−
0 )

where (X0: ,S
−
1: ) is everything related to the future and

(X:0 ,S
−
:0 ) is everything related to the past. Now, we

also know that the forward causal states are determined

by the past: H[S+
0 |X:0 ] = 0, and this means that the

forward causal state and future are independent given

the past causal state [53]:

P(X0: ,S
−
1: |S

+
0 ,S−

0 ) = P(X0: ,S
−
1: |S

−
0 )

Restricting to single-step futures, we obtain:

P(X0,S
−
1 | S+

0 ,S−
0 ) = P(X0,S

−
1 | S−

0 ). (17)

Understanding this in terms of previously defined quan-

tities is subtle precisely due to the shifting notions of

forward and reverse time. Intuitively, Fig. 7 shows that

we are asking the reverse ǫ-machine to move left-to-right.

This direction is opposed to the reverse ǫ-machine’s local

notion of forward time. Thus, we expect this movement

from left-to-right to relate to the time-reversed transition

matrices of the reverse ǫ-machine.

At a lower level, we note that the definition, Eq. (7),

of the time-reversed hidden Markov model was stated

under the assumption that the original model’s increasing

indexes corresponded to a left-to-right movement on the

lattice. From the labeling in Fig. 7, the reverse ǫ-machine

does not satisfy this assumption, and a proper translation

of Eq. (7) is:

T̃x(γ, δ) ≡ P(X0 = x,S−
1 = δ | S−

0 = γ)

=
π(δ)Tx(δ, γ)

π(γ)
, (18)

which is exactly the quantity in question. The result is

that whenever Tx(α, β) > 0, then the transition proba-

bility of the forward (left-to-right) bidirectional machine

is determined by the transition matrices of the time-

reversed reverse ǫ-machine (M̃−).

The reverse bidirectional machine M∓ is analogously
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δ γ

FIG. 14. Left: Portion of the process lattice relevant to the
bidirectional machine’s transition matrices. Right: Realiza-
tions of the process lattice as it applies to Eqs. (19), (20),
(21), (22), and (23).

defined by the right-to-left dynamic over the joint causal

states. This requires that the forward ǫ-machine move

right-to-left on the lattice, a direction that is opposed to

its local sense of forward time. The result is that we use

the time-reversed forward ǫ-machine (M̃+). Similarly,

the reverse ǫ-machine is required to move right-to-left

on the lattice. This direction is in agreement with its

local sense of forward time and so, we utilize the reverse

ǫ-machine (M−) as is. For α, β ∈ S
+ and γ, δ ∈ S

−, we

have:

T̃x(αγ, βδ) ≡ P
(
X0 = x,S±

0 = (β, δ) | S±
1 = (α, γ)

)

=

{
T̃x(α, β) if Tx(γ, δ) > 0,

0 otherwise.
(19)

The proof proceeds analogously to the forward bidirec-

tional machine and is omitted here. For future reference,

Fig. 14 displays α, β, γ, and δ on the process lattice, as

they are used in the definition of the reverse bidirectional

machine. Thus, we have S±
0 = (β, δ) and S±

1 = (α, γ).

Note, these variables are swapped in the definition of the

forward bidirectional machine.

The choice of T̃x as the notation for the reverse bidirec-

tional machine’s transition matrices suggests that it is re-

lated to the time-reversal of the forward bidirectional ma-

chine. Indeed, the definition of the forward bidirectional

machine already provides the matrices for the right-to-

left dynamic. Thus, we see that M∓ = M̃±:

T̃x(αγ, βδ) ≡ P
(
X0 = x,S±

0 = (β, δ) | S±
1 = (α, γ)

)

=
π(β, δ)Tx(βδ, αγ)

π(α, γ)
. (20)

Applying Eq. (15) gives the direct relation to the forward

X0

S
+

0 S
+

1

S
−

0 S
−

1

X0

S
+

0 S
+

1

S
−

0 S
−

1

FIG. 15. Equations (22) (left) and (23) (right) demonstrate
path equivalence. In each, the red and blue paths are equiv-
alent ways of moving around on the process lattice.

ǫ-machine:

T̃x(αγ, βδ) =





π(β, δ)

π(α, γ)
T̃x(δ, γ) if Tx(β, α) > 0,

0 otherwise;

=





π(β | δ)

π(α | γ)
Tx(γ, δ) if T̃x(α, β) > 0,

0 otherwise.

