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During the last years, the time aspect in information systems development has been 
addressed by several researchers [2], [81,[61. Organisations axe dynamic by nature and 
thus, the importance of modelling time explicitly in systems engineering approaches is 
crucial. This paper proposes a way of integrating process and rule based approaches 
in information systems development. Both static and dyn~mlc aspects including the 
temporal dimension can be described. We envisage an approach with incremental spec- 
ifications where details are successively added until we arrive at a specification from 
which executable code can be automatically generated. The output from this process 
(i.e., a set of rules) should be compatible with a rule manager which controls the exe- 
cution of the system. A prototype has been developed to demonstrate the feasibility of 
this approach and is briefly described. 

Keywords: Top-down approach, incremental and iterative development, process mod- 
elling, rule modelling, temporal dimension, rule manager, code generation. 

1 Introduction 

The evolutionary aspects of information systems development are badly covered by tra- 
ditional approaches [10],[11]. Specifications used in the early phases of development axe 
often limited to natural language descriptions and specifications developed by informal 
operational (procedural) diagramming techniques, and accordingly there is a gap be- 
tween system specifications and actual implementation of the target system. This has 
motivated an approach where we emphasise providing a conceptual model which has 
the necessary expressive power and formality and at the same time contributes to the 
bridging of the gap between the analysis and execution levels. 

We present a modelling formalism which can represent not only the first approximation 
of a system's specification, but also all the subsequent refinements of it into an imple- 
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mentation. This is achieved by a tight coupling between the various components of the 
formalism, so that  the initial incomplete specifications have a rigorous underlying model 
with respect to which the specification is refined. 

To show the feasibility of our approach a prototype has been developed. We have im- 
plemented the proposed approach using a process modelling tool (PPM2201) and a 
temporal rule manager. The rule manager controls the execution of the target system 
and manages a temporal database. Given a PPM specification, TEQUEL rules (a tem- 
poral logic rule based language) and C code are generated on which the temporal rule 
manager operates. 

The purpose of this paper is to present the main principles behind our approach and 
'to outline its potential in information systems development. Thus we provide brief 
overviews of the different components of the conceptual model, rule manager and tem- 
poral database, and refer the interested reader elsewhere for detailed descriptions. Using 
this model as a basis, we present an "ideal" development scenario based on the expe- 
riences gained during the work on the prototype. In addition, the prototype and its 
environment are briefly described and we show via an example how a system can be 
implemented using the available tools. Finally, we discuss the potential of our approach 
and outline further research directions. 

2 The Conceptual  Model  

The conceptual model has three components: the Phenomenon Model [16 I,[17],[12], the 
Process Model [5],[12], and the External Rule Language [18]. The Phenomenon Model 
is an extended Entity Relationship Model and describes the static aspects of the real 
world, whereas the Process and Rule Models describe the dynamic aspects including 
the temporal dimension. Rules are also used to express constraints and derivations on 
the static model. 

The  P h e n o m e n o n  M o d e l  

The static aspects of the real world is modelled by the Phenomenon Model. The basic 
modelling constructs are: entities, objects, connections, and data types. The model 
distinguishes between data entities and non-data entities. It contains a formalisation 
of Entity Relationship modelling constructs. An example of a Phenomenon Model is 
given in Figure 5. For a detailed description of the Phenomenon Model, see [16], [17], 
and [12]. 

The Process Model 

The Process Model is an extension of regular dataflow diagrams and is used to specify 
processes and their interaction in a formal way. This includes both the interactions 
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between the processes at the same level of abstraction and how processes at any level of 
abstraction relate to their decompositions. The basic modelling concepts are processes, 
stores, external agents, flows (may denote both control 1 and data flow), ports, and 
timers. An example of a Process Model is shown in Figure 6. 

The modelling is based on a top-down approach, where specifications are developed in 
an incremental and iterative manner. The developer starts out by identifying processes 
(business functions) at a high level of abstraction. Details are added to the specification 
as the developer gains new knowledge about the target system and its environment. The 
processes are successively decomposed into lower-level processes until an appropriate 
level of decomposition is achieved. At the lowest level of abstraction, where we have 
arrived at a set of non-decomposed processes, the process logic (i.e. the internal working 
of a process) is described by a subset of the External Rule Language (ERL). Rules may 
both describe and constrain processes at any level, but the model only requires them for 
describing the lowest level. This is further discussed below (see "The coupling between 
the models"). For a detailed description of the Process Model, see [5], [12] and [18]. 

