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Abstract. Curve evolution models used in image segmentation and based on image region information usually

utilize simple statistics such as means and variances, hence can not account for higher order nature of the textural

characteristics of image regions. In addition, the object delineation by active contour methods, results in a contour

representation which still requires a substantial amount of data to be stored for subsequent multimedia applications

such as visual information retrieval from databases. Polygonal approximations of the extracted continuous curves

are required to reduce the amount of data since polygons are powerful approximators of shapes for use in later

recognition stages such as shape matching and coding. The key contribution of this paper is the development of a

new active contour model which nicely ties the desirable polygonal representation of an object directly to the image

segmentation process. This model can robustly capture texture boundaries by way of higher-order statistics of the

data and using an information-theoretic measure and with its nature of the ordinary differential equations. This

new variational texture segmentation model, is unsupervised since no prior knowledge on the textural properties

of image regions is used. Another contribution in this sequel is a new polygon regularizer algorithm which uses

electrostatics principles. This is a global regularizer and is more consistent than a local polygon regularization in

preserving local features such as corners.
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1. Introduction

Image segmentation is generally viewed as an es-

sential first step in low level vision and as providing

a mechanism for an automatic analysis of image

contents. Snakes (Kass et al., 1988) and active contour
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methods define energy functionals whose local min-

ima include boundaries of image regions. The two

main streams of thought emerged in active contours.

Geometric active contour models (Kichenassamy

et al., 1995; Caselles et al., 1995, 1993; Malladi

et al., 1995; Siddiqi et al., 1998), were developed

as gradient flows of a modified Euclidean arc length

which has almost zero weight near edges, and larger

weight far from them. These models are hence

edge-based, and are only sensitive to data near the

curve, are hence prone to noise variability and to

initial contour placement. To overcome this problem,

region-based active contours, which use both local

and global information were proposed (Chan and

Vese, 1999; Yezzi et al., 1999; Ronfard, 1994; Zhu

and Yuille, 1996; Chakraborty et al., 1996). These

models mainly assume that the image consists of a

finite number of regions, that are characterized by

a pre-determined set of features or statistics such as

means, and variances. An energy functional is con-

structed to pull these statistics apart. One advantage

over the geometric active contours is that there is no

need to calculate image gradients which are usually

sensitive to noise, albeit at a cost of additionally

imposed assumptions on the image. The popularity

of these active contour models was particularly due

to an efficient implementation scheme via partial

differential equations (PDEs), referred to as level set

methods (Osher and Sethian, 1988; Sethian, 1999).

Global optimization approaches to image seg-

mentation are based on energy functions minimiz-

ing different criteria such as Minimum Descrip-

tion Length (MDL) (Leclerc, 1989), and Bayesian

(Blake and Zisserman, 1987), and region competi-

tion (Zhu et al., 1998). A well-known mathematical

model (Mumford and Shah, 1985) sought to addition-

ally extract a boundary by approximating an image

by smooth functions in each region. Level-sets ac-

tive contour implementation of this model have re-

cently been introduced in Chan and Vese (2001) and

Tsai et al. (2001).

A particularly powerful cue in visual perception

is the set of textural features. Texture segmentation,

which is the task of parsing the image domain into a

number of regions such that each region has the same

textural properties is a challenging problem (Jain and

Farrokhnia, 1991; Manjunath and Chellappa, 1991).

The problem of unsupervised texture segmentation,

which proceeds without a priori information about

the textural characteristics of objects in a given image

remains largely an active research issue in computer

vision.

1.1. Related Work and Contribution

For texture analysis and modelling, two main groups

of approaches (or combinations thereof) have been de-

veloped (applied): (i) Filtering techniques based on

filter-banks of Gaussians and Gabor functions to char-

acterize different attributes of a texture at different

orientations and scales (Jain and Farrokhnia, 1991;

Simoncelli et al., 1992) have been shown to be ef-

ficient at capturing local spatial features. Note, how-

ever, that problems such as optimal choices of filters,

and fusion of their outputs remain open. (ii) Statisti-

cal modelling approaches characterize texture images

as arising from probability distributions on Markov

Random Fields (MRF’s) (Manjunath and Chellappa,

1991; Besag, 1973; Geman and Geman, 1984; Cross

and Jain, 1983), and their segmentation is achieved

through a minimization of a maximum a posteriori

(MAP) criterion of the observed image. An advantage

of these approaches is that they yield the parameters of

the underlying probability distribution which in turn,

affords one an ability to synthesize texture images by

sampling. Limitations of commonly used MRF mod-

els, on the other hand, are due to the fact that only

the first and second order statistics may tractably be

used, while, it is widely recognized that many textures

are strongly non-Gaussian regardless of the neighbor-

hood size (Zhu et al., 1998). An analytical probability

density for modeling clutter in natural images was pro-

posed in Grenander and Srivastava (2001).

Methods which attempt to unify the afore-

mentioned approaches have recently received atten-

tion. Zhu and Yuille’s region competition model (Zhu

and Yuille, 1996) in texture segmentation used two lo-

cal orientations of texture elements obtained through

a Gaussian filtering of image gradient components as

multivariate texture images. Zhu et al. (1998) devel-

oped a maximum entropy probability model built on

the texture features extracted by a set of filters aimed

at also capturing the properties of the texture at mul-

tiple scales and orientations. More detailed than clas-

sical MRF’s, these models are better able to capture

non-Gaussian textures. We, however, note that in con-

trast to our interest herein, namely in texture segmen-

tation, their main goal is texture synthesis. The heavy

computational burden, which we aim to avoid, is an

additional issue which sets our proposed approach
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apart from the afore-cited technique. Paragios and

Deriche (2002) also combined a filtering approach

with a statistical view while accounting for boundary-

based and region-based active contour frameworks,

to capture texture boundaries. This method requires a

prior knowledge on the existing textures in the given

image, to estimate a Gaussian mixture probability dis-

tribution representing these pre-defined textures.

Our overall objective of object (homogeneous re-

gion) delineation in an observed image is highly mo-

tivated by classification and recognition applications.

This in turn, and in contrast to existing active contours,

motivates a parsimonious and revealing representation

such as that based on landmarks/vertices of an approx-

imating polygon as we propose in this paper. In addi-

tion to its parsimony, this representation is expected to

accurately capture the prevailing texture and account

for it in the course of the analysis.

To motivate our investigation, an example of a syn-

thetic image of two distinct intensity regions with ad-

ditive uniform noise is illustrated in Fig. 1. Most active

contour models require significant regularization on

the contour in the presence of noise in the image. With

little regularization, the curve weaves around noise,

with medium regularization, there is still no way for an

active contour to get out of local minima in this highly

noisy case. With a very large regularization, the curve

starts to converge to the shape, but the shrinking ef-

fect is too powerful, and the curve continues to shrink

without sticking to the data, and eventually will col-

lapse to a point. By evolving an active polygon with a

relatively small number of vertices, strong regularizing

internal forces are no longer necessary to keep the con-

tour from “breaking-up”. A polygon laid on the same

noisy image in Fig. 1, propagates towards the bound-

aries with a greater resilience to noise, and results in

Figure 1. A simple image of a quadrilateral with additive uniform noise is segmented by: an continuous active contour propagation with (a)

small, (b) medium, (c) large regularization; (d) an active polygon.

a good delineation of the target object with only four

vertices accurately located at the corners of the object.

While our introduced model is applied to a seemingly

contrived simple example, it nevertheless, illustrates

the propagation of an active polygon through noise,

and free of cost due to sharp corners.

We propose a new texture segmentation ap-

proach which utilizes an information-theoretic mea-

sure, namely Jensen-Shannon divergence, which to

our knowledge has not been used in the active con-

tour framework, and seeks to distinguish and sepa-

rate probability density functions of various regions

in an image. This measure makes use of higher or-

der statistics beyond mean and variance by a compu-

tationally efficient manner which does not require his-

tograms. Jensen-Shannon divergence (Lin, 1991; He

et al., 2003), with Shannon entropy as a specific case

(Cover and Thomas, 1991), is a probabilistic differ-

ence measure, with properties of interest in various ap-

plications. For instance, unlike most other divergence

measures, it can be generalized to a finite number of

probability distributions, which makes it suitable to

an image segmentation scenario with several target re-

gions. For an image registration application, a similar

divergence measure, based on a Renyi entropy (Cover

and Thomas, 1991), was proposed by He et al. (2003),

and referred to as a Jensen-Renyi divergence. Jensen-

Shannon divergence was also applied to edge detection

on regular or texture images in Gomez-Lopera et al.

