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This paper investigates the signal-to-interference ratio and the achievable rates of underwater acoustic (UA) OFDM systems over
channels where time and frequency dispersion are high enough that (i) neither the transmitter nor the receiver can have a priori
knowledge of the channel state information and (ii) intersymbol/intercarrier interference (ISI/ICI) cannot be neglected in the
information-theoretic treatment. The goal of this study is to obtain a better understanding of the interplay between interference
and the achievable transmission rates. Expressions for these rates take into account the “cross-channels” established by the ISI/ICI
and are based on lower bounds on mutual information that assume independent and identically distributed input data symbols.
In agreement with recent statistical analyses of experimental shallow-water data, the channel is modeled as a multivariate Rician
fading process with a slowly time-varying mean and with potentially correlated scatterers, which is more general than the common
wide-sense stationary uncorrelated scattering model. Numerical assessments on real UA channels with spread factors around 10−1

show that reliable OFDM transmissions at 2 to 4 bits/sec/Hz are achievable provided an average signal-to-noise ratio of 15 to 20 dB.

1. Introduction

The various collections of underwater acoustic (UA) chan-
nels surveyed worldwide highlight the diversity of UA
propagation environments and confirm in many cases the
bad reputation of these channels as communication media
[1–4]. UA communication systems are usually prone to time
and frequency dispersion due to multipath propagation and
Doppler effects, and the absorption of acoustic waves at
high frequencies strongly limits their bandwidth. Finding
systems that are robust to the environment, while main-
taining acceptable data rates, remains the major difficulty
faced by UA communication system designers. For a given
propagation channel, this interplay between robustness and
data rate results in practice in choosing different modulation

schemes according to the importance we give to one or the
other characteristic, the optimal trade-off being unknown
in most cases. Historically, single-carrier modulations with
receivers relying on channel equalizers in the time domain
have been widely studied and used in practice for high-
speed underwater communications [5]. Recently, multi-
carrier (MC) systems such as OFDM (orthogonal frequency
division multiplexing) [6–9] have generated much interest
due to the simplicity of receivers and the flexibility they offer.

For time-invariant channels, modulation-basis functions
of common OFDM signals (e.g., cyclic prefix-based OFDM)
can be seen as “eigen” functions of the channel operator
and ensure the absence of interference at reception. This
way of “diagonalizing” the channel allows the use of simple
algorithms for recovering the information from the received



2 Journal of Electrical and Computer Engineering

signal. For double-dispersive channels, and particularly in
the UA context, perfect channel diagonalization can rarely
be achieved as the environment is generally random so
that the channel eigenstructure differs from one channel
realization to another. The channel diagonalization can then
only be performed in some approximate sense [10–12]
and interference due to time-frequency dispersion becomes
inevitable. However, even if UA-OFDM systems can hardly
avoid interference, compared to single-carrier approaches,
multiplexing the information to be transmitted on a time-
frequency grid offers the opportunity to optimize more
degrees of freedom. OFDM system design is classically
approached from the viewpoint of intersymbol/intercarrier
interference (ISI/ICI) through maximization of the signal-
to-interference ratio (SIR) [10, 11, 13–15]. For a given set of
channels, finding the MC signaling scheme that maximizes
the average SIR is a way of designing robust systems that
do not require complex equalization algorithms at reception.
While the SIR may be a good figure of merit to assess
the robustness of communications in doubly dispersive
environments, it does not reveal the effect of the chosen
signaling scheme on the information rate. The robustness
improvement is generally paid back by the loss of spectral
efficiency induced by the use of time and/or frequency guard
intervals required to limit the interference. For instance,
typical UA-OFDM systems use a guard interval between
symbols that is lower-bounded by the maximum delay
spread of the channel, which often lasts several tens of
milliseconds. Compared to the active symbol duration, this
interval is usually not negligible and can significantly reduce
the transmission efficiency. Therefore, it remains unclear
whether or not OFDM systems should tolerate slightly
increased interference but operate at higher data rate.

Motivated by recent results in information theory and
UA channel modeling, an information-theoretic analysis of
the trade-off between maximization of SIR and minimiza-
tion of guard intervals is proposed in this paper. More
precisely, our main goal is to obtain a better understanding of
the interplay between interference and the achievable trans-
mission rate of UA-OFDM systems. We pay special attention
to UA channels, where time and frequency dispersions are
high enough so that ISI/ICI cannot be neglected in the
information-theoretic treatment. Our analysis addresses two
questions. First, what are the achievable rates of UA-OFDM
in highly dispersive channels? And as a corollary, what are the
consequences of OFDM design choices on these rates?