(21)

Comparing Eqs. (19) and (21), we see that whenever

Tx(γ, δ) and T̃x(α, β) are simultaneously positive, then

we have:

π(α | γ)T̃x(α, β) = π(β | δ)Tx(γ, δ) . (22)

A complementary relation, obtained by applying Bayes

theorem, is:

π(γ |α)Tx(β, α) = π(δ |β)T̃x(δ, γ) . (23)

The interpretations of Eqs.(22) and (23) are properly

framed using the process lattice, as shown in Fig. 14. We

could have also worked with the forward bidirectional

machine, expressing its transition matrix as the Bayes

inverse of T̃x and, then, equating it to Eq. (15). However,

this does not yield any new insight.

Generally, these equations represent path equivalence

on the process lattice. In the left-hand side of Eq. (22),

we begin in S−
1 = γ, transition to S−

0 = δ on symbol

X0 = x, and then shift to S+
0 = β. This path is repre-

sented in red in the right diagram of Fig. 15. The right-

hand side of Eq. (22) says that the red path is equivalent

(in probability) to the blue path, which also begins in

S−
1 = γ. However, now it shifts to S+

1 = α first, and

then reverse transitions to S+
0 = β on symbol X0 = x.

Equation (23) provides an analogous result and is sum-

marized in the left diagram of Fig. 15. There, we begin

in S+
0 and transition to S−

1 via two equivalent paths.

The bidirectional machines are so-named because their

state space consists of the forward and reverse causal

states and their transition dynamic allows one to go in

either direction. However, the bidirectional machine is
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still a one-way generator and this is why there are two

variants, M± and M∓. These two variants are simply

time-reversals of one another, even if the underlying pro-

cess is irreversible. Having established the proper setting

for bidirectional machines, in the next section we analyze

several of their properties and the consequences of this

symmetry.

B. Bi-Infinite Sequence Partitions

The bidirectional machine M± can be understood by

analyzing its effect on the past and future. Previously,

we saw that the forward causal states S+ partitioned

the semi-infinite histories X:0, while the reverse causal

states S− partitioned the semi-infinite futures X0:. The

bidirectional machine, it turns out, partitions the set of

bi-infinite strings X: ≡ X:0X0:. This is expressed by the

bidirectional equivalence relation [18]:

(x:0, x0:) ∼
± (x′

:0, x
′
0:) ⇐⇒ ǫ+(x:0) = ǫ+(x′

:0) and

ǫ−(x0:) = ǫ−(x′
0:) .

Thus, the bidirectional causal states S
± are a partition

of bi-infinite strings resulting from the application of an

equivalence relation: S
± = (X:0, X0:)/ ∼±. The map-

ping ǫ±(·) that takes a bi-infinite string to its bidirec-

tional causal state is defined:

ǫ±(x:0, x0:)

= {(x′
:0, x

′
0:) : x

′
:0 ∈ ǫ+(x:0) and x′

0: ∈ ǫ−(x0:)} .

Note, that the same equivalence relation is used for the

forward and reverse bidirectional machines. All that dif-

fers is the dynamic over the states.

For M± and M∓, we use a bi-infinite instance and

shift the time origin to the right (for M±) or to the left

(for M∓). The symbol encountered during the shift is

the symbol generated.

However, given any bidirectional partition, it does not

follow that the dynamic will be unifilar, and this is pre-

cisely the case for the bidirectional machines. With

ǫ-machines, all histories (or futures) in the equivalence

class have exactly the same distribution over futures (or

histories). And so, on the next symbol, every history (or

future) in the causal state transitioned to the same next

causal state. With the bidirectional machine, this is no

longer true, and the dynamic over the states is generally

nonunifilar.

C. Properties

Each of the process and presentation properties dis-

cussed can be considered operators. That is, given a

model M , we calculate a quantity relative to the model

alone, using its local sense of time. This point is worth

remembering as we discuss properties of the bidirectional

machines. We will continue, however, to frame the var-

ious quantities using the bird’s eye view of the process

lattice.

The stationary distribution for the forward bidirec-

tional machine is P(S+,S−) and, as Sec. IVB discussed,

the reverse bidirectional machine has the same station-

ary distribution. Using Refs. [17, 18], we can immedi-

ately calculate the excess entropy as E = I[S+;S−]. Im-

portantly, this quantity is not calculable given only the

forward and reverse ǫ-machines. (Alternate methods to

calculate E end up being essentially equivalent to invok-

ing the bidirectional machine.)

As mentioned, the bidirectional machine can also be

nonunifilar. Since the bidirectional causal states are the

joint distribution over the forward and reverse causal

states, the bidirectional machine’s oracular information

ζ(M±) is the crypticity of the reverse ǫ-machine χ−. Ad-

ditionally, the bidirectional machine’s crypticity χ(M±)

is the crypticity χ+ of the forward ǫ-machine.

