
I n f o r m a t i o n S y s t e m s D e v e l o p m e n t Us ing a C o m b i n a t i o n of P r o c e s s a n d

Ru le B a s e d A p p r o a c h e s

J o h n Krogs t ie* P e t e r M c B r i e n t

R i c h a r d O w e n s t a n d A n n e H e l g a Sel tvei t*

During the last years, the time aspect in information systems development has been
addressed by several researchers [2], [81,[61. Organisations axe dynamic by nature and
thus, the importance of modelling time explicitly in systems engineering approaches is
crucial. This paper proposes a way of integrating process and rule based approaches
in information systems development. Both static and dyn~mlc aspects including the
temporal dimension can be described. We envisage an approach with incremental spec-
ifications where details are successively added until we arrive at a specification from
which executable code can be automatically generated. The output from this process
(i.e., a set of rules) should be compatible with a rule manager which controls the exe-
cution of the system. A prototype has been developed to demonstrate the feasibility of
this approach and is briefly described.

Keywords: Top-down approach, incremental and iterative development, process mod-
elling, rule modelling, temporal dimension, rule manager, code generation.

1 Introduction

The evolutionary aspects of information systems development are badly covered by tra-
ditional approaches [10],[11]. Specifications used in the early phases of development axe
often limited to natural language descriptions and specifications developed by informal
operational (procedural) diagramming techniques, and accordingly there is a gap be-
tween system specifications and actual implementation of the target system. This has
motivated an approach where we emphasise providing a conceptual model which has
the necessary expressive power and formality and at the same time contributes to the
bridging of the gap between the analysis and execution levels.

We present a modelling formalism which can represent not only the first approximation
of a system's specification, but also all the subsequent refinements of it into an imple-

*Division of Computer Science, University of Trondheim, N-7034 Trondheim-Nth~ Norway
tDepartment of Computing~ Imperial College, London SW7 2BZ, UK

320

mentation. This is achieved by a tight coupling between the various components of the
formalism, so that the initial incomplete specifications have a rigorous underlying model
with respect to which the specification is refined.

To show the feasibility of our approach a prototype has been developed. We have im-
plemented the proposed approach using a process modelling tool (PPM2201) and a
temporal rule manager. The rule manager controls the execution of the target system
and manages a temporal database. Given a PPM specification, TEQUEL rules (a tem-
poral logic rule based language) and C code are generated on which the temporal rule
manager operates.

The purpose of this paper is to present the main principles behind our approach and
'to outline its potential in information systems development. Thus we provide brief
overviews of the different components of the conceptual model, rule manager and tem-
poral database, and refer the interested reader elsewhere for detailed descriptions. Using
this model as a basis, we present an "ideal" development scenario based on the expe-
riences gained during the work on the prototype. In addition, the prototype and its
environment are briefly described and we show via an example how a system can be
implemented using the available tools. Finally, we discuss the potential of our approach
and outline further research directions.

2 The Conceptual Model

The conceptual model has three components: the Phenomenon Model [16 I,[17],[12], the
Process Model [5],[12], and the External Rule Language [18]. The Phenomenon Model
is an extended Entity Relationship Model and describes the static aspects of the real
world, whereas the Process and Rule Models describe the dynamic aspects including
the temporal dimension. Rules are also used to express constraints and derivations on
the static model.

The P h e n o m e n o n M o d e l

The static aspects of the real world is modelled by the Phenomenon Model. The basic
modelling constructs are: entities, objects, connections, and data types. The model
distinguishes between data entities and non-data entities. It contains a formalisation
of Entity Relationship modelling constructs. An example of a Phenomenon Model is
given in Figure 5. For a detailed description of the Phenomenon Model, see [16], [17],
and [12].

The Process Model

The Process Model is an extension of regular dataflow diagrams and is used to specify
processes and their interaction in a formal way. This includes both the interactions

321

between the processes at the same level of abstraction and how processes at any level of
abstraction relate to their decompositions. The basic modelling concepts are processes,
stores, external agents, flows (may denote both control 1 and data flow), ports, and
timers. An example of a Process Model is shown in Figure 6.