The target of our analysis is the investigation of UA-
OFDM information rate. To this end, we believe that the
following aspects need to be accounted for:

(A1) the UA channel is selective both in time and fre-
quency;

(A2) the UA channel cannot systematically be modeled
as a wide-sense stationary uncorrelated scattering
(WSSUS) process;

(A3) no perfect channel state information (CSI) is avail-
able at the transmitter nor the receiver;

(A4) interference is not negligible a priori.

These aspects are important as they may have a strong
impact on the achievable rates of UA-OFDM systems. (A1)
is particularly true in shallow-water environments where
the spread factor (product between the delay and Doppler
spread) is usually around [10−3, 10−1] and can even exceed
1 in some cases [1]. The WSSUS assumption discussed in
(A2) implies that the channel correlation function is time-
invariant and that the scatterers with different path delays
are uncorrelated so that the second-order statistics of the
channel are reduced from four to two dimensions [16].
While this assumption may be valid for data transmission
at low bandwidth with static communication endpoints,
it is not the case with moving platforms and/or when
the path-loss associated with each channel path cannot be
assumed to be constant over the transmission bandwidth
[2, 17]. (A3) corresponds to what is commonly referred to
as the noncoherent setting where neither the transmitter nor
the receiver knows the current realization of the channel
perfectly [18–20]. This assumption has to be contrasted
with the coherent setting where a genie provides the receiver
with perfect CSI. (We warn the reader that the word
coherent is here used in an information-theoretic context
and its definition slightly differs from the one used in a
demodulation context.) For most channels, the coherent
model is not realistic since receivers are not genie-aided,
and the effort to acquire the CSI usually induces some rate
loss (pilots insertion, channel estimation errors, etc.). In
addition, assuming perfect CSI at the transmitter is also
optimistic for most practical cases since the low propagation
speed of acoustic waves imposes strong constraints on the
nature of the CSI provided by a feedback link. Since we
focus on highly dispersive channels, we consider in (A4)
that interference must be explicitly accounted for in the
information theoretic-treatment.

To the best of our knowledge, the information rate of
OFDM systems under such general assumptions has not
yet been derived. However, recent works presented in [17]
and more particularly in [21] give some useful ingredients
to derive this rate. In [17], the authors derive bounds on
the achievable rate of UA-OFDM systems and consider the
aspects (A1) and (A3), and (A2) in part. Although correlated
scattering is taken into account in their channel model,
they assume wide-sense stationarity. As for interference, it
is neglected in their analysis. In [21], Durisi et al. explicitly
account for interference terms but present their results for
WSSUS Rayleigh fading channels, which is not appropriate
for the majority of UA channels [2, 22].

The main contributions of this paper are the following:

(i) based on the UA channel characterization presented
in [2], we present an exact analysis of ISI/ICI
of UA-OFDM systems transmitting in non-WSSUS
channels. The channel is modeled as a multivariate
Rician fading process with a slowly time-varying
mean and with potentially correlated scatterers;

(ii) the information rate of UA-OFDM systems is ana-
lyzed under the general scenario described by the
aspects (A1)–(A4);
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(iii) in order to extract guidelines useful for UA-OFDM
system design, theoretical results are then numeri-
cally assessed on rectangular pulse shaping OFDM
transmitting over experimental UA channels sur-
veyed at sea.

This paper is organized as follows. Section 2 is devoted
to the presentation of the system model and the main
assumptions. Signal-to-interference ratio and achievable
rates of OFDM systems transmitting over UA channels are
derived in Section 3. In Section 4, we discuss the impact
of channel and OFDM parameters on the information rate
through various numerical experiments. Finally, conclusions
are given in Section 5.