If, instead, we work with the reverse bidirectional ma-

chine M∓, all the interpretations are flipped. Then

the crypticity χ(M∓) is equal to the reverse ǫ-machine’s

crypticity χ−, and the oracular information ζ(M∓) is

the forward ǫ-machine’s crypticity χ+. Recall that

ǫ-machines do not have oracular information, since they

are unifilar.

These information quantities are summarized in

Fig. 17. There, we see that the reverse bidirectional ma-

chine swaps crypticity and oracular information just as a

general hidden Markov model [1].

Of the presentation quantifiers, this leaves only the

gauge information ϕ to be explained. Recall that the

past X:0 completely determines the future causal state

S+
0 and that the future X0: completely determines the

past causal state S−. Then, this gives:

ϕ(M±) = H[S±|X:0, X0:]

= H[S+,S−|X:0, X0:]

= H[S+|X:0, X0:] +H[S−|X:0, X0:,S
−]

≤ H[S+|X:0] +H[S−|X0:]

= 0 + 0 .

Thus, the bidirectional machine does have a certain rep-

resentational efficiency: It has no gauge information.

This is implicitly shown in Fig. 17, but more easily seen
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in Fig. 9. There, we see that the ellipse representing the

bidirectional machine’s states (the union of C+
µ and C−

µ )

only consists of areas within the entropies of the past

H[X:0] and future H[X0:]. Naturally, one wonders if it

is possible to define the bidirectional machine through

constraints. To this end, we conjecture that the bidi-

rectional machine is the only generator of the process

with zero gauge information that marginalizes into the

forward and reverse ǫ-machines and, additionally, has

χ(M±) = χ(M+) and ζ(M±) = χ(M−).

We now turn to the various state entropy quantities

that play a role in the bidirectional machine. The state

entropy of the forward and reverse ǫ-machines repre-

sented the forward and reverse statistical complexities:

C+
µ ≡ H[S+] and C−

µ ≡ H[S−]. Similarly, we denote the

state entropy of the forward and reverse bidirectional ma-

chine by C±
µ = H[S±] = H[S+,S−] and call it the bidi-

rectional statistical complexity. It represents the total

amount of information needed to predict or retrodict op-

timally. The key difference between C±
µ and the directed

statistical complexities is that with the bidirectional ma-

chine, one has a choice in which action, prediction or

retrodiction, is taken [54]. We further note that both C+
µ

and C−
µ play equivalent roles in C±

µ , to the extent that

E is contained in both. Due to this, we can see that:

C±
µ = C+

µ + C−
µ −E . (24)

One can also marginalize the bidirectional machine’s

transition matrices to recover the forward and reverse

ǫ-machines. For α, β ∈ S
+ and δ, γ ∈ S

−, we marginalize

M± to get M+ as follows:

Tx(α, β) = P(X0 = x,S+
1 = β | S+

0 = α)

=
∑

γ,δ

π(γ |α)Tx(αγ, βδ),

where π(γ |α) ≡ π(αγ)/π(α) and Tx(αγ, βδ) is given by

Eq. (15). Similarly, we marginalize M∓ to get M−:

Tx(γ, δ) = P(X0 = x,S−
0 = δ | S−

1 = γ)

=
∑

α,β

π(α | γ) T̃x(αγ, βδ),

where π(α | γ) ≡ π(αγ)/π(γ) and T̃x(αγ, βδ) is given by

Eq. (19).

It also happens that knowing the bidirectional causal

state is not always helpful. Specifically, we have:

H[X0|S
+
0 ,S−

0 ] = H[X0|S
−
0 ] and

H[X−1|S
+
0 ,S−

0 ] = H[X−1|S
+
0 ] .

In other words, a question about the future is best un-

derstood by something which comes from the future (and

vice versa for questions about the past). The reason for

each of these results can be immediately deduced from

Fig. 9.

D. Uses

The bidirectional machine is also useful in a number of

ways. We briefly mention several.

First, we note that M± and M∓, together, could be

interpreted as a transducer. Given a desired direction

of time, one can move forward or backward along the

process lattice. While the transducer viewpoint holds

for any hidden Markov model, only the bidirectional ma-

chine allows one to predict or retrodict. To wit, if one

constructed a transducer using M+ and M̃+, then one

could make predictions, but it would not be possible to

retrodict since the forward causal states are not sufficient

statistics for the future—they are not suited for retrodic-

tion. This is precisely the advantage of the bidirectional

machine, since it tracks both the forward and reverse

causal states.

