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Abstract

This paper investigates the role of IT in shaping recent trends in market concentration,

factor income shares, and market competition. Relying on a novel dataset on hardware and

software investments in the universe of French firms, we document a robust within-industry

correlation between firm size and the intensity of IT demand. To explain this fact, we argue

that the relative marginal product of IT inputs may rise with firm scale, since IT specifi-

cally helps firms deal with organizational limits to scale. We propose a general equilibrium

model of industry dynamics that features firm-level production functions compatible with

this mechanism. We estimate the production function and find evidence for the nonhomo-

theticity of IT demand and for an elasticity of substitution between IT and other inputs that

falls below unity. Under the estimated model parameters, the cross-sectional predictions of

the model match the observed relationship of firm size with IT intensity (positive) and la-

bor share (negative). In addition, as a response to the fall in the relative price of IT inputs

in post-1990 France, the model can explain about half of both the observed rise in market

concentration and the observed market reallocations toward low-labor-share firms.
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1 Introduction

The rise of Information Technology (IT) has drastically lowered the quality-adjusted prices of
computing and information-intensive tools over the past few decades (Byrne and Corrado, 2017).
The resulting adoption of IT among firms has allowed them to coordinate their activities more
effectively, both internally and in relation with their sellers and buyers, and to engage in more
complex production processes. To account for the macroeconomic consequences of these trans-
formations, we typically consider IT as a form of productivity-enhancing capital in the produc-
tion function of firms. Indeed, empirical studies have found a crucial role for IT in fueling aggre-
gate productivity growth (Oliner and Sichel, 2000; Jorgenson, 2001; Stiroh, 2002; Jorgenson et
al., 2005). This role has been so pronounced that one can explain different growth experiences
across advanced economies over 1990s and 2000s based on their success in realizing the potentials
of IT (e.g., Basu et al., 2003; van Ark et al., 2008; Bloom et al., 2012).

More recent work has begun to examine the distribution of the benefits of these IT-fueled
productivity gains between workers vis-à-vis owners of capital (and firms).1 As firms substitute
IT for other factors, they can raise the share of aggregate income accrued to capital, as opposed to
labor. Under the case of a macro capital-labor elasticity of substitution exceeding unity, Karabar-
bounis and Neiman (2014) have argued that falling prices of IT capital may have contributed to
a global decline in the labor share.2 Further evidence based on the US micro-level data paints
a more nuanced picture: rather than a within-firm fall in labor share, reallocations of market
shares toward large, low-labor-share firms appear to explain most of the observed fall in the ag-
gregate labor share (eg., Autor et al., 2017a,b; Kehrig and Vincent, 2017). This evidence first
implies that micro capital-labor elasticity of substitution may well be below unity, in line with
available firm-level estimates (see, e.g., Oberfield and Raval, 2014; Doraszelski and Jaumandreu,
2018). Moreover, it ties the evolution of aggregate labor share to a rise in industry concentration,
calling for a better understanding of the potentially heterogeneous impacts of IT across firms.3

1The distributional impacts of IT across workers depending on their skill levels has indeed been the subject of a
large literature (e.g., Autor et al., 1998, 2003; Acemoglu and Autor, 2011; Akerman et al., 2015). Perhaps the most
relevant to the arguments presented here is the work of Krusell et al. (2000) who suggest variations between the
elasticities of substitution between (IT) capital and different skill groups may have contributed to the rise in the skill
premium. Relatedly, Eden and Gaggl (2018) have applied this line of reasoning to the study of the income share of
high skilled and low skilled workers.

2Since Karabarbounis and Neiman (2014), a sizable body of work has revisited the evidence on the fall of the labor
share to examine the potential explanations, or whether this fact is robust to the relevant details in the construction
of the labor share series (e.g., see Elsby et al., 2013; Koh et al., 2015). In this paper, we focus on the compositional
aspects of the evolution of labor share across firms, i.e., the changes within and across firms, rather than the aggregate
labor share. In fact, we do not find an aggregate fall in the labor share in France beginning in the 1990s.

3For instance, Autor et al. (2017a,b) suggest that IT may have created network effects and facilitated more effec-
tive product comparisons for consumers, therefore helping superstar firms gain larger shares of the market. This
explanation, as well as other alternatives such network effects of IT or the potential effects of IT on the competition
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In this paper, we offer a simple framework for understanding the role of IT in shaping aggre-
gate productivity, factor income shares, and industry concentration at both the micro and macro
levels. We introduce a production function that distinguishes IT from other types of capital and
allows for its marginal product (relative to that of other inputs) to systematically vary with firm
size, resulting in the nonhomotheticity of IT factor demand. We motivate our approach based
on a new fact that we document using firm-level data from France: a robust, within-industry,
cross-sectional correlation between IT intensity and firm size. We estimate our proposed pro-
duction function in the firm-level data, and find evidence both for the nonhomotheticity of the
production function and for an elasticity of IT capital-labor that falls below unity. We then de-
velop a dynamic general equilibrium model with heterogeneous firms that features the estimated
production function, and show that the equilibrium of the model matches cross sectional facts on
the relationships of firm size with labor share and IT intensity. In response to the fall in relative
prices of IT observed in the French data, our model can explain about half of the observed rise
in industry concentration, and around half of the fall in the aggregate labor share caused by the
resulting cross-firm market reallocations.

The key novel mechanism that shapes our results is the effect of IT in shifting how aggregate
income is distributed between firm profits and payments to other factors. We will show that
the identified parameters of our flexible production function imply cross-sectional variations in
returns to scale (scale elasticity) across firms, which in turn translate into variations in profit
shares. In particular, the model predicts that larger firms have lower scale elasticities, higher
profit shares, and therefore lower labor shares. When the price of IT falls, firms leverage IT to
raise their scale elasticity, which translates into a rise in their labor shares. However, larger firms
disproportionately benefit from this shock, due to the bias of their factor demands toward IT. In
response, they can lower their prices and raise their market shares, raising the industry’s level of
concentration. Since these larger firms have lower labor shares, this reallocation also lowers the
aggregate labor share.4

in the product or input markets, may require us to depart from the benchmark in which IT simply acts as an input
in the production function of firms.

4Profits in our setting are the returns to the fixed, firm-specific factors that distinguish firms (particularly the
larger and more productive ones). Within each firm, the rise of IT lowers these returns, but across firms it is biased
toward the firms that pay a larger share of their income to this factor. We also note that our model shares this
core mechanism with the results of (Basu and Fernald, 1997) who study business cycle fluctuations where cyclical
expansions of output are biased toward firms with higher scale elasticities. They find that in such an environment
the aggregate scale elasticity (profit shares) is cyclical (countercyclical) and the aggregate and micro estimates of the
scale elasticity diverge.
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Overview of the Paper

Empirically, our point of departure is the introduction of novel datasets that detail micro-level
software and hardware investments among French firms, covering a broad set of manufacturing
and service industries. We rely on this data to construct stocks of software and hardware cap-
ital for French firms between 1995 to 2007. This is a period that witnessed a substantial and
widespread rise in the adoption of IT among French firms. Figure 1 shows the aggregate series for
the user cost of IT equipment (relative to that of non-IT capital) and the ratio of IT equipment
capital to non-IT capital across the entire market economy in France. Between 1990 to 2015, we
observe a fall of over 50% in the relative user cost of IT and sizable shift in the composition of
capital of firms toward IT equipment. We assume that the fall in the price of IT is driven by ex-
ogenous technological progress, and aim to examine its consequences for industry concentration
and aggregate factor shares.

We add to our IT data standard sources that detail balance sheet information, including sales
and labor share, for the universe of all French firms. We use this dataset to revisit the evolution
of market concentration and labor share, as well as the cross sectional relationship between labor
share and firm size in France. Our data suggests patterns similar to those recently documented
using the US firm-level data as well as a number of other advanced economies (eg., Andrews et al.,
2016; Autor et al., 2017a,b). We first find a sizable rise in industry concentration, when measured
in terms of a number of different standard proxies. In addition, we find that the implied market
reallocations toward larger firms have indeed contributed negatively to the aggregate labor share
(accumulating to a total of around 4 percentage points between 1990 and 2007). This finding is
not surprising given the fact that we also document a negative within-industry, cross-sectional
correlation between labor share and firm size. However, we also find positive within-firm con-
tributions to the aggregate labor share over the same period, stemming from upward shifts in the
distribution of labor share (similar to patterns found by Kehrig and Vincent, 2017). In France,
the negative across-firm contributions to the aggregate labor share appear to be completely com-
pensated by the positive within-firm contributions, leaving the aggregate labor share seemingly
intact in the post-1990 period.

Next, we examine the heterogeneity in IT inputs across French firms. We document that the
firm-level demand for IT inputs relative to other inputs grows in the firm’s scale of operation.
This finding is robust to different measures of IT intensity, whether IT is proxied by software or
hardware, whether by investment or capital, and whether intensity is measured relative to labor
inputs or to non-IT capital. The results are also robust to using different measures of firm scale,
whether scale is measured by employment, value added, sales, or by more eclectic measures such
as the number of plants, the depth of organizational structure, the number of exporting markets,
or the number of exported products (the latter two measures only in the sample of exporting
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firms). We find this relationship to hold across a wide range of industries and classes of firm
size, from small firms with just a few workers to large multinationals hiring tens of thousands of
workers.

To structurally account for these facts, we construct a general equilibrium model that fea-
tures monopolistically competitive firms producing output with a nested nonhomothetic CES
(nhCES) production function (Sato, 1974, 1977; Comin et al., 2015). Software and hardware con-
stitute a bundle of IT inputs while non-IT capital and labor constitute a bundle of non-IT inputs.
The two bundles are combined using a nhCES production function to produce firm-level output.
We assume that firms are heterogeneous in terms of two productivity states, one factor-symmetric
and one IT-biased, and the two evolve over time according to a simple Markovian process.

First, we investigate the cross-sectional predictions of the model. The nonhomotheticity of
the production function implies that the returns to scale of firms should vary with their size.
Interestingly enough, the relationship between returns to scale and size crucially hinges on the
elasticity of substitution between IT and non-IT inputs. In particular, if we assume that this
elasticity is below unity, then the theory predicts lower scale elasticities for larger firms. Next,
we derive the general equilibrium predictions of the model in response to an exogenous fall in the
price of IT inputs. We find two counteracting forces: the direct substitution effect that raises the
scale elasticity (and factor income shares) for all firms, and a reallocation effect that shifts market
shares toward larger firms operating with lower scale elasticities (and factor income shares). In
addition, the pass-through of the lowered IT inputs is higher into the marginal cost of large firms,
leading to a shift of market allocations toward larger firms.

We bring the model to the data in two steps. First, we employ an identification strategy based
on standard timing assumptions to estimate our production function in the micro data. We com-
bine this method with a strategy that relies on shift-share instruments for the price of software
relative to wages (following Oberfield and Raval, 2014) to estimate the full nhCES production
function, including the IT-non-IT elasticity of substitution. We find that the core parameter of
our model, governing the output elasticity of IT intensity, which in turn controls the relationship
between IT intensity, scale elasticity, and labor share, is positive and significant. We find this to
be the case whether we pool the data data across all industries, across manufacturing industries,
or across any 38-industries industry codes. Crucially, we also find estimates for the elasticity of
substitution between IT and non-IT inputs that are below unity and are therefore compatible
with our mechanism: the estimated elasticity is 0.39 (0.48) in the sample of all (manufacturing)
industries.5 Finally, our estimated parameters implies values for the returns to scale that are very
close to unity for the average firm, while still leading to sizable variations in the cross section

5These numbers are close to recent micro-level estimates of the elasticity of substitution between capital and
labor (see, e.g., Oberfield and Raval, 2014; Doraszelski and Jaumandreu, 2018).
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depending on the firm’s IT intensity.
Armed with these estimates, we perform a simple calibration of our general equilibrium

model to gauge its quantitative success in explaining the evolution of industry concentration
and labor share in France. In this exercise, we study the response of the model in moving from
an initial stationary equilibrium of the calibrated model to a second involving a lower relative
user cost of IT. We consider a change in the relative user cost of IT in line with official aggregate
price series from 1990 to 2007. The calibrated model predicts a rise in the market concentration
(proxied by the market share of top 1% and 5% of firms) that is about half of the rise observed
for those proxies in the data. The model also predicts positive within-firm and negative across-
firm contributions to the aggregate labor share, both by around 2 percentage points, which again
accounts for about half of the components of the observed trends in the data. Finally, our model
also predicts a sizable fall in the rates of entry as a part of response to this shock. We conclude
that the rise of IT can explain a substantial part of the rise in industry concentration and the
resulting reallocations toward low-labor-share firms in France.

Prior Literature

Our paper contributes to a large literature that has studied the impacts of IT at both the micro and
the macro levels. We already touched on the macro side of this literature, which has focused on
isolating the contribution of IT to aggregate productivity growth (see Stiroh, 2008, for a review
of the evidence). On the micro side, this literature has further documented strong productivity
gains for firms adopting IT (e.g., Brynjolfsson and Yang, 1996; Erik Brynjolfsson, 2003; Aral et
al., 2006; Draca et al., 2009).6 While in this paper we focus on the aggregate consequences of the
nonhomotheticity of IT demand, our results also have important implications for the micro side
of this literature.7 In particular, the fact that the relative IT demand grows in firm size may in
fact explain a part of the observed relationship between productivity and IT intensity.

In this paper, we focus on linking a micro account of a firm’s choice of IT inputs, at a pro-
duction function level, to an aggregate macro model. Therefore, we do not take a stance on
any specific underlying forces that result in an increasing relative marginal product of IT among
larger firms. However, one can motivate such a relationship in a number of different ways. For
instance, we can draw insights from organizational theories of firm (Garicano, 2000; Garicano
and Rossi-Hansberg, 2006) that provide sub-micro foundations for the firm production function

6More recent papers in this line of work rely on exogenous variations in the costs of IT adoption as a strategy for
identifying the elasticity of output and productivity with respect to IT (e.g., DeStefano et al., 2014, 2016; Akerman
et al., 2015).

7In two recent papers, Harrigan et al. (eg., 2016, 2018) have studied the rise of what they refer to as “techies,”
the specialized and technically oriented labor inputs that may constitute complementary inputs to IT, in the context
of the French labor market. They argue that the shifts in the composition of labor hired by French firms toward
techies has played an important role in labor market polarization and skill-biased productivity growth.
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that generates nonhomotheticity patterns similar to those uncovered here (Caliendo and Rossi-
Hansberg, 2012; Caliendo et al., 2015a,b). In this framework, larger firms use more complex
organizational structures, which may in turn require more information exchange and communi-
cation across firms.8 In addition, there is some evidence for the effects of IT on the integration
and supply-chain management of firms (Fort, 2014; Basco and Mestieri, 2018), which may provide
an alternative ground for the higher benefits of IT for larger firms.9

Our paper further contributes to the literature that studies a number of recent secular macroe-
conomic trends across advanced economies. A number of papers have documented growing in-
dustry concentration and within-industry dispersion in firm outcomes (CEA, 2016; Andrews et
al., 2016; Berlingieri et al., 2017). Indicators of business dynamism, such as the rate of startup
formation, appear to be in decline across many advanced economies, particularly in the United
States (Decker and Haltiwanger, 2013; Haltiwanger, 2015; Decker et al., 2015; Andrews et al.,
2016; Decker et al., 2016; Karahan and Pugsley, 2016; Gutiérrez and Philippon, 2017). In paral-
lel, there is a large body of work on a global fall in the labor share across many industries (Elsby
et al., 2013; Karabarbounis and Neiman, 2014; Koh et al., 2015; Barkai, 2016; Grossman et al.,
2017).

As we already discussed, IT capital has been put forth as a potential explanation for the trends
above,10 and in particular for the fall in labor share through its potential substitution with labor
(Karabarbounis and Neiman, 2014; Gaggl and Wright, 2017). However, another line of work in
the literature questions the potential explanatory power of the substitution channel, given that
most available estimates of the capital/labor elasticity of substitution are below unity (Lawrence,
2015), and given the micro evidence on the rise of labor share for the average firm (Kehrig and
Vincent, 2017; Autor et al., 2017b,a). Our paper provides a mechanism that combines these two
lines of thinking: as with the former, we take a production-side view for the macro effects of IT.
As with the latter, we focus on firm heterogeneity and provide an explanation that rationalizes
the cross-industry relationship between the rise in concentration and the fall in the labor share.
In addition, our framework further allows us to account for potential responses in the aggregate

8For a direct application of this theory to the impacts of IT, see Bloom et al. (2014).
9Yet another explanation for the higher relative marginal product of IT among larger firms involves the life

cycle process of product development. The idea is that early in the development of products, the process is heavy
in customization for the (typically few) available customers. As the product develops and finds its position in the
market, there is a shift of emphasis from customization toward standardization to save on costs and to effectively
accommodate the growing number of customers. The process of standardization may in fact be a highly IT-intensive
process, thereby implying that large and growing firms rely more heavily on IT compared to small and stagnating
firms.

10We note that IT is one among the several mechanisms offered in the literature as the potential drivers of the ob-
served macroeconomic trends. For instance, Crouzet and Eberly (2017, 2018), Gouin-Bonenfant (2018), Martinez
(2018), Akcigit and Ates (2019), Hopenhayn et al. (2018), and Liu et al. (2019) have proposed the rise of intangi-
ble capital, productivity dispersion, automation, and the decline in knowledge diffusion, population growth, and
interest rates as potential channels for these trends, respectively.
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profit share to the rise in the price of IT (Autor et al., 2017b; Barkai, 2016).11

Two recent theoretical papers that have proposed alternative mechanisms through which IT
can provide an explanation for the recent secular macroeconomic trends. Aghion et al. (2019)
provide a model of growth, innovation, and industry dynamics that interprets the rise of IT as a
fall in the costs of operating multiple product lines. Mariscal (2018) develops a model of internal
firm organization, in line with the literature discussed above, with an explicit role for IT in the
managerial span of control. As with the model proposed here, both of these papers implicitly
provide a role for IT in shaping variations in returns to scale across heterogeneous firms. Our pa-
per constitutes a complementary contribution in that we provide micro-level empirical evidence
on the patterns and an empirical model that allows us to interpret the observed patterns and to
examine their implications.

The remainder of this paper is organized as follows. Section 2 presents the sources of the
data, and Section 3 discusses our key empirical facts. Section 4 presents the theory, and Section
5 discusses our identification strategy for estimating the nhCES production function and the
calibration results. Finally, Section 6 concludes the paper.

2 Data

For our empirical analysis, we rely on several sources of firm-level micro data produced by the
French Institute of Statistics (INSEE). First, the Annual Survey of Firms (EAE) provides informa-
tion on software investment at the firm level. Second, the RSI and BRN datasets, which are based
on the firms’ tax records, provide standard balance sheet information for firms below and above
certain size thresholds, respectively. The BRN data further includes information on hardware
investment of the firms within its coverage. Additionally, we rely on the employee-level DADS
data and the Customs data for constructing certain proxies for the scale and scope of operation
of firms. Finally, the unique firm identifier SIREN allows us to match these different sources of
data at the firm level. In addition to these micro-level sources, we also rely on some aggregate and
sectoral series for France based on data from INSEE National Accounts or the KLEMS dataset
(Jäger, 2017).12 Below, we discuss these sources of data in more detail (Section E in the Appendix
provides further details about the sources of the data used).

11Note that, in contrast to a number of recent other accounts of the fall of the labor share (e.g., De Loecker and
Eeckhout, 2017; Baqaee and Farhi, 2017; Aghion et al., 2019), our model features efficient allocations and therefore
our mechanism does not involve any changes in the level of allocative distortions.

12The dataset is available online at http://www.euklems.net.
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2.1 Sources of Micro Data

BRN and RSI are our two principal sources of data on firm activity in the universe of French
firms. These datasets are based on administrative fiscal forms and are available starting 1984.
They cover firms affiliated with the two main French tax regimes: BRN (Bénéfice Réel Normal)
and RSI (Régime Simplifié d’Imposition). The BRN is the standard regime and the RSI is a simpli-
fied regime intended for small firms. Depending on their domain of activity, firms with revenues
above a certain threshold must be affiliated with the BRN regime.13 These datasets provide infor-
mation on the firm’s number of employees, sales, value added, total and tangible investment, year
of creation, industry, and location. Information on the disaggregated components of firm invest-
ment by asset types, including hardware investment, is available in the BRN files starting in 1989.
While we rely on the whole sample of RSI and BRN firms for our measures of concentration and
aggregate labor shares, we restrict our analysis of IT investment to firms that appear at least once
in the BRN dataset, that have one or more employees, and that report positive value-added and
wage bill (including taxes on labor). We also exclude outlier observations in which the firms re-
port more investment and book value of capital (per employee) above certain thresholds.14 This
data is broadly representative of the aggregate French economy: firms in our sample account for
74.9% of private value-added and 81.9% of private employment.15

The EAE (Enquête Annuelle d’Entreprises) is a survey-based dataset collected every year from
1982 to 2007. The survey is conducted separately for each broad sector of the French economy
(trade, transport, construction, manufacturing & utility, agrifood, and services), with some vari-
ation in the list of questions asked and the sampling methods used. Overall, the data compre-
hensively covers medium and large firms, i.e., those with more than 20 employees, and surveys
a sample of the smaller ones.16 Moreover, in more recent years, large firms are surveyed with a
more comprehensive questionnaire that includes questions about software investment of firms.17

Most of our micro-level analyses in the paper rely on the two sources above. For a number
of further analyses, we use two additional sources. We use the employee-level DADS data to find
information on the number of plants and the organizational structure of the firm in terms of the
occupational mix of employees. We also use the Customs data (after matching with the firm-level

13In 2007, the thresholds were 763,000 euros if the firm operates in trade or real estate sectors, and 230,000 euros
otherwise.

