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Information-Theoretic Analysis and Performance

Evaluation of Optimal Demappers for

Multi-layer Broadcast Systems
Eduardo Garro, Jordi Joan Gimenez, Peter Klenner and David Gomez-Barquero

Abstract—Multi-layer broadcast systems distribute services
across time and frequency domain by means of power-division
multiplexing. Successive interference cancellation is required, in
general, in order to extract the content of all services. For a low-
complexity implementation, the receiver can obtain the strongest
(top-layer) signal assuming underlying signals to behave like
thermal noise. The thermal noise assumption may not be valid
under certain conditions and a more accurate characterization of
the interference could bring improved performance. This paper
analyzes the validity of the noise-like assumption considering the
power ratio between signals and the required Carrier-to-Noise
ratio (CNR) for error-free reception. The main contribution of the
paper is the proposal of a demapping algorithm that exploits the
knowledge of the constellation of underlying signals. Generalized
Mutual Information, performance evaluation, and complexity
analysis are provided with the AWGN-like assumptions and
with the proposed alternative in order to assess the potential
performance improvements that can be achieved.

Index Terms—DTT, ATSC 3.0, Layered Division Multiplexing
(LDM), WiB, NOMA, LLR demapping

I. INTRODUCTION

MULTI-layer transmission has been raised as a relevant

broadcast technology where the multiplexing of ser-

vices is performed in the power domain while using 100%

of the frequency and time resources. Implemented as Layered

Division Multiplexing (LDM) in ATSC 3.0 [1], the signal con-

sists of the superposition of two signals/layers with different

power levels. Each layer, namely Core Layer (CL) and En-

hanced Layer (EL), passes through a different Bit-Interleaved

Coded Modulation (BICM) chain. This brings the possibility

to assign different robustness/capacity characteristics to differ-

ent services, and hence, to target different reception conditions

simultaneously. Once encoded, the signals are aggregated with

different power levels.

The concept behind multi-layer transmission has also been

considered to allow for frequency reuse-1 networks with Cloud

Transmission [2] and WiB (Wideband reuse-1) [3]. In the

WiB concept, all stations are assumed to transmit signals con-

figured with a robust MODCOD (Modulation and Code Rate)
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Figure 1. QPSK + QPSK signal with ρ = 10 dB (left) and ρ = 4 dB
(right). SNR = 0 dB (top) and SNR = 20 dB (bottom).

that would enable reception in a highly interference-limited

situation. The received signal consists of the superposition

of multiple signals of the same nature (like in LDM) with

a different power level according to propagation conditions

and transmit power.

Receivers are able to perform the demodulation of the top-

layer signal as soon as the received Signal-to-Interference-

plus-Noise ratio (SINR) is larger than the operating Signal-

to-Noise ratio (SNR) of the selected MODCOD. The other

signals/layers can be demodulated by Successive Interference

Cancellation (SIC) algorithms. In case of two signals, the

power ratio between them can be modeled by means of an

Injection Level (ρ).

The commonly used demapping approach is to consider

that signals/layers below the target one can be regarded as

AWGN-like (Additive White Gaussian Noise) interference [4],

[5]. However, potential gains can still be achieved if underlying

layers are not considered AWGN. Figure 1 illustrates the

impact of ρ and SNR conditions for a multi-layer signal

constituted of two QPSK constellations. Top figures show the

received constellation symbols in a low SNR region (0 dB),

where AWGN dominates regardless of ρ. Lower figures show

the symbols in a higher SNR region (20 dB). It can be noticed

from lower figures that for ρ = 10 dB, the QPSK symbols look

like being affected by AWGN distribution. On the other hand,

with ρ = 4 dB, this assumption is not valid. The resulting
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constellation presents symbols that are a combination of the

symbols of the different layers, each one affected by AWGN.

Hence, potential performance gains may be achieved if this

effect is considered.

This paper expands the initial studies in [6] of a demapping

approach for LDM systems in which the AWGN-like inter-

ference assumption may not be valid. This new demapping

approach considers the distribution of the symbols of the

underlying LDM layer when demapping the top-layer signal,

which brings a potential gain under certain circumstances at

the expense of additional complexity. In addition to [6], the

paper evaluates the new demapping concept from a generic

point of view, via information theory, and studies the com-

plexity of its implementation at receivers. Furthermore, a new

algorithm is proposed, which forwards the a-priori information

obtained by the demapping of the top-layer signal to the lower-

layer signal. The implementation of such algorithm may allow

eliminating the need of the traditional cancellation process

performed in multi-layer systems.