Second, the bidirectional machine allows one to ex-

actly calculate the persistent mutual information I1 [55]

over a single-step time interval. Previously available only

through empirical estimates, I1 is the amount of infor-

mation I[X:0;X1:|X0] shared between X:0 and X1:, given

X0. Note that neither ǫ-machine can give us the appro-

priate distribution overX:0 andX1:, but the bidirectional

machine can. And so, it allows one to calculate I1 ex-

actly. Since X:0 determines S+
0 and X1: determines S−

1 ,

we can write the shared information as I1 = I[S+
0 ;S−

1 ].

The bidirectional machine provides access to the joint

distribution P(S+
0 ,S−

0 , X0,S
+
1 ,S−

1 ) and from this, we can

calculate I1 in closed-form.

Reference [56] explored various interpretations of cryp-

ticity and the cryptic order. The bidirectional machine

provides an additional interpretation, and from it, one

can calculate the forward and reverse crypticities and

cryptic orders. For example, the forward crypticity is

the limiting difference between the block-state entropy

curves of the reverse ǫ-machine and the forward bidirec-

tional machine:

χ+ = lim
L→∞

(
H[X0:L,S

−
L ]−H[X0:L,S

±
L ]
)
.

If this limit is reached at finite L, then smallest such L

defines the forward cryptic order. Appendix C provides

more details.

Finally, Refs. [57] and [58] investigated the binding

information bµ = I[X0;X:1|X:0] and the residual en-

tropy rµ = H[X0|X:0, X1:]. There, they had to be
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computed essentially by brute force. Fortunately, the

bidirectional machine again allows us to compute these

exactly and in a manner similar to that for I1. We

again replace X:0 by S+
0 and X1: by S−

1 , giving bµ =

I[X0;S
−
1 |S+

0 ] and rµ = H[X0|S
+
0 ,S−

1 ]. Here also, the

bidirectional machine’s transitions provide the joint dis-

tribution P(S+
0 ,S−

0 , X0,S
+
1 ,S−

1 ), which can be manip-

ulated appropriately to compute both bµ and rµ, and

thus [59], hµ.

In summary, we see that the bidirectional machine

gives ready access to closed-form calculations for a wide

range of measures in complex processes.

E. Example

We close by returning to the irreversible example of

Fig. 10. Its forward ǫ-machine has two causal states while

its reverse ǫ-machine has three causal states. When the

partitions for each ǫ-machine are logically ANDed to-

gether, we obtain the bidirectional machine’s partition

over bi-infinite strings.

A compelling visualization of the bidirectional ma-

chine’s partition is to superpose the partitions that ap-

peared in Fig. 10. For example, in the forward ǫ-machine,

the square corresponding to X−1X0 = 21 was associated

with state A (turquoise). In the reverse ǫ-machine, the

same square was associated with state D (orange). To-

gether, the same square appears in Fig. 16, as both A

and D.

Continuing superposition, we see that there are four

bidirectional states and that these four states partition

all bi-infinite sequences. In particular, bidirectional state

AD includes any sequences ending with a 0 or 2 and

beginning with a 1. So, if one learns C±
µ bits, then one

has the luxury, in this case, of knowing that the next

symbol must be a 1. There is inherent uncertainty in the

retrodicting the previous symbol. This is easily verified

in the bidirectional machine M± (left) of Fig. 16.

Finally, Fig. 17 presents the bidirectional machine’s

information diagram sans the past H[X:0] and future

H[X0:]. The three circles, now drawn to scale, represent

the statistical complexities for the forward and reverse

ǫ-machines and, also, for the bidirectional machine. Note

that the bidirectional machine’s state is simply the com-

bination of the forward and reverse causal states. Cal-

culations give C+
µ = 1 bit, C−

µ = 3/2 bit, E = 1/2 bit,

C±
µ = 2 bits. This yields χ+ = χ(M±) = ζ(M∓) = 1/2

bit, χ− = χ(M∓) = ζ(M±) = 1 bit and, finally, ϕ = 0,

verifying Eq. (24). The bidirectional machine also gives

I1 = 0, bµ = 1/2, and rµ = 1/2. Then, according to

Ref. [59], the entropy rate is hµ = bµ + rµ = 1.

VIII. CONCLUSION

The preceding developed a rather thorough survey of

reversibility, irreversibility, and time asymmetry—these

being understood in the sense of analyzing a process’s

statistical and structural properties scanned either in

forward or in reverse directions with respect to the di-

rection in which it was given or generated. One result

was a stark distinction between Markov chains and hid-

den Markov models. For one, we explored the ability

of hidden Markov models to finitely represent infinite-

state Markov chains. This came at a high cost, as we

noted: The problem of representational degeneracy ap-

pears. We removed this, however, and so were able to

present a number of constructive results by using the

ǫ-machine as a canonical presentation. Considering that

our field of interest is stationary processes, what we found

was surprising. First, irreversibility is a dominant prop-

erty in process space. Second, processes that are finite

in one direction can explode into infinite-state processes

in the other. And, third, there is a suite of information-

theoretic measures, helpfully and constructively captured

in various information diagrams, that quantitatively dis-

tinguish structural properties of presentations.