14For details about our trimming procedure, see Section E in the Appendix.
15Tables 1–3 in the online appendix present some summary statistics on the representativeness of the BRN dataset

for the aggregate private sector of France, excluding agriculture, real estate, and finance.
16The only exception is manufacturing & utility, in which only the large firms are surveyed.
17The criterion for inclusion is based on the employment size of the firm at the end of the previous year. This

more comprehensive questionnaire has been applied in select sectors starting in 1989, and has been extended to all
sectors starting in 1995. For more details on the criteria for coverage in EAE (as well as the other datasets used in
the paper), see Section 2.2 in the online appendix.
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sources above) for information on the number of exported products and destination countries, as
additional proxies for the scope of operation of firms (see Appendix E for further information).

2.2 Measures of IT Input

The EAE files contain information on the investment of firms in software (Frouté, 2001). For
three broad sectors of manufacturing, trade, and services, the survey further includes a disaggre-
gation of software investments to those corresponding to: 1) software purchased from outside,
2) software created in-house, and 3) the investment made in existing software.18 For all other sec-
tors, the survey only asks for the total investment in software, inclusive of all three components.
We rely on the latter variable to maximize coverage. However, we also use the information on
the disaggregated components of investment, when available, to ensure that they are compatible
with the reported value of total investment in software.

The BRN files report the total investment of firms in office and computing equipment (Barbesol
et al., 2008; Chevalier and Luciani, 2017). Despite including non-IT investment components such
as office furniture, this component of investment in the BRN data provides, to our knowledge,
the closest measure for hardware investments of firms in the universe of French firms. Therefore,
we use this variable as our measure of investment in hardware and as our second indicator of IT
investment, acknowledging the potential for measurement error due to the presence of non-IT
components.

For each measure of investment, we proceed to construct measures of capital stock based on
the observed investment flow measures.19 We employ asset-specific price deflators, depreciation
rates, and aggregate level of capital stocks (distinct values for software, hardware, and the other
components of capital) based on industry-level information available in the KLEMS dataset and
the series constructed by INSEE. We use the EU KLEMS (September 2017 release, Jäger, 2017)
to obtain depreciation rates by asset type for France. We rely on the INSEE Annual National
Accounts (May 2018 release) for gross fixed capital stocks in current prices and gross fixed capital
formation prices. This data provides the two measures at the level of 38 industries and for a
number of different asset types. Section E.2 in the Appendix provides the complete details of
the procedure for construction of capital stock variables and presents the information on price
deflators and depreciation rates used.

In our analysis, we restrict attention to the following sectors: manufacturing, mining, utility,
construction, trade, transportation, accommodation and food services, information and com-

18For the food sector, the information on sources of financing of the investment (either exterior or internal to the
enterprise) is also provided in the survey.

19Our procedure closely follows that used by Bloom et al. (2012), who construct capital stock measures based on
various surveys of IT expenditure in the UK. We note that the coverage of our IT data among French firms appears
to be wider than that in the case of UK establishments (see Table 1).
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munication, and professional services, excluding agriculture, real estate, finance, public adminis-
tration, education, and health. We focus on the period of 1995-2007 in our analysis, over which
the coverage and representativeness of our IT investment measures appear stable. However, in
our procedure to construct the stocks of capital discussed above, we initialize the corresponding
stocks at the firm level for all firms that are present in the BRN data in 1989.

2.3 Measures of Local Wages

As we will discuss in Section 5.1, in our identification of the production funciton we rely on the
series for the price of software relative to wages at the local level. The BRN and RSI files contain
information about the municipality where the headquarters of the firm are located, as well as the
5-digits industry to which the firm belongs. We use this information to construct measures of
average wages by 2-digits industry at the level of local employment area (Zone d’emploi).20 We
further rely on an instrument for the relative price of IT that follows the standard logic of Bartik
(1991), relying on local variations on the industrial composition of employment. We compute an
instrument capturing the predicted change in the labor demand in each employment area, based
on the interaction of the initial composition of the wage bill in each employment area and the
change in each industry’s employment at the national level.

2.4 Overview of the Data

Table 1 presents the summary statistics of the main variables in our data. The table separately
shows the summary statistics for the full sample, on the left, and for the sample of manufacturing
firms, on the right. In the full sample, we have about 6.6 million firm-year observations, 5.9 mil-
lions of which are in the BRN files. We have observations of hardware investment (and capital)
for this set of firms. For a subset of over 1.1 million firm-year observations, we also have corre-
sponding observations in the EAE dataset that allows us to observe firms’ software investments.

First, note that the average value of labor share (across firms) is fairly high and around 80%,
similar between manufacturing and non-manufacturing, and does not show strong skewness
(since mean and median values are fairly close). Still, the data also suggests substantial hetero-
geneity in labor share across firms, with a standard error of around 34%. In the next section, we
will explore the extent to which the variations in labor share (within the industry) are driven by
variations in firm size.

As the table shows, the distribution of both types of IT investment is highly skewed, much
more so than that of the total investment. The modal firm invests zero in both software and hard-

20There are 364 employment areas, defined in 1990 as geographical units with more than 25,000 workers within
which most of the workforce commutes. See the online appendix for details about the construction of local wages.
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ware, whereas the average firm invests over 10,700€in software and 6,600€in hardware annually
(conditional on being surveyed). The values of investment are higher in manufacturing compared
to other sectors. However, manufacturing firms are on average larger than non-manufacturing
firms. As we will see below, the differences between sectors is less pronounced when we examine
proxies of software and hardware intensity of firms.

Table 2 reports the intensive and extensive margins of software investment, separately for
different classes of firm employment (in year 1996).21 The likelihood of reporting nonzero in-
vestment values is larger among larger firms. Conditional on reporting non-zero investment in
software, both the median and mean of the values reported are also greater among larger firms.
This relationship appears in all years in our data, e.g., we can observe it in 2006 (cf. Table 9 in
the online appendix). Examining the data on hardware investment also shows a similar pattern
(cf. Tables 10 and 11 in the online appendix).

As with the investment measures, our constructed measures of capital in Table 1 show evi-
dence of skewness. The median firm has zero stocks of software and hardware capital, while the
mean values of software and hardware capital stock are around 15,500 €and 23,300 €, respec-
tively.22

In our analysis, we introduce a number of proxies for IT intensity of firms. For both software
and hardware, and for each of the investment (flow) and the capital (stock) measures, we define
two proxies for intensity: first, intensity per worker (where we divide the values by the number of
workers), and second, relative intensity (where we divide the values by the respective total value
of investment or capital of the firm). As Table 1 shows, these intensity measures also inherit the
skewness of the original measures: when in per-worker terms, the average investments in software
and hardware are 50 and 200 €, respectively, and those for software and hardware capital stock
are 80 €and 469 €, respectively. The medians are zero in all four cases. The averages of relative
intensity measures are fairly small, with software constituting an average of only 2% (0.4%) and
hardware of just above 6% (3.5%) of total investment (capital).

In general, these patterns may be driven by the differences in the industrial composition of
different size classes. In the next section, we will investigate the relationship between IT intensity
measures and different characteristics of firms such as size, age, and industry.

21The drop in the coverage of the data (as reflected in the number of observations) for firms with less than 20
employees is due to the design of the EAE survey.

22see Tables 12, 13, 14, and 15 in the online appendix for the values of IT capital stocks disaggregated by size class.
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3 Facts

In this section, we begin by using our data to revisit in the context of the French economy a num-
ber of trends that have been recently uncovered about the evolution of industry concentration
and labor share in the US and across other OECD countries (Andrews et al., 2016; Autor et al.,
2017b; Kehrig and Vincent, 2017; Berlingieri et al., 2017).

Next, we shift our attention to our newly constructed measures of IT intensity and document
a number of facts on the heterogeneity in IT demand across firms. Here, we relate our measures of
software and hardware intensity to firm size, age, industry, and a number of different indicators
of the firms’ scale and scope of operations. Finally, we explore the cross-sectional relationship
between labor share and firm size.

3.1 Macro Trends in France

First, we examine the trends in the averages of a number of indices of market concentration across
different industries in France in the period of 1990–2007. We compute for each 3-digit industry
the share of total industry sales for the top 1%, top 5%, and the largest, the top 4 largest, the
top 10 largest, and the top 20 largest of firms (all according to the distribution of sales within
the industry). We then average those shares across all industries, weighting industries by their
share in total sales. Figure 2 shows that the top 1% and 5% shares increased by around 8.1 and 6.4
percentage points on average across industries, while the shares of the top 1, 4, 10, and 20 largest
firms increased by 2.3 to 4.1 percentage points.23

Second, we look at the evolution of the labor share in France within the same period. Fig-
ure 3 shows the cumulative change in the aggregate wage bill (including payroll taxes) as a share
of aggregate value added for our sample of all BRN and RSI firms. In addition, it shows the con-
tribution to this change of a within-industry (as opposed to cross-industry) component, when we
keep industry shares of total value added constant from one period to the next. Over the course
of the entire period, the aggregate labor share and the within-industry component have not sub-
stantially fallen in our data, with the former remaining around 70% of value added. However,
our decomposition also shows that starting in 1995, the typical industry began experiencing a
fall in sectoral labor share.

Following the strategy used recently by Kehrig and Vincent (2017) for the US data, we further
decompose the average within-industry changes in labor share into that stemming from, first, the
shifts in the industry’s distribution of firm-level labor shares (keeping shares of firm-level value

23The initial value of the weighted averages of the top 1% and 5% share measures across industries in 1990 are
43.4% and 65.0%, respectively. The corresponding numbers for the shares of the top 1, 4, 10, and 20 largest firms
are 14.0% to 41.3% in that year.
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added constant), and second, the within-industry reallocations in value-added shares of different
quantiles of labor share. Appendix C provides the full details of this decomposition exercise.
Figure 3 presents the results of this decomposition and shows that, while for the typical firm the
labor share increased by around 3.4 percentage points over the entire period (by 4.3 percentage
points until 2006), the reallocations of market shares had a negative contribution of around -3.9
percentage points to the aggregate labor share.

Finally, Figure 4 shows that the two patterns above are linked. The correlation between 5-year
changes in industry-level labor shares and concentration measures is negative, when the former is
proxied by each of the measures discussed above. In other words, the labor share has been falling
relatively more in those industries where market shares have shifted more toward larger firms.

To summarize the evidence presented in this section, we find that starting in the 90s different
measures of industry-level sales concentration rise in France. This is in line with the evidence
cited earlier from US and several other OECD economies. We also find that, in contrast to the
US and other OECD economies, the aggregate labor share does not appear to substantially fall in
France. Nevertheless, we still come across strong similarities in the observed patterns from the
perspective of heterogeneity across firms. When we decompose the evolution of the aggregate
labor share to the component driven by the shift of the (unweighted) distribution of labor share
and that driven by reallocations of value added across firms, a pattern similar to the US emerges.
The distribution of labor share shifts to the right while the reallocations shift market shares
toward low-labor share firms. In addition, just like the US, the labor share falls relatively more
over time in industries where the concentration rises more.

3.2 IT Intensity and Firm Scale

In this section, we will provide evidence that the IT intensity of firms has a strong cross sectional
correlation with the scale of operation of firms. We use different proxies for the firm’s scale of
operation, considering firm employment, sales, value added, and also more eclectic measures such
as the number of plants, occupational layers, exporting products and destinations.

We begin our analysis by investigating the cross-sectional relationship between firm size and
the intensity of IT demand across firms. For a firm i in an industry k at time t , we apply regres-
sions of the form

I T I nt ens i t yi t = F ESi zei t
+ F Ek t + F Ea + F Ec + νi t , (1)

where I T I nt ens i t yi t denotes a measure of the relative demand for IT inputs, F ESi zei t
, denotes

the class-size dummy corresponding to the firm-i ’s number of employees at time t , and F Ek t

stands for a flexible set of industry-time fixed effects (at the 3-digit level). In addition, we further
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add age F Ea and cohort F Ec dummies to control for potential patterns of IT adoption in some
specifications.24

Figure 5 shows the fixed effects of different size classes for each of our proxies of software
and hardware intensity.25 In all cases, the fixed effects are computed relative to the fixed-effect of
the size class corresponding to 0-5 workers. We find a strong relationship between the software
intensity of firms, both in terms of investment and capital, and their employment size. In per
worker terms, a typical firm with more than 5,000 workers has a software investment (capital)
intensity close to €200 (€300) per worker higher than firms with 0-5 workers. Relative to to-
tal investment (capital), a typical firm with more than 5,000 workers has a software investment
(capital) intensity 3 percentage points (0.5 percentage points) higher than firms with 0-5 workers.
The IT intensity premium of larger firms is fairly sizable considering that, as we saw with the
statistics provided in Table 1, the average software investment (capital) intensity of all firms is
around €50 (€80) per worker or 4% (0.4%) of total investment (capital). Large firms therefore
have a software intensity gap relative to the smallest firms in our data of around 1 to 4 times
the average software intensity, depending on the measure.26 We find that the patterns above also
broadly hold in the case of hardware. In per worker terms, large firms have hardware investment
(capital)€250 (€1,000) per worker higher than small firms, or 1 to 2 times the average hardware
intensity.27

Table 3 investigates the relationship between the firms’ scale of operation and IT intensity
using measures of firm output (rather than employment). The tables report the results of regres-
sions like those in Equation (1), replacing firm employment dummies with the log of firm sales

24It is well-known that one cannot jointly identify age, cohort, and year fixed effects due to their collinearity.
For this exercise, we apply one of the normalizations suggested by Deaton (2018) and attribute the growth of the
dependent variable to year and cohort effects, and use the age effect to capture fluctuations in the dependent variable
that average to zero over the life of the firm. In effect, this consists in rewriting the set of age dummies F Ea as follows:
F E∗a = F Ea−[(a−1)F Ea=2−(a−2)F Ea=1] and regressing (1) excluding all dummies corresponding to the first year,
the first cohort, and ages 1 and 2. The results do not change with or without including theses cohort/age/year fixed
effects.

25Figure 3 in the online appendix shows the fixed effects of cohorts. In some cases, there appears to be a upward
trend in newer cohorts of firms (e.g., software or hardware capital intensity) but we do not find a robust pattern in
terms of IT intensity across firms.

26Note that the results include the variations in IT intensity both along the intensive and the extensive margins.
The differences in IT investment patterns as a function of firm size also emerge if we only consider the extensive
margin. Figure 2 in the online appendix shows that the extensive margin of investment grows in firm size for both
software and hardware.

27The main exception is the relative intensity of hardware investment that initially rises but then somewhat falls
among the largest firms. We believe this pattern is most likely driven by the fact that our measure of hardware
investment includes non-IT related office equipments. The mentioned pattern is to a great extent driven by a group of
mid-size firms that report 100% of their investments to be in office and computing equipment. When we restrict our
analysis to the sample of 38,410 observations for which we are able to distinguish between computing equipment and
non-IT office furniture equipment (firms in the agrifood industry sampled in EAE), computing investment relative
to total investment or to hardware investment (computing plus office furniture) is increasing in size (see Figure 1 in
the online appendix).
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or the log of value added. The regressions keep the industry/time fixed effects and controls for
firm age and cohort of entry. As with the figures, Table 3 shows a strong effect of the scale of
operation on the IT intensity of firms. From columns 1-2 of the table, raising the scale of firm
output by a factor of 2 raises its software investment intensity by around€14 (against a mean of
€50) in per worker terms, or by 0.3 percentage points (against a mean of around 0.4%) relative
to total investment. The corresponding numbers for the case of hardware investment intensity
are around €41 (against a mean of €200) in per worker terms, and around 1 percentage point
(against a mean of around 11%) relative to total investment.

Columns 5-6 of the table show the same results with the logarithm of IT intensity of capital
on the left-hand-side.28 The coefficients are in the 0.2–0.4 range, suggesting that raising the scale
of firm output by a factor of 2 raises its capital intensity by about 20% to 40%, with elasticities
similar for software and hardware. Columns 3-4 and 7-8 show results for alternative measures
of IT intensity, either over the wage bill or tangible capital. The coefficients remain sizable,
significant, and comparable with our main measures of intensity in every case.

As we explained in Section 2.1, the EAE dataset only contains a representative sample of
firms with below 20 employees. Similarly, the BRN dataset only includes a selected sample of
firms below certain size thresholds. To the extent that our sample of small firms deviates from
representativeness, one might expect that the observed firms should have higher IT intensity
compared their unobserved counterparts. Therefore, such selection should arguably bias our
estimates against finding a positive relationship between firm size and IT intensity. We note that
the fixed effects of size appear mostly monotonic in size in Figure 5, even for firms well above the
threshold of 20 employees. Furthermore, our results are robust to restricting the data to firms
with increasingly larger thresholds of size.29

Other Measures of Firm Scale

In addition to measures of firm input and output, we further investigate the relationship between
IT intensity and a number of other proxies for the firm’s scale of operation. There are a number
of different margins along which firms can expand their scales: they can sell more of the same
products to the same markets, they can sell the same products to more markets, and they can
sell more products. The BRN data does not provide us with a decomposition of firm sales along

28Note that these regressions will focus only on the variations across firms in the intensive margin of IT demand.
29Tables 16-25 in the online appendix replicate the regressions above for samples of firms with employment sizes

above 10, 20, 50, 100, and 250 thresholds. As with our baseline sample, the vast majority of the resulting estimated
coefficients in these selected samples remain positive and significant, suggesting that the likely selection in the sample
does not drive the observed relationship between size and IT intensity. Note that limiting the sample to firms with
more than 10 employees (Tables 16 and 17 in the online appendix) particularly improves our results. This evidence
suggests that the sample of firms with fewer than 10 workers in the EAE and BRN data are potentially biased toward
high performing firms with unusually high IT intensities.
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these margins. Instead, we rely on customs data that allows us to gain a partial picture of these
different margins in the international markets in the sample of exporting firms.

Table 4 presents the results of regressions of log capital intensity replacing the size fixed effects
in Equation (1) with two other measures of the scale of international sales: the number of inter-
national markets (destination countries) and the number of exported products. In both cases,
there is a positive relationship between the IT intensity of the firm and these proxies of the scale
of operations of the firm. On average, exporting to a new market is associated with an increase
in IT intensity of around 2% (3%) and exporting a new product with an increase of around 0.6%
(0.8%).

As we will see in the next section, we attribute the relationship between firm scale and IT
intensity on the organizational demands that stem from more complex patterns of production as
firms expand their scale. We rely on DADS data to find suggestive evidence that simple measures
of organizational complexity of firms indeed appear to be correlated with IT intensity. Table 4
also presents the results of regressions of log capital intensity on the firm’s number of plants and
the number of occupational layers. The latter measures are constructed from the DADS data
following Caliendo et al. (2015a). On average, adding a new plant is associated with an increase
in the software (hardware) intensity of firms by 0.15% (0.40%), while adding an occupational
layer with an increase of more than 20% (around 10%).

3.3 Labor Share and Firm Scale

To conclude our facts, let us examine the cross-sectional relationship between firm size and labor
share in the French data, applying a similar strategy as that used above for the case of IT intensity.
We run fixed effects regressions of the form

Lab o r S ha r ei t = F ESi zei t
+ F Ek t + F Ea + F Ec + νi t , , (2)

where the fixed effects have the same interpretation as those of Equation (1), and where Lab o r S ha r ei t

denotes the ratio of the wage bill including payroll taxes to firm value added or sales. This allows
us to revisit the patterns that Autor et al. (2017b) have documented in the context of the US
data.30 Figure 6 presents the resulting fixed effects for different size classes for regressions of la-
bor share in value added and sales, relative to firms between 10-20 workers.31 We find a strong
negative relationship between labor share and firm size. Given this result, it is straightforward

30In the case of US data, data on firm-level value added is not available outside the manufacturing sector. Here,
we are able to compare the patterns for the labor share measured both relative to sales and value added.

31We limit our analysis to firms with more than 10 employees because many small firms have very small estimated
values of labor share, and we believe that our proxy for labor payments of these small firms is likely to be downwardly
biased, due to the fact that it may not include the bulk of labor payments of the firm’s owner.
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to explain the cross-sectional relationship in Figure 4, in which we reported a negative relation-
ship between our different measures of concentration and the industry-level labor share. Since
larger firms have lower labor shares, when the market shares get reallocated toward larger firms
the labor share falls.

4 Theory

In this section, we provide a theory that rationalizes the empirical facts that we uncovered in the
previous section. The core of the model is the characterization of a production function that
features the following property: as a firm grows, the returns to scale in production falls due to
the ensuing organizational complexities, but the IT inputs help circumvent this fall in returns to
scale.32 We first discuss this production function in Section 4.1, and then construct a model of
industry equilibrium in which this production function characterizes the production at the firm
level. The model’s predictions will match the micro-level empirical regularities, and we will use
it to examine the aggregate implications of these micro facts in Section 4.2.

4.1 A Production Function with IT and Organizational Limits to Scale

In this section, we construct a nonhomothetic production function that generates a systematic
relationship between firm size and the intensity of IT inputs. We will then investigate the prop-
erties of this production function and, in particular, focus on its implications for variations in
returns to scale and output elasticities in terms of firm size.

4.1.1 Motivating the Production Function

Consider a production function Y = (Z XN )
1/γ where Y is the output, XN is a bundle of non-

IT inputs, including capital and labor, and Z is the productivity of the firm in terms of non-IT
inputs. The parameter 1/γ controls the returns to scale of the production function in terms of
non-IT inputs, if the productivity Z of the firm were to remain constant. However, as we will
describe below, we will assume that the productivity Z of the firm in terms of the bundle of
non-IT inputs is a function of the scale of the firm. Therefore, the returns to scale endogenously
varies with the scale of production and in general does not equal the value of this parameter.