(2000) by measuring the probabilistic differences be-

tween relative frequency of gray values in two halves

of a small window that is slid over an image. Since

it was developed for edge detection purposes, the re-

sult of this method yields unconnected edges, and con-

tours, and requires further processing such as contour

linking for a segmentation purpose. It hence differs
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from our approach which aims at finding a solid seg-

mentation of objects in an image within a variational

framework. Our technique does not assume an under-

lying Gaussian model for texture regions, in contrast to

Zhu and Yuille (1996), and is hence statistically non-

parametric, and image data drives the estimation of the

divergence between the texture distributions. In con-

trast to our approach (Chesnaud et al., 1999), assume

particular prior densities which have explicit expres-

sions, and then make use of a MAP criterion min-

imized by an iterative stochastic optimization via a

polygon.

In our approach, the formulation of such an en-

ergy functional in conjunction with a polygonal prob-

ing tool, is followed by a gradient-based minimization

procedure which evolves the vertices by way of a cou-

pled set of Ordinary Differential Equations (ODEs).

To prevent degeneracy during motion of the vertices

(e.g. edges intersecting each other), we propose a

global regularizer technique which uses electrostatics

principles by viewing each edge of the polygon as a

line of uniform charge. This particular point is also of

interest in its own right, as it introduces a globally ge-

ometric regularizer rather than local geometric regu-

larizers that have been popular.

Remark. While technically conventional discrete

particle based implementations of active contours

(even going back to the snake model of Kass et.al.)

may be considered polygonal models, there is a key

difference, both philosophically and numerically, be-

tween these more conventional “active contours” im-

plemented discretely as finely sampled polygons and

what we are calling “active polygons”. This difference

is that conventional discrete implementations of active

contours are point-wise in their treatment of the model.

Namely, forces derived from image measurements for

evolving each vertex are obtained only in the vicin-

ity of that particular vertex. In our case, however, the

basic element of the discrete model is no longer the

vertex but instead the edges between vertices along

which image information is “accumulated” in order

to determine the motion of the vertex. This changes

both the mathematical treatment of the model as well

as its numerics. In conventional snakes, it is desirable

to have very closely spaced vertices since many sam-

ple points are needed to approximate the underlying

“non-polygonal” model (otherwise very little image

information will be used) whereas in an “active poly-

gon” it is desirable to have very few vertices in order to

yield longer edges (which in turn allow for more aver-

aging of image information along such edges). Rather

than marker-particle based techniques, our approach is

philosophically much more related to, but nevertheless

quite different from, spline-based models, where the

entire contour is represented by a few control points,

such as Blake and Isard (1998), Cremers et al. (2002)

and Figueiredo et al. (2000). The approach we pro-

pose aims at an unsupervised texture segmentation

scenario, in which the only prior information is the

number of different classes/regions which are assumed

to be simply connected due to our simple ODEs.

1.2. Discussion on Active Polygons

vs. Active Contours

Active polygons enjoy some advantages and flexibility

over existing techniques:

• The system of ODEs which results from our for-

mulation turns local image measurements at points

on the contour into global information, as these lo-

cal measurements are integrated along the polygon

edges. This makes our algorithm much more reli-

able and robust at capturing texture boundaries in

contrast to continuous curves which are local in

scope. Region-based methods also use global infor-

mation inside and outside the curve, but their gradi-

ent flow incorporates local information, and point-

wise on the curve, and is hence not amenable to

speed functions for capturing higher-order statistics

which can not be estimated from pointwise mea-

surements.

• A reliable detection of sharp object corners is partic-

ularly important in recognition and classification of

man-made objects. The algorithm presented intro-

duces no rounding effects at such important feature

points, which sets it apart from the continuous ap-

proaches. Furthermore, content based description of

multimedia data entails a demand for an efficient ac-

cess and representation of visual objects in a scene.

An efficient description of an object is its contour

representation, which may still require a consider-

able amount of information to be stored. The goal

is often to reduce the amount of data (e.g. com-

plex figures in cartography, geographical maps), and

polygons are powerful approximators of shapes

(Dunham, 1986; Kurozumi and Davis, 1982; Imai

and Iri, 1986; Freeman, 1978) for use in later recog-

nition stages (Koch and Kashyap, 1987), such as
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shape matching, and shape coding. Several tech-

niques for shape coding such as O’Connell (1997)

and Yun et al. (2001), entailed first extracting ob-

ject boundaries and subsequently finding a polyg-

onal approximation of the extracted contour. With

a goal of efficient compression, our technique, is

hence advantageous in that it captures in one shot,

a polygonal representation of objects in an image,

while avoiding a typically lengthy search for mean-

ingful locations, such as high curvature points, used

in shape matching. The polygonal representation of

an object from an image is only as good as the seg-

mentation of the image. It is thus more efficient

to invoke the polygonal representation directly in

the course of the image segmentation process rather

than afterwards. In short, our approach connects the

final polygonal representation we wish to use, di-

rectly to the image data.

• Another advantage of using ODEs rather than PDEs

is a more efficient implementation. In the discretiza-

tion, a significantly larger time step can be chosen to

speed up the algorithm, whereas the PDEs usually

require very small time steps for stable numerical

implementations, particularly when strong regular-

izers, which are avoided by our model, are neces-

sary.

• A particularly interesting property of the proposed

approach is that a stochastic component may easily

be incorporated, contrary to the continuous curve

propagation by PDEs. One can indeed add a ran-

dom perturbation component to the deterministic

ODE component, such as a standard Brownian mo-

tion with a certain variance, in order to make the

evolution more robust to noise effects and, usually

yielding a convergence to a local extremum of the

objective functional.

• Finally, we incorporate a novel global regularizer

to the vertex motion equations using electrostatics

principles. When the regularizer is the sole term act-

ing on the polygon, it forces the polygonal edges

and vertices to remain apart as imposed by the elec-

tric field induced at a vertex. We note that our pro-

posed approach is to be distinguished from that of

Bruckstein et al. (1995), which, using a discrete

form of curvature to account for only local geom-

etry, evolves a polygon in the absence of an im-

age term, and with a different intended applica-

tion. Our global, rather than local, regularizer is

more consistent in preserving local features such as

corners.

The paper is organized as follows. In the next sec-

tion, we derive the ODEs to obtain motion equations

for polygon vertices. In Section 3, we introduce the

Jensen-Shannon criterion for evolving a single con-

tour and multiple contours with the goal of texture

segmentation. In Section 4, a novel polygon regular-

izer is introduced in order to avoid degeneracy in the

course of the polygon propagation. To our knowledge,

this type of global geometric regularizer has been used

nowhere, including all related spline-based active con-

tour models. Results, conclusions and discussions are

given in Section 5.

2. Active Polygons

The dynamical equation of an active contour, typi-

cally follows the construction of an energy functional

around a region which is subsequently minimized by

a gradient descent flow. Our goal is to design flows to

move a polygon by its relatively small number of ver-

tices rather than a continuous active contour. To ex-

plicitly invoke a contour C : [a, b] ⊂ R → R
2 around

some region R ⊂ R
2, in which the integrand f (x, y)

consists of a function f : R
2 → R, we use the diver-

gence theorem to write an integral over the interior of

a curve as a contour integral

E(C) =
∫ ∫

R

f (x, y) dx dy =
∮

C=∂ R

〈F, N〉 ds,

where N denotes the outward unit normal to C, ds the

Euclidean arclength element, and where F = (F1, F2)

is chosen so that ∇·F = f . In what follows we will let

p ∈ [a, b] denote a fixed parameterization of the curve

where C(a) = C(b). We will indicate by v any variable

whose variation affects the geometry of the curve. In

the case of a polygon, v will denote a Cartesian coordi-

nate of any vertex. In the case of a smooth curve, v will

denote a curvilinear coordinate which varies along the

normal direction at any point on the curve but remains

constant along the curve itself. The key point, in either

case, is that v and p constitute independent variables.

We now rewrite the contour integral in terms of the

parameter p,

E(C) =
∫ b

a

〈F, N〉‖C p‖ dp =
∫ b

a

〈F, JCp〉 dp,
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where

J =
[

0 1

−1 0

]
, and N‖C p‖ = JCp.