The rest of the paper is structured as follows: Section II

presents the formulation of the proposed demapping al-

gorithms, as well as a complexity analysis in terms of number

of operations. Section III evaluates and compares the Gener-

alized Mutual Information (GMI) limits of the new approach

with the AWGN assumption. Top-layer signal performance

results for a wide range of MODCODs and ρ values are

shown and discussed in Section IV. Moreover, performance

evaluation for the lower-layer signal is also studied. Finally,

conclusions are drawn in Section V.

II. CONSTELLATION DEMAPPER ALTERNATIVES IN

MULTI-LAYER SYSTEMS

The received signal, considering that the transmitted signal

is composed of two signals/layers, can be modeled by the

following expression:

y = x · h+ w = (τ · xt + β · xb) · h+ w (1)

where xt and xb denote the top-layer and bottom-layer

transmitted complex-valued symbols, with τ = 1/
√

1 + g2

and β = g/
√

1 + g2 amplitudes, respectively. g = 10−
ρ
20 is

the injection level expressed in linear units.

Considering that xt is the first signal to be demodu-

lated, a straightforward approach is to consider xb as an

interfering contribution, which can be regarded as AWGN

(in the following, Gaussian Demapping) [7]. Alternatively,

the Optimum Demapping approach considers xb as useful

information by considering its symbol alphabet. Although the

demodulation of the bottom-layer signal can be performed by

a hard-interference cancellation of the reconstructed top-layer

symbols [7], the new method can also be extended to allow

for a soft-cancellation approach.

A. Gaussian Approach Demapping (GD)

1) Top-layer signal (xt) demapping: The GD assumes the

bottom-layer signal (xb) as additional source of AWGN (with

zero mean and single-sided variance σ2
g = β2).

Using soft-decision decoding, the Log-Likelihood Ratio

(LLR), ΛGD
t (bi), for each coded bit bi, i = 1, ...,m is

calculated as:

ΛGD
t (bi) , log

p(bi = 1|y, h)

p(bi = 0|y, h)
= log

∑

xt∈ζ1

i

p(y|τxt, h)

∑

xt∈ζ0

i

p(y|τxt, h)
(2)

where ζbi denotes the signal subset of constellation points of

xt with the i-th bit being bi ∈ {0, 1}. p(y|τxt, h) is the

conditional PDF [8] corresponding to the expression:

p(y|τxt, h) =
1

π(σ2
g + σ2

ω)
exp

(

−
|y − hτxt|

2

σ2
g + σ2

ω

)

(3)

The obtained LLRs passed through the LDPC decoder so

that the estimated bits of the transmitted signal are obtained.

2) Bottom-layer signal (xb) demapping: To retrieve the

bottom-layer signal, the ΛGD
t (bi) are LDPC-decoded, remodu-

lated and subtracted from the received signal y of (1). This

process is defined as Hard-Cancellation (HC) method. The

system model at this point is:

ỹ = y − τ x̂t · h = β · xb · h+ w (4)

where x̂t are the re-encoded complex-valued symbols of the

top-layer signal.

The LLRs of the bottom-layer signal ΛGD
b (bj) for each

coded bit bj are finally calculated as:

ΛGD
b (bj) = log

∑

xb∈ζ1

j

p(ỹ|βxb, h)

∑

xb∈ζ0

j

p(ỹ|βxb, h)
(5)

being the PDF p(ỹ|βxb, h) defined as:

p(ỹ|βxb, h) =
1

πσ2
ω

exp

(

−
|ỹ − hβxb|

2

σ2
ω

)

(6)

B. Optimum Demapping (OD) Approach

As depicted in Figure 1, the AWGN-like assumption of

xb on the xt demodulation may not be accurate in certain

conditions. This mismatched assumption can lead to unexpec-

ted performance degradation of xt. Furthermore, the potential

bad estimation of xt could be forwarded to xb, since the

latter demodulation makes use of the former. Therefore, a

new approach that increases xt and xb performances becomes

imperative. This section extends the formulation presented

in [6] by providing the complete LLR and PDF equations

for the implementation of the OD approach for the top-layer

signal. For the bottom-layer signal, a soft-cancellation (SC)

demapping formulation is also provided considering a-priori

LLR values from the top-layer signal.