The  E x t e r n a l  Ru le  L a n g u a g e  

The External Rule Language (ERL) is used to describe the internal workings of a 
process and to specify constraints that can be associated with processes at any level of 
abstraction. The ERL is based on first-order temporal logic, with the addition of syntax 
for querying entity-relationship model. The general structure of a rule is as follows: 

WHEN <trigger condition> IF <condition> THEN <conclusion> 

where the WHEN and IF parts are optional. A particular feature of the ERL is its 
temporal component, which is of crucial importance when modelling the time aspect 
explicitly at the analysis level. 

ERL rules have both declarative and imperative semantics. For the imperative semantics 
to be effective, during design a rule must be classified as being one of the following: 

Constraint rules: These specify conditions which must not be violated. For example, 

NOT (employee has salary(amount) AND amount < 5000) 

expresses the constraint that all employees must be paid more than 5000 currency 
units. 

Derivation rules: Information can be derived from other information already present 
in the system via these rules, for example 

IF NOT payment for accountnum(this) SINCE warning for accountnum(this) 
THEN account [has num(this), has status("bad debt")] 

ZAlso called trigge.rlng flow. 
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which states that an account has a derived status of being a bad debt, if no 
payment for this account has been received since a warning was issued. 

A c t i o n  rules:  The system may be instructed to perform actions such as updating the 
database, and communicating with external agents via action rules, such as 

WHEN order [from customer(someone), wants item(thing)] 
IF NOT( account [of customer(someone), has status("bad debt")]) 
THEN AT(NOW+7*days. deliver(someone, thing)) 

which says that upon receiving an order, provided the customer is not a bad 
debtor, deliver the goods in a week's time. 

For a detailed description of ERL, see [18]. 

The  coupl ing  b e t w e e n  the  mode l s  

The relationship between the Rule Model and the Process Model is depicted in Figure 1. 
Each non-decomposed process should have associated a set of ERL rules describing the 
behaviour of the process. In addition, one may optionally specify the behaviour of 
decomposed processes, these rules being interpreted as constraints on the behaviour of 
the rules describing the non-decomposed processes. 

PROCESS 

WHEN A (x) 
IF B (y) and P 
THEN C (z) 

C 

Figure 1: Relationship between the Process and Rule Models 

The relationship between the rule model and the process model as depicted in figure 1, 
can be described as follows. The trigger part is extracted from the process structure (i.e., 
triggering flow) and corresponds to the WHEN part of an ERL rule. The conditional 
part is extracted from the process structure (i.e., non-triggering flow) and from the 
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process logic (expressed in a subset of ERL).  This corresponds to the IF par t  of an ERL 
rule. The  action par t ,  tha t  is, the T H E N  part  of an ERL rule is extracted from the 
process s t ructure  (i.e. output  flows). 

The  Process Model provides an overall s t ructure to the ERL rules [18]. The  ERL rules 
are grouped in clusters according to the process they are associated with. 

3 Semant i c s  of  the  M o d e l  

The  Process Model is given semantics by an underlying temporal  model of the dynamic 
aspects of the specified system, and it is via these semantics tha t  the connection be- 
tween processes and action rules can be made. In this section, we provide an informal 
description of the semantics of the underlying model, and refer the interested reader 
to [13] for a mathematical ly rigorous definition. 

R u l e s  a n d  d a t a b a s e  c h a n g e s  

As the data  in the system evolves over time, we model the most recent changes to 
the database in a simple temporal  structure,  as illustrated in Figure2. The  5 and ~ 
represent the set of changes made to the database in moving from one version A -  to 
another  A, as well as the most recent external input to the system. A simplistic view of 
the semantics of a single action rule (as given in the figure) refers to the set of changes 6 
which brought the system to the current  database A, and to the set of changes 6 ~ which 
will take the system to the next version of the database. The  semantics of the action 
rule 

WHEN trigger IF condition THEN action 

are tha t  whenever trigger was par t  of the set of changes 5, then provided condition is 
provable from the current  database A (via a set of well-defined logical semantics, see for 
example [9]) the action must  be par t  of the next  set of changes to the database ~.  The  
definition of what  it means for a trigger and an action to be par t  of a set of changes 
is intuitively easy: 

• a trigger - -  which is either an insertion, deletion or upda te  to the database,  or an 
external input - -  is par t  of 6 if there is a member  of 6 which can be unified with 
the trigger 

• an action - -  which is a temporal  formula with the atoms being either insertions, 
deletions or updates to the database, or external  outputs  - -  is part  of 5 if 

- for actions without  temporal  connectives, there is a member  of 6 which per- 
forms the appropriate insertion, deletion or update  to the database 
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Old Database 

A -  

6 

Current Database 

A 

Rule: Semantics: 
WHEN trigger trigger E & 
IF condition A I= condition 
THEN action action E 6' 

6' 

New Database 

A+ 

Figure 2: Relating rules and databases 

- for actions with temporal connectives, there is a member of 6 which is a 
commitment to perform the action in the appropriate future steps. 