In order to determine the gradient flow associated with

E , we compute the derivative with respect to v. After

some manipulations, Ev can be obtained as Zhu and

Yuille (1996) and Yezzi et al. (2002)

Ev(C) =
∫ b

a

f 〈Cv, JCp〉 dp. (1)

In the case of a smooth curve C, the variable v de-

notes, at each point on the curve, a coordinate which

varies in the normal direction to the curve. Thus, if we

are considering geometric evolutions ∂C
∂t

of the curve,

we see from the final expression of Ev , that the gradi-

ent flow for C with respect to E is given by

∂C

∂t
= f N. (2)

Proceeding along a similar but slightly modified

line of thought, we consider a closed polygon V as

the contour C , and with a fixed number of vertices

{V1, . . . , Vn} = {(xi , yi ), i = 1, . . . n}. We may pa-

rameterize C by p ∈ [0, n] as

C(p, V) = L
(

p − ⌊p⌋, V ⌊p⌋, V ⌊p⌋+1

)
(3)

where ⌊p⌋ denotes the largest integer which is not

greater than p, and where L(t, A, B) = (1 − t)A+ t B

parameterizes between 0 to 1 the line from A to B

with constant speed, (A and B denote the end points

of a polygon edge). Note that the indices of V should

be interpreted as modulo n so that V0 and Vn denote

the same vertex (recall C is a closed curve). Finally,

note that C p is defined almost everywhere (where

p �= ⌊p⌋) by

C p(p, V) = V ⌊p⌋+1 − V ⌊p⌋. (4)

Proposition 1. Using the above parameterization

C p(p, V) in Eq. (1), we obtain the first variation of

the energy functional E as

Ev =
∫ n

0

f
(
L
(

p − ⌊p⌋, V ⌊p⌋, V ⌊p⌋+1

))

×
〈
Cv, J

(
V ⌊p⌋+1 − V ⌊p⌋

)〉
dp, (5)

and the minimization of E is achieved by a gradient

descent flow given by a set of ODEs for each vertex

Vk, k = 1, . . . , n, as (see Appendix A)

∂V k

∂t
=

∫ 1

0

p f (L(p, V k−1, V k)) dp Nk,k−1

+
∫ 1

0

(1 − p) f (L(p, Vk, Vk+1)) dp Nk+1,k,

(6)

where Nk,k−1 (resp. Nk+1,k) denotes the outward unit

normal of edge (Vk−1 − Vk) (resp. (Vk − Vk+1)).

Written for each vertex, these equations are a set

of coupled ordinary differential equations to be simul-

taneously solved. Intuitively, any of these equations

concisely re-written as

∂Vk

∂t
= f̃ k,k−1 Nk,k−1 + f̃ k+1,k Nk+1,k (7)

integrates the information, which is obtained from

image values along two adjacent edges (Vk−1 − Vk),

and (Vk − Vk+1), and combined with the global im-

age statistics (depending on the function f ), into two

overall speed functions f̃ k,k−1, and f̃ k+1,k in order to

move the vertex Vk . This system of ODEs hence ef-

fectively implements a coupled motion of all the ver-

tices of a polygon. In addition, this integration proce-

dure, provides improved robustness to noise. Another

advantage of the flow in Eq. (6) is the reduction of

the dimension of contour propagation problem from a

theoretically infinite one to roughly on the order of 3–

30 vertex points, depending on the complexity of an

object boundary. This also clearly highlights the dif-

ferences mentioned earlier between active polygons

and marker particle methods. One may note the sig-

nificantly reduced number of well separated vertices

which have to be propagated. In addition, the motion

of each vertex being based on a weighted combination

of the unit normals only at the polygon’s edge points,

implies that there is no need for a unit normal to be

defined at a vertex. As a result, the polygonal contour

formed by these vertex locations (V1, . . . , Vn) need not

be differentiable. A generic image-based term, indeed

a speed function f , can be used in the derived ODEs

describing the motion of our active polygons, hence

making them quite flexible.

For illustration, we apply our active polygon model

in Eq. (6) to an image using simple mean statistics

for the foreground and the background. In Fig. 2, an
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Figure 2. Demonstration of flow (6).

active polygon is propagated where its edges align

themselves along the edges of the target object, which

is a simple triangle shape, with the influence of the

weights determined by the data term. The result of the

polygon propagation shown at the right is automati-

cally the location of 3 vertices of the target triangle.

Implementation issues along with the initialization are

discussed in Section 5.1.

3. An Information-Theoretic Criterion

It is commonly assumed in region-based active con-

tours that an image is piecewise constant. Several tech-

niques based on utilizing the first and second order

statistics have been proposed. While these techniques

are quite adequate for Gaussian data, they are highly

insufficient to capture the underlying information in

non-Gaussian data which include almost all textures.

Towards that end, we use an information theoretic

measure which not only captures the higher order in-

formation of non-Gaussian data, but provides a prob-

abilistic disparity measure among N data populations.

Hence, we consider a decision problem with N classes

c1, . . . , cN with prior probabilities, a = (a1, . . . , aN )

such that
∑N

i=1 ai = 1. Based on the Shannon entropy

H , the so-called generalized Jensen-Shannon diver-

gence (Lin, 1991; He et al., 2003) among N proba-

bility densities is

JSa = H

(
N∑

i=1

ai pi (ξ )

)
−

N∑

i=1

ai H (pi (ξ )) (8)

where pi (ξ ) denotes the probability density of the i th

class in a region. One of the major features of the

Jensen-Shannon divergence is that different weights ai

may be assigned to the relevant distributions according

to their importance.

Our ability to better capture the underlying statis-

tics of regions using the entropy-based symmetric di-

vergence measure, suggests that this may play a key

role in constructing an energy functional whose op-

timization would yield a polygonal flow to well de-

lineate differently textured regions. To proceed, and

for the sake of efficiency, we resort to a fast numer-

ical estimation of the densities which in turn facili-

tates the estimation of the entropies and hence of the

divergence measure. We chose to adopt a first order

approximation of a density which achieves the maxi-

mum entropy solution, and which, in turn, is used in

approximating the entropy expression as proposed by

Hyvarinen (1997).

On a region delineated by an active contour, we as-

sume a scalar random variable (r.v.) ξ on a given set of

intensity values �, ξ : � ⊂ R → R
+, and the avail-

able information on the density of the r.v. ξ is given

by

∫

�

p(ξ )G j (ξ ) dξ = u j , for j = 1, . . . , m, (9)

where the estimates u j are the expectations E{G j (ξ)}
of m known independent functions {G j (·)} of ξ. Note

that there is no model assumption for the random vari-

able ξ, however, the distribution which has the max-

imum entropy and which is also compatible with the

measurements in Eq. (9) is sought (Cover and Thomas,

1991; Jaynes, 1963). This problem has been widely

studied, and the form of the maximum entropy distri-

bution has been derived in Cover and Thomas (1991)

and Jaynes (1963). The density po(ξ ) which satisfies

the constraints (9) and has maximum entropy among

all such densities is of the form po(ξ ) = Be
∑m

j=1 b j G j (ξ )

where B and b j are constants that are determined from

the constraints. A first order approximation for this

maximum entropy density denoted by p̂(ξ ), is given
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by Hyvarinen (1997)

p̂(ξ ) = φ(ξ )

(
1 +

m∑

j=1

u j G j (ξ )

)
(10)

where u j = E{G j (ξ)}, and φ(ξ ) is the standard

Gaussian density φ(ξ ) = exp(−ξ 2/2)/
√

2π . (E{·} is

the expectation of a random variable). In practice, the

u j ’s are estimated as the corresponding sample av-

erages of the G j (ξ ), i.e. we compute measurements

in a region R of an image function I : R
2 → R by

u j = 1
|R|

∑
(x,y)∈R G j (I (x, y)), where |R| is the num-

ber of pixels in R. A simple approximation of the en-

tropy functional is subsequently found upon substitut-

ing the approximate density p̂(ξ ) in

H ( p̂(ξ )) = −
∫

�

p̂(ξ ) log p̂(ξ ) dξ ≈ H (ν) −
1

2

m∑

j=1

u2
j ,

(11)

where H (ν) = 1
2
(1 + log(2π )) is the entropy of a

standardized Gaussian variable (see (Hyvarinen, 1997)

for details). This result implies that a first order ap-

proximate maximum entropy of a given distribution is

found by calculating how far away it is from that of

the standard Gaussian density.