1) Top-layer signal (xt) demapping: The proposed Op-

timum Demapping algorithm assumes the knowledge of the

bottom-layer signal constellation (xb) when demapping the

top-layer signal (xt). To do so, Euclidean distances for all

combinations resulting from the sum of the constellations of

the two layers are calculated. Assuming the received signal
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of (1), the top-layer signal LLR ΛOD
t (bi) is calculated ac-

cording to:

ΛOD
t (bi) = log

∑

xt∈ζ1

i

∑

xb

p(y|τxt, βxb, h)

∑

xt∈ζ0

i

∑

xb

p(y|τxt, βxb, h)
(7)

The second summation term involves all possible trans-

mitted xb values for each transmitted xt. The PDF

p(y|τxt, βxb, h) is modeled as:

p(y|τxt, βxb, h) =
1

πσ2
ω

exp

(

−
|y − h(τxt + βxb)|

2

σ2
ω

)

(8)

2) Bottom-layer signal (xb) demapping: The same top-

layer signal hard-cancellation (HC) process as in Section II-A2

can be performed using the optimum LLR values estimated

in (7). However, the top-layer signal remodulation and hard-

cancellation processes may be omitted if ΛOD
t (bi) is regarded

as a-priori LLR values on a soft-cancellation (SC) demapping

of the bottom-layer signal.

The use of a-priori LLR values in iterative processing is a

well-established topic in the field. For example, a similar al-

gorithm was proposed in [9] in the context of iterative demap-

ping for multilevel modulation. It has not been addressed

extensively though with regards to broadcasting by means of

superposition modulation, where the de-facto standard is set

by hard-successive interference cancellation (cf. [7]).

The expression for obtaining the bottom-layer signal LLR

ΛOD
b (bj) can be written as:

ΛOD
b (bj) = log

∑

xb∈ζ1

j

∑

xt

p(y|τxt, βxb, h)P (xt)

∑

xb∈ζ0

j

∑

xt

p(y|τxt, βxb, h)P (xt)
(9)

It can be observed that same conditional PDF as (8) is used.

However, since bottom-layer signal LLR ΛOD
b (bj) are calcu-

lated now, all possible transmitted xt values are considered

for each transmitted xb. P (xt), which refers to the transmitted

vector probability, can be developed as:

P (xt) =

m
∏

i=1

P (bi) ∝

m
∏

i=1

exp
(

biΛ
OD
t (bi)

)

(10)

C. Demappers Complexity

The OD approach can potentially provide gains in high

SNR regions at the expense of increased complexity. The

complexity of the two demapping approaches, GD and OD, is

computed in terms of required number of Euclidean distances.

The GD approach for the top-layer signal involves the

calculation of the distances between the received signal y and

all possible transmitted symbols xt, resulting in 2mt Euclidean

distances, with mt the number of transmitted bits per symbol

of the top-layer signal. If top-layer signal hard-cancellation

is performed, the bottom-layer signal requires the calculation

of the Euclidean distances between the cancelled ỹ and all

possible transmitted symbols xb, leading to 2mb , where mb is

the number of transmitted bits per symbol of the bottom-layer

-1 0 1
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G
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-1 0 1
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D

Figure 2. Transmitted points of the constellation (blue) for obtaining the LLR
of the received symbol (red) with GD (left), and OD (right) approaches. Thin
dots represent the points of ζ0

0
while thick dots represent the points of ζ1

0
.

signal. Therefore, the total number of Euclidean distances to

be computed for the two signals is 2mt + 2mb .

On the other hand, the OD demapping approach for the top-

layer signal involves the calculation of the distances between

the received signal y and all possible xt and xb symbol com-

binations. This second approach requires 2mt+mb Euclidean

distances. For the bottom-layer signal, the same number of

distances to be computed are needed, but taking into account

the a-priori LLR values as in (10). Thus, 2mt+mb+1 Euclidean

distances are needed for the two-signal demodulation with the

OD approach.

Figure 2 shows the transmitted symbols that are taken

into account for the top-layer signal LLR calculation of the

encoded bit b0 with the two demapping approaches. For

simplicity, a QPSK + QPSK signal is assumed (mt = 2 and

mb = 2). Thin dots correspond to points in ζ00 while thick dots

corresponds to points in ζ10 . As it can be observed, the received

symbol (asterisk) is closer to one of the OD constellation

points (right) than to one of the GD (left). Hence, a better

performance can be provided. On the contrary, whereas GD

computes 22 = 4 Euclidean distances for getting ΛGD
t (b0),

OD computes 22+2 = 16 distances for ΛOD
t (b0), which can

be likened to a 16QAM constellation. In order to reduce the

number of Euclidean distances to be computed by OD at the

expense of a performance loss, a semi-optimized approach was

evaluated in [10]. It was observed that by employing constel-

lation orders lower than the current bottom-layer constellation

on the ΛOD
t (bi) computation, the performance was degraded

at most by 0.4 dB.