Given these semantics, we can derive a new database A+ from the current database A, 
the most recent set of changes 6, and a single action rule. In practice, of course, there 
are many rules in use, and so we must extend the above definitions to cope with multiple 
rules. Moreover, assuming that  we wish to implement transactions, we must provide 
mechanisnm to hide the updates of each transaction from other transactions, until that 
transaction commits. While the model we use is rich enough to supply such mechanisms, 
it is beyond the scope of this paper to present the details here. The interested reader is 
again referred to [13]. 

U s i n g  t e m p o r a l  d a t a b a s e s  

In the discussion above the nature of the database, whether relational, deductive or 
object-oriented, was irrelevant, since the ter~poral model worked over complete databases. 
With TEQUEL, we have been using a temporal data~s¢, thus we have two flows of time. 
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The first is the flow of time along which the database changes, and the second is the flow 
of time which is modelled within each version of the database. Each individual version 
of the database can be imagined as a sequence of states as illustrated in Figure 3. At 

Figure 3: The temporal database 

any given time, there is a distinguished state in the sequence known as the current state, 
which queries axe evaluated with respect to. Queries can contain references to historical 
information, and relate previous values of information to current values. Languages for 
implementing ERL-like derivation rules have been devised by Abadi and Manna [1]; the 
semantics of such languages are well understood. 

The temporal model which we use is therefore two-dimensional, with one-dimension 
tracking the database evolution, and the other dimension representing the ordeering of 
information within each version of the database. 

4 The  t e m p o r a l  rule manager  

TEQUEL, the temporal rule manager, arises from a specialisation of work previously 
carried out into ezeeutable temporal logics such as USF [9] and MetateM [4]. A set of 
rules of the form 

formula about the past =~ formula about the future 

are evaluated with respect to a particular state in a temporal database, yielding a 
number of formulae about the future which must be made true, if they are not already 
true. The ERL rules in the specification can always be transformed into this "past =~ 
future" normal form, thus we have a means of directly executing high-level specifications. 

To tailor executable temporal logic to this specific use, we have created a temporal 
database using existing relational database technology, and put this under control of 
what are essentially compiled ERL rules. The rules can also access information for 
outside the system via calls to external programs, and can similarly initiate actions. 
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5 The  "ideal" deve lopment  scenario 

Based on the experiences gained during the work on the prototype, we will first present 
an "ideal" development scenario assuming no limitations regarding the available tools ~. 
We envision a development scenario close to the following: 

1. Deve lop  c o n c e p t u a l  m o d e l  
Develop data, process, and rule specifications, that is, specifications at the analysis 
level (see description in Section 2). 

2. G e n e r a t e  d a t a b a s e  schemas  f rom the  P h e n o m e n o n  m o d e l  
A database schema is automatically generated from the Phenomenon model by a 
mapper. 

3. A d d  design detai ls  
The process structure 3 and the process logic (which are expressed in a subset of 
ERL) resulting from step 1 are further refined, that is, the process of design is 
undertaken. Activities such as identifying the boundary of the final target system, 
designing the user interface, and adding other design details to the specification 
are undertaken. 

4. G e n e r a t e  E R L  rules f rom the  p rocess  s t r u c t u r e  and  p roces s  logic 
Based on the design specification resulting from step 3, a rule model expressed in 
ERL may be generated. The description is complete, and the run-time system can 
be constructed from the rules without reference to the Process Model.Generate 
ERL rules from the process structure and process logic 

5. G e n e r a t e  T E Q U E L  rules f rom rule  m o d e l  
TEQUEL rules are generated from rule model (which is expressed in ERL). 

6. R u n  the  s y s t e m  
The executable rules are fed into the rule manager which controls the actual exe- 
cution of the rules. The database schemas and the executable rules (i.e., TEQUEL 
rules) constitute the specifications at the execution level (i.e., database level). 