32A simple alternative model is one in which adopting IT involves a fixed cost, making IT only profitable for firms
above a certain level of productivity and size. Such a model implies a strong relationship between IT intensity and
firm scale when comparing small and large firms. However, the model also predicts that the relationship should
vanish as we restrict attention only to large firms. Tables 16-25 in the online appendix show that we find a strong
positive relationship between size and IT intensity even in our sample of large firms. This result suggests that a
model with a single fixed cost of adopting IT may not provide a reasonable account of the observed patterns in our
data.
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The productivity Z of non-IT inputs depends on the firm’s technology and organizational
structure. We characterize this productivity as a CES aggregate of the firm’s technological ability
At e c h and the organizational productivity of the firm Zo r g as:

Z
�
Y, XI

XN

�
=

�
A

σ−1
σ

t e c h +Zo r g

�
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� σ−1
σ

� σ
σ−1

.

The idea is that, to produce output, the firm uses organization to apply a given technology of
production to its bundle of inputs. The technology of production is non-rival, in the sense that
the firm can apply it costlessly over any range of inputs. In contrast, the organizational produc-
tivity of the firm may potentially depend on its scale of operation and, as we will see shortly, how
heavily it relies on IT inputs.

Next, we characterize the relationship between the organizational productivity of the firm
Zo r g and the scale of production and the IT inputs of the firm. We assume organizational pro-
ductivity varies with the scale of production Y with an elasticity −ε. However, the firm can
raise its organizational productivity Zo r g by raising its IT inputs used for each unit of the bundle
of non-IT inputs. Finally, this productivity also grows with the firm’s intrinsic organizational
ability Ao r g , which will form a source of heterogeneity in the model. All in all, we consider the
following definition for the productivity Zo r g of the firm:

Zo r g

�
Y,

XI

XN

�
≡

XI

XN

×Y −ε×Ao r g .

Substituting for the productivity terms from the expressions above, we can see that the com-
bination of inputs, output, and productivities satisfy the constraint

�At e c hXN

Y γ

� σ−1
σ

+
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Y γ+ε

� σ−1
σ

= 1. (3)

For reasons that will become evident shortly, let us define the term involving the IT inputs in the
expression above to be the IT share of the firm

Ω≡

�Ao r g XI

Y γ+ε

� σ−1
σ

∈ (0,1) . (4)

As we will see below, this variable constitutes a key sufficient statistic that characterizes the be-
havior of firms in response to a shock to the relative price of IT in our model.
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Under the specification above, the output elasticity of the bundle of non-IT is given by

XN∂ Y
Y ∂ XN

=
1−Ω
γ + εΩ

. (5)

Equation (5) helps us illustrate some key intuitions about the properties of this production func-
tion. First, consider a firm with constant IT inputs XI . First note that, due to the endogeneity
of the productivity term Z , the scale elasticity of the production function in terms of the bundle
of non-IT inputs is less than the value 1/γ . Examining Equation (5), we find two margins that
explain why output Y grows less than proportionally to X 1/γ

N , as we scale up the inputs XN . The
term involving IT share Ω in the numerator accounts for the the dependence of productivity Z
on XN . With constant IT inputs, raising non-IT inputs results in a reduction in the IT inputs used
per unit of non-IT inputs, and lowers the productivity. The term in the denominator accounts
for the dependence of productivity Z on the output Y . With constant IT inputs, raising non-IT
inputs also lowers the productivity since it results in a rise in the scale of production.

Equation (5) further captures the role of IT in shaping the returns to scale of the firm. Con-
sider the following parametric restriction: σ < 1 and ε > 0. This restriction corresponds to
the case where technology and organizational productivity are complements and the organizational
productivity falls in the scale of output. In this case, the production function has the following im-
portant property. As we substitute IT inputs XI for non-IT inputs XN along the same isoquant
Y , Ω falls and the output elasticity of the bundle of non-IT inputs rises for all combinations of
inputs and output. This setting for the model parameters therefore captures the intuition that
adopting IT allows firms to fight organizational decreasing returns and to raise the output elasticity
of all other inputs.

4.1.2 Properties of the Production Function

To better understand the properties of the production function derived in Section 4.1.1, let us for
now abstract away from the productivity terms and define a function Y = F (XN ,XI ) implicitly
through the constraint

�XN

Y γ

� σ−1
σ

+

� XI

Y γ+ε

� σ−1
σ

= 1. (6)

We furthermore assume that parameters (γ ,σ) are positive valued and ε satisfies ε >−γ to ensure
the production function is globally monotonically increasing in both inputs. This production
function belongs to the class of nonhomothetic CES (nhCES) production functions (Sato, 1974,
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1977; Hanoch, 1975; Comin et al., 2015).33 As with standard homothetic CES aggregators, the
nhCES production function features a globally constant elasticity of substitution between IT and
non-IT inputs. In addition, as we will see below, the production function above has a constant
elasticity of relative factor demand with respect to output.

We can see these properties of the production function by solving the cost minimization
problem for firm i . We find that the relative factor demand is given by

XI

XN

=

�
WI

WN

�−σ
Y (1−σ)ε. (7)

Equation (7) shows that the demand for IT capital relative to non-IT inputs depends on the size
of output Y and the two parameters (σ ,ε) . In addition, as with the standard CES production
function, the demand for IT capital relative to non-IT inputs rises when the relative price of IT
capital falls. Firms in this case substitute IT capital for labor. If ε= 0, we find the CES production
function, in which the relative price is only determinant of the relative demand. When ε 6= 0,
relative demand systematically varies with output Y . For this reason, we will refer to parameter
ε as the nonhomotheticity parameter.

Equation (7) further shows the conditions that we need in order for the production function to
capture the facts that we uncovered in the previous section, regarding the relationship between the
IT intensity of firms and their size. To ensure that the output elasticity of IT capital exceeds that
of non-IT inputs, we make the following assumption on parameters of the production function.

Assumption 1. The nonhomotheticity parameter satisfies ε > 0 if σ < 1, and ε < 0 if σ > 1.

Under our desired parametric restriction ε > 0 and σ ∈ (0,1), the intensity of IT inputs rises
in output, which is in line with the facts that we saw in the previous section. The alternative
setting σ > 1 and ε < 0 is also in line with the facts. However, as we saw above, this case leads
to the counterintuitive result that raising the IT inputs of the firm potentially lowers the output
elasticity of non-IT inputs. For now, we will take Assumption 1 to characterize the leading case
in our model. However, in the next section we will estimate the parameters of the production
function and find that the data in fact supports this assumption.

Solving the cost minimization problem, we can also find the cost function, which is given by

C (Y ; WN , WI )≡ Y γ
�
W 1−σ

N + (Y εWI )
1−σ
� 1

1−σ . (8)

33The general class of nonhomothetic CES preferences may be defined as (XN/FN (Y ))
1− 1

σ +(XI /FI (Y ))
1− 1

σ = 1
for two monotonically increasing functions FN (·) and FI (·) (see also Hanoch, 1975; Russell and Blackorby, 1981;
Comin et al., 2015). To distinguish the more specific class defined by Equation (6), Sato (1977) refers to the class of
preferences as almost-homothetic nonhomothetic CES preferences. Here, to simplify the exposition, we will follow
Hanoch (1975) and Comin et al. (2015) and use the broad term nonhomothetic CES (nhCES) to refer to the particular
class defined by Equation (6), which further imposes a constant output elasticity of relative factor demand.
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Additionally, we can derive the share of IT inputs in total costs of the firm

Ω (Y ; WN ,WI )≡
WI XI

C (Y ; WN , WI )
=

(Y εWI )
1−σ

W 1−σ
N + (Y εWI )

1−σ
. (9)

It is straightforward to show that, under cost minimization, the share of IT in total costs (in
terms of factor prices and output) defined in Equation (9) is equal to the IT share that we defined
(in terms of factor inputs and output) in Equation (4). Hence, we use the same notation for both
and interchangeably refer to both objects as the IT share or IT cost share.

To investigate the returns to scale under nhCES production functions, we find it easier to
compute the cost elasticity E, i.e., the ratio of the marginal to average costs:

E (Y ; WN ,WI )≡
Y C′ (Y )
C (Y )

= γ + εΩ (Y ; WN ,WI ) . (10)

The cost elasticity is the reciprocal of the scale elasticity and depends on factor prices and the
scale of operations Y . Equation (10) shows that the cost elasticity is a linear function of the IT
share: firms with higher IT shares have higher cost elasticities and lower returns to scale. Note,
however, that this result holds under cost minimization. Relying on the motivation provided in
the previous section, we can think of these firms as those that have adopted higher IT intensities
as an optimal response to their lower levels of returns to scale.

Equation (10) helps illustrates an important consequence of Assumption 1 about parameters
(σ ,ε). As the IT share Ω of a firm rises, its cost elasticity rises (falls) if σ < 1 (σ > 1) and its scale
elasticity falls (rises). As we saw in Equation (9), differences in the IT share of firms could stem
either from differences in the relative factor prices WI/WN that the they face or from differences
in their scale of operation Y . The dependence on relative factor prices suggests that higher relative
price of IT inputs results in lower (higher) returns to scale whenσ < 1 (σ > 1). More interestingly,
the dependence on size has the following important implication: larger firms operate with lower
(higher) returns to scale when σ < 1 (σ > 1). We show in Appendix A that the latter insight
generalizes beyond the nhCES production function, and extends to a wide set of production
functions that satisfy nonhomothetic factor demand.

The next lemma characterizes the variations in cost elasticity, as captured by the scale elastic-
ity of marginal costs.

Lemma 1. The output elasticity of the marginal costs is given by

YC′′ (Y )
C′ (Y )

= E (Y )
�

1+(1−σ)
V (Y )

E (Y )2

�
− 1, (11)
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where we have suppressed the dependence on factor prices (WN ,WI ) to simplify the expression and
have defined V (·) as the variance of the income elasticity parameters:

V (Y )≡ ε2
Ω (Y ) [1−Ω (Y )] . (12)

Proof. See Appendix B.

The lemma shows that the convexity of the cost function rises (falls) with the variance of
the IT share Ω if σ < 1 (1 < σ ). When σ < 1, the conditions γ > 1 and ε > 0 are sufficient
to ensure that the marginal cost always exceeds average costs and the cost function is globally
convex. Lemma 1 shows that the cost function may not be convex in general when σ > 1, even
if the scale elasticity parameter satisfies γ > 1.

Below, we will frequently normalize the prices in terms of the price of non-IT inputs WN ,
and therefore express the functions above in terms of the relative price of IT goods W ≡WI/WN

as C (Y ;W )≡ C (Y ; 1,W ), Ω (Y ;W )≡Ω (Y ; 1,W ), and E (Y ;W )≡ E (Y ; 1,W ).

4.2 General Equilibrium Model

We now construct a simple general equilibrium model of a monopolistically competitive indus-
try. In the model, firms produce with the production function that we characterized in the pre-
vious section, featuring the nonhomotheticity of IT factor demand. We will use this model to
examine the implications of the firm-level nonhomotheticity of the production function at the
aggregate level.

4.2.1 Economic Environment

The economy is populated by a unit mass of identical, infinitely-lived consumers, who in each pe-
riod inelastically supply a unit of labor in the market. The consumers choose their consumption
to maximize ∑

t

̺t log Ut ,

where the instantaneous utility Ut = Yt is defined over a continuum of goods i ∈Jt according to
a standard CES aggregator to be defined below. The value of the aggregator Y when consumers
choose the bundle {Yi}i∈I of goods is given by

Yt =

�∫

i∈Jt

Y
λ−1
λ

i t d i

� λ
λ−1

. (13)
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Each firm produces a unique good i , with a production function given by

Yi t =F
�
eθi t XN ,i t , eθi t+φi t XI ,i t

�
, (14)

where F (·, ·) is defined by Equation (6), and θi t andφi t are firm-specific factor-symmetric and IT-
biased (log) productivity states of the firm.34 In addition, as before, XN ,i t and XI ,i t are constant-
returns-to-scale (CRS) and Cobb-Douglas bundles of capital-labor, and software-hardware, re-
spectively:

XN ,i t =Kα
i t L1−α

i t ,

XI ,i t = Sβi t H 1−β
i t ,

with Si t and Hi t denoting the firm’s stocks of software and hardware, respectively.
Each period, potential entrants can enter the industry subject to paying irreversible entry

costs χ in units of the bundle of non-IT inputs. Once they enter, they draw their productivity
pair (θi t ,φi t ) from a distribution F and start operating in that very period. We assume a Markov
structure on the evolution of firm-level productivity, whereby the next-period productivity of
an active firm i is given by

�
θi t

φi t

�
=

�
ρθθ ρθφ
ρφθ ρφφ

��
θi t−1

φi t−1

�
+

�
ηθ
ηφ

�
+

�
uθ,i t

uφ,i t

�
, (16)

where ui t ≡
�

uθ,i t , uφ,i t

�′
is a vector of zero-mean and normally distributed innovations. In

addition, we assume that the two productivity innovations uθ,i t and uφ,i t are uncorrelated and
have variances κ2

θ
and κ2

φ
, respectively. We consider the cases where all the eigenvalues of the

matrix of persistence parameters lie within the unit circle, so that the process has a stationary
long-run distribution. The parameters ηθ and ηφ control the long-run mean productivities of
firms, as they mature.

We assume that firms have to expend a fixed cost ψ in units of the bundle of non-IT inputs
every period in which they operate. However, they can temporarily shut down operation in pe-
riods in which they do not find their operation to be profitable. In other words, if firms decide
to endogenously exit the market, their decision to exit is reversible, and therefore does not corre-

34Note that eθi t is not a Hicks-Neutral productivity. To see this, note that the production function defined here
is almost-homogeneous in the terminology of Sato (1977), in the sense that it satisfies the following condition

F (ZεN XN , ZεI XI ) = Z F (XN ,XI ) , (15)

everywhere. Equation (15) shows that a Hicks-Neutral productivity term is not neutral with respect to IT and non-IT
inputs.
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spond to an option value.35 Finally, we assume that in addition firms may receive an exogenous
death shock with probability δ in each period, in which case they irreversibly exit the market.

We consider a very simple structure for factor markets, in which the supply of all factors are
inelastic. As already mentioned, consumers inelastically supply one unit of (homogenous) labor
in the market and earn wage WL,t . Furthermore, in our theoretical analysis in this section, we
assume all capital stocks, including the stocks of software and hardware, have constant and exoge-
nously given total aggregate values K , S t , and H t , where we allow the aggregate stocks of software
and hardware to potentially vary over time. Finally, we normalize to unity the price of the bundle
of non-IT inputs 1 ≡

�
WL,t/ (1−α)

�1−α �WK ,t/α
�α and let Wt ≡

�
WH ,t/ (1−β)

�1−β �WS,t/β
�β

denote the prevailing price of the bundle of IT inputs XI ,t at time t .
Our analysis will focus on moving between two steady-states of the model, characterized by

some initial stocks S and H and some final ones S
′
and H

′
, and the corresponding relative prices

of IT W to W ′. Hence, we will focus on characterizing stationary equilibria where aggregate
values do not vary over time. Therefore, we will drop the time indices to simplify the notation
wherever it is clear from the context that the time dimension does not play a crucial role.

To characterize the equilibrium, we first consider the partial equilibrium cost minimization
problem of the firm and solve for the allocations of inputs and outputs across firms (as functions
of their productivity states). We will then aggregate the economy and enforce the factor input
market clearing conditions to characterize the stationary general equilibrium of the economy.

4.2.2 Problem of An Active Firm

Let us first consider the problem of a firm with productivity state (θi ,φi ) that decides to produce
along a stationary equilibrium. It is straightforward to see that the optimal cost of this firm if it
produces Yi satisfies Ci = e−θiC

�
Yi ; e−φi W

�
, where the cost function C (·) is given by Equation (8)

and, accordingly, factor cost shares follow Equation (9). The marginal cost for this firm is given
by M Ci ≡ e−θiC′

�
Yi ; e−φi WI

�
, where the marginal cost function C′ (·) is given by C′ ≡ EC/Y , and

the cost elasticity E
�
Yi ; e−φi W

�
in given by Equation (10).

Now consider the profit maximization problem of the firm. A firm with productivity (θi ,φi )

chooses the price that solves the following problem

max
Yi

P
�Yi

Y

�− 1
λ

Yi −
1

eθi
C

�
Yi ;

W
eφi

�
−ψ, (17)

35We have made this assumption merely to maintain the simplicity of our model while 1) preserving an active role
for selection and 2) generating a stationary distribution of firm sales with levels of concentration that are in line with
the observed data. We do not believe the option value of operation would play an important role in our setting.
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where, as usual, the aggregate CES price index for consumers is given by P =
�∫

i∈J
P 1−λ

i d i
� 1

1−λ ,
and we have used (8) as the definition of the firm cost function. Before providing the solution to
the firm’s problem, we consider the following assumption as a set of parametric restrictions on
the model.

Assumption 2. Model parameters (γ ,ε,σ ,λ) satisfy the following constraints:

i. If 0< σ < 1, we have γ > 1− 1/λ.

ii. If 1< σ , we have γ > 1− 1/λ, and

σ < 1+
4
ε

�
γ + ε− 1+

1
λ

��
1+

γ

ε

�
. (18)

Assumption 2 provides an upper bound on the elasticity of substitution between IT and non-
IT inputs that ensures the resulting firm-level cost function is everywhere convex. Under this
assumption, the following lemma characterizes the firm’s optimal choice of price and outputs.

Lemma 2. Consider relative factor prices W and price index and aggregate output (P,Y ). Under
Assumptions 1 and 2, the problem of a firm with productivity pair (θi ,φi ) has a unique solution
characterized by the optimal price

Pi

P
=

λ

λ− 1

C′
�

Y
�

Pi
P

�−λ
; e−φi W

�

eθi P
. (19)

The optimal price Pi and the corresponding optimal output Yi = Y (Pi/P )−λ defined by Equation
(19) are monotonically decreasing and increasing, respectively, in each of the two firm productivity
states θi and φi .

The lemma states that, under the conditions provided by Assumption 2, the solution to the
firm problem has the same intuitive characteristics as those of the monopolistic competition
models with a constant-returns to scale production function (Melitz, 2003). More productive
firms charge lower prices, produce larger quantities, earn higher revenues, and hire more workers.
It is also straightforward to show that the profit function defined in Equation (17) is increasing
in θi and φi .

Allocations Across Active Firms

Next, let us characterize the allocations of inputs and outputs across active firms along a station-
ary equilibrium. We note that Lemma 2 defines a decreasing pricing function eP (·, ·; P,Y,W ) in
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terms of the productivity pair
Pi

P
≡ eP (θi ,φi ; P,Y,W ) . (20)

Correspondingly, the output for firm i is given by Yi = Y (Pi/P )−λ and we can define the follow-
ing functions of the productivity pair (θi ,φi ) to characterize the variations in costs, IT intensity,
and cost elasticity across firms

Ci =
eC (θi ,φi ; P,Y,W )≡ e−θiC

�
Y eP (θi ,φi )

−λ ; e−φi W
�

,

Ωi =
eΩ (θi ,φi ; P,Y,W )≡Ω

�
Y eP (θi ,φi )

−λ ; e−φi W
�

,

Ei =
eE (θi ,φi ; P,Y,W )≡ E

�
Y eP (θi ,φi )

−λ ; e−φi W
�

,

where functions C, Ω, and E are defined by Equations (8), (9), and (10) in the previous section,
and where we have suppressed the dependence of eP (·, ·; P,Y,W ) on the endogenous aggregates
(P,Y,W ) to simplify the expressions. Finally, we can write the allocations of revenues and vari-
able profits of firms as

Ri =
eR (θi t ,φi t )≡

λ

λ− 1
eE (θi ,φi )

eC (θi ,φi ) ,

Πi =
eΠ (θi t ,φi t )≡

�
λ

λ− 1
eE (θi ,φi )− 1

�
eC (θi ,φi ) , (21)

where, as before, we have suppressed the dependence of all functions on the endogenous aggre-
gates (and will continue to do so henceforth for all allocation functions).

Inspecting these functions, we make a number of important observations. First, we find a
linear relationship between the firm-level cost elasticity and the IT intensity of the firm, given by

eE (θi ,φi ) = γ + ε eΩ (θi ,φi ) . (22)

This relation of course follows directly from Equation (10) and relies on cost minimization: larger
firms that have higher cost elasticities also have higher IT intensities. Next, we note that Equation
(21) provides us with another implication of the presence of nonhomotheticity across firms. De-
spite the fact that firms charge the same markups, the firm-level profit share λ

λ−1Ei − 1 still varies
across firms, due to the variation in the returns to scale across firms. If we assume σ < 1, larger
firms that are more IT-intensive and therefore will also have higher cost elasticity Ei , following
Equation (22). Since they operate at a lower scale elasticity, the ratio of marginal-to-average cost,
and therefore the profit share, is higher for them. As a result, the overall factor input share of
their income, including the labor share, is lower.
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Value Functions and the Stationary Distribution

Since all firm decisions are static in the model, characterizing the dynamics and the value func-
tions of firms Along a stationary equilibrium of this model, all the aggregate variables are constant
and we can define the value function of the firm as one satisfying the following Bellman equation

V (θi t ,φi t ) =max
¦eΠ (θi t ,φi t )−ψ, 0

©
+ (1−δ)̺E

�
V
�
θi t+1,φi t+1

�
|θi t ,φi t

�
,

where the conditional expected value operator is defined on random variables
�
θi t+1,φi t+1

�
based

on the Markov process in Equation (16). Note that due the stationarity of the equilibrium, the
prevailing interest rate for the firm will be such that their effective discounting parallels those of
the households, with a discount factor of ̺.

We can now characterize the decision of firms to remain active to temporarily shut down in
a given period as follows. With slight abuse of notation, we define a set J in the space of log
productivity states

J≡
¦
(θ,φ) | eΠ (θ,φ)−ψ≥ 0

©
.

Given the normal distributions that we have used in the characterization of the Markov structure,
the support of the stationary distributions of the model in the space of productivities (θ,φ) has
unbounded support and corresponds to R2

+. However, the set of active firms are those that find
it profitable to produce and therefore belong to the set J.