The modelling is based on a top-down approach, where specifications are developed in
an incremental and iterative manner. The developer starts out by identifying processes
(business functions) at a high level of abstraction. Details are added to the specification
as the developer gains new knowledge about the target system and its environment. The
processes are successively decomposed into lower-level processes until an appropriate
level of decomposition is achieved. At the lowest level of abstraction, where we have
arrived at a set of non-decomposed processes, the process logic (i.e. the internal working
of a process) is described by a subset of the External Rule Language (ERL). Rules may
both describe and constrain processes at any level, but the model only requires them for
describing the lowest level. This is further discussed below (see "The coupling between
the models"). For a detailed description of the Process Model, see [5], [12] and [18].

The E x t e r n a l Ru le L a n g u a g e

The External Rule Language (ERL) is used to describe the internal workings of a
process and to specify constraints that can be associated with processes at any level of
abstraction. The ERL is based on first-order temporal logic, with the addition of syntax
for querying entity-relationship model. The general structure of a rule is as follows:

WHEN <trigger condition> IF <condition> THEN <conclusion>

where the WHEN and IF parts are optional. A particular feature of the ERL is its
temporal component, which is of crucial importance when modelling the time aspect
explicitly at the analysis level.

ERL rules have both declarative and imperative semantics. For the imperative semantics
to be effective, during design a rule must be classified as being one of the following:

Constraint rules: These specify conditions which must not be violated. For example,

NOT (employee has salary(amount) AND amount < 5000)

expresses the constraint that all employees must be paid more than 5000 currency
units.

Derivation rules: Information can be derived from other information already present
in the system via these rules, for example

IF NOT payment for accountnum(this) SINCE warning for accountnum(this)
THEN account [has num(this), has status("bad debt")]

ZAlso called trigge.rlng flow.

322

which states that an account has a derived status of being a bad debt, if no
payment for this account has been received since a warning was issued.

A c t i o n rules: The system may be instructed to perform actions such as updating the
database, and communicating with external agents via action rules, such as

WHEN order [from customer(someone), wants item(thing)]
IF NOT(account [of customer(someone), has status("bad debt")])
THEN AT(NOW+7*days. deliver(someone, thing))

which says that upon receiving an order, provided the customer is not a bad
debtor, deliver the goods in a week's time.

For a detailed description of ERL, see [18].

The coupl ing b e t w e e n the mode l s

The relationship between the Rule Model and the Process Model is depicted in Figure 1.
Each non-decomposed process should have associated a set of ERL rules describing the
behaviour of the process. In addition, one may optionally specify the behaviour of
decomposed processes, these rules being interpreted as constraints on the behaviour of
the rules describing the non-decomposed processes.

PROCESS

WHEN A (x)
IF B (y) and P
THEN C (z)

C

Figure 1: Relationship between the Process and Rule Models

The relationship between the rule model and the process model as depicted in figure 1,
can be described as follows. The trigger part is extracted from the process structure (i.e.,
triggering flow) and corresponds to the WHEN part of an ERL rule. The conditional
part is extracted from the process structure (i.e., non-triggering flow) and from the

323

process logic (expressed in a subset of ERL). This corresponds to the IF par t of an ERL
rule. The action par t , tha t is, the T H E N part of an ERL rule is extracted from the
process s t ructure (i.e. output flows).

The Process Model provides an overall s t ructure to the ERL rules [18]. The ERL rules
are grouped in clusters according to the process they are associated with.

3 Semant i c s of the M o d e l

The Process Model is given semantics by an underlying temporal model of the dynamic
aspects of the specified system, and it is via these semantics tha t the connection be-
tween processes and action rules can be made. In this section, we provide an informal
description of the semantics of the underlying model, and refer the interested reader
to [13] for a mathematical ly rigorous definition.