3.1. Evolution of a Single Active Contour

With a single contour, the image domain � ⊂ R
2 is

split into two regions, namely a region inside the con-

tour, call it Ru , and a region outside the contour, �\Ru .

Exploiting the approximation in Eq. (11), we define

an energy functional whose optimization yields the

evolution of our active contour based on a divergence

measure defined in Eq. (8). The new energy functional

for two regions, is

JSa,2 = H (a1 p̂1(ξ ) + a2 p̂2(ξ ))

− a1 H ( p̂1(ξ )) − a2 H ( p̂2(ξ ))

= −
∫

�

(a1 p̂1(ξ ) + a2 p̂2(ξ )) log(a1 p̂1(ξ )

+ a2 p̂2(ξ )) dξ + a1

∫

�

p̂1(ξ ) log( p̂1(ξ )) dξ

+ a2

∫

�

p̂2(ξ ) log( p̂2(ξ )) dξ, (12)

Here the expression H (a1 p̂1(ξ )+a2 p̂2(ξ )) may simi-

larly to H (p1(ξ )) be approximated by substituting the

approximate density expression in Eq. (10) to yield

H (a1 p̂1(ξ ) + a2 p̂2(ξ ))

≈ −
∫

�

(
a1 φ(ξ )

[
1 +

m∑

j=1

u j G j (ξ )

]

+ a2 φ(ξ )

[
1 +

m∑

j=1

v j G j (ξ )

])

· log

(
a1 φ(ξ )

[
1 +

m∑

j=1

u j G j (ξ )

]

+ a2 φ(ξ )

[
1 +

m∑

j=1

v j G j (ξ )

])
dξ

= −
∫

�

φ(ξ )

(
1 +

∑

j

(a1 u j + a2 v j ) G j (ξ )

)

· log φ(ξ )

(
1 +

∑

j

(a1 u j + a2 v j ) G j (ξ )

)
dξ

≈ H (ν) −
1

2

m∑

j=1

(a1 u j + a2 v j )
2. (13)

This shows that the same first order entropy approxi-

mation holds for the sum of densities. Denoting mea-

surements inside the contour as u j , and those outside

as v j , for j = 1, . . . , m, and using the approximate

entropy expressions (11), (13) in the energy functional

Eq. (12), it may be approximated as

Ĵ Sa,2 = H (ν) −
1

2

m∑

j=1

(a1 u j + a2 v j )
2

− a1

(
H (ν) −

1

2

∑

j

u2
j

)

− a2

(
H (ν) −

1

2

∑

j

v2
j

)

=
1

2

m∑

j=1

(
− (a1 u j + a2 v j )

2 + a1 u2
j + a2 v2

j

)

=
1

2
a1 a2

m∑

j=1

(u j − v j )
2 (14)

by noting that a1 + a2 = 1.

Note that on account of the higher order nature of

the coefficients u j and v j (i.e. higher order than first

and second moments), the proposed energy functional

subsumes the previously proposed techniques based
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on the first and second order statistics. Those may in

fact be shown to be particular cases of the above. This

may also be justified by the fact that non-Gaussian

densities may be expanded and that their higher or-

der cumulants reflect the degree (or the lack thereof)

of skewness or kurtosis of a density relative to a nor-

mal (Kendall and Stuart, 1958), hence G(ξ ) = ξ 3, and

G(ξ ) = ξ 4, would be particular choices for the mea-

surement functions G j . Other choices of these func-

tions; G1(ξ ) = ξe−ξ 2/2 as an odd function to mea-

sure asymmetry (analogous to the third moment as a

measure of skewness), and G2(ξ ) = |ξ |, or e−ξ 2/2 as

choices of even functions (analogous to the fourth mo-

ment as a measure of sparsity, bimodality, relative to

a Gaussian density), are given in Hyvarinen (1997) and

Hyvarinen and Oja (2000). The idea behind using ex-

pectations of odd and even functions of the data is thus

similar to attempts to characterize a density by the first

few moments (usually the order is less than 4). The

choice of priors ai for each density is explained next:

– If we assign constant priors a1 and a2 (e.g. equal

priors a1 = a2 = 0.5) for both of the regions,

the constant a1a2/2 multiplying the energy func-

tional in Eq. (14) has no effect in terms of its first

variation, and the gradient descent flow of the ac-

tive contour that minimizes the energy functional

E = − Ĵ Sa,2 = − 1
2
a1 a2

∑m
j=1(u j − v j )

2 may be

obtained by taking its first variation as

∂C

∂t
= ∇ Ĵ Sa,2 =

m∑

j=1

(u j − v j )(∇u j − ∇v j ), (15)

where a continuous active contour C is utilized. As

we have noted in the previous section, the result-

ing flow can be directly applied to an active poly-

gon instead of a continuous active contour. A mea-

surement or a constraint on a region distribution; u j

(resp. v j ) for region Ru (resp. Rv), is given by

u j =
∫

Ru
G j (I (x, y)) dx dy

|Ru |
,

(16)

v j =
∫
�\Ru

G j (I (x, y)) dx dy

|Rv|
.

with |Ru | =
∫

Ru
dxdy, |Rv| =

∫
�\Ru

dxdy, and for

j = 1, . . . m different constraints. Then the partial

variation of u j and v j in Eq. (16) w.r.t C is given

by

∇cu j =
G j (I ) − u j

|Ru |
Nu,

(17)

∇cv j = −
G j (I ) − v j

|Rv|
Nu,

where Nu denotes the outward unit normal of C (re-

gion Ru). Note that the outward unit normal for the

boundary of the outer region is −Nu .

The contour evolution is found by substituting

Eqs. (17) into the gradient descent flow Eq. (15):

∂Cu

∂t
= f Nu, where

f =
m∑

j=1

(u j − v j )

(
G j (I (x, y)) − u j

|Ru |

+
G j (I (x, y)) − v j

|Rv|

)
. (18)

We note that this is a generalized form of the data

term of the flow proposed by Yezzi et al. (1999,

2002). In the above equation, the speed f of the con-

tour along its normal direction, can be directly used

in the active polygon evolution equation derived in

Eq. (6), and restated in Eq. (7).

– On the other hand, in Eq. (14) we may assign vari-

able weights a1, and a2 that depend on the regions.

An intuitive choice would be to pick the ratio of the

area of each region to the total area of the image do-

main, say A = |Ru | + |Rv|. This choice in practice

implies taking into account the number of pixels in

each region, and would thus lead to a measure that is

normalized with respect to the areas of the regions.

Letting a1 = |Ru |
A

, a2 = |Rv |
A

, we then have to take

into account in the derivation of the gradient descent

flow, the first variations of the coefficient terms as

well:

∂C

∂t
= ∇ Ĵ Sa,2

=
m∑

j=1

1

2

|Ru ||Rv|
A2

(2(u j − v j )(∇u j − ∇v j ))Nu

+
1

2

|Rv|
A2

(u j − v j )
2
Nu −

1

2

|Ru |
A2

(u j − v j )
2
Nu .

(19)

After some manipulations (given in Appendix

B), this gradient descent flow can be written
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as

∂C

∂t
= f Nu, where

f =
1

2A

m∑

j=1

(u j − v j )((G j (I ) − u j )

+ (G j (I ) − v j )) (20)

whose energy functional is indeed a generalized

form of the external energy functional that Chan and

Vese proposed in (1999):

ECV =
1

2A

m∑

j=1

∫

Ru

(G j (I ) − u j )
2 dx dy

+
∫

Rv

(G j (I ) − v j )
2 dx dy. (21)

We also note here that in the presence of severe

noise, as illustrated in Fig. 1 for a uniform noise, the

continuous contour ends up encircling small noisy re-

gions, and its length grows. To overcome such effects,

a penalty on the length of an active contour is added

to its energy functional E =
∫∫

R
f dxdy + α

∮
C

ds,

where α ≥ 0, and s is the arclength of C . This second

term brings a problematic trade-off which we avoid

in active polygon framework as will be explained

next.