Let us now define a distribution Go whose probability density function go satisfies

go (θ,φ) = δ f (θ,φ)+ (1−δ)
∫ ∫
P (θ,φ|u, v) go (u, v)d ud v, ∀ (θ,φ) (23)

where the transition probability distribution function P(·, ·|·, ·) is given by the following multi-
variate normal probability distribution function:

P (θ,φ|u, v)≡N

��
ρθθ ρθφ
ρφθ ρφφ

��
u
v

�
+

�
ηθ
ηφ

�
,

�
κ2
θ

0
0 κ2

φ

��
.

The first condition in Equation (23) characterizes the endogenous stationary distribution of firm
productivity states (θ,φ) given the exogenous probability distribution function of entrants f
and the Markov structure of the evolution of productivity states given by P. Along a stationary
equilibrium, the rate of entry equates the exogenous rate of exit δ, leading to the simple equation
characterizing this stationary distribution. As a cohort of firms ages, the distribution of the
productivity states of the surviving firms in the cohort converges to a stationary distribution
given our assumptions on P. The stationary distribution across the industry is distinct from this
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stationary distribution as it includes firms of all ages.
Distribution Go characterizes the distribution of log productivity states of all firms that exist

in the economy along a stationary equilibrium, whether or not they are active in the product
markets. Having defined this distribution, the stationary distribution G of active firms is simply
the conditional distribution of falling within the set J, with a probability density function given
by

g (θ,φ)≡





go (θ,φ)∫
J

go (u,v)d ud v
, (θ,φ) ∈J,

0, otherwise.
(24)

Cross Sectional Predictions

We can now examine the cross-sectional relationship between firm size, IT intensity, and labor
share and under the stationary distribution G on productivity states (θi ,φi ). First, let us consider
the regression coefficient of log IT intensity on log firm size:

C ov
�
xI ,i − xN ,i , yi

�

V a r (yi )
=

C ov (logΩi , yi )

V a r (yi )
= (1−σ)ε+ (σ − 1)

C ov (φi , yi )

V a r (yi )
,

where the covariances and the variance are under the distribution G, and in the first equality
we have used the fact that, in the cross section of firms, we have xI ,i − xN ,i = logΩi + constant.
This expression shows that the positive correlation between IT intensity and firm size that we
documented in Section 3 can be driven by the condition (1−σ)ε > 0 that we imposed in As-
sumption (1). Alternatively, the expression shows that the positive correlations can be generated
if there is a correlation between IT biased productivity φi and size yi . In Section 5.1, we will use
an identification strategy to separate these two components.

Next, we consider a regression of labor share on log size to find

C ov
�

WLLi

Pi Yi

, yi

�
= (1−α)

1−λ
λ

C ov
�

1−Ωi

γ + εΩi

, yi

�
≈−

1−α
γ

1−λ
λ

�
1+

ε

γ

�
C ov (Ωi , yi ) ,

where in the second equality we have used an approximation assuming Ωi ≪ 1. Given we have
seen that the IT share is correlated with size in the cross section, the expression above further
predicts a negative relationship between labor share and firm size in the cross section. To the
extent that this correlation is driven by nonhomotheticity ε 6= 0, the relationship between labor
share and size is also driven by our mechanism. To the extent that we have nonhomotheticity
and ε/γ > 0, the expression above suggests that our mechanism further implies a tighter link
between IT intensity and size, on the one hand, and labor share and size, on the other.
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4.2.3 Stationary General Equilibrium

To close the model, we need to determine the aggregate relative input price and price index (W , P )
as well as the output and the mass of varieties (Y,N ). Below, we provide a definition of a station-
ary general equilibrium of this model (see the derivations in Appendix B.1).

Definition 1. Tuple (W , Y, P, N ) and the stationary distribution G together characterize the
general equilibrium of the model if it satisfy the following conditions:

1. The probability density of function of the stationary distributions G and Go satisfy Equa-
tions (23) and (24) for all (θ,φ).

2. The CES aggregate the price index satisfies:

1=N
∫ ∫

eP (θ,φ; P,Y,W )1−λ g (θ,φ)dθdφ. (25)

3. Factor market clearing conditions for the bundles of non-IT and IT inputs hold:

N
�
ψ+

∫ ∫ �
1− eΩ (θ,φ; P,Y,W )

� eC (θ,φ; P,Y,W ) g (θ,φ)dθdφ
�
+Noδχ =X N ,

(26)

N
∫ ∫

eΩ (θ,φ; P,Y,W ) eC (θ,φ; P,Y,W ) g (θ,φ)dθdφ=W X I ,

(27)

where we have defined X N ≡K
α
L

1−α
andX I ≡ S

β
H

1−β
and No ≡N/

∫
J

go (u, v)d ud v .

4. Free entry condition holds:

χ =
∫ ∫

V (θ,φ; P,Y,W ) f (θ,φ)dθdφ. (28)

We have already discussed the construction of the stationary distribution G. Equation (25)
follows from the aggregation of the prices across a mass N of firms with varying productivity
states characterized by distribution G and pins down the price index P .

The factor market clearing conditions pin down the total output Y and the relative price of
IT inputs W . The factor market clearing condition for non-IT inputs (26) ensures that the sum of
non-IT variable inputs, fixed costs, and costs of entry paid by all active incumbents and entrants
equates the total stock of non-IT inputs X N . The term outside the parentheses corresponds to
the costs of entry, accounting for the fact that the mass of entrants is given by δ ×No where No
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is the mass of all firms in the economy, satisfying N = No ×
∫
J

go (u, v)d ud v. We can think of
this market clearing condition as the resource constraint that determines the size of the economy
and the total outputs Y . The IT factor market clearing condition (27) then pins down the relative
price of IT inputs W . Factor market clearing conditions for the components of the two bundle
of IT and non-IT inputs follow from the two upper level factor market clearing conditions.36

Finally, the free entry condition in Equation (28) ensures that the expected value of entry,
given by the expression on the right hand side, equates with the costs of entry, paid in units of non-
It inputs. Note that even entrants that end up initially inactive still have non-zero expected net
present value due to the fact that future shocks might make them active and therefore profitable.

Let us now derive the aggregate factor income shares under a stationary equilibrium. To this
end, it will prove useful to define the share of a firm with productivity (θ,φ) in the aggregate
industry factor payments (costs) as

S (θ,φ)≡
eC (θ,φ)

C
g (θ,φ) , (29)

where we have defined the average factor expenditure (total costs) of firms as

C ≡
∫ ∫

eC (θ,φ) g (θ,φ)dθdφ. (30)

We can now introduce two key aggregate variables that summarize the returns to scale proper-
ties of the aggregate economy. Define the factor-expenditure-weighted average of cost elasticity,
henceforth average cost elasticity, eE, and the factor-expenditure-weighted average IT intensity Ω
as

Ω≡
∫
eΩ (θ,φ) S (θ,φ)dθdφ, (31)

E≡
∫
eE (θ,φ) S (θ,φ)dθdφ= γ + εΩ. (32)

The last equality follows from the linearity of Equation (22), which implies that the aggregate
values of the cost elasticity and IT intensity inheriting the same relationship.

Using the definitions above, we can now present the expressions for aggregate factor income
shares. The share of each of the two main factors, IT and non-IT input bundles, are determined
in two steps. First, aggregate income is split between owners of firms and all factors, with their
respective shares determined endogenously based on aggregate cost (scale) elasticity.37 Next, the

36See Appendix B for the derivations.
37Note that in this analysis, to emphasize the key intuition for our results, we focus on the aggregate profit share
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total share of income accrued to the two factors gets split between IT and non-IT inputs, with
their respective shares endogenously determined based on the aggregate IT intensity. Given the
Cobb-Douglas aggregators of the bundle of IT and non-IT inputs, a constant share of each of the
two bundles then gets split between each component, i.e., software and hardware in the case of
IT and capital and labor in the case of non-IT. We can summarize these relations as follows:38

Aggregate Profit-to-Cost in Production= P tC ≡
Π

C
=

λ

λ− 1
E− 1, (33)

Aggregate Labor Share in Production= LS p r od ≡
WLL

N R
= (1−α)

λ− 1
λ

1−Ω

E
. (34)

We can now use Equations (33) and (34) to draw intuitions about the drivers of aggregate
profit and labor shares. Equation (33) shows that the aggregate profit shares only depend on the
average cost elasticity E across firms. When average cost elasticity rises, it implies that the returns
to scale on average falls across firms and therefore the profit shares rise in the aggregate. As we
can see in Equation (34), this also reduces the aggregate labor share, to the extent that the share
of total firm income going to falls. In addition, the labor share of course positively depends on
the average share of IT in total factor income Ω.

4.2.4 Comparative Statics: Fall in the IT Price

At this point, we are prepared to study what happens in the model when the price of IT inputs
falls. Through the lens of the general equilibrium model, we can account for such a fall through
a rise in the aggregate stock of IT inputs from X I to X

′

I > X I , which, all else equal, results in a
fall in relative prices from W to some W ′ <W .

Under standard models, which focus on the substitution between IT and non-IT inputs, the
impact of this shock manifests itself through a shift in the shares of of labor and IT capital. This
will be reflected in the changes in the average share of IT in total factor income Ω. In our model,
the change in IT prices further causes changes in the labor share through a shift in the shares
of income between firm costs and profits. This new channel is captured in Equations (33) and
(34) by the response in the average cost elasticity E. Due to the heterogeneity across firms in
their cost elasticities Ei , we can in turn decompose the change in the response of average cost

and labor share in the production sector. In addition, another component of the share of aggregate income of going
to non-IT inputs in the model comes from the income paid by to these inputs through the fixed costs of incumbent
active firms and through the entry costs paid in the entrepreneurship sector. However, we have made the assumption
that all fixed and entry costs are paid in units of the bundle of non-IT inputs only for modeling convenience and
therefore do not focus on the shifts of aggregate income share that stem from this channel.

38Note that the labor share in the model satisfies WLL = (1−α)X N . Appendix B provides the derivations of
Definition 1 and Equations (33) and (34).
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elasticity E into the within and across-firms components. To make this decomposition more
transparent, in the next section we apply a comparative statics exercise that provides us with first-
order approximations that illustrate the different channels shaping the response of the average
cost elasticity E.

To better illustrate these forces, consider the effect of the small change∆w ≡∆ logW in the
relative price of IT factor inputs, which in our model corresponds to rise in exogenous stocks H ,
S, or both. As we saw before, the behavior of aggregate profit and labor shares crucially depend
on the response of the average cost elasticity E. We can decompose this response, to the first order
of approximation, into the within-firm and the reallocation effects as

∆E≈
∫ ∫

∆eE (θ,φ) S (θ,φ)dθdφ
︸ ︷︷ ︸

Within-firm Effect

+

∫
(θ,φ)∆S (θ,φ)dθdφ

︸ ︷︷ ︸
Reallocation Effect

, (35)

where ∆E (θ,φ) captures the change in the cost elasticity of a firm with productivity (θ,φ) in
response to the change in the cost of IT inputs. Similarly, ∆S (θ,φ) stands for the change in the
share of a firm with productivity (θ,φ) in total factor-expenditure of all firms, which captures
the shifts in market shares as the result of the change in the IT prices.

The within-firm change in the cost elasticity is given by (see Appendix B.1 for the derivation):

∆eE (θ,φ)≈ (1−σ)ε eΩ (θ,φ)
�
1− eΩ (θ,φ)

�
(∆w + ε∆ey (θ,φ)) . (36)

The first term on the right-hand-side captures the effect of IT/non-IT substitution on the cost
elasticity of firms. With the falling price of IT, and as all firms substitute toward IT, the cost
elasticity falls. Therefore, through this channel the rise of IT raises the returns to scale and there-
fore labor share within firms. The second term on the right-hand-side captures the indirect effect
through the change in the output of the firm. The size of both these effects depends on the size
of parameters (1−σ)ε, the output elasticity of IT intensity, and the variance Ωi (1−Ωi ) of IT
share for firm i .

We can compute the effect on cross-firm reallocation of total factor payments to find39

∆S (θ,φ)
S (θ,φ)

≈
�
γ + εeΩ (θ,φ)

�
∆ey (θ,φ)+ eΩ (θ,φ)∆w −∆c . (37)

The first term captures the effect of changes in output across firms, whereas the second term
captures the direct effect of change in the price of IT on the costs of firms with productivity
(θ,φ).

39Appendix B presents the derivation of Equations (36) and (37).
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The key to understanding the reallocation effect response is understanding the heterogene-
ity in output response ∆ey (θ,φ) of firms to the change in the IT prices. The following lemma
characterizes the pass-through of the change in the IT prices into the output of firms.

Lemma 3. Change in the log price of firm i in response to a small change ∆w in the log price of IT
factor inputs is given by

∆ey (θ,φ)≈
1

1+λ ∂ mc
∂ y (θ,φ)

�
−λ ∂ mc

∂ w (θ,φ)∆w +λ∆p +∆y
�

, (38)

where the IT price and output elasticities of marginal costs for firms with productivity (θ,φ) are given
by

∂ mc
∂ w (θ,φ)≡

∂ logC′

∂ logW
= eΩ (θ,φ)

�
1+(1−σ)ε

�
1− eΩ (θ,φ)

γ + ε eΩ (θ,φ)

��
, (39)

∂ mc
∂ y (θ,φ)≡

∂ logC′

∂ logY
= γ − 1+ εeΩ (θ,φ)

�
1+(1−σ)ε

�
1− eΩ (θ,φ)

γ + ε eΩ (θ,φ)

��
. (40)

The first term in Equation (38) captures the key intuition behind the reallocation effect: when
the price of IT falls, the direct effect on the marginal cost of firms, i.e., the elasticity of their
marginal cost with respect to IT prices, varies across firms. In particular, Equation (39) shows
how firms with a higher IT intensity may have a higher pass-through of the change in IT prices
into the price of their final outputs. Note that the second equation above gives the output elas-
ticity of marginal costs, defined in Equation (11).

All in all, the results of this section show that there are multiple different channels for the
IT price to affect the average cost elasticity E. The within-firm effect and the reallocation effect
may in general each go in the opposite directions. In the next section, we perform a quantitative
exercise to gauge the direction and magnitude of these effects for the set of model parameters that
match the broad moments of the data.

5 Estimation and Calibration

In this section, we bring the model developed in Section 4 to data and use it to explain the evolu-
tion of market concentration and labor share in response to the rise of IT. We follow the structure
of the previous section and organize our approach in two stages. We first identify the production
function of Section 4.1 in the micro data and provide evidence for the presence of nonhomoth-
eticity. We then use the resulting estimates to calibrate the general equilibrium model of Section
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4.2 to show that the model can fit the broad patterns of changes in the labor share documented
in Section 3.

5.1 Estimating Production Function with Nonhomothetic IT Demand

Let us set up an empirical counterpart to the economic environment that we defined in the previ-
ous section. As before, we define the production function as a function of labor, capital, software,
and hardware as

Yi t =F
�
eθi t Kα

i t L1−α
i t , eθi t+φi t Sβi t H 1−β

i t

�
, (41)

where function F (·, ·) is the nonhomothetic CES function defined as before. Aside from the
productivity terms, the production function is fully characterized with the tuple of parameters
ς ≡ (α,β,γ ,ε,σ). Henceforth, we will use the small cap letters to denote the logarithm of each
corresponding variable, e.g., yi t ≡ logYi t .

We follow the literature on production function estimation and impose constraints on the
timing and nature of firm decision making in order to identify the production function. Let us
first start with the timing assumptions and define the information set of the firm in each period
t as follows.

Assumption 3. Let It denote the information set of the firm at time t , which includes the paths of all
observables up to time t . We assume that θi t ,φi t ∈ Ii t and all choices of the firm at time t , including
capital, may depend on its information set It .

40

Next, recall that we imposed a Markov structure on the evolution of productivities in Equa-
tion (16). We slightly generalize that process by allowing for a time-trend in the long-run averages
of each of the two productivities, and define the vector of productivity state innovations as

ui t ≡

�
uθ,i t

uφ,i t

�
=

�
θi t

φi t

�
−

�
ρθθ ρθφ
ρφθ ρφφ

��
θi t−1

φi t−1

�
−

�
ηθ+µθ t
ηφ+µφt

�
. (42)

We further allow for these innovations to have a general distribution but maintain that they are
orthogonal to the information set of the firm at time t . Following the literature on dynamic
panel data methods, this structure allows us to use the lagged choices of firms as instruments for
current inputs, subject to controlling for current productivities. The next assumption summa-
rizes our assumptions about the evolution of productivity states and will be crucial for deriving
our moment conditions.

40Note that based on the accumulation equation that we have used to construct the stocks of capital (Equation
70 in the appendix), the firm’s choices at time t include its investment choices within that period, which is in turn
within the information set of the firm at time t .
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Assumption 4. The evolution of the productivity states satisfies Markov structure in Equations (42)
where E

�
ui t |It−1

�
= (0, 0)′ .

Next, we characterize the potential frictions in firm decision making. Here, we relax our
assumptions in the previous section on the frictionless nature of all factor input markets. In
particular, we will allow for potential adjustment costs or other frictions in non-IT capital and
hardware, but continue to rule out such adjustment costs for labor and software inputs. The
resulting setup, summarized by Assumption 5 below, allows us to provide some generality to our
account of input market frictions while maintaining one static first order condition in each of the
two bundles of IT and non-IT inputs. This will allow us to derive one moment condition based
on static cost minimization.

Assumption 5. Labor and software inputs are flexible and costlessly adjustable.

We rely on Assumptions 4 and 5 to derive moment conditions that allow us to identify the pro-
duction function in the presence of two sources of unobserved heterogeneity. Our strategy com-
bines two sets of moment conditions. The first set of moments, which come from the functional
form of the production function, corresponds to the assumptions made on the factor-symmetric
unobserved productivity state θi t and resembles the moment conditions used in standard produc-
tion function estimation. The second set comes from cost minimization and corresponds to the
assumptions made on the IT-biased productivity. The strategy closely parallels those employed
recently by Oberfield and Raval (2014) and Doraszelski and Jaumandreu (2018) for estimating a
homothetic CES production function, which is nested in our functional form if we restrict the
model to ε= 0.

Let us next derive expressions that allow us to characterize the two unobserved productivity
terms, IT-biased and factor-symmetric, as functions of observed data and the parameters of the
production function.

Cost Minimization and IT-biased Productivity

Appendix D sets up the dynamic program of the firm under general forms of adjustment costs
for non-IT capital and hardware, and uses Assumption 5 to derive the following result.

Lemma 4. Under Assumption 5, the firm’s choices of inputs in each period satisfies

si t − li t = σ
�
wL,t −wS,t

�
+(σ − 1) [φi t − ε yi t −α (ki t − li t )+ (1−β) (hi t − si t )] . (43)

The lemma generalizes the static cost minimization result we used in the previous section
to accommodate potential adjustment costs for non-IT capital and hardware. First, note that if
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these two inputs are flexible, then the Cobb-Douglas aggregation of the two bundles of IT and
non-IT pins down log factor input ratios ki t − li t and hi t − si t by the intensity parameters α and
β, respectively. These two terms are therefore constant under flexible inputs, and we recover the
standard cost minimization that we employed in the previous section.

In the presence of adjustment costs, the (log) capital to labor ratio ki t − li t and hardware to
software ratio hi t− si t both vary over time and across firms (even within an industry). Therefore,
the optimal choices of software to labor ratio si t − li t depend, not only on relative prices wL,t −

wS,t , output yi t , and IT-biased productivityφi t , but also on the capital-to-labor and hardware-to-
software ratios.41

This result allows us to derive a key moment condition that we will use to identify our core
parameter ε. Let Di t ≡ (Òwi t , li t , ki t , si t , hi t , yi t ) denote the vector of all relevant observations
for firm i at time t , where we have let Òwi t ≡ wS,t − wLi ,t be the firm-specific relative price of
software.42 Accordingly, we define a function Φ (·; ·) of observables and model parameters as

Φ (Di t ;ς) =
1

σ − 1
(σÒwi t + si t − li t )+ ε yi t +α (ki t − li t )− (1−β) (hi t − si t ) . (44)

Comparing Equation (44) and the expression in Equation (43) shows that function Φ indeed
equates with the value of IT-biased productivityφi t , conditional on the observed data for a given
set of model parameters. As we will see below, when combined with our assumptions about tim-
ing of firm decisions, this result will provide us with one of the two sets of moment conditions.

Production Function and Factor-symmetric Productivity

Let us rewrite the expression for the production function (41) in terms of the logarithms of firm
inputs and outputs as follows

yi t =
1
γ

�
σ − 1
σ

log
h

e
σ−1
σ (αki t+(1−α)li t )+ e

σ−1
σ (βsi t+(1−β)hi t+φi t−εyi t )

i
+θi t

�
.

This expression implies that we can define a functionΘ (·; ·) of observables and model parameters

Θ (Di t ;ς)≡ γ yi t +
σ

1−σ
log

h
e
σ−1
σ (αki t+(1−α)li t )+ e

σ−1
σ (βsi t+(1−β)hi t−εyi t+Φ(Òwi t ,li t ,ki t ,si t ,hi t ,yi t ;ς))

i
, (45)

that equates with the value of factor-symmetric productivity θi t .
41Note that this result also poses a challenge for alternative reduced-form identification strategies relying solely

on demand shocks as potential instruments for output yi t . Since output yi t may have an impact on capital-to-labor
and hardware-to-software ratios, due potentially to adjustment costs or financial constraints, Equation (43) shows
that we additionally needs instruments for the latter two ratios to identify ε.