R u l e s a n d d a t a b a s e c h a n g e s

As the data in the system evolves over time, we model the most recent changes to
the database in a simple temporal structure, as illustrated in Figure2. The 5 and ~
represent the set of changes made to the database in moving from one version A - to
another A, as well as the most recent external input to the system. A simplistic view of
the semantics of a single action rule (as given in the figure) refers to the set of changes 6
which brought the system to the current database A, and to the set of changes 6 ~ which
will take the system to the next version of the database. The semantics of the action
rule

WHEN trigger IF condition THEN action

are tha t whenever trigger was par t of the set of changes 5, then provided condition is
provable from the current database A (via a set of well-defined logical semantics, see for
example [9]) the action must be par t of the next set of changes to the database ~. The
definition of what it means for a trigger and an action to be par t of a set of changes
is intuitively easy:

• a trigger - - which is either an insertion, deletion or upda te to the database, or an
external input - - is par t of 6 if there is a member of 6 which can be unified with
the trigger

• an action - - which is a temporal formula with the atoms being either insertions,
deletions or updates to the database, or external outputs - - is part of 5 if

- for actions without temporal connectives, there is a member of 6 which per-
forms the appropriate insertion, deletion or update to the database

324

Old Database

A -

6

Current Database

A

Rule: Semantics:
WHEN trigger trigger E &
IF condition A I= condition
THEN action action E 6'

6'

New Database

A+

Figure 2: Relating rules and databases

- for actions with temporal connectives, there is a member of 6 which is a
commitment to perform the action in the appropriate future steps.

Given these semantics, we can derive a new database A+ from the current database A,
the most recent set of changes 6, and a single action rule. In practice, of course, there
are many rules in use, and so we must extend the above definitions to cope with multiple
rules. Moreover, assuming that we wish to implement transactions, we must provide
mechanisnm to hide the updates of each transaction from other transactions, until that
transaction commits. While the model we use is rich enough to supply such mechanisms,
it is beyond the scope of this paper to present the details here. The interested reader is
again referred to [13].

U s i n g t e m p o r a l d a t a b a s e s

In the discussion above the nature of the database, whether relational, deductive or
object-oriented, was irrelevant, since the ter~poral model worked over complete databases.
With TEQUEL, we have been using a temporal data~s¢, thus we have two flows of time.

325

The first is the flow of time along which the database changes, and the second is the flow
of time which is modelled within each version of the database. Each individual version
of the database can be imagined as a sequence of states as illustrated in Figure 3. At

Figure 3: The temporal database

any given time, there is a distinguished state in the sequence known as the current state,
which queries axe evaluated with respect to. Queries can contain references to historical
information, and relate previous values of information to current values. Languages for
implementing ERL-like derivation rules have been devised by Abadi and Manna [1]; the
semantics of such languages are well understood.

The temporal model which we use is therefore two-dimensional, with one-dimension
tracking the database evolution, and the other dimension representing the ordeering of
information within each version of the database.

4 The t e m p o r a l rule manager

TEQUEL, the temporal rule manager, arises from a specialisation of work previously
carried out into ezeeutable temporal logics such as USF [9] and MetateM [4]. A set of
rules of the form

formula about the past =~ formula about the future

are evaluated with respect to a particular state in a temporal database, yielding a
number of formulae about the future which must be made true, if they are not already
true. The ERL rules in the specification can always be transformed into this "past =~
future" normal form, thus we have a means of directly executing high-level specifications.

To tailor executable temporal logic to this specific use, we have created a temporal
database using existing relational database technology, and put this under control of
what are essentially compiled ERL rules. The rules can also access information for
outside the system via calls to external programs, and can similarly initiate actions.

326

5 The "ideal" deve lopment scenario

Based on the experiences gained during the work on the prototype, we will first present
an "ideal" development scenario assuming no limitations regarding the available tools ~.
We envision a development scenario close to the following:

1. Deve lop c o n c e p t u a l m o d e l
Develop data, process, and rule specifications, that is, specifications at the analysis
level (see description in Section 2).

2. G e n e r a t e d a t a b a s e schemas f rom the P h e n o m e n o n m o d e l
A database schema is automatically generated from the Phenomenon model by a
mapper.

3. A d d design detai ls
The process structure 3 and the process logic (which are expressed in a subset of
ERL) resulting from step 1 are further refined, that is, the process of design is
undertaken. Activities such as identifying the boundary of the final target system,
designing the user interface, and adding other design details to the specification
are undertaken.

4. G e n e r a t e E R L rules f rom the p rocess s t r u c t u r e and p roces s logic
Based on the design specification resulting from step 3, a rule model expressed in
ERL may be generated. The description is complete, and the run-time system can
be constructed from the rules without reference to the Process Model.Generate
ERL rules from the process structure and process logic

5. G e n e r a t e T E Q U E L rules f rom rule m o d e l
TEQUEL rules are generated from rule model (which is expressed in ERL).