6 The funct ioning of the pro to type  

We have developed a prototype which integrates the PPM tool (called PPM2001) and 
TEQUEL, the temporal rule manager. The former is a tool for Process Port modelling 
developed by the Information Systems Group at NTH. The latter is developed at the 

2The approach followed developing the example application in Section 7 is less ambitious due to the 
limitations of the prototype reported in Section 6. 

sit  should be emphasised that we refer to a process specification at the lowest level of abstraction (i.e. 
non-decomposed processes). 



327 

Department of Computing at Imperial College. The prototype is developed on SUN 
3/60 workstations which run UNIX Sun OS 4.1. BIM-Prolog and PCE are used as the 
implementation languages. 

In spite of practical limitations (e.g. the lack of a parser for ERL) the prototype 
has demonstrated the feasibility of our approach. The approach seems very promising 
with regard to the coupling between processes and rules including dynamic as well 
as temporal aspects. We have implemented the following: Given a PPM specification, 
TEQUEL rules and C code are generated on which the temporal rule manager operates. 
Here it should be emphasised that both TEQUEL rules and C code are generated from 
the same initial specification and it is performed automatically. The coupling between 
PPM and the temporal rule manager is depicted in Figure 4. In the next section, we 

d Code I Germralor 

Rule 
Manager 

Figure 4: The coupling between PPM and TEQUEL 

show how we can use the prototype to generate executable code directly from the PPM 
and PLD diagrams. 

Compared to the scenario outlined in the previous section, the scope of the prototype 
is reduced in the following way: 

• ERL is substituted by a formalism called PLD. 

• Both TEQUEL rules and C code are generated from the initial specification in- 
stead of only TEQUEL rules. 
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The  P L D  fo rma l i sm 
Due to the lack of a parser for ERL, the declarative language is substituted by a for- 
malism called PLD (Process Life Description}. As mentioned above, PLD is used to 
describe the process logic of non-decomposed processes. It is a procedural language and 
provides the following constructs: 

• RECEIVE: Receiving dataflow. 

• S E N D  : Send dataflow. 

• ASSIGNMENT: 

• SELECTION : If-test. 

• LOOPS : For and while-loops. 

Figure 7 shows an example of a PLD specification. When the ports are designed in a 
PPM diagram, the skeleton of the PLD is generated automatically, taking care of the 
reception and sending of data. Further design details can then be added. By using this 
version of the prototype, it should be noted that we have collapsed step 1 and step 3 in 
the approach outlined in Section 5. 

G e n e r a t i o n  of  b o t h  T E Q U E L  rules a n d  C code  
From PPM's internal representation both TEQUEL rules and C code axe generated. 
TEQUEL rules are generated from the PPM structure whereas C code is produced from 
the PLD specifications. Referring to the pattern depicted in Figure 1, the IF. . .  THEN 
parts are implemented by external calls to C routines. The rule manager is extended 
(by adding a new predicate} in order to handle the processes implemented in C, and 
it is linked to a special interface to take care of the communication between C and 
BIM-Prolog. 

7 An Example 

To illustrate how a system can be developed, we will use an elementary banking example. 

Banking Example 

The bank can open or close accounts for their clients. An account is identified by an account 
number and a client can hold one or more accounts. Furthermorej an account has to be 
opened before it can be closed or changed, otherwise an error message is to be issued by the 
system. The bank receives transactions in the form of debits and credits from their clients 
and the balance of the specified account is updated accordingly. 

A statement is produced whenever a change of the balance of an account has occurred and 
in addltion~ a statement is issued at the end of each week for each account. 

The development steps from the specification of the banking example at the analysis 
level to an executable specification follows the scenario outlined in the previous section: 
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Step  1: Develop P P M  specification 
The PPM specifications are modelled by PPM2001 as shown in Figures 5, 6 and 7, 
respectively. 

Figure 5: The phenomenon specification of the banking example 

S t ep  2: Generate database schema from the P h e n o m e n o n  m o d e l  
From a subset of the phenomenon model (entities, objects, connections, and datatypes) 
a set of Prolog facts is generated. The flows to and from stores are linked to views of 
the static model and is in this way related to the Prolog facts. 

S tep  3: G e n e r a t e  T E Q U E L  rules and  C code  
From PPM's internal representation of the example, TEQUEL rules and C code are 
generated. TEQUEL rules are generated from the process structure whereas C code is 
produced from the PLD specification. Parts of the produced TEQUEL rules and the C 
code are shown in figure 8 and figure 9, respectively. 