Overall, the GD approach provides a low-complexity

demapper implementation, which results in the most practical

implementation for systems in which the layer demapping

results AWGN limited. The OD, with increased demapping

complexity, may be appropriate when the layers involved in

the demapping process are configured with low order constel-

lations. The demapper based on a-priori LLR values results in

the most complex demapper which practical implementation

should be carefully evaluated.

III. INFORMATION-THEORETICAL ANALYSIS OF BICM

SYSTEMS

In order to compare the demapping approaches presented in

Section II for the top-layer signal, an information-theoretical

study is investigated in terms of the error exponent and
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Generalized Mutual Information (GMI) of a BICM decoder.

Hence, the mismatch effect of GD is also spotlighted.

A. Error Exponent Analysis

In [11] Gallager derived an upper bound for the average

error probability over a random code ensemble and showed

that the bound depends on a parameter expediently called error

exponent, which in turns depend on Gallager function. Galla-

ger assumed a maximum likelihood decoder with matched

PDFs, and showed that the derivative of the Gallager function

yields the capacity.

Gallager’s derivation can be extended to consider mis-

matched decoding metrics (see [12] and the references

therein). The average error probability over the code ensemble

is then denoted by:

Pe ≤ 2−NEq
r
(R) (11)

N is the block length, and Eq
r (R) is the mismatched random

coding error exponent, given by:

Eq
r (R) = max

0≤̺<1
max
s>0

Eq
0(̺, s)− ̺R (12)
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Figure 5. Top-layer signal (xt) QPSK + QPSK I-curves for different s values
at SNR = 10 dB. ρ = 0, 2, 4, 6, and 8 dB.

where ̺ and s are free parameters subject to optimization.

R denotes the coding rate.

For the specific case of BICM, the generalized Gallager

function Eq
0(̺, s) takes on the form

Ebicm
0 (̺, s) = − log2 E

{(

1

2m

∑

x′

m
∏

i=1

qi(bi(x
′), Y )s

qi(bi(X), Y )s

)̺}

(13)

With a slight abuse of notation, the generic decoding metric

for the i-th bit is given here by

qi(bi(x) = b, y) =
∑

x′∈ζi
b

p(y|x′) (14)

where the transition probabilities p(y|x′) can be based on

either matched or mismatched probabilities. The inverse map-

ping function bi(x) yields the i-th bit carried by symbol x.

As an example, the error exponent for OD and GD is

shown in Figure 3 for top-layer signal employing QPSK with

injection levels of 0 dB, 2 dB, and 4 dB at an SNR of 10 dB.

The OD yields a larger error exponent over a wide range of

code rate R and thus, leads to a more robust system than GD

for small injection levels. However, for larger injection levels,

e.g., 4 dB, the performance of GD and OD are on par.

B. I-curves

For any given constellation with spectral efficiency mt, the

I-curves determine the FEC code rate required to achieve error-

free communication for a particular SNR [13]. The I-curves

are obtained as the derivative of the Gallager function:

I(s) =
dEq

0(̺, s)

d̺

∣

∣

∣

∣

̺=0

=

mt
∑

i=1

E

{

log2
qi(b, y)

s

1
2

∑1
bi=0 qi(bi, y)

s

}

(15)

This section computes the I-curves of the top-layer signal

bits with GD and OD by Monte Carlo simulations. For such

purpose, Equation (15) is expressed in terms of LLRs and
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binary sign function (σ(0) = −1 and σ(1) = 1) by substituting

qi(bi, y) for exp( 12σ(bi)Λt(bi)).

Figure 4 depicts the achievable top-layer signal I-curves for

a multi-layer signal constituted by a QPSK + QPSK constella-

tion. GD and OD approaches are considered by using ΛGD
t (bi)

from (2), and ΛOD
t (bi) from (7), respectively. Injection levels

ρ = 0, 2, 4, 6, 8, and 10 dB are evaluated in order to assess

their influence in performance. The I-curves are calculated

for a range of SNR1 values. Note that a matched demapper

obtains the GMI at s = 1 [14]. The results from the figure

reveal that both the GD and OD alternatives perform very

similar for the SNR region below 10 dB. A clear improvement

of the OD is found at higher SNR values. Moreover, for

particular ρ values, significant gains can be obtained with

OD. Overall, the GD demapper seems to perform very well in

noise-limited situations whereas the OD provides an advantage

when the interference from the bottom-layer signal dominates.