6. R u n the s y s t e m
The executable rules are fed into the rule manager which controls the actual exe-
cution of the rules. The database schemas and the executable rules (i.e., TEQUEL
rules) constitute the specifications at the execution level (i.e., database level).

6 The funct ioning of the pro to type

We have developed a prototype which integrates the PPM tool (called PPM2001) and
TEQUEL, the temporal rule manager. The former is a tool for Process Port modelling
developed by the Information Systems Group at NTH. The latter is developed at the

2The approach followed developing the example application in Section 7 is less ambitious due to the
limitations of the prototype reported in Section 6.

sit should be emphasised that we refer to a process specification at the lowest level of abstraction (i.e.
non-decomposed processes).

327

Department of Computing at Imperial College. The prototype is developed on SUN
3/60 workstations which run UNIX Sun OS 4.1. BIM-Prolog and PCE are used as the
implementation languages.

In spite of practical limitations (e.g. the lack of a parser for ERL) the prototype
has demonstrated the feasibility of our approach. The approach seems very promising
with regard to the coupling between processes and rules including dynamic as well
as temporal aspects. We have implemented the following: Given a PPM specification,
TEQUEL rules and C code are generated on which the temporal rule manager operates.
Here it should be emphasised that both TEQUEL rules and C code are generated from
the same initial specification and it is performed automatically. The coupling between
PPM and the temporal rule manager is depicted in Figure 4. In the next section, we

d Code I Germralor

Rule
Manager

Figure 4: The coupling between PPM and TEQUEL

show how we can use the prototype to generate executable code directly from the PPM
and PLD diagrams.

Compared to the scenario outlined in the previous section, the scope of the prototype
is reduced in the following way:

• ERL is substituted by a formalism called PLD.

• Both TEQUEL rules and C code are generated from the initial specification in-
stead of only TEQUEL rules.

328

The P L D fo rma l i sm
Due to the lack of a parser for ERL, the declarative language is substituted by a for-
malism called PLD (Process Life Description}. As mentioned above, PLD is used to
describe the process logic of non-decomposed processes. It is a procedural language and
provides the following constructs:

• RECEIVE: Receiving dataflow.

• S E N D : Send dataflow.

• ASSIGNMENT:

• SELECTION : If-test.

• LOOPS : For and while-loops.

Figure 7 shows an example of a PLD specification. When the ports are designed in a
PPM diagram, the skeleton of the PLD is generated automatically, taking care of the
reception and sending of data. Further design details can then be added. By using this
version of the prototype, it should be noted that we have collapsed step 1 and step 3 in
the approach outlined in Section 5.

G e n e r a t i o n of b o t h T E Q U E L rules a n d C code
From PPM's internal representation both TEQUEL rules and C code axe generated.
TEQUEL rules are generated from the PPM structure whereas C code is produced from
the PLD specifications. Referring to the pattern depicted in Figure 1, the IF. . . THEN
parts are implemented by external calls to C routines. The rule manager is extended
(by adding a new predicate} in order to handle the processes implemented in C, and
it is linked to a special interface to take care of the communication between C and
BIM-Prolog.

7 An Example

To illustrate how a system can be developed, we will use an elementary banking example.

Banking Example

The bank can open or close accounts for their clients. An account is identified by an account
number and a client can hold one or more accounts. Furthermorej an account has to be
opened before it can be closed or changed, otherwise an error message is to be issued by the
system. The bank receives transactions in the form of debits and credits from their clients
and the balance of the specified account is updated accordingly.

A statement is produced whenever a change of the balance of an account has occurred and
in addltion~ a statement is issued at the end of each week for each account.

The development steps from the specification of the banking example at the analysis
level to an executable specification follows the scenario outlined in the previous section:

329

Step 1: Develop P P M specification
The PPM specifications are modelled by PPM2001 as shown in Figures 5, 6 and 7,
respectively.

Figure 5: The phenomenon specification of the banking example

S t ep 2: Generate database schema from the P h e n o m e n o n m o d e l
From a subset of the phenomenon model (entities, objects, connections, and datatypes)
a set of Prolog facts is generated. The flows to and from stores are linked to views of
the static model and is in this way related to the Prolog facts.