2. System Model

2.1. Notation. Throughout this paper, lowercase boldface
letters denote vectors, for example, x, and uppercase boldface
letters denote matrices, for example, A. The superscripts T

and † denote transposition and Hermitian transposition,
respectively. The Hadamard (elementwise) products of two
matrices A and B is written as A ⊙ B. The entries of a
matrix A are denoted by [A]k,n, where the indices k and n
start at 0. B(k,k′) designates a submatrix of a block matrix B.
The Kronecker symbol is denoted by δ(k). We let diag(x)
designate a diagonal square matrix whose main diagonal
contains the elements of the vector x. The inner product
between two signals y(t) and z(t) is denoted by 〈y, z〉 =∫ +∞
−∞ y(t)z∗(t)dt. CN (m, R) designates the distribution of a

jointly proper Gaussian random vector [23] with mean m
and covariance matrix R. Finally, E{·} denotes expectation.

2.2. Channel Model. We consider a doubly selective base-
band equivalent underwater acoustic channel, modeled as
a random linear time-varying system H that maps input
signals x(t) into output signals y(t) according to the I/O
relationship:

y(t) = (Hx)(t) + w(t) =
∫

τ
hH(τ, t)x(t − τ)dτ + w(t), (1)

where hH(τ, t) is the channel impulse response, and w(t)
denotes the ambient noise.

According to recent results on the statistical characteri-
zation of UA channels [2], the impulse response is modeled
as a trend stationary random process so that, for all t, t1 and
t2 ∈ R

hH(τ, t) = h̃H(τ, t) + hH(τ, t), (2)

with

E{hH(τ, t)} = hH(τ, t), (3)

E

{
(hH(τ, t1)− E{hH(τ, t1)})(hH(τ, t2)− E{hH(τ, t2)})∗

}

= E
{
h̃H(τ, t1)h̃∗H(τ, t2)

}

= E
{
h̃H(τ, t)h̃∗H(τ, t + t2 − t1)

}

(4)

hH(τ, t) is called the trend and is a slowly time-varying

deterministic component. h̃H(τ, t) is a zero-mean wide-sense
stationary random process assumed to be Gaussian. This
model describes the UA channel as a multivariate Rician
fading process with a slowly time-varying mean. hH(τ, t) can
be interpreted as the contribution of (pseudo) deterministic
physical phenomena to channel fluctuations (wave undu-
lation, range/depth dependence, bathymetry changes, etc.),

and h̃H(τ, t) represents the channel fluctuations attributable
to scatterers that result in fast fading. Note that since
no particular assumption is made about the correlation
of scatterers, the model is very general and includes the
WSSUS model as a subset. (Under the WSS assumption,
the channel impulse response would satisfy (4) as well as
hH(τ, t1) = hH(τ, t2),∀t1, t2 ∈ R. Under the assumption that

E{h̃H(τ1, t1)h̃∗H(τ2, t2)} = 0 for τ1 /= τ2, the channel would be
said to exhibit delay uncorrelated scattering (US).) Without
loss of generality, the channel is assumed to be normalized so
that

lim
T→∞

1

T

∫ T/2

−T/2

∫

τ
E

{
|hH(τ, t)|2

}
dτ dt = 1. (5)

We define the channel Rice factor as the power ratio between
the deterministic trend and the random component, that is,

κ = lim
T→∞

1

T

∫ T/2
−T/2

∫
τ

∣∣∣hH(τ, t)
∣∣∣2
dτ dt

∫
τ E

{∣∣∣h̃H(τ, t)
∣∣∣2
}
dτ

. (6)

We recall that hH(τ, t) is deterministic and that h̃H(τ, t) is

wide-sense stationary so that E{|h̃H(τ, t)|2} does not depend
on t.

The ambient noise w(t) is assumed to be Gaussian
and to result from the mixture of four sources [24]:
turbulence, shipping, waves, and thermal noise with nonflat
power spectral densities (PSDs). We, therefore, modeled w(t)
as a nonwhite zero-mean wide-sense stationary Gaussian
random process with correlation function:

Rw(t2 − t1) � E

{
w(t1)w(t2)∗

}
, (7)

and PSD

W
(
f
)

�

∫

τ
Rw(τ)e− j2πτ f dτ. (8)

Simple approximated models for Rw(τ) and W( f ) are given
in Appendix A.
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In addition to the channel impulse response, another
channel function that will be important for our treatment
is the delay-Doppler spreading function:

GH(τ, ν) =
∫∞
−∞

hH(τ, t)e−2 jπνtdt

=
∫∞
−∞

h̃H(τ, t)e−2 jπνtdt
︸ ︷︷ ︸

�G̃H(τ,ν)

+

∫∞
−∞

hH(τ, t)e−2 jπνtdt
︸ ︷︷ ︸

�GH(τ,ν)

.