The results obtained via I-curves also reveal that system

performance will be limited for certain code rates when using

the GD demapper. As an example, for ρ = 2 dB, whereas the

OD approach can provide 1.5 bps/Hz with a degradation of

about 10 dB with respect to the single-layer case (ρ = 10 dB),

the GD approach cannot reach error-free reception.

On the other hand, I-curves have also been obtained for

a QPSK + 64QAM signal. It was observed that at high

SNR regions, the I-curves for the top-layer signal are reduced

compared to QPSK + QPSK signal. This behavior refuses the

conclusion extracted from [6]. The obtained results are not

provided in this section, but performance results are presented

and discussed in Section IV.

C. Generalized Mutual Information Analysis

In [12], the GMI is defined as the supremum of the I-curves

relative to s > 0

Igmi = sup
s>0

I(s) (16)

As it was proved in [14], I-curves with s = 1 provide

Igmi when a matched PDF is considered. Therefore, the I-

curves presented in Figure 4 only represents Igmi for OD, and

an optimization of parameter s may be applied to the GD.

Figure 5 illustrates the I-curves with the same configuration

and injection levels for SNR = 10 dB and different s
values. As it can be observed, Igmi is always obtained at

s = 1 for OD, but varies for GD between s = {1 − 1.5}.

This optimization process of s is not straightforward on real

receiver implementations. Reference [12] explains that an

optimal LLR scaling in a mismatched decoder (as GD) can

increase its performance in the same way as the optimization

of s. Nevertheless, the implementation of a proper LLR metric

scaling is out of the scope of the paper, as it would require of

a more sophisticated receiver.
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Table I
SIMULATION SETUP

Top-layer Performance Bottom-layer Performance

Parameter Value Parameter Value

xt MOD 2 xt MOD 2

xt COD 2/15 - 13/15 xt COD 4/15, 10/15

xb MOD 2, 4, 6, 8 xb MOD 2, 4, 6, 8

xb COD 13/15 xb COD 4/15, 10/15

ρ (dB) 0, 1, 2, 3, 4, 5, 6 ρ 2, 4

xb Channel Model
AWGN

i.i.d. Rayleigh
xb Channel Model

AWGN

Rice (DVB-F1)

IV. PERFORMANCE ANALYSIS

Next, the GD and OD approaches are evaluated by consid-

ering LDM in an ATSC 3.0 physical layer simulations2.

A comparison for the top-layer signal is conducted in

Section IV-A and IV-B, and for the bottom-layer signal in

Section IV-C. Different MODCODs for the two signals as well

as different injection levels ρ have been assumed. An AWGN

and an i.i.d. Rayleigh channel model for the top-layer signal

are considered. For the bottom-layer signal, an AWGN and a

Rice (DVB-F1) channel model are considered. Ideal channel

estimation is assumed. Table I presents a summary for the

different considered ATSC 3.0 configurations [15].

A. Performance of top-layer signal (xt) in AWGN channel

Figure 6 shows the performance of the top-layer signal xt

for the different MODCODs under study, when xb is set to

either QPSK or 64NUC with ρ = 4 dB. It is shown that for

xt coding rates below 7/15, the SNR threshold of the four

configurations are the same. Particularly, it can be observed

that the SNR thresholds of 4/15 and 6/15 are, -0.5, and 2.7

1Under the assumption of normalized transmission symbols E[|x|2] = 1,
the SNR is equivalent to the inverse of the noise variance SNR= 1/σ2

w
2The software simulator used is based on MATLAB R© and was validated

during the standardization process of ATSC 3.0.
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Figure 7. SNR thresholds for all the xt MODCODs and ρ = 1-6 dB. xb QPSK (top-left), 16NUC (top-right), 64NUC (bottom-left), and 256NUC (bottom-right)
in an AWGN channel.

dB, respectively, which fits with the results from [10]. The

performance gains of OD are noticeable for SNRs greater

than 10 dB, i.e. from 10/15 xt code rates. This confirms the

conclusions in Section III-B. Last, it can also be seen that if

xb uses a 64NUC instead of QPSK, there is a performance

degradation for xt. Moreover, it can be seen that xt 12/15

and 13/15 cannot achieve error-free reception with the GD

demapper if xb a 64NUC constellation.