42As we will discuss below, we will use local wages wLi ,t to compute the relative price of for firm i at any point
in time, as part of our strategy for the identification of σ .
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Moment Conditions Based on Timing Assumptions

Having expressed the unobserved productivity states (θi t ,φi t ) in terms of observed data and
model parameters as (Θ,Φ), we can now substitute them in Equation (42) and use Assumption 5
to derive the following moment conditions:

E

��
Θ (Di t ;ς)
Φ (Di t ;ς)

�
−

�
ρθθ ρθφ
ρφθ ρφφ

��
Θ
�
Di t−1;ς

�

Φ
�
Di t−1;ς

�
�
−

�
ηθ+µθ t
ηφ+µφt

�����It−1

�
=

�
0
0

�
. (46)

These moment condition can in principle identify all of the parameters of the production
function. However, the identification of the elasticity of substitution σ in this case does not
rely on the variations in the relative price of software Òwi t as we do not have any corresponding
instrument.43 Therefore, we amend our strategy with additional instruments for the relative
price of software, as we will describe below.

Moment Conditions Based on Relative Factor Price Instruments

We include a final moment condition in our estimation to instrument for variations in relative
price of software Òwi t at the regional level. For this purpose, we borrow from Oberfield and
Raval (2014) and construct shift-share instruments zi t for local wages for each firm, using the
initial local industrial composition and the change in each industry’s wage bill at the national
level.44 These instruments are correlated with current and past relative wages wL,i t and wL,i t−1

and hence with relative prices of software Òwi t and their lagged values Òwi t−1. We integrate these
instruments in the same estimation framework by writing the following moment condition

E

�
Φ (Di t ;ς)−

�
ρφθ ρφφ

�� Θ �Di t−1;ς
�

Φ
�
Di t−1;ς

�
�
−
�
ηφ+µφt

� ����zi t

�
= 0, (47)

assuming that the shift-share instruments are orthogonal to innovations in contemporaneous IT-
biased productivity. This is a weaker assumption than the typical assumption in the literature,
which posits that the instruments are orthogonal to contemporaneous productivity rather than
just productivity innovations (see, e.g., Oberfield and Raval, 2014).

We can use these system of moment conditions (46) and (47) to estimate the production
function in a nonlinear 2SLS framework, using as instruments the shift-share instruments, the
lagged values of labor, capital, software, hardware, as well as lagged productivities Θ

�
Di t−1;ς

�

43Instead, the identification of σ based on Equation (43) would merely rely on variations in software-to-hardware
si t − hi t and capital-to-labor ratios ki t − li t , instrumented by their corresponding lagged values. Variations in these
ratios across firms are driven by likely variations in distortions to the optimal choices of relative software-to-hardware
and capital-to-labor ratios due to adjustment costs.

44See more detail about the construction of the instrument in Section 2 of the online appendix.
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and Φ
�
Di t−1;ς

�
.

Estimation Results

Table 7 presents the estimated parameters of the production function for the sample of all firms
and for the sample of manufacturing firms. For comparison, it also presents the estimated values
of parameters under two standard production functions nested in our model: a homothetic CES
production function, when we restrict the nonhomotheticity parameter to ε = 0, and a Cobb-
Douglas production function, when we additionally assume σ = 1. In the second case, the cost
minimization equation does not deliver any information for the estimation and we drop it from
the framework, leading to a standard dynamic-panel estimation of the Cobb-Douglas production
function with four inputs: non-IT capital, labor, software, and hardware.45

Focusing first on our core parameter of interest ε, we find precise, significant, and sizable
positive estimates for this parameter in both samples (ε = 0.39 for all industries and ε = 0.48
in manufacturing). These estimated values reject the homotheticity of the production function.
Importantly, the estimated elasticities of substitution in both samples are below unity (σ = 0.23
for all industries and σ = 0.17 in manufacturing).46 The combination of these two parameters
indeed satisfy the condition proposed in Assumption 1, suggesting that the positive correlations
between IT intensity and size that we uncovered are at least partially explained by the presence of
nonhomotheticity. Importantly, the estimated elasticities of substitution also imply gross com-
plementarity between IT and non-IT inputs. Despite the fact that we reject the homothetic CES,
we still find that the estimated elasticity of substitution under a CES production function is also
below 1, although it appears biased downward in both samples.

We find similar estimates for the cost elasticity parameter γ in both samples (γ ≈ 0.95) that im-
ply increasing returns to scale for the firms as their size goes to zero. Importantly, the implication
of these estimates for our production function is a systematic relationship between firm size and
returns to scale. Recall that cost elasticity is the reciprocal of the scale elasticity. Therefore, the
combination of point estimates for γ and ε in the sample of all industries imply scale elasticities
that range from 0.75 to 1.06 as we move from the largest to the smallest firms (the corresponding
values are 0.70 and 1.05 for the sample of manufacturing firms). In contrast, under both CES and
Cobb-Douglas production functions, the scale elasticity is constant across all firms. As we would

45See Appendix D for further details on the algorithm used for the estimation and for the schemes used for the
estimation of the Cobb-Douglas and CES production functions.

46Oberfield and Raval (2014) and Doraszelski and Jaumandreu (2018) estimate the micro-level elasticity of substi-
tution between capital and labor using identification strategies that account for potential factor-augmenting produc-
tivity shocks, and find values between 0.4 and 0.7. An earlier set of macroeconomic estimates find values slightly
higher but still below unity (e.g., Antràs, 2004; Klump et al., 2007; Chirinko, 2008). We also note that Karabarbounis
and Neiman (2014) use an estimation strategy that relies on the cross-sectional variations in the industry-level data
that finds a value above 1.
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expect, the estimated values of the cost elasticity parameter γ under these restricted models im-
ply scale elasticities within the same range but fairly close to constant return to scale (e.g., in the
sample of all industries, 1.01 under CES and 1.00 under Cobb-Douglas). These numbers are in
line with most prior micro estimates of the returns to scale, but suggest a potential heterogeneity
bias in those standard estimates.

Moving on to the other parameters, the values of the elasticity of non-IT capital and soft-
ware are precisely estimated and imply lower output elasticities compared to labor and hard-
ware, respectively. While the estimates for the elasticity of non-IT capital α appear fairly robust
to misspecification (similar across the three production functions), the estimates for the software
elasticity appear more sensitive to the specification. In particular, the Cobb-Douglas estimates
are much larger (smaller) than those under the two CES specifications in the sample of all indus-
tries (manufacturing). We find fairly sizable autocorrelations

�
ρθθ,ρφφ

�
in the dynamics of the

two productivity states implying a high degree of persistence. However, we find very small, and
precisely estimated, cross terms in the persistence coefficients

�
ρθφ,ρφφ

�
. The last set of results

appear fairly robust under all specifications.
Figures 7, 8 and 9 provide the estimated parameters ε, σ and γ across 17 industries at the A38

level of the aggregated NAF classification.47 These industries span most of the French market
economy excluding real estate, finance and agriculture. Table 8 presents the results for the five
main estimated parameters. First, note that the estimated values of the parameter ε are positive
and significant for most of the industries. The mean and the median estimate across the industries
are 0.86 and 0.57, respectively. Second, estimated values of the parameter σ are never significantly
above 1. The mean and the median estimate across the industries are 0.18 and 0.14, respectively.
Interestingly enough, our estimated values of the cost elasticity parameter γ are generally close
to 1 across industries (the mean and medians across industries are 0.94 and 0.97, respectively).
This is in line with most available estimates of the cost elasticity that are interpreted as evidence
for constant returns to scale at the firm level. In our setting, these very estimates only imply
(approximate) constant returns to scale for the lowest IT share firms.

47With 38 industries, the A38 level is more detailed than the 1-digit NAF level (10 industries) but more aggregated
than the 2-digits NAF level (88 industries). Excluding agriculture, finance, real estate and nonmarket industries,
our sample is comprised of 27 industries. Because some of those industries contain fewer than 50 observations in a
given year, we construct three pooled industries (ICT, Research and Energy, mining and utilities), for a new total of
22 industries. For five of those industries, our estimation procedure failed to provide reasonable estimates: linear
estimations for the accommodation and food services failed to converge, and nonlinear estimations for chemicals
and “other manufacturing” industries also failed to converge. Estimations for the construction and ICT industries
yield very large point estimates and standard errors for εso we exclude those two industries from our main tables
and figures. We are left with 17 industries, 13 of which are included in the manufacturing sector. Tables 26 and 27
and Figures 4-8 in the online appendix display results for some excluded industries except accomodation and food
services.
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5.2 Calibration

In this section, we present the results of a simple calibration of the general equilibrium model
of Section 4.2 to investigate its response to the fall in the relative price of IT inputs observed in
Figure 1. We will first discuss our strategy for calibrating the model and will then examine the
properties of the equilibrium in the two steady states corresponding to the initial (high) and final
(low) relative prices of IT.

Calibration Strategy

There are two sets of parameters in the model: those that characterize the production function
and the heterogeneity across firms in the corresponding productivity state variables, and those
that characterize the other components of the economic environment, including preferences and
the processes of entry and exit. To calibrate the first set of parameters, we mostly rely on the
estimation results, based on the identification strategy in Section 5.1. In particular, we use the
estimates reported in Table 7 for the parameters of the production function and for the Markov
process governing the evolution of productivities in the sample of all industries. For the remain-
der of the parameters, we choose them aiming to closely match a number of relevant aggregate
data moments.

The first and second sets of rows in Table 9 revisit the values of the parameters of the produc-
tion function and the productivity process used in the calibration. There are only two parameters
here that we do not directly estimate. The last row in the parameters of the production function
corresponds to the fixed cost of operation ψ, which we have not estimated and therefore have
to calibrate, as discussed below. The last row in the parameters of the productivity process cor-
responds to the variances

�
κ2
θ
,κ2

φ

�
of the two productivity innovations

�
uθ,i t , uφ,i t

�
, which we

have not directly estimated but can still calculate based on the residuals found in our estimation
results.

To fully characterize the model, we need to specify a functional form for the distribution F of
the productivities of entrants. Guided by the results of the estimation, we assume the following
joint distribution for the productivities of entrants48

F (θ,φ)≡ T r unPa r e t o
�
eθ; ξo,θo,θo

�
×N

�
φ; φo,κ2

o

�
,

48Figures 11-14 in the online appendix display the distributions of θ and φ for entrants implied by the results
of our estimation in the previous section. In particular, we provide evidence that the distribution of the factor-
symmetric productivity θ among entrants has a Pareto tail. In contrast, the distribution forφ appears best described
by a log-normal distribution.
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where the cumulative distribution function of the truncated Pareto distribution is given by

F (θ) =
e−ξoθo − e−ξoθ

e−ξoθo − e−ξoθo

,

and IT biased productivity state φ has a normal distribution with mean φo and variance κ2
o. To

calibrate the parameters
�
ξ0,θo

�
, we rely on the productivity estimates that we uncovered in the

previous section. Given the Pareto assumption and the independence between the distributions
of θ and φ, the right tail of the distribution of factor-symmetric productivity must correspond
to the largest firms in the sample. Therefore, despite heavy selection in our sample toward larger
entrants, we can still infer the behavior of the tail of the distribution based on the estimated θs
among entrants (firms younger than one year). Similarly, we calibrate the variance κ2

o of the
distribution of IT biased productivity among entrants from data. We will come back to the
calibration of the remaining two parameters θo and φo below.

Several of the model parameters can be directly matched to observable moments in the data,
or values reported in prior work. For the exogenous probability of exit, we calibrate its value to
the average rate of exit of large firms in our sample of around δ = 0.04. We calibrate the cost of
entry χ to fit the number of firms per worker in our data (N ≈ 0.08), given all other parameters
of the model. These two parameters appear in the last two rows of the parameters of the process
of entry and exit. The last set of rows in Table 9 reports the parameters of the demand: we set the
discount rate to be the value 0.95, commonly assumed in the literature and, as discussed below,
calibrate the elasticity of substitution among different firm products λ along with the remaining
model parameters.

To calibrate the set of four parameters
�
λ,ψ,θo,φo

�
, we perform a search in the set of model

parameters to find those under which the model best fits the following four moments from the
data in year 1990:49 two moments on market concentration (the share of top 1% and 5% of
firms in total sales), in addition to aggregate labor share and aggregate IT intensity (Ω). For the
first three moments, we use our micro data and compute them based on the pooled sample of
BRN and RSI firms. For the last moment, since our sample of EAE firms where we observed IT
intensities is not representative, we rely on the macro data series to find the aggregate IT intensity
corresponding to Ω in the model.

Table 10 shows the values of the targeted moments as observed in the data and as calculated
in our calibrated model. For each moment, we have also indicated the corresponding model
parameters that have been calibrated based on that moment. The calibrated distribution of factor-
symmetric productivity states among entrants closely fits that found based on estimated values in

49We start the search with the following values for the model parameters: we use ψ = 0, λ = 5, for
�
θo ,φo

�
we

start with the corresponding values based on the estimates in our sample of entrants.
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the data (the first three rows). By construction, the model also exactly fits the total mass of firms
and the rate of exit among large firms (the last two rows). Among the four moments used for the
parameter search, the model closely fits three: those corresponding to market concentration and
IT intensity, while producing a value for the aggregate share of around 75%, which is above the
value observed in the data by around 4 percentage points.

The table further provides a number of untargeted moments, including the unweighted means
of the distribution of labor share and IT intensity, and alternative measures of concentration,
specifically, the standard deviations of the distributions of log sales and employment. Once again,
the model closely fits the values for those corresponding to market concentration and IT intensity,
while producing a value for the mean of the distribution of labor share that is somewhat larger
than that observed in the data.

Calibration Results

We consider the response of the model to the fall in the price of IT that we observe in the data,
in line with the patterns corresponding to the price of IT investment presented in Figure 1. In
particular, the data suggests a fall in the relative price of the bundle of IT inputs from an initial
level of W = 0.0203 in the beginning of the 1990s to around W ′=0.0075 by 2007. The relative
price of IT is constructed as the ratio of the price of the bundle of IT inputs to the price of the
bundle of non-IT inputs, using (α,β) estimates from Table 7 and macro data for the user cost of
software, hardware and average wage per worker in thousand euros.50 Since our estimates for the
trend in φ are negligible, we take this to be the only shock to our model, and compute the new
stationary general equilibrium of the model moving from W to a new level of the relative price
of IT corresponding to W ′.

Figure 10 shows how the responses of output, sales, share of firm in industry factor payments,
and cost elasticity varies across firms, as a function of the firm’s initial IT share Ωi . As we saw in
the previous section, despite there being two productivity variables, the IT shareΩi is a sufficient
statistic for the responses of firms to this shock. From cost minimization, we know that the vari-
ations in Ωi , in turn, can be driven by variations in the IT-bias of productivity φi . and variations
in output yi (resulting from differences in both productivity states).

Figure 10 (A) shows the variations in the response of output across firms (corresponding to
the result of Lemma 3). We find that the output (price) of high-IT share firms, which are typically

50See Section 2 of the online appendix for a discussion of the construction of the relative price of IT based on the
series reported in the French national accounts. We note that the size of the fall in the IT prices that we used here
is substantially lower than the values reported in recent work attempting to measure IT price indices focusing on
proper adjustments of quality improvements (see, e.g., Byrne and Corrado, 2017). Since we partially rely on other
macro values reported by INSEE, we choose to also rely on their series for the prices of IT inputs for consistency.
We believe the resulting numbers are for this reason conservative predictions for the impacts of the rise of IT for
factor shares of income.
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larger and more productive, rises (falls) considerably more than the output (price) of smaller and
less productive firms. Figures 10 (B) and (C) show the changes in the sales and shares of firms
in total production-sector factor payments. We find that the fall in the price of IT results in a
large shift of market activity from low IT-share firms (typically smaller and less productive) to
high IT-share firms (typically larger and more productive). This sets in motion the reallocation
patterns that result in the shifts of the total factor shares toward those of these high IT-share firms:
they have higher profit shares and pay a lower share of their generated income to labor and other
factors.

Figure 10 (D) shows the within-firm effect on firms’ cost elasticities (corresponding to Equa-
tion 36). We find that the cost elasticity of firms generally falls. Firms in the medium range of
IT shares respond most strongly to this fall. This means that the scale elasticity of firms rises and
their profit share, a pattern that diverges compared to that generated by the reallocations above.

Table 11 presents the response of the aggregate variables in the model to a fall in the price
of IT inputs. As one would expect, in response to the fall in costs of using IT inputs, aggregate
output mildly rises and the price index falls. The latter effect implies a rise in competition for all
firms including entrants that are typically smaller than the average firms. As a result, the rate of
entry falls.

More importantly, we find that despite the change in prices the average cost elasticity in the
aggregate does not show a sizable response. This lack of response masks substantial compositional
changes within the economy: a negative contribution from the within effect is accompanied by a
positive contribution from the reallocation effect. Whereas firms leverage IT to raise their scale
elasticities and reduce their cost elasticities, the reallocation toward low scale elasticity firms shifts
the average cost elasticity upward. We find that the reallocation effect overall cancels out the within-
firm effect in the aggregate.

These patterns then reflect themselves in the response of the aggregate labor share (in the
production sector). In particular, we find that the aggregate lack of response in labor share masks
sizable changes in the within and across contributions: while within-firm labor share rises by
around 2 percentage points, the reallocations contribute negatively by around the same amount.
The corresponding values in the data, based on Figure 3, is around 4 percentage points.

As should by now be clear, these changes are accompanied by a rise in concentration in the
industry. In particular, the shares of top 1% and 5% of firms in total sales rise by around 6 and
3 percentage points, while the corresponding values in the data (see Figure 2) are around 8 and 6
percentage points, respectively.

Therefore, we conclude that the model can explain around half of the changes in the industry
concentration and the compositional changes in the aggregate labor share starting from 1990s, as
the response to the fall in the relative price of IT inputs.
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6 Conclusion

In this paper, we presented novel data on the investment and capital stocks of firms in software
and hardware in the universe of French firms. In our data, we found that the intensity of IT
demand strongly and robustly correlates with firm size, using a broad set of different measures
of IT intensity and firm size. Moreover, we argued that a production function featuring nonho-
motheticity of IT factor demand fits this this empirical regularity, as well as an observed negative
correlation between firm size and labor share. The latter holds assuming an elasticity of substitu-
tion between IT and non-IT inputs that falls below unity, and stems from lower returns-to-scale
predicted by the model for larger firms.

We applied an identification strategy to estimate the production function and find that IT
demand is indeed nonhomothetic and that the elasticity of substitution between IT and non-IT
is indeed below one. These results imply that the marginal product of IT, relative to the marginal
product of non-IT inputs, grows in firm size. We further provided a simple theoretical general
equilibrium model of industry dynamics to study the aggregate implications of the firm-level
nonhomotheticity of the production function. In particular, we showed that the resulting model
predicts, just as we find in the data, that the observed fall in the price of IT results in a reallocation
of market shares across firms toward those firms with higher IT intensity and typically larger size
and market shares.

In this paper, we do not take a stance on the underlying forces that may give rise to nonho-
mothetic IT demand at the firm-level. However, we note that our results hold across a broad
set of both IT producing and IT using industries. Therefore, we believe that these forces should
involve the effects of IT on the operations of the firm, rather than the technological content of
the produced product or service. For instance, the expenditures of firms on software observed in
our data mainly correspond to the software products used in human resource management, con-
sumer management, or supply chain and inventory management. On an intuitive level, it appears
that these software solutions aim to address the complexity arising from managing large numbers
of workers, customers, suppliers, products, and intermediate inputs. We hope to investigate the
internal links between IT adoption and the organizational aspects of firm-level production in
future research.
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Tables

Table 1: Summary Statistics

All firms Manufacturing firms
Obs.
(Nb)

Mean Median Sd
Obs.
(Nb)

Mean Median Sd

Sales 6,610,529 3,591.704 585.557 79,833.412 987,652 6,540.114 830.390 70,468.868
Value-Added 6,610,529 1,043.134 214.000 41,023.411 987,652 1,985.866 349.000 34,921.849
Number of Employees 6,610,529 20.928 5.000 609.978 987,652 35.644 9.000 206.175
Labor Share 6,539,620 0.808 0.791 0.340 979,598 0.818 0.795 0.313
Total Investment 5,886,407 155.822 7.000 10,127.683 901,246 301.017 16.464 4,299.071
Total Capital 6,610,529 1,160.841 87.298 89,164.311 987,652 2,597.479 217.710 30,583.961
Software Investment 1,338,935 10.755 0.000 712.345 277,733 20.268 0.000 340.489
Software Capital 2,495,553 15.456 0.000 1,201.477 380,957 40.940 0.708 721.715
Hardware Investment 5,886,407 6.607 0.000 414.991 901,246 10.202 0.000 181.082
Hardware Capital 6,610,529 23.338 0.000 1,794.069 987,652 45.739 0.000 665.723

IT Per Worker

Software Investment 1,338,935 0.050 0.000 0.223 277,733 0.092 0.000 0.263
Software Capital 2,495,553 0.080 0.000 3.176 380,957 0.220 0.021 7.824
Hardware Investment 5,886,407 0.200 0.000 0.801 901,246 0.126 0.000 0.481
Hardware Capital 6,610,529 0.469 0.000 2.395 987,652 0.399 0.000 1.239

IT Relative Intensity

Software Investment 1,163,277 0.038 0.000 1.513 266,704 0.040 0.000 0.687
Software Capital 2,338,353 0.004 0.000 0.022 371,891 0.006 0.001 0.019
Hardware Investment 4,672,543 0.114 0.000 1.554 771,381 0.071 0.000 1.403
Hardware Capital 5,941,640 0.039 0.000 0.129 917,040 0.019 0.000 0.072

Note: All amounts are K€. Labor share is defined as the sum of wage bill and payroll taxes divided by values-added. Software investment is
observed on the EAE sample, and hardware and total investment on the BRN sample. Capital measures are built using the Perpetual Inventory
Method (PIM), imputing zero investment for missing data. IT capital is reported for all firms that are appeared at least once in EAE or BRN.
Data Appendix E describes the sources for each variable.
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Table 2: Software Investment Summary Statistics (1996)