(9)

The channel I/O relation (1) can now be written as

y(t) =
∫

τ

∫

ν

GH(τ, ν)x(t − τ)e2 jπνtdτ dν + w(t). (10)

The spreading function is assumed to be compactly sup-
ported on a rectangle and satisfies

GH(τ, ν) = 0,

for (τ, ν) /∈ [0, τmax]×
[
−νmax

2
;

νmax

2

]
,

(11)

where τmax and νmax denote the maximum time delay
spread and the maximum Doppler spread, respectively. This
assumption leads to the following definition of the channel
spread factor:

∆H � τmax × νmax. (12)

Note that this assumption eases the analysis proposed in this
paper but is only an approximation of real channels behavior.
In practice, to set values to τmax and νmax, it is often required
to resort to more empirical definitions (e.g., threshold-based
definitions, as used in Section 4.2). Various definitions of
delay and Doppler spreads for real channels are discussed in
[1, Section 4.5].

2.3. OFDM Signal. OFDM signaling schemes can be
described by two Weyl-Heisenberg (WH) sets [10, 11, 13]:
the one used at transmission, expressed as

(
g,T ,F

)
�
{
gk,n(t) = g(t − kT)e j2πnFt,

∥∥g
∥∥2 = 1

}
k,n∈Z

,

(13)

and the one used at reception, defined as

(
γ,T ,F

)
�
{
γk,n(t) = γ(t − kT)e j2πnFt,

∥∥γ
∥∥2 = 1

}
k,n∈Z

,

(14)

where T ,F > 0 are the time and frequency shifts of the
prototype function g(t) and γ(t). The signaling scheme is
here assumed to be (bi)orthogonal, so that

〈
gk,n, γk′,n′

〉
= δ(k − k′)δ(n− n′). (15)

To ease the readability of the results presented in the sequel,
we shall restrict our analysis to orthogonal receive pulses (i.e.,
〈γk,n, γk′,n′〉 = δ(k − k′)δ(n − n′)). (Note that nonorthog-
onal receive pulses introduce noise correlation and noise-
enhancement that can be harmful for advanced equalization
techniques. As an example, cyclic prefix based OFDM
receiver are orthogonal whereas zero-padding receivers (with
TF > 1) are not.)

The transmitted signal is

x(t) =
K−1∑

k=0

N−1∑
n=0

xk,ngk,n(t), (16)

where N is the number of subcarriers, and KT is the approx-
imate duration of the transmitted signal. xk,n denotes the
data symbols. Since little is known about the exact structure
of optimal signaling under the general constraints listed
in the introduction, we restrict our analysis to zero-mean,
independent and identically distributed (i.i.d.) symbols. We
assume that the average power of the input signals is limited
so that

1

KT

K−1∑

k=0

N−1∑
n=0

E

{∣∣xk,n

∣∣2
}
= P, (17)

where P < +∞ is the maximum average power available. The
signal-to-noise ratio (SNR) is then defined as

ρ �
P∫ B

0 W
(
f
) , (18)

where B = NF denotes the system bandwidth.

At reception, the output signal y(t) is projected onto the
set {γk,n(t)} to obtain

yk,n �
〈
y, γk,n

〉
=
〈
Hx, γk,n

〉
+
〈
w, γk,n

〉
︸ ︷︷ ︸

�wk,n

.
(19)

yk,n can be developed as

yk,n =
〈
Hgk,n, γk,n

〉
xk,n

+
K−1∑

k′=0

N−1∑
n′=0

(k′,n′) /= (k,n)

〈
Hgk′,n′ , γk,n

〉
xk′,n′ + wk,n,

(20)

where the second term on the right-hand side (RHS) of (20)
represents the intersymbol and intercarrier interference.

The relation (20) can be compactly expressed as

y = Hx + w, (21)

where the channel input and output vectors of size NK × 1
are respectively defined by

x �
[

xT
0 xT

1 · · · xT
K−1

]T
,

with xk �
[
xk,0 xk,1 · · · xk,N−1

]T
,

y �
[

yT
0 yT

1 · · · yT
K−1

]T
,

with yk �
[
yk,0 yk,1 · · · yk,N−1

]T
,

(22)
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and where w is defined analogously. The NK × NK channel
matrix H is given by

H �

⎛
⎜⎜⎝

H(0,0) · · · H(0,K)

...
. . .