For a more exhaustive performance study, the SNR

thresholds of all xt, xb and ρ values established in Table I

are shown in Figure 7 for AWGN channel. In top-left part of

the figure, where both signals use same modulation order (as in

WiB systems), it can be observed that both demappers provide

similar performance for low ρ values at low xt coding rates

(3/15 - 7/15). However, when the operational SNR is above 5

dB, i.e. when ρ is 1 dB or smaller, OD outperforming arises.

Appreciable gains can also be observed at high xt coding rates

(8/15 - 13/15) from ρ = 5 dB. These statements are applicable

to the top-right part of the figure as well, where xb is using

a 16NUC modulation order. In particular, for QPSK 13/15

and ρ = 5 dB, the SNR can be 3 dB lower with OD if a

QPSK or a 16NUC is assumed for the xb. This could also

lead to a potential capacity increase for the same ρ and SNR

threshold. From the left part, assuming a fixed ρ = 3 dB,

whereas maximum xt MODCOD with GD for a SNR= 13 dB

is QPSK 10/15, OD can increase the capacity allowing the use

of QPSK 11/15.

The bottom part of Figure 7 modifies the lower-layer signal

constellation to a 64NUC or 256NUC (commonly used in

ATSC 3.0 LDM studies). In these cases, compared to top

part, it can be seen an xt performance degradation in high

SNR regions for both demapping algorithms. Taking previous

configuration, for QPSK 13/15 and ρ = 5 dB, the xt SNR

can be 9 dB lower with OD if a 64NUC is assumed for

the xb. Furthermore, if a 256NUC is assumed for the xb

with ρ = 5 dB, Quasi-Error-Free (QEF) conditions cannot be

achieved for GD. This demonstrates that the top-layer signal

performance depends on the lower-layer signal constellation

when the power ratios and xt coding rates are in the critical

region. In [6], the impact of the xb constellation onto xt
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Table II
OD GAINS (DB) FOR QPSK + QPSK / QPSK + 64NUC

IN AWGN CHANNEL

ρ (dB)

xt 0 1 2 3 4 5 6

2/15 0,0/0,0 0,0/0,0 0,0/0,0 0,0/0,0 0,0/0,0 0,0/0,0 0,0/0,0

3/15 0,0/0,0 0,0/0,0 0,0/0,0 0,0/0,0 0,0/0,0 0,0/0,0 0,0/0,0

4/15 0,4/0,0 0,1/0,0 0,0/0,0 0,0/0,0 0,0/0,0 0,0/0,0 0,0/0,0

5/15 1,2/0,2 0,3/0,0 0,0/0,0 0,0/0,0 0,0/0,0 0,0/0,0 0,0/0,0

6/15 5,1/1,5 0,9/0,2 0,2/0,0 0,0/0,0 0,0/0,0 0,0/0,0 0,0/0,0

7/15 -/- 1,4/0,7 0,3/0,1 0,1/0,0 0,0/0,0 0,0/0,0 0,0/0,0

8/15 -/- -/- 0,3/0,5 0,1/0,0 0,0/0,0 0,0/0,0 0,0/0,0

9/15 -/- -/- 2,3/4,8 0,3/0,3 0,1/0,0 0,0/0,0 0,0/0,0

10/15 -/- -/- 10,4/- 1,3/1,9 0,2/0,2 0,0/0,0 0,0/0,0

11/15 - /- -/- 7,4/- 5,1/- 0,9/1,1 0,2/0,2 0,0/0,0

12/15 -/- -/- 8,1/- 7,9/- 2,8/15,9 0,7/0,8 0,2/0,2

13/15 -/- -/- -/- -/- 6,2/- 3,3/9,2 0,8/0,7

performance was only observed at practical regions for LDM

operation, so that the system was only AWGN limited. The

OD gains with respect to GD when either a QPSK or a 64NUC

is used for the xb are summarized in Table II.

B. Performance of top-layer signal (xt) in i.i.d. Rayleigh

channel

In order to assess the same study in a more realistic scenario,

an i.i.d. Rayleigh fading channel modeling portable reception

is assumed. Figure 8 presents the SNR thresholds for this

channel and Table III summarizes the OD gains when xb uses

a QPSK or a 64NUC.