The net result is a new appreciation of irreversibility

and a new toolkit for analyzing irreversible processes.

There are many interesting implications of the long list

of technical results. To suggest what these might be and

how they will be applied in the near future, we would like

to close by returning to the physical motivations called

out at the beginning. Specifically, we will comment on

the physical meaning of “hidden” processes, the relation-

ship between the diverse irreversibility properties of pro-

cesses and possible physical instantiations, and, finally,

irreversibility in thermodynamic processes.

Why hidden processes? During an interaction between

any two systems, only a portion of each system’s inter-

nal configuration (or state) is presented to or is available

from the other. On the flip side, not every system can

take on the full state information of another. In effect,

each system views the other as a hidden process. More-

over, in this view measurement is only a special case of

interaction. The measurement act typically does not pro-

vide all of the observed system’s state. Thus, for mea-

sured processes or collections of interacting systems one

should view them and analyze them as inherently hidden

processes.

Although the analysis largely stayed at the level of

probability, statistics, and information, any implementa-

tion resides in a physical substrate. This simple obser-

vation leads one to immediately ask, How are the statis-

tical and structural properties and classifications of irre-

versibility related to the organization of a physical sub-
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FIG. 16. The bidirectional machine M± (left) has causal states S± = (S+,S−) that partition bi-infinite sequences X: of the
causally irreversible process of Fig. 10 (right). In this case, it is sufficient to partition sequences using only (X−1, X0). However,
when used as a forward (or reverse) generator, the states of the resulting hidden Markov model M± do not correspond to a
partition of the pasts (or futures) since the machine is nonunifilar, as is directly checked in the state-transition diagram.
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FIG. 17. A quantitatively scaled information diagram for the
bidirectional machine of Fig. 16. The bidirectional states com-
bine the forward and reverse causal states and are represented
by the black, encompassing line. Since the forward (blue) and
reverse (green) statistical complexities lay completely within
the past and future respectively, the bidirectional machine has
no gauge information: ϕ(M±) = 0.

strate? The direct technical answer is that each atom in

the process’s information-measure sigma algebra is asso-

ciated with particular degrees of freedom, structures, and

behaviors in a physical implementation. The connection

can be made constructively: One of the longest-standing

methods to map between continuous-state physical sys-

tems and sequences is given by symbolic dynamics [60].

In light of the preceding structural classifications, one

now sees that the range of alternate presentations for a

process parallels and constrains the range of its possible

physical implementations. In this, each different presen-

tation comes with its own distinct set of properties—

redundancy, crypticity, oracular information, and the

like. In short, then, to study a process’s presentations,

to classify them, and to metrize their properties is to

study fundamental properties of the associated physical

implementations.

Of course, more is required to complete the mapping

from a presentation’s intrinsic computation to the re-

quired physics. For example, what is the entailed dissi-

pation? This reminds one, naturally, of Landauer’s Prin-

ciple: A computation’s logical irreversibility is a lower

bound on the required amount of energy dissipation in

the physical implementation [61]. To the extent that dy-

namical irreversibility and crypticity control logical irre-

versibility, then they also put a lower bound on the phys-

ical implementation’s rate of energy dissipation. More

generally, the development above gives a qualitative lower

bound on the richness available and a wide range of ap-

plications.

As noted in the Introduction, irreversibility is com-

monly interpreted as a transient relaxation process. For

example, isolated thermodynamic systems move to equi-

librium since, according to Boltzmann, there are over-

whelmingly more microstates associated with the equilib-

rium macrostate. This is concisely monitored via the in-

crease in thermodynamic entropy during relaxation from

an ordered state. It is enshrined in the Second Law of

Thermodynamics. However, as we showed, relaxation is

not the only kind of irreversibility that a thermodynamic

system can exhibit. There are also irreversibilities, as we

analyzed in detail, within nonequilibrium steady states

or, equivalently, within general stationary stochastic pro-

cesses. There, a thermodynamic system is still a process,

behaving in time. It is the structure of this temporal be-

havior that leads to dynamical irreversibility within the

set of configuration trajectories—the temporally invari-

ant set consistent with being in a nonequilibrium steady

state. The preceding gave a new view of just what these

structures are, what irreversibility means in hidden pro-

cesses, and a general classification scheme for dynami-

cally reversible and irreversible processes.