...
H(K ,0) · · · H(K ,K)

⎞
⎟⎟⎠, (23)

where the matrix block H(k,k′) of size N ×N satisfies
[

H(k,k′)
]
n,n′

�
〈
Hgk′,n′ , γk,n

〉
. (24)

Since we do not neglect interference, the matrix H is not
diagonal and can be decomposed as follows:

H = diag(h) + Z, (25)

where h is the direct channel vector corresponding to the
main diagonal of H and Z is the ISI/ICI cross-channel matrix
containing the offdiagonal terms of H.

3. Information Theoretic Analysis of
UA-OFDM Systems

Three fundamental characteristics of the sets (g,T ,F)
and (γ,T ,F) are generally involved in the optimization/
performance of MC systems:

(i) (bi)orthogonality: for an ideal channel where y(t) =
x(t), perfect demodulation is obtained iff g(t), and
γ(t) satisfies the condition (15);

(ii) localization: localization of a prototype function
involves the Heisenberg uncertainty principle and
characterizes its time-frequency concentration so
that it directly affects the power of interference
observed at reception;

(iii) density: spectral efficiency of MC systems is directly
proportional to the density 1/TF of the time-
frequency grid that supports the transmission
scheme. For instance, adding guard intervals between
OFDM symbols reduces the density due to the fact
that TF > 1 in this case, but as the product TF gets
larger, the power of ISI/ICI diminishes.

Ideally, we would like to construct a MC system that is
(bi)orthogonal, with well-localized prototype functions (to
limit the interference) and with a dense time-frequency grid
(to maximize the spectral efficiency). However, these three
conditions cannot be satisfied simultaneously due to the
Balian-Low theorem [25, Th. 4.1.1.] More precisely, well-
localized (bi)orthogonal pulses can only be found for TF >
1 (see [26, Ch. 2] for more details). This loss in spectral
efficiency is usually the price to pay to mitigate ISI/ICI over
double-dispersive channels. (Note that other approaches, e.g.
[13] or [27], privilege localization and spectral efficiency over
(bi)orthogonality.)

These elements highlight the difficulty of finding a
compromise between a low interference at reception and
a maximal use of the degrees of freedom offered by the
channel. The optimal trade-off between low interference

and high spectral efficiency is a key ingredient in OFDM
system design that has yet to be found. To provide some
guidelines that will help us to progress toward the optimal
solution, we suggest to study the signal-to-interference ratio
as well as the information rate of UA-OFDM systems. The
information rate, defined as the amount of information that
can be transmitted with arbitrarily small error probability,
appears as a good figure of merit for system design as it
jointly considers interference and spectral efficiency.

3.1. Signal-to-Interference Ratio. The signal-to-interference
ratio at the symbol k and the subcarrier n is defined as

SIRk,n �

E

{∣∣∣∣
[

H(k,k)
]
n,n
xk,n

∣∣∣∣
2
}

E

⎧⎪⎨
⎪⎩

∣∣∣∣∣∣
∑K−1

k′=0

∑N−1
n′=0

(k′,n′) /= (k,n)

[H(k,k′)]n,n′xk′,n′

∣∣∣∣∣∣

2
⎫⎪⎬
⎪⎭

(a)=
E

{∣∣∣∣
[

H(k,k)
]
n,n

∣∣∣∣
2
}

∑K−1
k′=0

∑N−1
n′=0

(k′,n′) /= (k,n)

E

{∣∣∣[H(k,k′)]n,n′

∣∣∣2
} ,

(26)

where (a) follows from the assumption that the xk,n are
i.i.d. with zero mean. The numerator represents the average
power of the diagonal entries of H, and the denominator the
power of its offdiagonal entries. Let Ag,γ(τ, ν) be the cross-
ambiguity function of g(t) and γ(t) defined as follows:

Ag,γ(τ, ν) �

∫

t
g(t)γ∗(t − τ)e− j2πνtdt. (27)

The signal as well as the interference power can be expressed
as a function of Ag,γ(τ, ν). More precisely, as shown in
Appendix B:

E

{∣∣∣∣
[

H(k,k)
]
n,n

∣∣∣∣
2
}

≈
∫

τ

∫

τ′

∫

ν

S̃H(τ, τ′, ν)A∗γ,g(τ, ν)