The advantage of propagating a polygon instead of

a continuous curve, is demonstrated in Fig. 3, where

a synthetic texture with vertical stripes is given. Ob-

viously, thresholding for segmentation will not work

since one of the stripes has the same color as the back-

ground. A continuous active contour propagation fails

with a small regularization, i.e. small α mentioned in

the previous paragraph, because the curve dips down

into the gaps of the stripes with the same color as the

background, and the individual bars are captured. With

an increased amount of regularization (higher α) on

Figure 3. A continuous contour with a small regularization (first

two), fails to capture as a whole an object with a synthetic texture

of vertical stripes, whereas with a large regularization (middle two),

rounds off the boundaries, and continues to shrink without sticking

to the data. A polygonal contour (last two) correctly segments the

textured region.

Figure 4. An active contour (first two) fails to capture synthetic

texture of vertical stripes even after a Gabor filtering, whereas

the active polygon (last two) captures the outline of the textured

region.

the continuous curve (middle two images), the curve

remains intact, however corners are rounded, and if

one maintains the evolution, the important features

will be “missed”. We have not been successful at ob-

taining the appropriate tradeoff between the data term

and the regularizer in the continuous case to yield

a satisfactory result. Active polygon propagation in

Eq. (6) with f in (20) accurately and consistently cap-

tures the target shape. We also show in Fig. 4, the

Gabor-filtered version of the same synthetic textured

object, (tuned for vertical orientation). It, however, can

be observed that the active contour still fails to oper-

ate on the filtered texture, whereas the active polygon

again successfully captures the outline of the target

region.

3.2. Evolution of Multiple Active Contours

A nice property of the Jensen-Shannon divergence

measure is that it may be generalized as a probabilis-

tic difference measure among any finite number of

probability densities. Coupled propagation equations

for multiple active contours which delineate different

regions on an image domain can also be obtained as

the gradient ascent flow of the JS divergence mea-

sure among the densities of those regions (note that

we are trying to maximize the distance among the

densities of regions). There is flexibility in the place-

ment of the contours, which may delineate distinct or

overlapping regions without difficulty. We again de-

rive the gradient flows generally with respect to con-

tinuous contours. Figure 5 depicts two active contours

whose inner regions are denoted by Ru , and Rv , and

their common exterior by Rw. The measurements, i.e.

statistics, in these respective regions are denoted by

u j , v j , w j , j = 1, . . . , m for m different measure-

ments, with respective prior probabilities a1, a2, a3 :

a1 + a2 + a3 = 1. The energy functional for three
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Figure 5. Ternary image regions.

densities can be written as

JSa,3 = H

(
3∑

i=1

ai pi (ξ )

)
−

3∑

i=1

ai H (pi (ξ ))

≈ H (ν) −
1

2

m∑

j=1

(a1 u j + a2 v j + a3 w j )
2

− a1

(
H (ν) −

1

2

∑

j

u2
j

)

− a2

(
H (ν) −

1

2

∑

j

v2
j

)

− a3

(
H (ν) −

1

2

∑

j

w2
j

)

Ĵ Sa,3 =
1

2

m∑

j=1

(a1a2(u j − v j )
2 + a1 a3(u j − w j )

2

+ a2a3(v j − w j )
2). (22)

This form of energy functional may easily be ex-

trapolated to three active contours, thus four regions

with statistics u j , v j , w j , z j ,

Ĵ Sa,4 =
1

2

m∑

j=1

a1 a2(u j − v j )
2 + a1 a3(u j − w j )

2

+ a1 a4(u j − z j )
2 + a2 a3(v j − w j )

2

+ a2 a4(v j − z j )
2 + a3 a4(w j − z j )

2. (23)

The prior probabilities of each density a1, . . . , a4

may be selected in a variety of ways with the sim-

plest selection being the equal priors, i.e. ai =
0.25, i = 1, . . . , 4. It is now straightforward to

approximate the JS functional Ĵ Sa,N for N regions

on the image domain. It may be observed that the

first-order approximations to both the densities and

the corresponding entropies of the regions, lead to

an overall measure that computes a weighted sum of

the divergence measures (i.e. distances between their

statistics) between all pairwise combinations of the

regions.

Active contour evolutions for three regions using

means and variances as statistics of each region were

derived from a totally different perspective by Yezzi

et al. (1999). Their energy functional was based on a

geometric notion which maximized the area of a trian-

gle formed by the statistics of the three regions. Our

energy functional on the other hand, is information-

theoretic in nature, and evaluates the distance among

probability densities.

The ternary case entails the derivation of a gradient

flow for each of the two active contours Cu , and Cv .

Taking the first variation of the energy functional in

Eq. (22) w.r.t. the contour Cu , yields

∇cu
Ĵ Sa,3 =

m∑

j=1

[a1 a2(u j − v j ) + a1 a3(u j − w j )]

× ∇cu
u j − [a1 a3(u j − w j )

+ a2 a3(v j − w j )]∇cu
w j (24)

where we used the fact that ∇cu
v j = 0, ∀ j , since v j

are the statistics inside the contour Cv which do not

depend on the contour Cu .

The partial variation of w j ’s requires more atten-

tion than that of u j ’s and v j ’s since the statistic w j

is calculated over the common exterior of both con-

tours whose boundary may not be smooth when the

two contours overlap. We exploit a a similar strategy

given in Yezzi et al. (1999) to express a statistic in this

third region using characteristic functions χu, χv over

the regions Ru, Rv as

w j =
∫
�\Ru

G j (I )(1 − χv) dx dy
∫
�\Ru

(1 − χv) dx dy

where the denominator may be renamed as |Rw|.
The variation of w j w.r.t. Cu can hence be obtained

as

∇cu
w j = −

G j (I ) − w j

|Rw|
(1 − χv)Nu . (25)
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Figure 6. Ternary flows using image forces with G(x) = x , are used to segment this simple ternary image corrupted by Gaussian noise.

Output of the algorithm shown on the right provides only 5 vertex locations for the first object, and 3 vertex locations for the second object.

The gradient descent flow of the contour Cu which

is equal to ∇cu
Ĵ Sa,3 is thus obtained as ∂C u

∂t
= fu Nu ,

where

fu =
m∑

j=1

[a1 a2(u j − v j ) + a1 a3(u j − w j )]

×
G j (I (x, y)) − u j

|Ru |
+ [a1 a3(u j − w j )

+ a2 a3(v j − w j )]
G j (I (x, y)) − w j

|Rw|
(1 − χv).

(26)

By similar arguments, one can write w j =∫
�\Rv

G j (I )(1−χu )dxdy∫
�\Rv

(1−χu )dxdy
, where the denominator is equal to

|Rw|, the variation of w j w.r.t Cv can be obtained as

∇cv
w j = −

G j (I ) − w j

|Rw|
(1 − χu)Nv. (27)

Then taking the first variation of the energy func-

tional in Eq. (22) w.r.t. the contour Cv , and noting that

∇cv
u j = 0, ∀ j , leads to the gradient flow of the con-

tour Cv , ∂C v

∂t
= fv Nv , where

fv =
m∑

j=1

[−a1 a2(u j − v j ) + a2 a3(v j − w j )]

×
G j (I (x, y)) − v j

|Rv|
+ [a1 a3(u j − w j )

+ a2 a3(v j − w j )]
G j (I (x, y)) − w j

|Rw|
(1 − χu).

(28)

The two speed functions fu and fv when inserted into

Eq. (6) for two separate polygon propagations, Cu and

Cv , result in ternary polygonal flows.

We illustrate in Fig. 6, the ternary case for poly-

gon propagations with fu and fv given in Eq. (26)

and Eq. (28). Although, the polygonal contours Cu and

Cv evolve separately, their motion is coupled through

the variables in the evolution equations that depend

on each of the three regions. Two contours move

in such a way to maximize the approximate Jensen-

Shannon divergence among densities of the three re-

gions, namely Ru : inside the contour Cu ; Rv: inside

the contour Cv; Rw: the complement of Ru

⋃
Rv .

Only means are used as the separating statistics, (i.e.,

j = 1, G(x) = x), and the resulting two polygons

are shown in Fig. 6 (right). Hence, the gain is again

two-fold: segmentation of the targets, and their de-

scription in terms of a handful of vertices are both

achieved.