Concretely, recent explorations of thermodynamic irre-

versibility and energy dissipation [62–64] ignore distinc-

tions that are critical for properly identifying statisti-

cal irreversibility and intrinsic computation, as laid out

here. Thus, the preceding developments provide a de-
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tailed analysis that will help these efforts by rectifying

and grounding these notions, particularly in terms of the

possible physical instantiations of dynamical irreversibil-

ity.

Our analysis of how the past and future are contained

in the present is addressed to a complex world in which

structure and randomness co-exist:

Time present and time past

Are both perhaps present in time future,

And time future contained in time past.

T. S. Eliot, Buirnt Norton, No. 1 of

Four Quartets.

In considering general stochastic processes, though, the

analysis moves substantially beyond the deterministic

world of Laplace’s omniscient Daemon, where initial data

is exactly preserved for all times, past and future. Eliot

aptly summarizes our exploration of irreversible pro-

cesses, their pasts and futures, and the role the bidirec-

tional machine plays in capturing the structured present.
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Appendix A: Markov Order is Time Symmetric

The principal goal here is to review the properties

of Markov processes so that we can establish the time-

symmetry of the Markov order.

Definition 1. A process P is order-R Markov if and

only if:

P(X0|X:0) = P(X0|X−R:0) . (A1)

If P is order-R Markov, then it is also order-R′ Markov

for R′ ≥ R. However, it is common to refer to the small-

est such R as the Markov order.

Lemma 1. If a process P is order-R Markov, then the

future depends only on the last R symbols; that is,

P(X0:L|X:0) = P(X0:L|X−R:0) . (A2)

Proof. By a simple application of the chain rule, we

have:

P(X0:L|X:0) =

L∏

t=0

P(Xt|X:t)

=

L∏

t=0

P(Xt|X−R:0, X0:t)

= P(X0:L|X−R:0) .

The result generalizes. The probability of any combi-

nation of random variables in the future given the entire

past is the same as when given only the last R symbols.

Note that the Markov definition is not time symmetric.

This invites another notion of Markovity.

Definition 2. A process P is order-R reverse-Markov if

and only if:

P(X−1|X0:) = P(X−1|X0:R) . (A3)

Lemma 2. If a process P is order-R reverse-Markov,

then the past depends only on the first R symbols:

P(X−L:0|X0:) = P(X−L:0|X0:R) . (A4)

It happens that the Markov order and reverse Markov

orders are always equal.

Theorem 1. A process P is order-R Markov if and only

if it is order-R reverse-Markov.

Proof. We assume P is order-R Markov, and then show

that P is order-R reverse-Markov as well. Recall that
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any joint distribution can be forward factored as:

P(Xa:b) =
b−1∏

t=a

P(Xt|Xa:t) .

If the process is Markovian and (b − a) > R, then this

factoring simplifies to:

P(Xa:b) =

a+R∏

t=a

P(Xt|Xa:t)

b−1∏

u=a+R+1

P(Xu|Xu−R:u) .

Next, we have:

P(X−1:L) =

R−1∏

t=−1

P(Xt|X−1:t)

L−1∏

u=R

P(Xu|Xu−R:u)

= P(X−1:R)

L−1∏

u=R

P(Xu|Xu−R:u)

= P(X−1|X0:R)P(X0:R)
L−1∏

u=R

P(Xu|Xu−R:u)

and

P(X0:L) =

R∏

t=0

P(Xt|X0:t)

L−1∏

u=R+1

P(Xu|Xu−R:u)

= P(X0:R+1)

L−1∏

u=R+1

P(Xu|Xu−R:u)

= P(X0:R)

L−1∏

u=R

P(Xu|Xu−R:u) .

So, finally, we obtain the desired result:

P(X−1|X0:L) =
P(X−1:L)

P(X0:L)

= P(X−1|X0:R) .

In the other direction, we use the reverse factoring of a

joint distribution:

P(Xa:b) =

b−1∏

t=a

P(Xt|Xt+1:b) .

Then, we assume the process is reverse-Markov to obtain:

P(Xa:b) =

b−R−2∏

t=a

P(Xt|Xt+1:t+1+R)

b−1∏

u=b−R−1

P(Xt|Xt+1:b) .

Similarly, we have:

P(X−L:1) = P(X0|X−R:0)P(X−R:0)

×

−(R+1)∏

t=−L

P(Xt|Xt+1:t+1+R)

and

P(X−L:0) = P(X−R:0)

−(R+1)∏

t=−L

P(Xt|Xt+1:t+1+R) .

Then,

P(X0|X−L:0) =
P(X−L:1)

P(X−L:0)

= P(X0|X−R:0) .