× Aγ,g(τ′, ν)e j2πnF(τ′−τ)dν dτ′dτ

+

∣∣∣∣
∫

τ
hH(τ, kT)A∗γ,g(τ, 0)e− j2πnFτdτ

∣∣∣∣
2

,

(28)

where S̃H(τ, τ′, ν) is the channel scattering function defined
as

S̃H(τ, τ′, ν) =
∫

u
R̃H(τ, τ′,u)e−2 jπνudu, (29)

with R̃H(τ, τ′,u) � E{h̃H(τ, t)h̃∗H(τ′, t + u)}. Note that in the
case where the scatterers are assumed to be uncorrelated, the
scattering function is simplified to S̃H(τ, τ′, ν)δ(τ′ − τ).

The first term on the RHS of (28) represents the power
carried by the fast fading random part of the channel,
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and the second term corresponds to the deterministic part
of the channel. Similarly, the interference power satisfies

K−1∑

k′=0

N−1∑
n′=0

(k′,n′) /= (k,n)

E

{∣∣∣∣
[

H(k,k′)
]
n,n′

∣∣∣∣
2
}

� σ̃2
In + σ2

Ik,n
, (30)

where σ̃2
In is the interference power corresponding to the

random part of the channel and is expressed as

σ̃2
In =

K−1∑

k′=1−K

N−1∑

n′=1−N
(k′,n′) /= (0,0)

∫

τ

∫

τ′

∫

ν

S̃H(τ, τ′, ν)

× A∗γ,g(τ + k′T , ν + n′F)

× Aγ,g(τ′ + k′T , ν + n′F)

× e j2πF(n′+n)(τ′−τ)dν dτ′dτ.

(31)

Note that σ̃2
In does not depend on k since, according to (4),

h̃H(τ, t) is wide-sense stationary.
σ2
Ik,n

is the interference power due to the deterministic
part of the channel and is given by

σ2
Ik,n
=

K−1∑

k′=1−K

N−1∑

n′=1−N
(k′,n′) /= (0,0)

∣∣∣∣
∫

τ
hH(τ, (k′ + k)T)

× A∗γ,g(τ + k′T ,n′F)

e− j2πF(n′+n)τdτ
∣∣∣2
.

(32)

Using the above quantities, we now define the average
signal-to-interference ratio as

SIR � lim
K→∞

1

KN

K−1∑

k=0

N−1∑
n=0

SIRk,n. (33)

3.2. Achievable Rate. Let Px be the set of probability
distributions on x that satisfy the constraints given in (17).
The maximum achievable rate for an OFDM system is then
given by [28]

C = lim
K→∞

1

KT
sup
Px

I
(

y; x
)
, (34)

where I(y; x) = hE(y)− hE(y | x) is the mutual information
between y and x with hE(y), the differential entropy of y.
In the noncoherent setting, the maximum achievable rate is
notoriously hard to characterize analytically. However, by
evaluating the mutual information I(y; x) for a specific input
distribution, and by relying on the following inequality on
mutual information [29]:

I
(

y; x
)
≥ I
(

y; x | H
)
− I
(

y; H | x
)
, (35)

we can get a lower bound on C that yields an information-
theoretic criterion useful for the analysis of UA-OFDM

systems. Note that the first term on the right-hand side of
(35) corresponds to the coherent information rate under
perfect channel knowledge at reception, and the second term
can be interpreted as a penalty term that quantifies the rate
loss due to the lack of channel knowledge.

Theorem 1. The maximum achievable rate of an OFDM
system with i.i.d. input symbols satisfying the average-power
constraint (17) and transmitting over the channel modeled by
(2) is lower-bounded as CL1 ≤ C, where

CL1 = lim
K→∞

1

KT
EH

{
log det

(
I +

PT

N
HH†diag(rw)−1

)}

− inf
0<α<1

1

KT

⎡
⎣ log det

(
I +

PT

Nα
Rhdiag(rw)−1

)

+K
N−1∑
n=0

log

(
1 +

PT

N(1− α)rw(n)
σ̃2
In

)⎤
⎦.