S tep  4: Run the sys tem 
The specifications generated in step 3 are used as input to the temporal rule manager. 
Figure 10 shows the execution 4 of the specification during ticks 0 through 2. 

4The rule manager is run in verbose mode. 
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Figure 6: The process specification of the banking example 

Start 
RECEIVE Hey contract 
FR~4AS; 
,nN4: string; 
san: XNT(GER; 
account: 1HTEGEE; 

¢ustrmer FRQ~4 D2; 
*san: ]HTEGER; 
RmO: string; 
• .,.=t,o.~ ~ /  / =  . t a t  I 

S[HD He~ ecceunt TO D1;~ 
account: ]NTEG[R; 
| ;  1N|~SEg; 
9an: ]MT(GER; 

~n'else / $EHP Hey ¢ust~er 10 0 
2; 
ash: IHT(GER; 

M e :  string; 

Figure 7: The PLD specification of process P4 in the banking example 
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issuestatement(Xl,X2)=action( 
dotrue: {call c±ssuestatement(Xl.X2)} 
); 

issueweeklystatement(Xl)faction( 
dotrue: {call c±ssueweeklystatement(Xl)) 
); 

rules 
issuestatement(X1,X2) <ffi 

<+ updatedbalance(X1,X2). 

issueweeklystatement(Xl) <ffi 
<+ endofweek(X1). 

openaccount(Xl,X2,X3) <= 
<+ newcontract(X1,X2,X3). 

Figure 8: Some TEQUEL rules generated from the specification in step 1 

8 Potent ia l  of  the  A p p r o a c h  

Based on the experience using the prototype, the proposed approach seems very promis- 
ing with regard to the coupling between processes and rules including dynamic as well 
as temporal aspects. First of all combining the different model-orlentations gives us a 
very ezpressive language where the static and dynamic aspects including the temporal 
dimension are covered. The approach allows for ezplicit modelling of temporal aspects 
and provides a temporal database, something which is necessary in order to deal with the 
evolutionary nature of organisations and accordingly, information systems development. 

Furthermore, by using the process model we end up having a structured rule base 
avoiding the disadvantages of a fiat rule base. The process model has also appeared to 
be very useful in the process of acquiring rules [7]. 

The proposed approach lends itself to prototyping. It is very easy to generate prototypes 
from a specification. By bridging the gap between specification at the analysis level and 
a specification at the execution level, we also opens up for the possibility of performing 
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pred_name--BIM_Prolog_str±ng_to_atom ( "updat  edac c ount"  ) ; 
p red=BIM_Pro log_ge t_pred ica te  (pred_name, 2) ; 
B IM_Pro log_ca l l_p red i ca t e  (pred  

,BPH_IN ]BPS_SIMPLE IBPT_INTEGER, account 

, BPM_IN [ BPS_SIMPLE I BPT_INTEGER, amount-2 
); 

p r i n t f  ("~,d", account )  ; 
p r in t : f  ("~s"  .BIM_Prolog_atom_to_str±ng(name) ) ; 
p r i n t f  ("~d" ,  amount-2)  ; 

Figure 9: C code fragments generated from the specification in step 1 

maintenance at a higher level of abstraction. 

9 F u t u r e  W o r k  

When the appropriate tools are developed, the scenario would be slightly changed from 
the current implementation. In order to arrive at an approach as described in Section 
5, we plan to undertake a number of tasks: 

• Refine ERL and develop an ERL parser. 

• Develop an interface to a user interface design package. 

• Develop method description/guidelines for how to develop systems following the 
proposed approach. 

• Develop a general mapper from a phenomenon model to a database schema 

• Extend the rule manager to handle parallelism. 

In particular, the PLD will be substituted by ERL when a parser for the language is de- 
veloped. When the process model is decomposed to an appropriate level of abstraction, 
the process logic is expressed in a subset of ERL. Based on the process structure and 
the process logic, TEQUEL rules may be generated according to the pattern outlined 
in Section 2. This will make calls to C routines unnecessary. 



333  

~C Cons is ten t  
*=.SIGNAL.,. $1GINT O 

n~contract(Joh~, 1.1) 
?- kon~ BIMprolo 9 -Pc -P~ -Pe -Pq banke~Jk teq~el 
BIH_Protog - release ~un3 2.5.1 18-Aug-199e F~n~l e~ecs 

8 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  ne~ocontraet ( john, 1 ~ 1 ) 

T E ~ L  - - -  E~cutabt~ T ~ o r a t  Logic In terpreter  - D o l ~  act |o~s . . .  
- - 8 . 3  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  Inher~ ted 

inter the name of t h e  compiled TEQUEL f i l e :  banke~ 

Run tn verbose mode? (type yes. or no. or end. to 
qu t t )  yes .  