1996 Number of Firms Average values Median values

All EAE
No software
investment

Some software
investment

EAE
Some software

investment
Some software

investment

0-5 206,385 10,551 10,517 34 0.01 2.58 2.21
5-10 131,300 13,538 13,266 272 0.08 4.17 1.83
10-20 56,554 11,658 10,788 870 0.51 6.81 2.90
20-50 47,232 32,496 26,155 6,341 1.64 8.38 3.51
50-100 10,991 9,406 6,404 3,002 4.71 14.77 6.10
100-250 6,956 6,158 3,602 2,556 11.95 28.80 10.98
250-500 2,111 1,960 966 994 31.71 62.53 31.86
500-1000 916 880 362 518 91.07 154.71 70.51
1000-2500 445 427 161 266 237.96 381.98 158.01
2500-5000 119 112 42 70 517.22 827.55 401.09
+5000 55 51 18 33 5741.85 8873.76 759.20

Note: The first column denote the class size in terms of BRN employment. Columns (2)-(5) count the number of firms for each of the four
samples, in each class size : all firms in 1996, firms sampled in EAE in 1996, of which firms that declared zero or missing software investment,
and firms that declared positive software investment. Columns (6)-(7) display average software investment for all firms in EAE in 1996 and
those that declared positive investment. Column (8) displays median software investment for firms that declared positive software investment.
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Table 3: Regressions of IT Intensity on Log Firm Size

Investment Log Capital

Workers Workers Wage Bill Wage Bill Workers Workers Wage Bill Wage Bill

Panel 1 : Software Intensity

Size (proxied by sales) 0.0205 0.5034 0.3650 0.3115
(0.0001) (0.0029) (0.0031) (0.0031)

Size (proxied by VA) 0.0211 0.5191 0.3458 0.2933
(0.0001) (0.0030) (0.0033) (0.0033)

Observations 1,145,874 1,146,068 1,145,917 1,146,115 575,594 575,686 575,579 575,676
R2 0.0911 0.0896 0.0840 0.0829 0.2396 0.2356 0.2281 0.2249

Panel 2: Hardware Intensity

Size (proxied by sales) 0.0412 0.8812 0.2630 0.2031
(0.0002) (0.0052) (0.0007) (0.0007)

Size (proxied by VA) 0.0323 0.5930 0.1991 0.1289
(0.0002) (0.0054) (0.0008) (0.0008)

Observations 4,340,454 4,341,159 4,340,014 4,340,853 2,839,365 2,839,569 2,839,373 2,839,754
R2 0.1647 0.1607 0.1386 0.1353 0.4188 0.4068 0.3823 0.3718

Total Total Tangible Tangible Total Total Tangible Tangible

Panel 3 : Software Rel. Intensity

Size (proxied by sales) 0.0044 0.0053 0.2779 0.2842
(0.0000) (0.0000) (0.0032) (0.0032)

Size (proxied by VA) 0.0047 0.0056 0.2899 0.2980
(0.0000) (0.0000) (0.0034) (0.0035)

Observations 1,127,629 1,127,816 1,117,482 1,117,639 530,334 530,395 529,045 529,104
R2 0.0820 0.0826 0.0756 0.0762 0.2346 0.2341 0.2350 0.2346

Panel 4: Hardware Rel. Intensity

Size (proxied by sales) 0.0172 0.0198 0.2134 0.2279
(0.0001) (0.0001) (0.0008) (0.0008)

Size (proxied by VA) 0.0157 0.0182 0.1705 0.1884
(0.0001) (0.0001) (0.0009) (0.0009)

Observations 4,366,163 4,366,860 4,302,290 4,302,802 2,755,218 2,755,436 2,756,088 2,756,211
R2 0.1860 0.1826 0.2409 0.2384 0.4163 0.4104 0.4491 0.4435

Note: In columns (1)-(4), the dependent variable is IT investment intensity and in columns (5)-(8) it is log IT capital intensity. In panels 1 and
2, IT intensity is proxied by software and hardware investment (capital) per worker or over wage bill, and in panels 3 and 4 by software and
hardware investment (capital) over total or tangible capital. The independent variable is the logarithm of firm size either proxied by sales or
value added. The time period is 1995-2007. In panels 1 and 3 the sample is all firms sampled by EAE, and in panels 2 and 4, the sample is BRN
firms. All columns include a full set of 3-digit industry classification fixed effects interacted with year fixed effects and a full set of cohorts
fixed effect (pre 1980, 1980-1993, 1993-1995 ... 2005-2007) and normalised age fixed effects. A semi-elasticity of 0.0205 of software investment
per worker to sales means that raising sales by a factor of 2 raises software per worker by 0.0205 ln2 = K€0.014 . An elasticity of 0.365 of
capital per worker to sales means that raising sales by a factor of 2 raises capital per worker by 36.5%.
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Table 4: Regressions of Log IT Intensity of Capital On Measures of Firm Scale

IT Intensity IT Rel. Intensity

Workers Workers Wage Bill Wage Bill Total Total Tangible Tangible

Panel 1 : Software

Number of plants 0.0015 0.0014 0.0014 0.0015
(0.0002) (0.0002) (0.0002) (0.0002)

Number of occupational layers 0.2657 0.2260 0.2594 0.2640
(0.0048) (0.0047) (0.0050) (0.0050)

Observations 563,244 563,244 563,383 563,383 519,078 519,078 517,835 517,835
R2 0.2218 0.2260 0.2147 0.2178 0.2241 0.2281 0.2242 0.2282

Number of destination countries 0.0276 0.0243 0.0225 0.0232
(0.0004) (0.0004) (0.0004) (0.0004)

Number of products 0.0065 0.0059 0.0054 0.0056
(0.0002) (0.0002) (0.0002) (0.0002)

Observations 278,803 278,803 279,590 279,590 261,609 261,609 261,144 261,144
R2 0.1958 0.1871 0.1887 0.1817 0.1867 0.1806 0.1875 0.1811

Panel 2: Hardware

Number of plants 0.0040 0.0040 0.0035 0.0040
(0.0001) (0.0001) (0.0001) (0.0001)

Number of occupational layers 0.0993 0.0704 0.1128 0.1255
(0.0009) (0.0009) (0.0010) (0.0010)

Observations 2,727,495 2,727,495 2,729,106 2,729,106 2,651,460 2,651,460 2,652,628 2,652,628
R2 0.3917 0.3938 0.3638 0.3647 0.4005 0.4030 0.4321 0.4350

Number of destination countries 0.0337 0.0299 0.0258 0.0272
(0.0002) (0.0002) (0.0002) (0.0002)

Number of products 0.0084 0.0078 0.0068 0.0071
(0.0001) (0.0001) (0.0001) (0.0001)

Observations 553,427 553,427 555,879 555,879 546,058 546,058 546,478 546,478
R2 0.2831 0.2628 0.2533 0.2366 0.3129 0.3033 0.3339 0.3237

Note: In columns (1)-(4), the dependent variable is log IT capital intensity and in columns (5)-(8) it is log IT capital relative intensity. In panel 1
IT is proxied by software, and in panel 2 by hardware. The time period is 1995-2007. In panels 1 sample is all firms sampled by EAE, and in
panel 2 the sample is BRN firms. All columns include a full set of 3-digit industry classification fixed effects interacted with year fixed effects
and a full set of cohorts fixed effect (pre 1980, 1980-1993, 1993-1995 ... 2005-2007) and normalised age fixed effects. A semi-elasticity of 0.0276
of capital per worker to the number of destination countries means that exporting to one new country raises capital per worker by 2.76%.
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Table 5: Regressions of Change in the Industry-level Labor Share on Change in the Measure of
Concentration

5 Year Change

Top 1% Share -0.1785
(0.0507)

Top 5% Share -0.3226
(0.0711)

Largest Firm Share -0.1192
(0.0339)

4 Largest Firms Share -0.1601
(0.0254)

10 Largest Firms Share -0.1422
(0.0238)

20 Largest Firms Share -0.1411
(0.0245)

Herfindahl-Hirschmann Index -0.1480
(0.0483)

Observations 2,731 2,731 2,731 2,731 2,731 2,731 2,731
R2 0.0876 0.1131 0.0616 0.0696 0.0631 0.0610 0.0631

Note: This table replicates for France the results obtained by Autor et al. (2017b) based on US micro data. Each estimate is the result of a
regression. Regressions are carried at the 3-digit sector classification level. The dependent variable is the change in labor share in value added
of a given sector. Labor shares are defined as the ratio of the sum of workers’ compensation and taxes paid on labor in a given sector over
respectively total value added of this sector. The independent variable reports changes of different measures of concentration, based on firms
share of sales.The estimation method in all columns is OLS, with time fixed effect.
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Table 6: Regressions of Change in the Industry-level Labor Share on Change in the Measure of
Concentration

10 Year Change

Top 1% Share -0.1367
(0.0526)

Top 5% Share -0.2642
(0.0827)

Largest Firm Share -0.0502
(0.0440)

4 Largest Firms Share -0.1758
(0.0265)

10 Largest Firms Share -0.1940
(0.0231)

20 Largest Firms Share -0.2000
(0.0229)

Herfindahl-Hirschmann Index -0.0410
(0.0594)

Observations 1,680 1,680 1,680 1,680 1,680 1,680 1,680
R2 0.0289 0.0477 0.0053 0.0385 0.0449 0.0437 0.0035

Note: This table replicates for France the results obtained by Autor et al. (2017b) based on US micro data. Each estimate is the result of a
regression. Regressions are carried at the 3-digit sector classification level. The dependent variable is the change in labor share in value added
of a given sector. Labor shares are defined as the ratio of the sum of workers’ compensation and taxes paid on labor in a given sector over
respectively total value added of this sector. The independent variable reports changes of different measures of concentration, based on firms
share of sales.The estimation method in all columns is OLS, with time fixed effect.
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Table 7: Estimation Results

All Industries Manufacturing

Nonhomothetic CES CES Cobb-Douglas Nonhomothetic CES CES Cobb-Douglas

IT Nonhomotheticity ε 0.389 0.477
( 0.011) ( 0.019)

Elasticity of substitution σ 0.225 0.125 0.171 0.165
( 0.012) ( 0.016) ( 0.009) ( 0.013)

Cost elasticity γ 0.947 0.978 1.001 0.954 1.014 1.022
( 0.004) ( 0.004) ( 0.004) ( 0.006) ( 0.005) ( 0.006)

Capital elasticity α 0.074 0.068 0.070 0.182 0.166 0.167
( 0.005) ( 0.005) ( 0.005) ( 0.009) ( 0.008) ( 0.008)

Software elasticity β 0.113 0.185 0.015 0.120 0.148 0.303
( 0.029) ( 0.023) ( 0.038) ( 0.034) ( 0.028) ( 0.042)

Persistence of θ ρθθ 0.830 0.825 0.808 0.834 0.804 0.802
( 0.003) ( 0.003) ( 0.003) ( 0.005) ( 0.005) ( 0.005)

Persistence of θ wrt φ ρθφ -0.010 -0.012 -0.008 -0.014
( 0.000) ( 0.001) ( 0.001) ( 0.001)

Persistence of φ wrt θ ρφθ -0.072 -0.047 -0.066 -0.048
( 0.003) ( 0.003) ( 0.004) ( 0.004)

Persistence of φ ρφφ 0.898 0.908 0.901 0.919
( 0.001) ( 0.001) ( 0.002) ( 0.001)

Trend for θ µθ 0.002 0.002 -0.001 0.004 0.004 0.003
( 0.000) ( 0.000) ( 0.001) ( 0.000) ( 0.000) ( 0.000)

Trend for φ µφ 0.008 0.008 -0.007 -0.003
( 0.001) ( 0.001) ( 0.001) ( 0.001)

Shifter for θ ηθ 0.590 0.626 0.718 0.479 0.658 0.662
( 0.014) ( 0.015) ( 0.013) ( 0.019) ( 0.021) ( 0.018)

Shifter for φ ηφ 0.677 0.185 0.795 0.306
( 0.021) ( 0.016) ( 0.024) ( 0.017)

Observations N 302318 302318 307227 145966 145966 147471

Note: Results of the estimation procedure for the pooled sample of all firms in (columns 1-3), and for the pooled sample of manufacturing firms
(columns 4-6). Columns 2 and 5 present the estimated model parameters for a CES production function ( where ε is constrained to be 0).
Columns 3 and 6 present the estimated model parameters for a Cobb-Douglas production function (where σ is additionally constrained to
be 1). For details, see Section 5.
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Table 8: Estimation Results by Industry

ε σ γ α β N

Wholesale and retail trade 0.043 0.138 0.984 0.008 -0.069 60,498
( 0.017) ( 0.017) ( 0.008) ( 0.015) ( 0.023)

Pharmaceuticals 0.232 0.390 0.684 -0.137 -0.742 1,527
( 0.310) ( 0.337) ( 0.226) ( 0.411) ( 1.043)

Legal, accounting and engineering 0.297 -0.047 0.954 0.061 0.183 8,012
( 0.122) ( 0.299) ( 0.023) ( 0.028) ( 0.200)

Rubber and plastic products 0.304 0.106 0.985 0.225 -0.083 15,363
( 0.113) ( 0.238) ( 0.013) ( 0.020) ( 0.278)

Research 0.374 0.426 0.917 0.036 0.034 3,817
( 0.522) ( 0.195) ( 0.041) ( 0.036) ( 0.301)

Machinery and equipments 0.451 0.371 0.967 0.145 -0.364 11,946
( 0.121) ( 0.128) ( 0.012) ( 0.020) ( 0.296)

Transport equipments 0.480 0.036 0.947 0.107 0.321 6,024
( 0.044) ( 0.061) ( 0.015) ( 0.031) ( 0.132)

Textiles 0.525 0.219 0.919 0.134 0.203 9,770
( 0.287) ( 0.215) ( 0.035) ( 0.033) ( 0.148)

Publishing and motion pictures 0.546 0.503 0.941 0.039 -0.865 6,345
( 0.777) ( 1.049) ( 0.070) ( 0.042) ( 4.217)

Computers and electronics 0.558 0.067 0.971 0.132 0.452 5,560
( 0.155) ( 0.209) ( 0.023) ( 0.044) ( 0.174)

Basic Metals 0.574 0.054 0.981 0.169 0.231 30,397
( 0.044) ( 0.096) ( 0.007) ( 0.011) ( 0.122)

Wood, paper and printing 0.600 0.105 0.967 0.145 0.083 17,578
( 0.153) ( 0.196) ( 0.013) ( 0.020) ( 0.199)

Food products 0.614 0.357 0.954 0.237 0.164 19,735
( 0.200) ( 0.165) ( 0.013) ( 0.020) ( 0.218)

Transportation 0.696 -0.448 0.955 0.051 0.911 19,793
( 0.056) ( 0.094) ( 0.013) ( 0.015) ( 0.018)

Electrical equipments 0.813 0.619 0.838 -0.268 -0.250 3,989
( 0.261) ( 0.080) ( 0.114) ( 0.292) ( 0.669)

Mining, energy and utilities 0.814 0.098 0.895 0.308 0.736 5,891
( 0.135) ( 0.168) ( 0.028) ( 0.044) ( 0.187)

Administrative and support 2.034 -0.354 0.694 0.026 0.904 13,260
( 0.127) ( 0.361) ( 0.052) ( 0.027) ( 0.079)

Note: Results of the estimation procedure across 17 industries of the French market economy (level A38 of the NAF classification) in France.
The last column indicates the number of firm-year observations corresponding to each sector. For details, see Section 5.
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Table 9: Calibrated Parameters

Model Component Parameter Value

Production Function IT nonhomotheticity ε 0.39 Estimated

Output Elasticity Parameter γ 0.95 Estimated

Capital Elasticity Parameter α 0.07 Estimated

Elasticity of substitution σ 0.22 Estimated

Fixed Costs ψ 0.10 Calibrated

Productivity Process Persistence of Shocks
�
ρθθ ,ρφφ

�
(0.83, 0.90) Estimated

Long-run Mean Productivities
�
ηθ ,ηφ

�
(0.59, 0.68) Estimated

Variances of Innovations

�
κ2
θ
,κ2
φ

�
(0.09, 0.48) Estimation

Entry & Exit Distribution of Entry
�
ξo ,θo

�
(2.80, 8.12) Estimation

κ2
o (2.10) Estimation

θo 1.84 Calibrated

φo 6.85 Calibrated

Costs of Entry χ 0.10 Calibrated

Exogenous Probability of Exit δ 0.04 Calibrated

Demand Elasticity of Substitution λ 5.09 Calibrated

Discount Factor ̺ 0.95 Calibrated

Note: The calibrated and estimated parameters of the model and the source of information used for each parameter. For details, see Section 5.
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Table 10: Calibrated Moments

Moments Parameters Model Data Source

Targeted Entrant Top %1 θ ξo 3.484 3.461 EAE (Estimation)

Entrant Top %0.1 θ ξo 4.307 4.277 EAE (Estimation)

Entrant Highest θ θo 8.120 8.120 EAE (Estimation)

Share of Top 1% of Firms in Sales (λ,ψ,θo,φo) 0.592 0.593 BRN+RSI

Share of Top 5% of Firms in Sales (λ,ψ,θo,φo) 0.753 0.774 BRN+RSI

Aggregate Labor Share (λ,ψ,θo,φo) 0.748 0.706 BRN+RSI

Aggregate IT Intensity (Ω) (λ,ψ,θo,φo) 0.037 0.038 INSEE

Mass of Firms χ 0.08 0.08 BRN+RSI

Rate of Exit of Large Firms δ 0.04 0.04 BRN+RSI

Untargeted Unweighted Mean of Labor Share — 0.783 0.762 BRN+RSI

Unweighted Mean of IT Intensity — 0.003 0.002 BRN+RSI

S.D. of Log Sales — 1.213 1.435 BRN+RSI

S.D. of Log Employment — 1.211 1.188 BRN+RSI

Note: The targeted moments based on the data and the model. EAE (Estimation) source dataset refers to the sample of EAE firms from 1996 to
2007. The four moments used for the calibration of (λ,ψ,θo ,φo ) are taken from BRN+RSI or INSEE data in 1995. All remaining moments
use BRN+RSI data from 1995 to 2007. For details, see Section 5.
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Table 11: Calibration Results

Aggregate Variable Before After

Price of IT W 0.0203 0.0075 IT Price ↓

Aggregate Output Y 78.3 82.3 Output ↑

Price Index P 0.0144 0.0135 Competition ↑

Mass of Firms N 0.080 0.077 Entry ↓

Aggregate Cost Elasticity E 0.9645 0.9640 Cost Elasticity ≈

Within-Firm Contribution — -0.0080 ↓

Reallocation Contribution — 0.0075 ↑

Labor Share (Production) LS p r od 0.748 0.749 Labor Share ≈

Within-Firm Contribution — 0.021 ↑

Reallocation Contribution — -0.020 ↓

Profit Share Π/R 0.1670 0.1666 Profits ≈

Share of Top 1% of Firms in Sales 0.592 0.649 Concentration ↑

Share of Top 5% of Firms in Sales 0.753 0.783 Concentration ↑

Note: For details, see Section 5.

62



Figures

Figure 1: Rise of IT
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Note: This figure presents on the left axis the ratio of computing equipment capital to non ICT capital (excluding Dwellings), and on the right
axis the user cost of computing equipment capital relative to the user cost of non ICT capital, in France, Market Economy. Source : EU
KLEMS.
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Figure 2: Rise in Concentration
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Note: This figure presents the sales weighted average across 3-digits industries of the cumulated change in concentration, measured at the
industry level by the share of industry sales of the largest 1%, 5% , 1, 4, 10 or 20 firms by sales market share.
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Figure 3: Labor Share
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Note: This figure presents the cumulated change in the total labor share, and the decomposition, across 2-digits industries.
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Figure 4: Correlation between 5-Year Change in Industry Labor Share and Concentration
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Note: This figure presents coefficients of separate regression of 5-Year Change in Industry Labor Share and Different Measures of Concentration,
at the 3-digits level, including year fixed effects.
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Figure 5: Cross-sectional Relationship Between IT and Firm Size
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(b) Software Relative Intensity

0

.5

1

1.5

H
ar

dw
ar

e 
pe

r w
or

ke
r

R
el

at
iv

e 
to

 0
-5

 E
m

pl
oy

ee
s 

Fi
rm

s

5-1
0

10
-20

20
-50

50
-10

0

10
0-2

50

25
0-5

00

50
0-1

00
0

10
00

-25
00

25
00

-50
00

+5
00

0

Firm size

Investment
Capital

(c) Hardware Values (per worker)
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Note: This figure reports the average of IT intensity by firm size. Averages are conditional on a set of flexible fixed effects constructed from the
interaction of 3-digit industry codes and time dummies, and a full set of cohorts fixed effect (pre 1980, 1980-1993, 1993-1995 ... 2005-2007)
and normalised age fixed effects. In the case of software, sample is all firms that were sampled in EAE (that year for investment, at least once
for capital). In the case of hardware, sample is all firms that reported hardware investment lower than 0.99 times total investment.

67



Figure 6: Cross-sectional Relationship Between Labor Share and Firm Size
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Note: This figure reports the conditional average of labor share (measured as the ratio of wage bill to either sales or value added) by firm size.
Averages are conditional on a set of flexible fixed effects constructed from the interaction of 4-digit industry codes and time dummies.
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Figure 7: Estimates of the Parameter of Nonhomotheticity ε
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Note: This figure presents the estimated values of the parameter ε across 17 industries of the market economy (level A38 of the NAF classifica-
tion) in France. The bands around the estimates show the 10% confidence intervals. Industries are sorted from lowest to largest ε, as in table
8.
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Figure 8: Estimates of the Substitution Elasticity Parameter σ
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Note: This figure presents the estimated values of the parameter σ across 17 industries of the market economy (level A38 of the NAF classifica-
tion) in France. The bands around the estimates show the 10% confidence intervals. Industries are sorted from lowest to largest ε, as in table
8.
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Figure 9: Estimates of the Cost Elasticity Parameter γ
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Note: This figure presents the estimated values of the parameter γ across 17 industries of the market economy (level A38 of the NAF classifica-
tion) in France. The bands around the estimates show the 10% confidence intervals. Industries are sorted from lowest to largest ε, as in table
8.
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Figure 10: Responses of Different Firms to the Fall in IT Prices

(A) Heterogeneity in Output Response (B) Heterogeneity in Sales Response

(C) Heterogeneity in Response of Share in Industry Costs (D) Heterogeneity in Cost Elasticity Response
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A Nonhomothetic Demand and Returns to Scale

In this section we examine the properties of general production functions that are compatible with non-

homothetic IT demand, that is,
∂ log (XI /XN )

∂ logY
= η, η > 0. (48)

The following lemma establishes two properties for the elasticities of substitution and scale of the produc-

tion functions that give rise to nonhomothetic IT demand with a constant relative output elasticity.