The results hold for every L > R and in the L → ∞

limit, too.

The two notions of Markovity relate to forward and

reverse generators.

Lemma 3. The forward generator M+ is order-R

Markov if and only if the reverse generator is order-R

reverse-Markov.

Proof. This follows directly from the definition of the

reverse process. Assume M+ has Markov order R. Let

|u| = L− 2R and |w| = |v| = R. Then,

P(X̃−1|X̃0:L = wuv) = P(X1|X−L+1:1 = ṽũw̃)

= P(X1|X−R+1:1 = w̃)

= P(X̃−1|X̃0:R = w) .

With this interpretation, it is a short step to see that

the Markov order is reversible.

Corollary 1. The forward generator is order-R Markov

if and only the reverse generator is order-R Markov.

Proof. Apply Thm. 1 and then Lem. 3.

Appendix B: The Explosive Example Revisited

In Sec. VIB 3, we examined a causally irreversible

process whose forward ǫ-machine had two causal states,

while its reverse ǫ-machine had a countable infinity of

causal states. Here, we provide details for calculating

this reverse ǫ-machine from the forward ǫ-machine. We

give expressions for the excess entropy and statistical

complexities. A detailed analysis of the various kinds

of causal states—recurrent, transient, and elusive—for
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the forward and reverse ǫ-machines appears in Fig. 18

and gives some insight into the origins of the reverse

ǫ-machine’s infinite number of causal states.

The forward and reverse ǫ-machines are shown in

Fig. 18. The entropy rate, since it is reversible [66], is

easier to calculate from M+. This is given directly:

hµ = H[X0|S
+
0 ]

=
3

5
log2 3 +

2

5
(B1)

≈ 1.350 955 500 432 .

The forward statistical complexity is:

C+
µ =

3

5
log2

5

3
+

2

5
log2

5

2
(B2)

≈ 0.970 950 594 455 .

For n ≥ 0, the mixed-state operator [18] acting on M̃±

gives:

P(S+
0 |S−

0 = A−
n−1) =

(
3 · 2n

3 · 2k + 2 · 3n
,

2 · 3n

3 · 2n + 2 · 3n

)

and

P(S+
0 |S−

0 = B−) = (1, 0) .

As it turns out, these distributions are also the mixed

states for the transient causal states of M+ in the basis

of its recurrent states. That is:

P(S+
0 |S+

0 = D+
n ) = P(S+

0 |S−
0 = A−

n−1) .

To determine π(S−) we solve the following simultaneous

equations:

π(B−) =
1

3
π(B−) +

∞∑

n=0

cnπ(A
−
n )

π(A−
0 ) =

2

3
π(B−) +

∞∑

n=0

anπ(A
−
n )

π(A−
n ) = bn−1π(A

−
n−1) n > 0 .

Beginning with the third, we have:

π(A−
n ) = bn−1π(A

−
n−1)

=

(
n−1∏

n=0

bn

)
π(A−

0 )

=

(
1 + 2

3

n

2n+1

)
π(A−

0 ) ,

for n > 0. Then, solving for π(B−), gives:

π(B−) =
3

2

∞∑

n=0

cnπ(A
−
n ) .

So,

π(B−) =
3

4
π(A−

0 ) .

The normalization constraint becomes:

1 = π(B−) +

∞∑

n=0

π(A−
n )

=
3

4
π(A−

0 ) +
7

4
π(A−

0 ) .

Thus,

π(A−
n ) =

1 +
(
2
3

)n

5 · 2n

π(B−) =
3

10
.

Collecting these together, we find:

C−
µ =

3

10
log2

10

3
−

∞∑

n=0

(
1 +

(
2
3

)n

5 · 2n

)
log2

(
1 +

(
2
3

)n

5 · 2n

)

≈ 1.588 621 621 714 .

Finally,

E = C+
µ −H[S+|S−]

= C+
µ −

∞∑

n=0

(
1 +

(
2
3

)n

5 · 2n

)
H

(
3 · 2n

3 · 2k + 2 · 3n

)

≈ 0.304 159 734 344 ,

where H(·) is the binary entropy function.

Appendix C: Crypticity and Entropies for the

Bidirectional Machine

Since the forward causal states are optimal predictors,

we have H[S+
0 , X0:L] = C+

µ + hµL. Additionally, re-

call that reverse causal states are optimal retrodictors.