RU~ to~h~Ch t~ck? (Or typB ~nd.) ~B. 
Inher i ted 

. . . . . . . . . . . . . . . . . . . . . . .  
The t1~e tS 8 
Enter event atvm: n e ~ o n t r a c t ( J o t e ,  l , 1 ) .  
! 
~nter event atom: end.  

F~om 

before consistent 
m~Con~ct ( joh~e l ,1 )  

ne~etent 
I 
~contrac~(John, l , 1 )  

: lrm| ~ecs  
I 
m~vcontrac~(john, l , 1 )  

~Ing  a c t i o n s . . .  

n h e r t t e d  

. . . . . . . . . . . . . . . . . . . . . . .  
'he t~me tS 1 

~nter e~en~ a~: 

. . . . . . . . . . . . . . . . . . . . . . .  
The t ime  is  1 
E~ter event atom: transactton(1,1,100). 

Enter event atom: end. 

From 
1 
open~ccoamt(~ohn~l,l) 

before cons~st~ t  
open~ccount(John, l , l )  
transactton(1,1,18~) 

Consistent 
1 
t ransact ion( l , l ,19O) 
opsnaccount( john, l , l )  

Ftns| execs 

l trmrmactton(L,l,108) 
~penaccount(John,l,l) 

~o4ng ac t lo rm. . .  
)snmecount(John, l , l )  

-yiP~l 
~ensccount(John, l , l )  

Id  
~oe~ccount { lohn, I,  1) 

! l n ~ I t e d  

. . . . . . . . . . . . . . . . . . . . . . .  
The ttme IS 2 

e ~ t  a t e :  En~r 

: l n~ l  execs 
L 
brenssct I on( 1,1,1B8) 
)pineccount ( John, 1,1) 

)o]ng a c t i o n s . . ,  
~penaccount ( John, 1,1) 

[ t y i ng  
)peneccou~rL ( John, 1,1) 

) t d  
~oanaccount ( .lohn, I ~ 1) 

[ nher i t ed  

[he t i m e  te  2 
nter  event atom: end. 

tom 
Z 
f s t ~ n ~ c t t o r , ~ a  I id(  1,1 ~ 1~8) 

~efore  corns1 stems 
| e t r a n ~ c t  tonva l td (  1, t :  t g~ )  

~ons i s ten t  
Z 
Istrensscttonvsl 4 d( 1~ 1~ 18e) 

~,r~tt execs 

~ s t r e n ~ c t  I onva l i d (  I n l , l ~ )  

)otng ac t ions . . .  
Ist~-anmact tonva | td( I p l ,  188) 

t r y ing  
I s t r ~ - ~ c t l o , v a  t I d( l ,  1,188) 

Hd 
i s t r a n ~ a c t  Ic~va t I d ( l ,  1 ,186)  

I n h e r i t e d  

. . . . . . . . . . . . . . . . . . . . .  
the ttme ts 3 
Enter event atom: 

Figure 10: Running the system through the ticks 0, 1, and 2 

In addition we have to look into how we can keep the structuring knowledge provided by 
the process model in the mapping step. In the current approach this information is lost 
and what is left is a fiat rulebase. Thus, we may need techniques for pruning the solution 
space (selection of rules for execution) at the execution level. Applying clustering of 
rules/clustering hierarchies for pruning the solution space is heavily addressed in the 
Expert Systems area (see for instance [3]). In our context, we may achieve this by 
utilising the clustering of rules provided by the process model. However, how this can 
be done and at the same time take into account the efficiency aspect, has not yet been 
considered in detail. 

10 Concluding Remarks  

We have suggested an approach where we start out specifying a conceptual model in 
a top-down manner. The specification is successively refined in order to capture more 
details and accordingly, more powerful constructs in the language are introduced. Fi- 
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nally, we arrive at a specification from which code can be generated. The code (i.e., a 
set of rules) is used as input to a temporal rule manager which controls the execution 
of the final information system. 

This approach seems very promising with regard to the coupling between different lan- 
guages capturing different aspects of the real world. Both static and dynamic aspects 
including the temporal dimension can be described. Furthermore, the approach demon- 
strates how the gap between specification at the analysis level and a specification at the 
execution level can be bridged. This opens up for prototyping and also the possibility 
of performing maintenance at a higher level of abstraction. 
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