4. A Global Polygon Regularizer

The flow of an active polygon may, under the sole in-

fluence of a data term, become undefined (degenerate)

under a variety of scenarios, e.g. when a vertex be-

comes infinitesimally close to a non-neighbor edge of

the polygon, or when two vertices or two edges come

infinitesimally close to each other at some point. We

show such an example in Fig. 7, in which propagation

of an initial polygon with 5 vertices becomes degen-

erate, where the vertex V4 approaches (then crosses)

the edge between vertices V2 and V3. As a solution to

overcome this problem, we introduce a natural regular-

izing term well adapted to an evolving polygon, which

would not be computationally feasible for smooth con-

tinuous contours. This regularization is accomplished

by first viewing each edge of the polygon as a finite

line charge of uniform charge density. We compute

an electric field E, generated by a finite uniform line

charge (a, b) (depicted in Fig. 8), exerted on a point

charge, and the total electric field Eab(x′) can be writ-

ten in terms of the two-vectors xa = x′ − a and
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Figure 7. We demonstrate that flow (6) may become degenerate without an additional constraint on the motion of vertices.

Figure 8. Calculation of the electric force exerted by a line charge

(a, b) at a point x′ on the polygon.

xb = x′ − b,

Eab(x′) =
kc L

‖xa‖2‖xb‖2 − (xa · xb)2

×
(

‖xb‖2xa − (xa · xb)xb

‖xb‖

+
‖xa‖2xb − (xa · xb)xa

‖xa‖

)
. (29)

For details of this derivations, we refer to Appendix C.

As shown in the previous section, a data term corre-

sponding to a given vertex consists of an integrated

force along its two neighboring edges. In a similar

way, an electric field exerted at a vertex is also inte-

grated along two neighboring edges. Evolution of a

polygon vertex V k , due to the total electric field Ek

integrated along two neighbor edges (V k−1, V k) and

(V k, V k+1) may then be written as

∂Vk

∂t
= Ek =

n∑

j=0
j �=k, j �=k−1

∫ 1

0

p EV j−1,V j

× (pV k + (1 − p)V k−1) dp

+
n∑

j=0

j �=k, j �=k+1

∫ 1

0

(1 − p)EV j ,V j+1

× ((1 − p)V k + pV k+1) dp. (30)

This global, rather than local, geometric depen-

dence makes this regularizer very different from the

ones used in the literature. The use of a global regular-

izer is more consistent with the desire to capture local

features that would otherwise not be captured. Thus,

the additional and novel geometric component of the

polygon evolver, which induces global geometric de-

pendence, provides a regularization which both avoids

the flow degeneracy as well as captures sharp corners

of the target shape without any shrinking or smoothing

effects.

We demonstrate the polygon regularization capa-

bility of the electric force flow in Eq. (30) in Fig. 9

for two different polygons. The polygonal evolution

with an electrostatic regularizer force (plotted at each

vertex) is shown at several snapshots in these fig-

ures. Note how the force at each vertex is large in

magnitude initially, and push a vertex away from

the other edges of the polygon. The magnitude of

the electric force at each vertex decreases and edges

Figure 9. Electrostatic regularizer in Eq. (30) computes the elec-

tric force at each vertex.



212 Unal, Yezzi and Krim

remain well apart which is exactly the effect we ex-

pect from the regularizer force. This force should be

insignificant when a vertex and its adjacent edges

are not very close to most of the other edges, and

should become influential, even dominate when the

vertex or its adjacent edges are very close to other

edges.

The addition of the regularizer term (30) to the mo-

tion equation of a vertex obtained in Eq. (6) leads to

the following modified vertex flow

∂V k

∂t
= α

{ ∫ 1

0

p f
(
L(p, V k−1, V k)

)
dp Nk,k−1

+
∫ 1

0

(1 − p) f (L(p, Vk, Vk+1)) dp Nk+1,k

}

+ (1 − α)Ek . (31)

Here, α, a constant parameter to weight the influ-

ence of data term, and the electric field term, is cho-

sen as 0.95 throughout the evolutions. The reason that

we put such a heavy weight on the data term is that

the regularizer only kicks in very powerfully when de-

generacy occurs, and it lets the data term govern the

evolution of the polygon during most of the evolution

time.

In Fig. 10 we demonstrate the use of flow (31) for

the same initial active polygon with 5 vertices which

has been shown to result in an ill-posed flow in the pre-

vious section in Fig. 7. Here, snapshots of only the ac-

tive polygon on the triangle shape image are given to

better appreciate the influence of the regularizer, and

we show the electric force at each vertex during this

evolution. Note that the electric force at a vertex be-

comes significantly large when the vertex is infinites-

imally close to another edge in this figure. This event

exactly keeps the polygon simple during the evolution,

Figure 10. The electric forces for an evolution are shown. Note the

forces only become significant when a vertex approaches another

vertex or edge.

and by the effect of the data term, the polygon con-

verges to the target shape.

5. Results and Conclusions

In this paper, we have presented a new approach

for image segmentation through polygon propagating

equations. In this section, by way of numerical experi-

ments, we validate the effectiveness and the usefulness

of our technique.

5.1. Implementation Issues

The performance of most active contour algorithms

depend on the initial conditions (Zhu and Yuille,

1996). A particularly important question in carrying

out such flows, is that of initializing the contour.

Specifically in our case, we need to specify the number

of vertices, and their placement to start off the evolu-

tion of the polygon. For the active polygons, though,

it is possible to circumvent this problem, and speed

up the convergence, by a simple approach which helps

an initial active polygon adaptively adjust to the num-

ber of vertices required for the description of the tar-

get shape. Towards that end, we may initialize a very

coarse polygon with a small number of vertices, e.g.

a big rectangular or circular polygon close to the im-

age boundaries. While the initial polygon, usually with

very few vertices, is propagating with both the image

force and the regularizer force, new vertices are pe-

riodically added and removed affording it a flexible

motion towards the target region. A natural criterion

to remove a vertex may for instance be based on the

angle between its two adjacent edges being close to

either 0, or π . This may be effected for a given ver-

tex V k , with its adjacent edges A = (V k−1 − V k), and

B = (V k+1 − V k), by computing the following inner

product A · B = ‖A‖‖B‖ cos(θAB), the θAB being

the angle between the two vectors. One may therefore

check if

| cos(θAB)| =
|A · B|

‖A‖‖B‖
≈ 1, (32)

to determine the redundancy of a vertex. In either case,

the vertex V k may simply be removed from the ver-

tex list, to finally yield a polygon properly enclosing

the shape. During a vertex addition period of an evolu-

tion, the magnitude of our image force along each edge
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of a polygon, i.e. D =
∫ 1

0
| f (L(p, Vk, Vk+1))|dp, is

computed, and a new vertex is added to a middle point

of the edge with the maximum value of D. The intu-

ition here is that the edges with higher image speeds

are closer to image structures that may require finer

details.

For implementational purposes, the polygon struc-

ture P is a two-vector (2-D vector), and the normals

needed in the computation of Eq. (31) are computed

as Nk,k−1 = (−P(k, 1)+ P(k −1, 1), P(k, 0)− P(k −
1, 0))T . We also maintain a two-dimensional function

which acts as an indicator function to show which

pixel is inside or outside a polygon during the evo-

lution to facilitate computation of the statistics in the

regions. Statistical calculations may be carried out fast

by computing the change in the position of each poly-

gon edge, and appropriately adding or subtracting the

statistics computed in that difference region, which re-

sults in the motion of the edge, which is a straight line,

from one iteration to the next. Time step in the dis-

cretization of the ODE is chosen large, e.g. δt = 10,

which indeed helps the model to escape various local

minima of the objective function. For a typical image

of roughly 250×300 size, the relative speed of the ac-

tive polygon model is approximately twice that of an

associated active contour model using the same data

term, and runs on the order of a few seconds.

As we mentioned, we may also add a random per-

turbation to our ODE model, a zero-mean Gaussian

Figure 11. A zebra figure is captured by the active polygon model. A generic rectangular active polygon close to image boundaries is initial-

ized.

r.v. with a variance that has a very minor effect when

compared to the change in the image term. This trivial

perturbation changes the path of each evolution very

slightly although the results are very consistent as will

be shown next.

5.2. Experimental Results

In this section, we demonstrate texture segmenta-

tion examples on natural texture images. Our ac-

tive polygon propagation model is in Eq. (31) with

speed function in (20), and measurement functions

G1(ξ ) = ξe−ξ 2/2, G2(ξ ) = e−ξ 2/2, G3 = |ξ |, G4 =
log(cosh(x)).