A general performance degradation can be observed in all

configurations because of the more challenging conditions

of this channel. From top figures, it can be seen that low

xt coding rates (3/15 - 7/15) perform similarly for both

demapping algorithms at low ρ values, as it occurred with

AWGN channel. However, due to the performance degrad-

ation increase in portable reception conditions, performance

differences can now be seen at a lower operational SNR. In

particular, for the 0 dB operational SNR of WiB systems, 0.9

dB gains are obtained by OD for QPSK 2/15 with ρ = 0 dB,

0.4 dB for QPSK 3/15 with ρ = 2 dB, and 0.1 dB for QPSK

4/15 with ρ = 5 dB. On the other hand, for high xt coding

rates (8/15 - 11/15), which are out of the WiB discussion,

the same trend is followed, and noticeable OD gains are now

observed from ρ = 6 dB. Particularly, QPSK 12/15 and 13/15

with ρ = 5 dB can only achieve QEF with OD.

In another vein, the top-layer signal performance depend-

ance on the lower-layer signal constellation is confirmed for

a portable reception scenario when top figures are compared

with bottom ones. Furthermore, if xb is constituted by a

64NUC or a 256NUC, xt performance degradation is observed

for both demapping algorithms at high SNR regions, but also

for GD at low SNR regions.

C. Performance of bottom-layer signal xb

The xb performance taking into account the soft-

cancellation by the a-priori xt LLRs (SC) and the traditional

Table III
OD GAINS (DB) FOR QPSK + QPSK / QPSK + 64NUC

IN I.I.D. RAYLEIGH CHANNEL

ρ (dB)

xt 0 1 2 3 4 5 6

2/15 0,9/0,4 0,4 0,2 0,1/0,0 0,0/0,0 0,0/0,0 0,0/0,0

3/15 1,8/1,3 0,7/0,6 0,4/0,4 0,2/0,3 0,0/0,2 0,0/0,0 0,0/0,0

4/15 3,4/4,9 1,4/1,7 0,6/0,8 0,4/0,4 0,2/0,3 0,1/0,1 0,0/0,0

5/15 12,9/- 2/5,2 0,8/1,5 0,4/0,7 0,3/0,3 0,1/0,1 0,0/0,0

6/15 -/- 5,6/- 1,3/3,8 0,6/1,3 0,3/0,6 0,2/0,3 0,0/0,1

7/15 -/- -/- 2,8/- 0,9/2,8 0,4/1,0 0,2/0,5 0,1/0,2

8/15 -/- -/- -/- 2,5/10,8 1,0/1,8 0,4/0,7 0,2/0,3

9/15 -/- -/- -/- 6,7/- 1,9/5 0,8/1,5 0,4/0,6

10/15 -/- -/- -/- -/- 6,3/- 2,2/3,8 1,1/1,3

11/15 -/- -/- -/- -/- -/- 5,7/- 2,3/3,2

Table IV
OD AND SC GAINS (DB) FOR AWGN CHANNEL

QPSK 16NUC 64NUC 256NUC

xt,xb ρ (dB) OD SC OD SC OD SC OD SC

4/15

4/15

2 0 0 0 0 0 0 0 0

4 0 0 0 0 0 0 0 0

4/15

10/15

2 0 0 0 0 0 0 0 0

4 0 0 0 0 0 0 0 0

10/15

4/15

2 - - - - ∞ 3,9 ∞ 5,3

4 - - - - 0,2 0,1 0 0

10/15

10/15

2 ∞ 0,1 ∞ 0,1 ∞ 0,4 ∞ 0,2

4 0,2 0,1 0 0 0,2 0 0 0

xt hard-cancellation (HC) is evaluated next. To do so, different

configurations have been considered: GD for the top-layer

plus HC, and OD for the top-layer with both HC and SC for

the bottom layer. Again, QPSK + QPSK, QPSK + 16NUC,

QPSK + 64NUC, and QPSK + 256NUC configurations have

been studied. Only ρ = 2 and 4 dB are studied, as they

represent low and high ρ values, respectively. The xb SNRs

at BER = 10−4 for AWGN channel and DVB-F1 channel are

shown in Figure 9, and summarized in Table IV, and Table V,

respectively. DVB-F1 models a fixed reception channel, which

is the potential target of the xb service.