Lemma 5. Consider a continuous, differentiable, and monotonically increasing production function Y =

F (XN ,XI ) such that the set {(XN ,XI )≥ 0 |Y ≤F (XN ,XI )} is strictly convex for all Y . Assume that the corre-

sponding cost minimization problem yields factor demand functions satisfying Equation (??). Then, along any

expansion path in the (XN ,XI ) -space51 the production function satisfies the following two properties:

1. The elasticity of substitution between IT and non-IT inputs is constant everywhere.

2. The production function is “not” homogeneous of a constant degree, that is, there is “no” ε > 0 such that

for all Z > 0 and all (XN ,XI ) the production function satisfies F (Z XN , Z XI ) = ZεF (XN ,XI ).

Proof. See Appendix B.1.

We can alternatively state the result of Lemma 5 in terms of the properties of the cost function, when

we fix relative factor input prices WI /WN . The first part of the lemma tells us that the elasticity of substi-

tution ∂ log (XI /XN )/∂ log (WI /WN ) only depends on relative input prices WI /WN , and not output Y .

In other words, if we consider in the space of inputs (XN ,XI ) paths characterized by a constant marginal

rate of substitution, the normal vectors to this curve form parallel vectors everywhere along the curve.

More importantly, the second part says that the output elasticity of the cost function, which is the

reciprocal of the scale elasticity, varies with the scale of the firm output Y . In other words, if the IT factor

input has a higher output elasticity than the non-IT factor input, when firms change their scale of operation

their scale elasticity is bound to change. Specifically, the lemma rules out a constant-returns-to-scale (CRS)

production function.

We may naturally wonder whether the scale elasticity rises or falls with output. The next lemma

shows that to answer this question we need to impose further structure on the production function. More

specifically, the answer to this question hinges on whether the two inputs are gross complements or gross

substitutes.

Lemma 6. Consider a production function F satisfying the conditions in Lemma 5. Assume, in addition, that

the scale elasticity is constant in the limit that either input goes to zero, that is, there is some εk > 0 such that

for all Z > 0 we have

lim
Xk→0

F (Z XN ,Z XI )

F (XN , XI )
= Zεk , k ∈ {N , I } .

51An expansion path is a curve with constant marginal rate of transformation FI /FN ≡ (∂ F/∂ XI )/ (∂ F/∂ XN ).
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Then, if the elasticity of substitution is less (greater) than 1 and nonincreasing (nondecreasing) in the marginal

rate of transformation FI /FN , the scale elasticity is monotonically decreasing (increasing) in output Y along a

curve with constant marginal rate of transformation.

Proof. See Appendix (B.1).

Lemma 6 shows that, under fairly mild conditions on the production function, the relationship be-

tween scale elasticity and firm size is monotonic and depends on the elasticity of substitution between IT

and non-IT inputs. In particular, when the elasticity of substitution is constant, with an elasticity of sub-

stitution below 1, larger firms have higher scale elasticities. The opposite is the case with an elasticity of

substitution greater than 1. To better illustrate this result, below we will consider two extreme examples:

the first being a production function with a zero elasticity of substitution between the two inputs and the

second being the polar case with perfect substitutability. We will see that, as the firm size grows, the scale

elasticity falls and rises in the first and second examples, respectively.

Example 1. Consider a nonhomothetic Leontief production function Y = F (XN ,XI ) defined implicitly

through

Y =min
�

XN ,Y−ηXI
	

, η > 0.

In any cost minimizing solution, we have Y =XN =X 1/(1+η)
I , which implies XI /XN = Y η satisfying con-

dition (48). Given factor prices (WN ,WI ), the corresponding cost function is given byC (WN ,WI ; Y ) =

WN Y +WI Y 1+η. Therefore, the output elasticity of costs, which is the reciprocal of the scale elasticity,

satisfies
∂ logC
∂ logY

= 1+ ηΩI (WN ,WI ; Y ) ,

where we have defined ΩI (WN ,WI ; Y )≡WI Y η/ (WN +WI Y η) as the cost share of IT-inputs. This share

is monotonically increasing in the level of output Y , implying that the output elasticity of costs is increas-

ing in output.

Example 2. Consider a linear production function Y =F (XN ,XI ) defined as

Y =XN +Y ηXI , 0< η< 1.

Although strictly speaking, this production function does not satisfy condition (48), its factor demand

and cost functions demonstrate quasi-nonhomothetic behavior. In particular, when the scale of output is

small enough to satisfy WI /WN ≥ Y η, we have XN = Y and XI = 0. On the other hand, when the scale

of output is large enough such that WI /WN < Y η, we have XN = 0 and XI = Y 1−η. The corresponding

cost function is

C (WN ,WI ; Y ) =





WN Y, WI /WN ≥ Y η,

WI Y 1−η, WI /WN ≤ Y η.
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In stark contrast to Example 1, in this case the output elasticity of costs falls as output rises. With WI /WN ≥

Y η, the production function has constant returns to scale whereas for WI /WN < Y η, the scale elasticity

is 1/ (1− η) strictly greater than 1.

The intuition for the result above is as follows. As output rises, Equation (48) implies that IT inputs

grow faster than non-IT inputs because of their higher output elasticity. The rise in the IT inputs raises the

marginal product of the non-IT inputs, which means that we have to further raise the non-IT input in order

to again equalize the marginal product and the non-IT factor price. When the elasticity of substitution is

below 1, the required rise in the non-IT input is sufficiently high to make the cost function increasingly

convex as the output rises. The situation is reverse when the elasticity of substitution is greater than 1.

B Derivations and Proofs

B.1 Proofs

Lemma. See Lemma 1.

Proof. We provide the proof for a generalized version of the lemma, for a nonhomothetic CES production

function with J inputs
¦

X j

©J

j=1
, where output Y satisfies

∑
j

�
X j

Y ε j

� σ−1
σ
= 1. Equation (6) corresponds to

the case of εN = γ and εI = γ + ε. The cost function C then satisfies C (Y )1−σ =
∑

j

�
Y ε j W j

�1−σ
where

W j is the factor price of input j , and the cost elasticity is given by E (Y ) =
∑

j

�
W j

C
Y ε j

�1−σ
ε j .

We can write the second order derivative of the cost function as

C′′ (Y ) =
�
C

Y
E

�′
,

= E
C

Y 2

�
YC′

C
− 1

�
+

C

Y
E′,

= E
C

Y 2

�
E− 1+

YE′

E

�
, (49)

where E is the cost elasticity function defined above. The 2nd order scale elasticity is then given by

YE′

E
=

Y
E

d
dY

 ∑
j

�W j

C
Y ε j

�1−σ

ε j

!
,

=
1−σ
E

 ∑
j

�W j

C
Y ε j

�1−σ

ε j

�
ε j −

YC′

C

�!
,

=
1−σ
E

 ∑
j

Ω jε
2
j − E

2

!
, (50)
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where Ω j is the factor intensity defined by Ω j ≡
�
Y ε j W j/C

�1−σ
. We can write the expression within

the parentheses as the variance of the parameters
¦
ε j

©J

j=1
under the distribution implied by factor shares

¦
Ω j

©J

j=1
, defined as V (Y ) ≡

∑
j Ω j (Y )

�
ε j − E (Y )

�2
. Note that in the case of (εN = γ ,εI = γ + ε), this

variance expression leads to Equation (12). Putting everything together, we find the following expression

for the second derivative of the cost function

C′′ (Y ) = E
C

Y 2

�
E

�
1+(1−σ)

V

E2

�
− 1

�
. (51)

Lemma. See Lemma 2.

Proof. First, let us rewrite problem (17) as

Πi =max
Yi

R (Yi )− e−θiC
�
Yi ; e−φi W

�
−ψ,

where R (Yi ) ≡ P (Yi/Y )−1/λYi is the firm revenue function. The first order condition is given by

R′ (Yi ) − e−θiC′ (Yi ) ≤ 0. The goal is to ensure that for all (θi ,φi ) , there is a unique Yi that satisfies

this condition with equality.

First, we show that the condition is always satisfied with equality at least for one value of Yi . Given

Assumption 1, we find that

lim
Yi→0

C′ (Yi )

Y γ−1
i

= lim
Yi→0

Ei

�
1+

�
e−φi W

�1−σ
Y ε(1−σ)

i

� 1
1−σ
= γ ,

lim
Yi→∞

C′ (Yi )

Y γ+ε−1
i

= lim
Yi→∞

Ei

��
e−φi W

�1−σ
+Y−ε(1−σ)i

� 1
1−σ
= (γ + ε) e−φi W ,

where we have used the notation Ei ≡ E
�
Yi ; e−φi W

�
. Given the assumption − 1

λ < γ − 1, we have the

following limits for the first order condition:

R′ (Yi )− e−θiC′
�
Yi ; e−φi W

�
−→





P
�
1− 1

λ

��Yi
Y

�−1/λ
− γ e−θi Y γ−1

i →∞, Yi → 0,

P
�
1− 1

λ

��Yi
Y

�−1/λ
− (γ + ε) WI

eθi
Y γ+ε−1

i →−∞, Yi →∞.

herefore, the first order condition has at least one zero for any finite pair (θi ,φi ) and any finite combina-

tions of (P,Y,W ).

Consider now one such a solution Y ∗i for (θi ,φi ) and (P,Y,W ) satisfying

R′
�
Y ∗i
�
− e−θiC′

�
Y ∗i ; e−φi W

�
=

�
1−

1
λ

�
PY λ �Y ∗i

�− 1
λ − Ei

C
�
Y ∗i ; e−φi W

�

eθi Y ∗i
= 0. (52)
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To ensure that this zero indeed corresponds to a maximum, we need to examine the second order condition.

Using Equations (??) and (11), we find

R′′
�
Y ∗i
�
− e−θiC′′

�
Y ∗i ; e−φi W

�
=−

1
�
Y ∗i
�2
¨

1
λ

�
1−

1
λ

�
PY λ �Y ∗i

�1− 1
λ + Ei

C
�
Y ∗i ; e−φi W

�

eθi

�
Ei

�
1+(1−σ)

Vi

E2
i

�
− 1

�«
,

=−
�

1−
1
λ

�
PY λ �Y ∗i

�− 1
λ−1

¨
1
λ
+ Ei

�
1+ (1−σ)

Vi

E2
i

�
− 1

«
,

where we have used the notation Vi ≡ V
�
Yi ; e−φi W

�
. The expression above leads to the following condi-

tion

1−
1
λ
< Ei

�
1+(1−σ)

Vi

E2
i

�
.

The next step is to show that the solution Y ∗i above is unique. We can rewrite Equation (52) as

C′
�
Y ∗i ; e−φi W

� �
Y ∗i
�1/λ
=

�
1−

1
λ

�
PY λeθi .

To ensure that there is only Y ∗i satisfying the equation above, it is sufficient to show that function L (Y )≡

C′ (Y ) Y
1
λ is monotonic. Computing the derivative, we find

L′ (Y ) = C′′ (Y ) Y
1
λ +

1
λY

C′ (Y ) Y
1
λ ,

= C′ (Y ) Y
1
λ−1

�
1
λ
+

Y C′′

C′

�
,

= C′ (Y ) Y
1
λ−1

�
1
λ
+ E

�
1+(1−σ)

V

E2

�
− 1

�
,

where we have used Equation (51).

Now, first consider the case of 0 < σ < 1. In this case, one can verify that the restriction1− 1
λ < γ

is sufficient to satisfy all the conditions above required for the existence and uniqueness of the solution.

Now define εN ≡ γ and εI ≡ γ + ε. In the case of σ > 1, we can bound the term involving the coefficient

of variation as
V

E
<min

¨
1
4
(εN − εI )

2

εI
,εN − εI

«
,

where the first term comes from the fact that upper bound on the variance term is given by 1
4 (max{εN ,εI }−min{εN ,εI })

2 =
1
4 (εN − εI )

2, and the second term from the fact that ε2
N (1−Ω)+ ε

2
IΩ≤ εNε. We can then write

E− (σ − 1)
V

E2 > εi − (σ − 1)min

¨
1
4
(εN − εI )

2

εI
,εN − εI

«
,

≥ εI − (σ − 1)min

¨
1
4
(εN − εI )

2

εI
,εN − εI

«
.
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In this case, one can verify that, in addition to the restriction 1 − 1
λ < εI , the following restriction is

sufficient to satisfy the existence and uniqueness conditions laid out above:

(σ − 1)min

¨
1
4
(εN − εI )

2

εI
,εN − εI

«
< εI −

�
1−

1
λ

�
.

Finally, taking the derivative of the first-order condition with respect to eθi , we find:

�
R′′

�
Y ∗i
�
−

1
Z
C′′
�
Y ∗i
�� ∂ Yi

∂ eθi
=−

1

e2θi
C′ (Yi ) .

As we saw the second order condition ensures that R′′ (Yi )− e−θiC′′
�
Y ; e−φi W

�
< 0 at the optimum,

which implies that ∂ Y
∂ eθ

> 0. Since the inverse demand function of decreasing, it follows that the optimal

price is decreasing in θi . Showing the same result for φi is straightforward.

Derivations for Definition 1.

Let us start with a cost minimization problem of the firm:

minWLLi +WK Ki +WS Si +WH Hi

Yi ≥F
�
eθi+φi XN ,i , eθi XI ,i

�
,

XN ,i t ≤Kα
i L1−α

i ,

XI ,i ≤ Sβi H 1−β
i .

Using f.o.c’s for Ki and Li , we find that WL = (1−α)µN ,i (Ki/Li )
α and WK = αµN ,i (Li/Ki )

1−α where

µN ,i is the Lagrange multiplier corresponding to the constraint on the non-IT input bundle. Applying

the normalization
�
WL,t/ (1−α)

�1−α �WK ,t/α
�α, we find that µN ,i = 1 and XN ,i =WLLi +WK Ki . Since

capital to labor ratios are equalized across all firms, we know that K/L = Ki/Li and X N ≡
∫

XN ,i d i =

K
α

L
1−α

. Applying the same argument to the f.o.c.’s for Si and Hi , we find that WS Si =βW XI ,i , WH Hi =

(1−β)W XI ,i , and X I ≡
∫

XI ,i = S
β

H
1−β

.

We can now write the labor and capital market clearing conditions

WLL= (1−α)X N ,

WK K = αX N .

and combine them to find market clearing condition for the non-IT input as:

X N =WLL+WKK, (53)

=N
�
ψ+

∫ ∫ �
1− eΩ (θ,φ; P,Y,W )

� eC (θ,φ; P,Y,W ) g (θ,φ)dθdφ
�
+Noδχ . (54)
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The market clearing condition for the IT inputs follows similarly.

Derivations for Equations (36) and (37).

First, note that we have Ωi =
�
Y γ+ε

i e−φi W /Ci

�1−σ
, and therefore:

∂ logΩi

∂ w
= (1−σ)

�
1−

∂ ci

∂ w

�
= (1−σ) (1−Ωi ) ,

∂ logΩi

∂ yi
= (1−σ)

�
γ + ε−

∂ ci

∂ yi

�
= (1−σ) (γ + ε− Ei ) = (1−σ)ε (1−Ωi ) .

where in the first and second lines we have used yi and ci to refer to the log of output Yi and costs Ci ,

respectively. Recall that we have Ci = e−θi Y γ
i

�
1+

�
Y ε

i e−φi W
�1−σ�1/(1−σ)

, implying ∂ ci/∂ w = Ωi . We

now substitute the expressions above in a first-order approximation of the change in the cost elasticity Ei

as the result of the log change∆w in the relative price of IT:

∆Ei ≈
∂ Ei

∂ w
∆w +

∂ Ei

∂ y
∆yi ,

= ε

�
∂ Ωi

∂ w
∆w +

∂ Ωi

∂ y
∆yi

�
,

= εΩi

�
∂ logΩi

∂ w
∆w +

∂ log
∂ y

∆yi

�
,

= (1−σ)εΩi [(1−Ωi )∆w +(γ + ε− Ei )∆yi ] ,

= (1−σ)εΩi [(1−Ωi )∆w + ε (1−Ωi )∆yi ] ,

where the last equality leads to Equation (36). Noting that Si =Ci gi/C then leads to Equation (37).

Lemma. See Lemma 3.

Proof. Let us write Equation (19) as:

�Yi

Y

�− 1
λ

=
λ

λ− 1

C′
�
Yi ; e−φi W

�

eθi P
.

Rewriting the equation in logarithm terms and differentiating, we find:

−
1
λ
(∆yi −∆y)≈

∂ mc
∂ y

∆yi +
∂ mc
∂ w

∆w −∆p,

where, as before, we have used the small cap letters to denote log functions. This will lead to Equation

(38). To derive Equations (39) and (40), we first note that M Ci = EiCi/Yi . It follows that:

∂ mci

∂ w
=
∂ ci

∂ w
+
∂ logEi

∂ w
,
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=Ωi +
ε

Ei

∂ Ωi

∂ w
,

=Ωi +
εΩi

γ + εΩi

∂ logΩi

∂ w
,

=Ωi

�
1+(1−σ)ε

1−Ωi

γ + εΩi

�
,

where in the last equality we have substituted the expression for ∂ logΩi
∂ w from above. Similarly, we have:

∂ mci

∂ yi
=
∂ ci

∂ yi
− 1+

∂ logEi

∂ yi
,

= Ei − 1+
ε

Ei

∂ Ωi

∂ yi
,

= γ − 1+Ωiε+
εΩi

γ + εΩi

∂ logΩi

∂ yi
,

= γ − 1+Ωiε

�
1+(1−σ)ε

1−Ωi

γ + εΩi

�
.

Lemma. See Lemma 4.

Proof. Consider the problem of the firm that starts period t with stock productivity state variables (θi t ,φi t )

and stocks of non-IT capital, hardware, and softare
�
Ki t−1, Hi t−1, Si t−1

�
(as expected, we will see that the

stock of software St−1 is not a state variable):

Vt
�
θi t ,φi t ,Ki t−1, Hi t−1, Si t−1

�
= max

Yi t ,Li t ,Ki t ,Si t ,Hi t

P (Yi t ) Yi t −Wt Li t −Qt
�
Si t − Si t−1 (1−δS )

�

− CK
t
�
Ki t ;Ki t−1

�
− CH

t
�
Hi t ; Hi t−1

�
+

1
1+ rt
Eθi t+1,φi t+1

�
Vt+1

�
θi t+1,φi t+1,Ki t , Hi t , S

subject to: Yt = F
�
eθi t Kα

t L1−α
t , eφi t+θi t Sβt H 1−β

t

�
,

where P (Yi t ) denotes the demand function (potentially downward sloping), δS is the depreciation rate of

software capital, and CK
t and CH

t are generic functions that capture potential adjustment costs for dynamic

inputs Ki t and Hi t , respectively. Based on assumption 5, we assume no adjustment costs for software

capital and therefore the firm faces software investment at price Qt .

Conditional on the optimal Yt , and defining Λt to be the Lagrange multiplier corresponding to the

constraint on Yt , we find:

Qt = Λi t
∂ Yi t

∂ XN ,i t

∂ XN ,i t

∂ Si t
+

1
1+ rt
Eθi t+1,φi t+1

�
∂

∂ Si t
Vt+1

�
θi t+1,φi t+1,Ki t , Hi t , Si t

�
|Ii t

�
.
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We can also compute the partial derivative of the value function simply as:

∂

∂ Si t
Vt+1

�
θi t+1,φi t+1,Ki t , Hi t , Si t

�
= (1−δS )Qt+1.

Therefore, we can define the user cost of software (the effective price of software capital) as follows

WS,i t ≡Qt −
1−δS

1+ rt
Qt+1,

=Qt

�
1−

1−δS

1+ rt

Qt+1

Qt

�
,

=Qt

�
1−R−1

S,t

�
,

where RS,t is the required rate of return for software investments.

Based on the derivations above, we can redefine the problem as that of a firm with four state variables

(θi t ,φi t ,Ki t , Hi t ) and with:

Vt
�
θi t ,φi t ,Ki t−1, Hi t−1

�
= max

Yi t ,Li t ,Ki t ,Si t ,Hi t

P (Yi t ) Yi t −Wt Li t −WS,t Si t

− CK
t
�
Ki t ;Ki t−1

�
− CH

t
�
Hi t ; Hi t−1

�
+(1−δt )Eθi t+1,φi t+1

�
Vt+1

�
θi t+1,φi t+1,Ki t , Hi t

�
|Ii t

subject to: Yi t = F
�
eθi t Kα

i t L1−α
i t , eφi t eθi t Sβi t H 1−β

i t

�
.

Let us now look at the first order conditions with respect to the two flexible inputs:

WL,t = Λi t
∂ Yi t

∂ XN ,i t

∂ XN ,i t

∂ Li t
= Λi t

Yi t

XN ,i t

1
Ei t

�
eθi t XN ,i t

Y γ
i t

�1− 1
σ

(1−α)
XN ,i t

Li t
, (55)

WS,t = Λi t
∂ Yi t

∂ XI ,i t

∂ XI ,i t

∂ Si t
= Λi t

Yi t

XI ,i t

1
Ei t

 
eθi t+φi t XI ,i t

Y γ+ε
i t

!1− 1
σ

β
XI ,i t

Si t
, (56)

where WL,t and WS,t are the wage rate and the rental price of software, respectively, andΛi t is the marginal

cost of production for the firm. First, we divide the two equations Equations (55) and (56) and rewrite them

as

WS,t

WL,t
=

β

1−α
Li t

Si t

�
eφi t

XI ,i t

XN ,i t

�
Y
∗

i t

�εN−εI

�1− 1
σ

,

=
β

1−α

�
Si t

Li t

�− 1
σ
�

eφi t
(Hi t/Si t )

1−β

(Ki t/Li t )
α Y ε

i t

�1− 1
σ

.