In the first example, a zebra on a grassy background

constitutes of mainly two textured regions (Fig. 11). A

generic rectangle, i.e. just four vertices, is initialized

on the zebra image which is quite challenging in terms

of unsupervised texture segmentation. Snapshots from

the polygon propagation with the resulting segmenta-

tion in Fig. 11, show that a zebra figure is very nicely

captured.

Other natural texture examples include a monarch

larvae and a monarch butterfly with generic polygon

initializations, a circle and a rectangle, are shown in

Fig. 12. In the same figure, another arbitrary initializa-

tion on the same monarch picture, show that the target

textured body of the monarch is captured in both cases.
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Figure 12. A monarch larvae on a leaf is captured by an active polygon (left). Monarch butterfly is captured in the two other columns with

very different initilizations.

Figure 13. A fish with a striped texture is captured.

In Fig. 13, a fish whose body has a texture of stripes

is captured by an active polygon. Similarly, a sea star

on a textured rocky terrain, (Fig. 14), a cheetah fig-

ure (Fig. 15 left), another cheetah in bushes (Fig. 15

Figure 14. A sea star embedded in a textured rocky background is captured.

right), and a chunk of crystal (Fig. 16) are shown to

demonstrate texture capturing capabilities of the ac-

tive polygon model together with the Jensen-Shannon

criterion.
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Figure 15. Cheetah figures are captured by active polygons.

Figure 16. A natural crystal chunk is captured.

One of our goals was to apply our active polygon

model to capture man-made object shapes. A group

of real airplane image experiments on each of which

a generic circular polygon was initialized, are shown

in Fig. 17. Our model successfully captures the plane

shape in terms of a polygon, which may be essential

as an input to object recognition algorithms. An image

of another man-made object, a submarine, is shown in

Fig. 18.

Our active polygon technique is also suitable for

document image segmentation because a document

page usually has two different kinds of texture, namely

text and images, which have distinct probability distri-

butions. We show two examples of document segmen-

tation: Fig. 19 with a single active polygon, and Fig. 20

with two active polygons.

5.3. Conclusions and Future Work

In this paper, we have presented a polygon propaga-

tion model to capture particularly textured objects in

images. A new ODE model was developed to move

polygon vertices. In addition, a new global polygon

regularizer was introduced to avoid degeneracy dur-

ing polygon propagation. Adaptation of a favorable

divergence measure, the Jensen-Shannon divergence,

as an integral form (energy functional) of our ODEs

lead to quite a powerful unsupervised texture seg-

mentation technique which was validated by numer-

ical results. The only assumption, which is valid in

many applications, in our model on the target im-

age regions is, that they should be simply connected.

This is on account of most of the cases, whether

in natural images as in zebra, or man-made object

images as in airplanes, texture regions are simply

connected.

Future Work. Many real applications tailored to the

representation provided by our model are currently

under investigation. An object tracking application

may take advantage of a polygonal representation,

and together with an optical flow estimation in an ac-

tive polygon spirit are reported in Unal et al. (2002).

Another application we are working on, is in ob-

ject recognition, where a description of shapes or ob-

jects with a handful of vertices would be essential for

object-based description and recognition tasks, par-

ticularly along the same context of the very recent

MPEG-7 standard.

Appendix A: Derivation of ODEs

for Vertex Motion

Let us define Cv for vertex Vi by

Cv(p, V) =





(p − (i − 1))e for i − 1 ≤ p ≤ i

(1 − (p − i))e for i ≤ p ≤ i + 1

0 for |p − i | ≥ 1
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Figure 17. Each airplane is captured by a handful of vertices.

Figure 18. A submarine figure is captured by a handful of vertices.

where e ∈ {ex , ey} denote the standard bases for R
2.

We now write our energy as a function of the vertices

V : E(V) =
∫ n

0
〈F, N〉 ‖C p‖dp =

∫ n

0
〈F, JCp〉 dp,

and compute its partial derivative with respect to one

of the vertex coordinates v where either v = xi

or v = yi for some 1 ≤ i ≤ n, as Ev(V) =∫ n

0
f 〈Cv, JCp〉 dp. Substituting the particular forms

of C , C p (Eq. (4)), and Cv (the latter denoting ei-

ther C xi
or C yi

for some vertex i) into this expression

yields

Ev =
∫ n

0

f (L(p − ⌊p⌋, V ⌊p⌋, V ⌊p⌋+1))

× 〈Cv, J (V ⌊p⌋+1 − V ⌊p⌋)〉 dp
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Figure 19. An active polygon nicely segments a document image scanned from an article.

Figure 20. Two active polygons capture text and image regions of a page from an article.

=
n−1∑

k=0

∫ 1

0

f (L(p, V k, V k+1))

× 〈Cv(p + k), J (V k+1 − V k)〉 dp

=
∫ 1

0

f (L(p, V i−1, V i ))

× 〈Cv(p + i − 1), J (V i − V i−1)〉 dp

+
∫ 1

0

f (L(p, V i , V i+1))

× 〈Cv(p + i), J (V i+1 − V i )〉dp

= 〈e, J (V i − V i−1)〉
∫ 1

0

p f (L(p, V i−1, V i )) dp

+ 〈e, J (V i+1 − V i )〉

×
∫ 1

0

(1 − p) f (L(p, V i , V i+1)) dp

where e = ex if v = xi or e = ey if v = yi . If we

introduce a time variable t and evolve both coordinates

xi and yi in the gradient directions given above, and

denoting the corresponding J (V i − V i−1) = Ni,i−1,

we obtain the following gradient flow for the vertex V i

∂Vi

∂t
=

∫ 1

0

p f (L(p, V i−1, V i )) dp Ni,i−1

+
∫ 1

0

(1 − p) f (L(p, V i , V i+1)) dp Ni+1,i .
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Appendix B: Derivation of the Gradient Flow

for Varying Priors Proportional to the Areas

Rewriting here Eq. (19), (note that A = |Ru | + |Rv|),

∂C

∂t
= ∇ Ĵ Sa,2

=
m∑

j=1

1

2

|Ru ||Rv|
A2

(2(u j − v j )(∇u j − ∇v j ))Nu

+
1

2

|Rv|
A2

(u j − v j )
2
Nu −

1

2

|Ru |
A2

(u j − v j )
2
Nu,

(33)

it may be rewritten as follows:

∂C

∂t
=

Nu

2A2

m∑

j=1

(u j − v j )g

(
2|Ru ||Rv|(G j (I ) − u j )

|Ru |

+
2|Ru ||Rv|(G j (I ) − v j )

|Rv|

+ (|Rv| − |Ru |)(u j − v j )

)

=
Nu

2A2

m∑

j=1

(u j − v j )(2|Rv|(G j (I ) − u j )

+ 2|Ru |(G j (I ) − v j ) + (|Rv| − |Ru |)(u j − v j ))

=
Nu

2A2

m∑

j=1

(u j − v j )(2|Rv|G j (I ) − 2|Rv|u j

+ 2|Ru |G j (I ) − 2|Ru |v j

+ (|Rv| − |Ru |)(u j − v j ))

=
Nu

2A2

m∑

j=1

(u j − v j )(2(|Ru | + |Rv|)G j (I )

− |Rv|u j − |Ru |v j − |Ru |u j − |Rv|v j )

=
Nu

2A

m∑

j=1

(u j − v j )(G j (I ) − u j + G j − v j )

=
Nu

2A

m∑

j=1

[−(G j (I ) − u j )
2 + (G j (I ) − v j )

2].

(34)

It can be observed that Eq. (34) is the gradient descent

flow for the following energy functional

E =
1

2A

m∑

j=1

∫

Ru

(G j (I ) − u j )
2 dx dy

+
∫

Rv

(G j (I ) − v j )
2 dx dy, (35)

which is a generalized form of the energy functional

proposed by Chan and Vese (1999).

Appendix C: Electric Force by a Line Charge

Given a line charge or a rod of positive charge that

extends from a generic point a ∈ R
3 to b ∈ R

3, our

goal is to calculate the electric field at a point x′ ∈ R
3.

Points are chosen in R
3, and using electrostatics prin-

ciples, we consequently derive these fields for them.

The line charge is assumed to be made up of dif-

ferential point charges dq. We need to compute the

differential electric field d E(x′) exerted at x′ by a

charge dq at location x = a + t(b − a) which is on

the rod (depicted in Fig. 8). As given by Coulomb’s

law (Ulaby, 1997), d E(x ′) is inversely proportional to

the square of the Euclidean distance ‖x′ − x‖2 be-

tween x and x′, and its direction is given by the vector

(x′−x)/‖x′−x‖, i.e., d E(x′) = (x′−x)/‖x′−x‖3dq.