For the WiB study case (QPSK + QPSK) and for

Table V
OD AND SC GAINS (DB) FOR DVB-F1 RICE CHANNEL

QPSK 16NUC 64NUC 256NUC

xt,xb ρ (dB) OD SC OD SC OD SC OD SC

4/15

4/15

2 0,2 0 0 0 0 0 0 0

4 0 0 0 0 0 0 0 0

4/15

10/15

2 0 0 0 0 0 0 0 0

4 0 0 0 0 0 0 0 0

10/15

4/15

2 - - - - ∞ 3,8 ∞ 5,1

4 - - - - 1 0,2 0 0

10/15

10/15

2 ∞ 0,1 ∞ 0,1 ∞ 0,3 ∞ 0,2

4 0,7 0,1 0 0 0,2 0 0 0
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Figure 8. SNR thresholds for all the xt MODCODs and ρ = 1-6 dB. xb QPSK (top-left), 16NUC (top-right), 64NUC (bottom-left), and 256NUC (bottom-right)
in an i.i.d. Rayleigh channel.

QPSK+16NUC configuration, it can be observed that the use

of HC or SC for the xb signal does not introduce significant

gains for a robust xt MODCOD (4/15). The xb SNR threshold

is mainly affected by the power reduction due to the injection

level ρ. Nevertheless, when OD approach provides gains for

the xt, i.e. at high xt code rate (10/15), the performance of the

xb is also improved. This is particularly relevant in the case of

ρ = 2 dB where GD cannot achieve QEF reception (grey bar)

for xt, and so for xb. Regarding SC-HC comparison, it can be

observed that SC provides a slight xb improved performance

in these conditions (0,1 dB) for both channels.

For the QPSK + 64NUC, and QPSK+256NUC cases, the

differences in xb performance because of the top-layer signal

demapping approach (GD vs OD) can be again noticed for

the weak xt code rate 10/15, when ρ = 2 dB. On the other

hand, the xb performance increase due to the use of SC is

now increased. Large gains (about 4 dB for 64NUC and 5,3

dB for 256NUC) can be achieved if a robust xb code rate

is configured, but also are observed with high xb code rate

(around 0,3 dB for both xb modulation orders) for AWGN

channel.

Similar gains are obtained when the more realistic fixed-

rooftop channel is assumed. From Table V, 3,8 dB gains are

obtained by SC when xb is constituted by a 64NUC 4/15 and

5,1 dB when is formed by a 256NUC 4/15).

V. CONCLUSIONS

This paper studies different demapping approaches for

multi-layer broadcast systems from a generic point of view.

Underlying signals have commonly been assumed as AWGN-

like interference when demapping the top-layer constellation

(GD). As previously introduced in [6], this assumption may

not be valid when the power of the layers is similar and high

code-rates are configured for the top-layer signal.

The paper provides results in terms of error exponent and

generalized mutual information by means of Monte-Carlo

simulations, covering a wide range of operational points. The

performance has been crosschecked with ATSC 3.0 physical

layer simulations and compared to the results presented in [6].

The optimum demapping (OD) approach, which considers the
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Figure 9. xb SNR thresholds for QPSK + QPSK (top-left), QPSK + 16NUC (top-right), QPSK + 64NUC (bottom-left), and QPSK + 256NUC (bottom-right)
with ρ = 2 and 4 dB for AWGN and Rice channels (G/H: Gaussian Demapping and Hard-Cancellation, O/H: Optimum Demapping and Hard-Cancellation,
O/S: Optimum Demapping and Soft-Cancellation).

knowledge of the symbol alphabet of the underlying constel-

lation brings potential gains at the expense of a complexity

increase comparable to a higher modulation order (in terms of

Euclidean distances to be computed). It was observed that OD

gains depend on the power ratio between layers (ρ), the top-

layer code-rate and the lower-layer constellation. They vary

from 0 dB (at high ρ, and low top-layer signal code-rate)

up to 10 dB (at low ρ, and high top-layer signal code rate).

Moreover, the OD method brings a performance increase up

to 4 dB for the underlying layers when a cancellation method

based on soft a-priori information transfer (SC) is applied.

The expected gains by the OD demapping may be useful

in systems employing robust signals (i.e. QPSK modulation

order) with low power differences. Although the operation

points in which gains are obtained are less attractive for ATSC

3.0 LDM operation, systems such as WiB can benefit from

high gains when e.g. the same QPSK signal is transmitted

from multiple stations.

Further studies should consider the performance analysis

using other fading channel models, as well as the impact of in-

troducing more than two layers. In addition, since the a-priori

information transfer from top to bottom layer signals have

been demonstrated to significantly improve performance, an

iterative extension, also considering the transfer from bottom

to top layer, should be analyzed as well as their implications

in terms of complexity. Other implementation aspects, such as

the increased power consumption by LDPC decoders in low

SNR conditions, can also be considered.
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