Thus, we have H[X0:L,S
−
L ] = C−

µ + hµL. More gener-

ally, when we take the global process-lattice perspective,

the roles of block-state and state-block entropy curves [1]

of the forward and reverse ǫ-machines should be inter-

changed. That is, the block-state entropy of the reverse

ǫ-machine behaves like the state-block entropy of the for-

ward ǫ-machine. Similarly, the state-block entropy of the

reverse ǫ-machine which asymptotes to E + hµL. These
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FIG. 18. The forward ǫ-machineM+ (top) has only two recurrent (shaded) causal states A+ and B+. The reverse ǫ-machineM−

(bottom) has an infinite number of recurrent causal states. Transition labels in both machines make use of: an = 2n+1(3zn)
−1,

bn = 1 − (an + cn), cn = 3n(2zn)
−1, dn = 1 − 2bn, and zn = 2n + 3n. The dashed state labeled A−

∞ is an elusive causal
state [2]: It is infinitely preceded, but neither reachable nor recurrent. The hexagon-shaped states are strictly transient states
and only induced by finite-length histories. Note, the limit of the D+

n states is D+
∞ = B+ and it was drawn separately only to

demonstrate the trend.

observations lead to two new formulations of the forward

and reverse crypticities:

Lemma 4.

χ+ = lim
L→∞

(
H[S+

0 , X0:L]−H[S−
0 , X0:L]

)
. (C1)

Proof.

lim
L→∞

(
H[S+

0 , X0:L]−H[S−
0 , X0:L]

)

= C+
µ + lim

L→∞

(
hµL−H[S−

0 , X0:L]
)

= C+
µ −E

= χ+ .

Lemma 5.

χ− = lim
L→∞

(
H[X0:L,S

−
L ]−H[X0:L,S

+
L ]
)
. (C2)
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Proof.

lim
L→∞

(
H[X0:L,S

−
L ]−H[X0:L,S

+
L ]
)

= C−
µ + lim

L→∞

(
hµL−H[X0:L,S

+
L ]
)

= C−
µ −E

= χ− .

Reference [56] interprets the (forward) crypticity as the

degree to which the predictive causal states are better

at retrodicting than the retrodictive causal states. We

can justify this interpretation through straightforward

entropy manipulations:

lim
L→∞

(
H[X−L:0|S

−
0 ]−H[X−L:0|S

+
0 ]
)

= C+
µ − C−

µ + lim
L→∞

(
H[X0:L,S

−
L ]−H[X0:L,S

+
L ]
)

= χ+ − χ− + lim
L→∞

(
H[X0:L,S

−
L ]−H[X0:L,S

+
L ]
)

= χ+,

where the last step makes use of Lem. 5. Similarly,

χ− = lim
L→∞

(
H[X0:L|S

+
0 ]−H[X0:L|S

−
0 ]
)
.

Note that Fig. 9 makes it intuitively clear why these in-

terpretations of the crypticity are correct.

Applying Eq. (17), it follows that:

H[X−L:0|S
±
0 ] = H[X−L:0|S

+
0 ] (C3)

and

H[X0:L|S
±
0 ] = H[X0:L|S

−
0 ] . (C4)

This allows us to restate crypticity in terms of the bidi-

rectional causal states:

χ+ = lim
L→∞

(
H[X−L:0|S

−
0 ]−H[X−L:0|S

±
0 ]
)

(C5)

and

χ− = lim
L→∞

(
H[X0:L|S

+
0 ]−H[X0:L|S

±
0 ]
)
. (C6)

Converting the conditional block entropies in these state-

ments back into extensive quantities, we obtain:

lim
L→∞

(
H[X0:L,S

−
L ]−H[X0:L,S

±
L ]
)
= 0 (C7)

and

lim
L→∞

(
H[S+

0 , X0:L]−H[S±
0 , X0:L]

)
= 0 . (C8)

This implies that:

H[X0:L,S
±
L ] ∼ C−

µ + hµL (C9)

and

H[S±
0 , X0:L] ∼ C+

µ + hµL . (C10)

We can arrive at a stronger result more directly:

H[S±
0 , X0:L] = H[X0:L|S

+
0 ,S−

0 ] + C±
µ

= H[X0:L|S
−
0 ] + C+

µ + C−
µ −E

= H[S−
0 , X0:L] + χ+ .

So, the block-state entropy for the bidirectional machine

is the block-state for the reverse ǫ-machine, but shifted

up by χ+. Similarly,

H[X0:L,S
±
L ] = H[X0:L,S

+
L ] + χ− .

Figure 19 summarizes these last two results.

Finally, we mention that each of these results also pro-

vides a new expression for the cryptic order. If the es-

timates equal the crypticity at any finite L, then the

earliest such L is the cryptic order.
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FIG. 19. The block, block-state, and state-block entropy curves of the forward ǫ-machine M+, reverse ǫ-machine M−, and
bidirectional machine M±.
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