We assume a uniform charge density λ (a constant

parameter) along the rod, hence dq = λdx . With

the change of variable x = a + t(b − a), the dif-

ferential amount of increase in dx = Ldt , where

L = ‖b − a‖ is the length of the rod extending from a

to b.

By the principle of superposition, the total electric

field E acting on point charge at x′ due to line charge

(a, b), can be obtained by integrating the fields con-

tributed by all differential point charges on the rod

making up the linear charge distribution,

Eab(x′) =
∫ b

a

x′ − x

‖x′ − x‖3
λdx

= kc L

∫ 1

0

(x′ − a) + t(a − b)

‖(x′ − a) + t(a − b)‖3
dt. (36)

Note that the constant λ is combined with the

Coulomb’s constant into a constant parameter called

kc. After some manipulations, the total electric field

Eab(x′) can be written in terms of the two-vectors

xa = x′ − a and xb = x′ − b (depicted in Fig. 8),

Eab(x′) =
kc L

‖xa‖2‖xb‖2 − (xa · xb)2

×
(

‖xb‖2xa − (xa · xb)xb

‖xb‖

+
‖xa‖2xb − (xa · xb)xa

‖xa‖

)
. (37)
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Diffusion snakes: Introducing statistical shape knowledge into the

Mumford-Shah functional. Int. J. Computer Vision, 50(3):295–

313.

Cross, G. and Jain, A.K. 1983. Markov random field texture models.

IEEE Trans. Pattern Analysis, and Machine Intelligence, 5:25–

39.

Dunham, J.G. 1986. Optimum uniform piecewise linear approxima-

tion of planar curves. IEEE Trans. Pattern Analysis, and Machine

Intelligence, 8:67–75.

Figueiredo, M.A.T., Leitao, J.M.N., and Jain, A.K. 2000. Unsuper-

vised contour representation and estimation using b-splines and

a minimum description length criterion. IEEE Trans. Image Pro-

cess., 9(6):1075–1087.

Freeman, H. 1978. Shape description via the use of critical points.

Pattern Recognition, 10:159–166.

Geman, S. and Geman, D. 1984. Stochastic relaxation, gibbs

distribution, and the bayesian restoration of images. IEEE

Trans. Pattern Analysis, and Machine Intelligence, 6:721–

741.

Gomez-Lopera, J.F., Martinez-Aroza, J., Robles-Perez, A.M., and

Roman-Roldan, R. 2000. An analysis of edge detection by using

the jensen-shannon divergence. J. Mathematical Imaging and Vi-

sion, 13:35–56.

Grenander, U. and Srivastava, A. 2001. Probability models for clut-

ter in natural images. IEEE Trans. Pattern Analysis, and Machine

Intelligence, 23(4):424–429.

He, Y., Hamza, A.B., and Krim, H. 2003. A generalized diver-

gence measure for robust image registration. IEEE Trans. Signal

Process., 51.

Hyvarinen, A. 1997. New approximations of differential entropy

for independent component analysis and projection pursuit. Tech.

Rep., Helsinki University of Technology.

Hyvarinen, A. and Oja, E. 2000. Independent component analy-

sis: Algorithms and applications. Neural Networks, 13(4–5):411–

430.

Imai, H. and Iri, M. 1986. Computational-geometric methods for

polygonal approximations of a curve. Computer Vision, Graphics,

and Image Processing, 36:31–41.

Jain, A.K. and Farrokhnia, F. 1991. Unsupervised texture segmenta-

tion using Gabor filters. Pattern Recognition, 24(12):1167–1186.

Jaynes, E.T. 1963. Information Theory and Statistical Mechanics.

K. Ford (Ed.), New York, p. 181.

Kass, M., Witkin, A., and Terzopoulos, D. 1988. Snakes: Active

contour models. Int. J. Computer Vision, 1(4):321–331.

Kendall, M. and Stuart, A. 1958. The Advanced Theory of Statistics.

Charles Griffin & Company.

Kichenassamy, S., Kumar, A., Olver, P., Tannenbaum, A., and Yezzi,

A. 1995. Gradient flows and geometric active contours. In Proc.

Int. Conf. on Computer Vision, pp. 810–815.

Koch, M.W. and Kashyap, R.L. 1987. Using polygons to recognize

and locate partially occluded objects. IEEE Trans. Pattern Analy-

sis, and Machine Intelligence, 9(4):483–494.

Kurozumi, Y. and Davis, W.A. 1982. Polygonal approximation by

the minimax method. Comput. Graph., Image Proc., 248–264.

Leclerc, Y. 1989. Constructing stable descriptions for image parti-

tioning. Int. J. Computer Vision, 3:73–102.

Lin, J. 1991. Divergence measures based on the Shannon entropy.

IEEE Trans. Information Theory, 37(1):145–151.

Malladi, R., Sethian, J.A., and Vemuri, B.C. 1995. Shape modeling

with front propagation: A level set approach. IEEE Trans. Pattern

Analysis, and Machine Intelligence, 17(2):158–173.

Manjunath, B.S. and Chellappa, R. 1991. Unsupervised texture seg-

mentation using Markov Random Field models. IEEE Trans. Pat-

tern Analysis, and Machine Intelligence, 13(5):478–482.

Mumford, D. and Shah, J. 1985. Boundary detection by minimizing

functionals. In Proc. IEEE Conf. on Computer Vision and Pattern

Recognition, San Fransisco.

O’Connell, K.J. 1997. Object-adaptive vertex-based shape coding

method. IEEE Trans. Circuits and Systems on Video Technology,

7:251–255.

Osher, S. and Sethian, J.A. 1988. Fronts propagating with curvature

dependent speed: Algorithms based on the Hamilton-Jacobi for-

mulation. J. Computational Physics, 49:12–49.

Paragios, N. and Deriche, R. 2002. Geodesic active regions and level

set methods for supervised texture segmentation. Int. J. Computer

Vision, 46(3):223–247.

Ronfard, R. 1994. Region-based strategies for active contour mod-

els. In IJCV, 13:229–251.

Sethian, J.A. 1999. Level Set Methods and Fast Marching Methods.

Cambridge University Press.

Siddiqi, K., Lauziere, Y.B., Tannenbaum, A., and Zucker, S.W.

1998. Area and length minimizing flows for shape segmentation.

IEEE Trans. Image Process., 7(3):433–443.

Simoncelli, E.P., Freeman, W.T., Adelson, E. H., and Heeger, D.J.

1992. Shiftable multiscale transforms. IEEE Trans. Information

Theory, 38(2):587–607.

Tsai, A., Yezzi, A., and Willsky, A. 2001. Curve evolution

implementation of the Mumford-Shah functional for image



220 Unal, Yezzi and Krim

segmentation, denoising, interpolation, and magnification. IEEE

Trans. Image Process., 10(8):1169–1186.

Ulaby, F.T. 1997. Fundamentals of Applied Electromagnetics. Pren-

tice Hall, New Jersey.

Unal, G., Krim, H., and Yezzi, A. 2002. Active polygons for object

tracking. In IEEE 1st Int. Conf. 3D Data Processing and Visual-

ization and Transmission, Padova, Italy.

Yezzi, A., Tsai, A., and Willsky, A. 1999. A statistical approach to

snakes for bimodal and trimodal imagery. In Proc. Int. Conf. on

Computer Vision, pp. 898–903.

Yezzi, A., Tsai, A., and Willsky, A. 2002. A fully global approach

to image segmentation via coupled curve evolution equations.

Journal of Visual Communication and Image Representation,

13(1):195–216.

Yun, B.-J., Lee, S.-W., and Kim, S.-D. 2001. Vertex adjustment

method using geometric constraint for polygon-based shape cod-

ing. Electronics Letters, 37:754–755.

Zhu, S. and Yuille, A. 1996. “Region competition: Unifying snakes,

region growing, and Bayes/MDL for multiband image segmen-

tation.” IEEE Trans. Pattern Analysis, and Machine Intelligence,

18:884–900.

Zhu, S.C., Wu, Y., and Mumford, D. 1998. Filters, random fields

and maximum entropy (FRAME): Towards a unified theory for

texture modeling. Int. J. Computer Vision, 27(2):107–126.