We now write this equation in first differences to find:

si t − li t = σ
�
wL,t −wS,t

�
+ (σ − 1) [φi t − εyi t −α (ki t − li t )+ (1−β) (hi t − si t )] .
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C Decompositions of the Labor Share

In this section, we will present the details of the decompositions of labor share presented in Section 3.

These decompositions are done at two levels: first we decompose the aggregate changes in labor share to

the within and across industries components. Next, we decompose the industry-level changes in labor

share to within and across quantiles components, where quantiles of labor share are specific to each year

and each industry.

Let k ∈ {1, · · · ,K} be some industry classification (e.g., 3 digits in micro data), Y stands for value added,

L for wage bill, and Λ for the labor share defiend as L/Y . Also, let Sk and Λk stand for the share of the

industry in total value added and the industy average labor share, defined as Lk/Yk , respectively. Define

for any varible X :

∆Xt ≡Xt −Xt−1, X t ≡
1
2

�
Xt +Xt−1

�
,

∆T X ≡XT −X0,

where T is the last period and 0 is the first period. Our first decomposition is:52

∆TΛ≡
T∑

t=1

∑
k

Sk t ∆Λk t

︸ ︷︷ ︸
within industry

+
T∑

t=1

∑
k

∆Sk t Λk t

︸ ︷︷ ︸
across industries

. (57)

Next, we focus on changes in the industry-level labor shares. Our aim is to decompose the changes

in the industry-level labor share to the shifts in the distribution of firms labor shares and the changes in

market shares of firms along the distribution. Let p denote a probability, we can write the industry-level

labor share as

Λk t ≡
∫ 1

0
Sk t (p) Λk t (p)d p, (58)

where Λk t (p) is the average labor share of firms between the (p−1)-th and p-th quantile in the labor share

distribution in industry-kat time t and Sk t (p) denotes their share of industry-k value added at time t . We

52This is simply because:

∆ (StΛt ) = S t∆Λt +∆StΛt

∆T (SΛ) =
T∑

t=1

∆ (StΛt ) .
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can now decompose53

∆Λk t =

∫ 1

0
Sk t (p)∆Λk t (p)d p

︸ ︷︷ ︸
Within quantile

+

∫ 1

0
∆Sk t (p) Λk t (p)d p

︸ ︷︷ ︸
Across quantiles

. (60)

We now summarize the within-industry component change in aggregate labor share into the following

components:

1. The cross quantiles component:

T∑
t=1

∑
k

Sk t

∫ 1

0
∆Sk t (p) Λk t (p)d p.

2. The within quantile component:

T∑
t=1

∑
k

Sk t

∫ 1

0
Sk t (p)∆Λk t (p)d p.

D Estimation

D.1 Setting Up the GMM Estimation

Let D stand for the observed data and ρ≡
�
ρθ,ρφ

�
for the vector of persistence coefficients. We can write

the 2J -dimensional vector of moments g (Di t ;ς ,ρ) as

g j (Di t ;ς ,ρ)≡ b j i t−1

�
Θi t (ς)−ρθθΘi t−1 (ς)−ρθφΦi t−1 (ς)

�
, j ≤ J ,

g j (Di t ;ς ,ρ)≡ b j i t−1

�
Φi t (ς)−ρφθΘi t−1 (ς)−ρφφΦi t−1 (ς)

�
, j ≥ J + 1,

where b j i t−1 ∈ Ii t−1 is each of the instruments and function Φ defines IT biased productivity as a function

of observed data and model parameters

53As emphasized by Kehrig and Vincent (2017), this decomposition is conceptually distinct from standard within
and cross firm decompositions. Let Ωk t be the set of firms active in time t , and Ωk t be the set of firms common
between time t and t − 1, Ω+

k t
the set of new firms at time t , and Ω−

k t
the set of firms exiting between time t and

t + 1. We can then write:

∆Λk t ≡
∑

i∈Ω−t

S i t ∆Λi t

︸ ︷︷ ︸
within firm

+
∑

i∈Ω−
k t

∆Si t Λi t

︸ ︷︷ ︸
cross firm

+


∑

i∈Ω+
k t

Si tΛi t −
∑

i∈Ω−
k t−1

Si t−1Λi t−1




︸ ︷︷ ︸
net entry

, (59)

where again shares are computed within the industy.
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Φ (Di t ;ς) =
1

σ − 1
(σÒwi t + si t − li t )+ ε yi t +α (ki t − li t )− (1−β) (hi t − si t ) , (61)

while function Θ is the corresponding function for factor symmetric productivity:

Θ (Di t ;ς)≡ γ yi t +
σ

1−σ
log

h
e
σ−1
σ (αki t+(1−α)li t )+ e

σ−1
σ (βsi t+(1−β)hi t−εyi t+Φ(Òwi t ,li t ,ki t ,si t ,hi t ,yi t ;ς))

i
, (62)

where Òwi t ≡ wS,t −wLi ,t is the relative price of software. User cost of software wS,t has no unit (euros per

euros of software capital). Wage wLi ,t is in thousand euros per worker, li t is number of workers, and yi t ,

ki t , si t , hi t are in thousand euros. This units should be reflected in the values used for calibration.

The GMM estimator is then given by

(bς , bρ)≡ argmax
(ς ,ρ)

�∑
i t

g (Di t ;ς ,ρ)

�′
bΞ
�∑

i t

g (Di t ;ς ,ρ)

�
,

where bΞ is a J × J full-rank matrix. Alternatively, we can write

gi t (ς ,ρ)≡ B ′i tei t (ς ,ρ) ,

where we have defined define bi t−1 ≡
�
b1,i t−1, · · · , bJ ,i t−1

�′ and

B i t ≡

�
bi t−1 0

0 bi t−1

�
, ei t ≡

 
Θi t (ς)−ρθθΘi t−1 (ς)−ρθφΦi t−1 (ς)

Φi t (ς)−ρφθΘi t−1 (ς)−ρφφΦi t−1 (ς)

!
.

We use a nonlinear system 2SLS estimator
�bς0, bρ0

�
, setting

bΞ≡
�

1
N T

∑
i t

B
′
i tBi t

�−1

.

D.2 Initializing Parameter Estimates

To find reasonable initial parameters for the optimization step in the GMM estimation, we use a cascading

series of intuitive simplifications of the model to lead the optimizer to the relevant parts of the parameter

space. A key step in this approach is a log-linear approximation of the production function that helps

create a bridge between the GMM moment conditions derived from our model with those typically used

under the assumption of a Cobb-Douglas production function. More specifically, this approximation gives

us a log-linear expression for the factor-symmetric productivity function θi t =
eΘ (Di t ;ς) that we use in

lieu of Equation (64). We will discuss this approximation in Section D.3 below.
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D.3 Log-Linear Approximation for the Factor-Symmetric Productivity

Function

Recall the evolution of productivities in Equation (16) and consider a firm i in industry j with a stationary

distribution of productivities G j . The Markov process of productivity states in this industry for each firm

converges to a long-run distribution of productivities with industry-level mean values
�
θ j ≡EG j

[θ] , φ j ≡EG j
[φ]

�
.

Similarly, let inputs
�
K j , L j , H j , S j

�
be the corresponding mean values of inputs for a firm with the corre-

sponding mean productivity states. Log-linearizing the production function around the average industry

level gives us

�
γ +Ω jε

��
yi t − y j

�
≈Ω j

�
β
�

si t − s j

�
+ (1−β)

�
hi t − h j

�
+
�
φi t −φ j

��
(63)

+
�
1−Ω j

��
α
�
ki t − k j

�
+(1−α)

�
li t − l j

��
+θi t −θ j ,

where we have defined Ω j ≡
�
eφ j+θ j XI , j/Y γ+ε

j

�1−1/σ
and, as before, used small cap letter to denote the

logarithms of the corresponding variables.

We can rewrite the expression above in a form that resembles the Cobb-Douglas production function:

yi t ≈ γ1ki t + γ2 li t + γ3 si t + γ4hi t +
eθi t ,

where we have defined:

γ1 ≡
α
�
1−Ω j

�

γ +Ω jε
,

γ2 ≡
(1−α)

�
1−Ω j

�

γ +Ω jε
,

γ3 ≡
βΩ j

γ +Ω jε
,

γ4 ≡
(1−β)Ω j

γ +Ω jε
,

eθi t ≡ (γ1+ γ2+ γ3+ γ4)θi t + (γ3+ γ4)φi t +
eθ j ,

eθ j ≡−
�
(γ1+ γ2+ γ3+ γ4)θ j +(γ3+ γ4)φ j

�
+
�
y j −

�
γ1k j + γ2 l j + γ3 s j + γ4h j

��
.

Let us also define a scaling of the IT-biased productivity and rewrite the cost minimization condition as:

eφi t ≡ (σ − 1)φi t ,

= si t − li t +σÒwt + (σ − 1) [ε yi t +α (ki t − li t )− (1−β) (hi t − si t )] .
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Now, we substitute Equations (61) and (62) with:

eΘ (Di t ;γ)≡ yi t − (γ1ki t + γ2 li t + γ3 si t + γ4hi t ) , (64)

eΦ (Di t ;σ ,ε,γ)≡ si t − li t +σÒwi t + (σ − 1)
�
ε yi t +

γ1

γ1+ γ2
(ki t − li t )−

γ4

γ3+ γ4
(hi t − si t )

�
. (65)

Next, note that we can write:

 eθi t
eφi t

!
=B

�
θi t

φi t

�
+

 eθ j

0

!
,

=B×



 
ρθθ ρθφ
ρφθ ρφφ

!�
θi t−1

φi t−1

�
+

�
ηθ+µθ t

ηφ+µφ t

�
+

�
uθ,i t

uφ,i t

�
+

 eθ j

0

!
,

=B×



 
ρθθ ρθφ
ρφθ ρφφ

!
B−1

 eθi t−1
eφi t−1

!
+

�
ηθ+µθ t

ηφ+µφ t

�
+

�
uθ,i t

uφ,i t

�
+

 eθ j

0

!
,

=


 ρeθ eθ ρeθ eφ
ρ eφeθ ρ eφ eφ



 eθi t−1

eφi t−1

!
+

 
ηeθ+µeθ t

η eφ+µ eφ t

!
+

 
ueθ,i t

u eφ,i t

!
,

where we have defined the matrix

B ≡

�
γ1+ γ2+ γ3+ γ4 γ3+ γ4

0 σ − 1

�
,

and we have

 ρeθ eθ ρeθ eφ
ρ eφeθ ρ eφ eφ


≡B

 
ρθθ ρθφ
ρφθ ρφφ

!
B−1,

 
ηeθ+µeθ t

η eφ+µ eφ t

!
≡B

�
ηθ+µθ t

ηφ+µφ t

�
+

 eθ j

0

!
,

 
ueθ,i t

u eφ,i t

!
≡B

�
uθ,i t

uφ,i t

�
.

D.4 Algorithm for Solving the Problem

Our initialization procedure is as follows. We first ignore the dynamic nature of the productivity processes

and the heterogeneity of software relative price Òwi t and estimate separately the following two simplified

versions of Equations (64) and (65) with linear 2SLS:

yi t = γ
0
1 ki t + γ

0
2 li t + γ

0
3 si t + γ

0
4 hi t + v0

θ,i t , (66)
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si t − li t = γ
0
5 yi t + γ

0
6 (ki t − li t )+ γ

0
7 (si t − hi t )+ v0

φ,i t . (67)

We estimate Equation (66), instrumenting si t , li t , hi t and ki t by their lagged values, and Equation

(67), instrumenting yi t , ki t− li t , and hi t − si t by their lagged values. We retrieve the predicted values of

the initial residuals eθ0
i t = v0

θ,i t and fφ0
i t = v0

φ,i t and estimate by OLS the persistence, trends and shifters

from the joint productivity process:

 eθ0
i t

fφ0
i t

!
=



ρ0
eθ eθ

ρ0
eθ eφ

ρ0
eφeθ

ρ0
eφ eφ



 eθ0

i t−1
fφ0

i t−1

!
+


 η0

eθ
+µ0

eθ
t

η0
eφ
+µ0

eφ
t


+




u0
eθ,i t

u0
eφ,i t


 .

Second, we iterate the following step : armed with estimates from step τ− 1, we ρ-differentiate Equa-

tions (66) and (67) :

∆ρτ−1
θθ

yi t −ρ
τ−1
θφ

ßφτ−1
i t−1 =∆ρτ−1

θθ

�
γ τ1 ki t + γ

τ
2 li t + γ

τ
3 si t + γ

τ
4 hi t + vτθ,i t

�
, (68)

∆ρτ−1
φφ
(si t − li t )−∆ρτ−1

φφ
bτi t −ρ

τ−1
φθ

ßθτ−1
i t−1 =∆ρτ−1

φφ

�
γ τ5 yi t + γ

τ
8

�Òwi t + bτi t

�
+ vτφ,i t

�
, (69)

where we define ∆ρxi t = xi t −ρxi t and bτi t =
γ τ1

γ τ1 +γ
τ
2
(ki t − li t ) +

γ τ4
γ τ3 +γ

τ
4
(si t − hi t ). We estimate sepa-

rately Equation (68) then Equation (69) with linear 2SLS. As in the initial step, we retrieve the predicted

values of the initial residuals fθτ i t = vτ
θ,i t and fφτ i t = vτ

φ,i t and estimate by OLS the persistence, trends

and shifters from the joint productivity process:

 fθτ i t
fφτ i t

!
=



ρτeθ eθ

ρτeθ eφ
ρτeφeθ

ρτeφ eφ



 fθτ i t−1
fφτ i t−1

!
+


 ητeθ

+µτeθ
t

ητeφ
+µτeφ

t


+




uτeθ,i t

uτeφ,i t


 .

We stop the iterative procedure when the maximum of the absolute differences of all parameters of the

productivity process between steps τ − 1 and τ is below 0.01 or the number of iterations reaches 20. In

practice, this procedure converges in less than three steps. In the final step τ f , we compute the following

parameter values:

ετ f =
γ
τ f
5

1+γ
τ f
8

,

στ f =−γ
τ f .
8

Third, we estimate simultaneously Equations (64) and (65) by two-step GMM using γ
τ f

1 , γ
τ f

2 , γ
τ f

3 , γ
τ f

4 ,

ετ f , στ f , ρτeθ eθ
, ρτeθ eφ

, ρτeφeθ
, ρτeφ eφ

, ητeθ
, µτeθ

, ητeφ
, and µτeφ

as initial guesses. Fourth, we estimate simultaneously

Equations (62) and (61) by two-step GMM results from the third step as an initial guess.54

54In both these steps, we use t , si t−1, li t−1, hi t−1, ki t−1, eθi t−1 and fφτ i t−1 as instruments for the first equation, and

t , yi t−1, ki t−1 − li t−1, hi t−1 − si t−1, eθi t−1 , fφτ i t−1 and the local wage instrument zi t as instruments for the second
equation.

87



E Appendix: Data

In this section, we describe the procedure we use to merge our different data sources, to clean the resulting

dataset of outliers, and to compute the firm level capital stock for each asset-type.

E.1 Data Cleaning

We start with the BRN RSI files from 1989 to 2007, in which we drop firms that have invalid SIREN

using the cross-validation algorithm used to generate SIREN numbers. They correspond to firms whose

self-reported SIREN identifiers do not match the SIREN identifiers recorded by INSEE. We then col-

lapse observations that are not unique in terms of SIREN-year. They correspond to firms that appear in

both BRN and RSI regimes in the same year. Finally we drop 382,854 observations for which we cannot

build industry codes. This leaves us with 31,698,412 firm-year observations. We use this data (labelled

"BRN+RSI"), keeping observations with positive sales, value-added, employment and labor costs and ex-

cluding agriculture, real estate, finance and the public sector, to compute the decomposition of labor shares,

concentration and some calibration moments from Table 10.

We then merge with the EAE datasets, using firm’s SIREN numbers–the French unique firm iden-

tifiers. We keep all firms that are present in the BRN files at least once and drop all other observations

(RSI only firms amount to 17,684,072 observations, with average sales of 102 K€, against 3,848 K€for

BRN firms sample, and unmatched EAE amount to 502,384 observations, with average sales of 3,809 K€,

against 2,693,772 observations and 13,583 K€for matched EAE observations). At this point, we have in

total 14,014,340 firm-year observations.

In the EAE files, the missing values for the software investment are coded as 0. We adopt the following

cleaning strategy to ensure that we distinguish actual 0s from missing data. We impute as missing software

investment of firms that report 0 investment and are below the corresponding threshold described above

according to the same data reported in the EAE survey for the end of the previous fiscal year.

To compute our measures of firm scale, we then merge with the DADS and Customs datasets at the firm

level. There are 21,537,688 firm-year observations in the DADS from 1994 to 2007, and 7,718,739 of those

observations will be matched with our sample of BRN firms. Of the 13,818,949 unmatched observations,

6,344,533 of those corresponds to RSI firms that we already dropped. DADS covers all employers with

salaried workers, so include non-profits, household and public employers, and many firms that operates in

sectors not well covered by the BRN-RSI fiscal regime. Matched observations have on average 36 employees

according to the DADS, against 10 employees for unmatched firms. Conversely, there are 3,327,481 BRN

firm-year observations unmatched in the DADS over the 1994-2007 period, and those firms have less than

2 employees according to the BRN-RSI data. This shows that our data is broadly representative of firms

with more than a few employees, operating in the private sector.

There are 1,465,048 firm-year observations in the Customs data from 1995 to 2007, and 1,036,525 of

those correspond to firms in our sample of BRN firms. Of the 428,523 unmatched observations, 136,821
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are RSI only firms that we already dropped. Matched observations declare total exports of 3.1 M€on

average, against 1.7 M€for unmatched customs firms.

We then drop observations with negative values added (8.51% of observations), negative wage bill (34

observations), no employee (19.4 % of observations), book capital per employee relative to the industry

average that is outside of the 99.99% probability range of a fitted distribution (0.28% of observations) and

observations in the top 0.1% for total investment per employee. Table 1 reports summary statistics for the

remaining sample of 6,6110,529 observations for firms that appear in the BRN at least once ("BRN firms"),

2,495,553 of which corresponds to firms that are sampled in the EAE dataset at least once ("EAE firms").55

We use this data to gather our micro-level facts from section 3, restricting our sample to the 1,338,935 EAE

observations (respectively 2,495,553 observations corresponding to EAE firms) when studying software

investment (respectively capital).

Finally, in the estimation, we further restrict our sample to EAE firms observations from 1996 to 2007

with positive software, hardware, and non-IT capital, positive labor and value added, and for which the

location of the firm’s headquarter is known. These last restrictions bring the number of observations in

our estimation sample to 302,318.

E.2 Building Measures of Capital Stock

To compute levels of capital stocks from the investment variables, we apply the Perpetual Inventory

Method. For each asset-type j for which measures of investment is available for each firm i and at time t ,

we build capital stocks using the following recursive formula:

K j ,i ,t =K j ,i ,t−1(1−δ j )+
I j ,t

W j ,t
, (70)

where W j ,t stands for the price deflator for asset-type j at time t , and δ j for the depreciation rate in asset-

type j . Below, we discuss how we initialize this recursive formula for each asset-type and for each firm.

We also discuss where we obtain the information on price deflators and depreciation rates from.

To build total capital stocks we make the choice of summing over the assets to obtain total capital stock,

instead of apply this formula to total investment. The main reason we make this choice is that it allows us

to fully take into account the heterogeneity of investment composition across firms, instead of applying

a common price and depreciation rate. For software investment, firms that are not sampled in the EAE

some years have missing software investment values for those years. Moreover, even when sampled in the

EAE, firms might not report software investment if sampled with a simplified questionnaire. Similarly,

there are gaps in the coverage of firms in the BRN files, either because they are included in RSI (which

we observe) or because they did not file a tax form that year to either regime (which we do not observe).

In all these cases, we have no information about asset-specific investment during those years. Because our

construction of the capital stock is based on a recursive formula, we impute missing investment to be 0.

55We report the representativeness of the data in the online appendix.
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Initialization

In 1989 (t−0), we impute firms starting values of capital in each asset type assuming first that our sample’s

ratio of total investment to total capital is equal to the aggregate ratio of investment Ī s
j ,0 to capital K̄ s

j ,0 for

each of the 38 industries s : ∑
i∈s

K j ,i ,0 =

∑
i∈s I j ,i ,0

Ī s
j ,0

× K̄ s
j ,0, (71)

Where
∑

i∈s I j ,i ,0

Ī s
j ,0

is typically below 1 (46.9% on average, see online appendix). Then, we assume that the

share of the firm’s capital j in our sample’s industry level capital j is the same as the share of the firm’s

propensity to invest in that asset in our sample’s industry-level investment. Because most firms invest zero

in a given year, we compute each firm’s propensity to invest in asset j as that firm’s average investment in

j I m
j ,i ,0 for the years we do observe. In other words, at time 0, the imputed value for firm i in industry s is

inferred then given by :

K j ,i ,0 =

∑
i∈s I m

j ,i ,0∑
i∈s I m

j ,i ,0

×

∑
i∈s I j ,i ,0

Ī s
j ,0

× K̄ s
j ,0. (72)

For the aggregate industry levels of capital and investment, we rely on the series provided by INSEE

at the 38 industries level. We use net values of capital in current prices, which already account for previous

years’ capital depreciation.56

56We report the resulting aggregate capital stocks by broad industries in the online appendix.
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