S tep 3: G e n e r a t e T E Q U E L rules and C code
From PPM's internal representation of the example, TEQUEL rules and C code are
generated. TEQUEL rules are generated from the process structure whereas C code is
produced from the PLD specification. Parts of the produced TEQUEL rules and the C
code are shown in figure 8 and figure 9, respectively.

S tep 4: Run the sys tem
The specifications generated in step 3 are used as input to the temporal rule manager.
Figure 10 shows the execution 4 of the specification during ticks 0 through 2.

4The rule manager is run in verbose mode.

330

t M ~ o : . , , L

h11~ce at ~ ~c~y s t a t i s t IL_J

Figure 6: The process specification of the banking example

Start
RECEIVE Hey contract
FR~4AS;
,nN4: string;
san: XNT(GER;
account: 1HTEGEE;

¢ustrmer FRQ~4 D2;
*san:]HTEGER;
RmO: string;
• .,.=t,o.~ ~ / / = . t a t I

S[HD He~ ecceunt TO D1;~
account:]NTEG[R;
| ; 1N|~SEg;
9an:]MT(GER;

~n'else / $EHP Hey ¢ust~er 10 0
2;
ash: IHT(GER;

M e : string;

Figure 7: The PLD specification of process P4 in the banking example

331

issuestatement(Xl,X2)=action(
dotrue: {call c±ssuestatement(Xl.X2)}
);

issueweeklystatement(Xl)faction(
dotrue: {call c±ssueweeklystatement(Xl))
);

rules
issuestatement(X1,X2) <ffi

<+ updatedbalance(X1,X2).

issueweeklystatement(Xl) <ffi
<+ endofweek(X1).

openaccount(Xl,X2,X3) <=
<+ newcontract(X1,X2,X3).

Figure 8: Some TEQUEL rules generated from the specification in step 1

8 Potent ia l of the A p p r o a c h

Based on the experience using the prototype, the proposed approach seems very promis-
ing with regard to the coupling between processes and rules including dynamic as well
as temporal aspects. First of all combining the different model-orlentations gives us a
very ezpressive language where the static and dynamic aspects including the temporal
dimension are covered. The approach allows for ezplicit modelling of temporal aspects
and provides a temporal database, something which is necessary in order to deal with the
evolutionary nature of organisations and accordingly, information systems development.

Furthermore, by using the process model we end up having a structured rule base
avoiding the disadvantages of a fiat rule base. The process model has also appeared to
be very useful in the process of acquiring rules [7].

The proposed approach lends itself to prototyping. It is very easy to generate prototypes
from a specification. By bridging the gap between specification at the analysis level and
a specification at the execution level, we also opens up for the possibility of performing

332

pred_name--BIM_Prolog_str±ng_to_atom ("updat edac c ount") ;
p red=BIM_Pro log_ge t_pred ica te (pred_name, 2) ;
B IM_Pro log_ca l l_p red i ca t e (pred

,BPH_IN]BPS_SIMPLE IBPT_INTEGER, account

, BPM_IN [BPS_SIMPLE I BPT_INTEGER, amount-2
);

p r i n t f ("~,d", account) ;
p r in t : f ("~s" .BIM_Prolog_atom_to_str±ng(name)) ;
p r i n t f ("~d" , amount-2) ;

Figure 9: C code fragments generated from the specification in step 1

maintenance at a higher level of abstraction.

9 F u t u r e W o r k

When the appropriate tools are developed, the scenario would be slightly changed from
the current implementation. In order to arrive at an approach as described in Section
5, we plan to undertake a number of tasks:

• Refine ERL and develop an ERL parser.

• Develop an interface to a user interface design package.

• Develop method description/guidelines for how to develop systems following the
proposed approach.

• Develop a general mapper from a phenomenon model to a database schema

• Extend the rule manager to handle parallelism.

In particular, the PLD will be substituted by ERL when a parser for the language is de-
veloped. When the process model is decomposed to an appropriate level of abstraction,
the process logic is expressed in a subset of ERL. Based on the process structure and
the process logic, TEQUEL rules may be generated according to the pattern outlined
in Section 2. This will make calls to C routines unnecessary.

333

~C Cons is ten t
*=.SIGNAL.,. $1GINT O

n~contract(Joh~, 1.1)
?- kon~ BIMprolo 9 -Pc -P~ -Pe -Pq banke~Jk teq~el
BIH_Protog - release ~un3 2.5.1 18-Aug-199e F~n~l e~ecs

8
. ne~ocontraet (john, 1 ~ 1)

T E ~ L - - - E~cutabt~ T ~ o r a t Logic In terpreter - D o l ~ act |o~s . . .
- - 8 . 3
. Inher~ ted

inter the name of t h e compiled TEQUEL f i l e : banke~

Run tn verbose mode? (type yes. or no. or end. to
qu t t) yes .

RU~ to~h~Ch t~ck? (Or typB ~nd.) ~B.
Inher i ted

.
The t1~e tS 8
Enter event atvm: n e ~ o n t r a c t (J o t e , l , 1) .
!
~nter event atom: end.

F~om

before consistent
m~Con~ct (joh~e l ,1)

ne~etent
I
~contrac~(John, l , 1)

: lrm| ~ecs
I
m~vcontrac~(john, l , 1)

~Ing a c t i o n s . . .

n h e r t t e d

.
'he t~me tS 1

~nter e~en~ a~:

.
The t ime is 1
E~ter event atom: transactton(1,1,100).

Enter event atom: end.

From
1
open~ccoamt(~ohn~l,l)

before cons~st~ t
open~ccount(John, l , l)
transactton(1,1,18~)

Consistent
1
t ransact ion(l , l ,19O)
opsnaccount(john, l , l)

Ftns| execs

l trmrmactton(L,l,108)
~penaccount(John,l,l)

~o4ng ac t lo rm. . .
)snmecount(John, l , l)

-yiP~l
~ensccount(John, l , l)

Id
~oe~ccount { lohn, I, 1)

! l n ~ I t e d

.
The ttme IS 2

e ~ t a t e : En~r

: l n~ l execs
L
brenssct I on(1,1,1B8)
)pineccount (John, 1,1)

)o]ng a c t i o n s . . ,
~penaccount (John, 1,1)

[t y i ng
)peneccou~rL (John, 1,1)

) t d
~oanaccount (.lohn, I ~ 1)

[nher i t ed

[he t i m e te 2
nter event atom: end.

tom
Z
f s t ~ n ~ c t t o r , ~ a I id(1,1 ~ 1~8)

~efore corns1 stems
| e t r a n ~ c t tonva l td (1, t : t g~)

~ons i s ten t
Z
Istrensscttonvsl 4 d(1~ 1~ 18e)

~,r~tt execs

~ s t r e n ~ c t I onva l i d (I n l , l ~)

)otng ac t ions . . .
Ist~-anmact tonva | td(I p l , 188)

t r y ing
I s t r ~ - ~ c t l o , v a t I d(l , 1,188)

Hd
i s t r a n ~ a c t Ic~va t I d (l , 1 ,186)

I n h e r i t e d

.
the ttme ts 3
Enter event atom:

Figure 10: Running the system through the ticks 0, 1, and 2

In addition we have to look into how we can keep the structuring knowledge provided by
the process model in the mapping step. In the current approach this information is lost
and what is left is a fiat rulebase. Thus, we may need techniques for pruning the solution
space (selection of rules for execution) at the execution level. Applying clustering of
rules/clustering hierarchies for pruning the solution space is heavily addressed in the
Expert Systems area (see for instance [3]). In our context, we may achieve this by
utilising the clustering of rules provided by the process model. However, how this can
be done and at the same time take into account the efficiency aspect, has not yet been
considered in detail.

10 Concluding Remarks

We have suggested an approach where we start out specifying a conceptual model in
a top-down manner. The specification is successively refined in order to capture more
details and accordingly, more powerful constructs in the language are introduced. Fi-

334

nally, we arrive at a specification from which code can be generated. The code (i.e., a
set of rules) is used as input to a temporal rule manager which controls the execution
of the final information system.

This approach seems very promising with regard to the coupling between different lan-
guages capturing different aspects of the real world. Both static and dynamic aspects
including the temporal dimension can be described. Furthermore, the approach demon-
strates how the gap between specification at the analysis level and a specification at the
execution level can be bridged. This opens up for prototyping and also the possibility
of performing maintenance at a higher level of abstraction.

11 Acknowledgement

The work reported has partly taken place in the ESPRIT II Project TEMPORA and
partly as a collaborative research effort between The Information Systems Group at
NTH in Norway and Department of Computing at Imperial College in the UK. We are
grateful to our colleagues Rudolf Andersen, Dov Gabbay and Arne S¢lvberg for their
helpful comments.

The TEMPORA project is funded by the Commission of the European Communities
under the ESPRIT R&D programme. The partners in the TEMPORA consortium are:
BIM (Belgium), Hitec (Greece), Imperial College (UK), Logic Programming Associates
(UK), SINTEF (Norway), SISU (Sweden), University of Liege (Belgium) and UMIST
(UK).

References

[1] M. Abadi & Z. Manna: Temporal Logic Programming, IEEE Symposium on Logic
Programming, 1987.

[2] G. Ariav: Design Requirements for Temporally Oriented Information Systems, Pro-
ceedings IFIP TC 8/WG 8.1 Working Conference on Temporal Aspects in Infor-
mation Systems, May 1987.

[3] Barker et ah Expert Systems for Configuration at Digital: XCON and Beyond,
Communications of the ACM, Volume 32, Number 3, March 1989.

[4] H. Barringer, M. Fisher, D. Gabbay, G. Gough & R. Owens, METATEM: A Frame-
work/or Programming in Temporal Logic, in REX Workshop on Stepwise Refine-
ment of Distributed Systems: Models, Formalisms, Correctness, Mook, Nether-
lands, June 1989. LNCS Volume 430, Springer-Verlag, 1990.

[5] S. Berdal, S. Carlsen: PIP - Processes Interfaced through Ports, Technical Report,
IDT, NTH, 1986.

335

[6] A. Bolour, L. Anderson, L. Dekeyser, H. Wong: The Role of Time in Information
Processing: A Survey, ACM-SIGMOD Record 12, 1982.

[7] N. Brummen~es: A Practical Evaluation of RUBRIC, Technical Report, IDT, NTH,
May 1989.

[8] J. Bubenko: The Temporal Dimension in Information Modeling, 1977.

[9] D. Gabbay: The Declarative Past and Imperative Future: Executable Temporal
Logic for Interactive Systems, in Proceedings of Colloquium on Temporal Logic
in Specification, Altrincham, 1987, pages 402-450, LNCS Volume 398, Springer-
Verlag, 1989.

[10] G.R. Gladden: Stop the life-cycle, I want to get off, ACM SIGSOFT, Software
Engineering Notes, Vol. 7, No. 2, April 1982.

[11] D.D. McCracken, M.A. Jackson: Life Cycle Concepts Considered Harmful, ACM
SIGSOFT, Software Engineering Notes, Vol. 7, No. 2, April 1982.

[12] A.L. Opdahl: RAPIER - A Formal Definition of Diagrammatic Systems Specifica-
tions, M.Sc. Thesis, Dept. of Electrical Engineering and Computer Science, IDT,
NTH, 1988.

[13] R.P. Owens: Notes on the TEMPORA Computation Model, E2469/IC/3.4/7/1,
December, 1990.

[14] A.tt. Seltveit, K.W. Lovseth, P. McBrien: "External Borrowing" - A Subset of the
L~'brary Case Study, E2469/SINTEF/T5.1/19/1, October, 1990.

[15] A.H. Seltveit, J. Krogstie: The Design Layer in TEMPORA,
E2469/SINTEF/T5.1/20, October, 1990.

[16] A. S¢lvberg: Software Requirement Definition and Data Models, Proceedings Con-
ference on Very Large Data Bases, October 1979.

[17] A. S¢lvberg: A Contribution to the Definition of Concepts for Expressing Users' In-
formation Systems Requirements, Proceedings International Conference on Entity-
Relationship Approach to Systems Analysis and Design, December 1980.

[18] TEMPORA: Concepts Manual, September 1990.

[19] K.W. Levseth: TEMOCCA: TEMPORA Modeling Concepts - A Case Study,
E2469/SINTEF/T5.1/14, 1990.