(36)

Here, the entries of the NK×1 noise power vector rw are defined
as

rw(n + kK) � W(nF), n ∈ [0,N − 1], k ∈ [0,K − 1],

(37)

and Rh denotes the covariance matrix of the direct channel
vector h, whose entries are expressed as

[
R

(k,k′)
h

]
n,n′

=
∫

τ

∫

τ′

∫

ν

S̃H(τ, τ′, ν)A∗γ,g(τ, ν)Aγ,g(τ′, ν)

×e j2πνT(k−k′)e j2πF(n′τ′−nτ)dν dτ′dτ.

(38)

Proof. See Appendix C.

Note that the penalty term in (36) only depends on the
random component of the channel so that acquiring CSI at
reception gets more costly as the channel gets more fluctuat-
ing (e.g., estimating H gets more difficult as the power of its
off-diagonal entries increases).

To get a better insight into the achievable rate, the follow-
ing corollary presents a simplified scenario of transmission
that leads to a more tractable expression of the lower bound.

Corollary 2. In the case where the noise is assumed to be white
and the scatterers uncorrelated, the maximum achievable rate
is lower bounded as CL2 ≤ C, where

CL2 = lim
K→∞

1

KT
EH

{
log det

(
I + ρTFHH†

)}

− inf
0<α<1

B

TF

[∫ 1/2

−1/2
log

(
1 +

ρTF

α
s̃(θ)

)
dθ

+ log

(
1 +

ρTF

1− α
σ̃2
I

)]
.

(39)
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Here, ρ denotes the SNR defined in (18), s̃(θ) is the PSD of the
zero-mean stationary channel process {hk,n−E{hk,n}}k, and is
expressed as

s̃(θ) =
∞∑

k=−∞

∫

τ

∫

ν

S̃H(τ, ν)
∣∣∣Aγ,g(τ, ν)

∣∣∣2
e j2πνkTdνdτe− j2πkθ ,

(40)

and σ̃2
I satisfies

σ̃2
I =

K−1∑

k′=1−K

N−1∑

n′=1−N
(k′,n′) /= (0,0)

∫

τ

∫

ν

S̃H(τ, ν)

×
∣∣∣A∗γ,g(τ + k′T , ν + n′F)

∣∣∣2
dνdτ.

(41)

Proof. See Appendix D.

Note that the scenario depicted in Corollary 2 may be
acceptable for systems transmitting in small bandwidth (on
the order of kHz), where the noise PSD can be assumed flat
and where the propagation loss associated with each channel
path is approximately constant over the transmit bandwidth,
thus reducing the correlation between channel arrival paths.

4. Numerical Analysis

We next examine the signal-to-interference ratio and the
bounds of the previous section in various scenarios. Using
a synthetic channel model, impact of time-frequency disper-
sion on the information rate is first discussed in Section 4.1.
Bounds on the information rate applied to experimental
double-dispersive UA channels surveyed at sea are then
analyzed in Section 4.2. Common OFDM systems with
rectangular pulse shaping are used as a framework in our
investigation. g(t) and γ(t) are thus defined as

g(t) =

⎧⎪⎨
⎪⎩

1√
T

if 0 < t ≤ T ,

0 otherwise,

γ(t) =

⎧⎪⎪⎨
⎪⎪⎩

1√
T − Tg

if Tg < t ≤ T ,

0 otherwise,

(42)

where Tg = T − 1/F denotes the guard time between OFDM
symbols.

4.1. Synthetic Channel Model. To illustrate the impact of
channel dispersion on the performance of OFDM systems,
we first consider a canonical channel model. It has no
particular physical justification, but mimics a bad scenario
from the viewpoint of a communication system [20] and
will help us to provide general trends on OFDM system
robustness against channel dispersion.

We assume the following environment:

(i) Rayleigh fading, that is, κ = 0;
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Figure 1: Lower bound (39) as a function of the channel spread
factor for a Rayleigh fading channel with a brick-shaped scattering
function and white Gaussian Noise. ρ = 15 dB and B = 5 kHz.

(ii) uncorrelated scatterers with a brick-shaped scattering

function S̃H(τ, ν) = 1/△H;

(iii) white Gaussian noise.

Figure 1 shows the information rate as a function of
the channel spread factor ∆H defined in (12). The grid
parameters T and F are chosen according to the grid-
matching rule [30]: T/F = τmax/νmax, and TF is chosen
so as to maximize (39). ρ is set to 15 dB and B = 5 kHz.
τmax is randomly chosen between 1 and 50 ms, and νmax

between 0.1 and 50 Hz. As expected, the achievable rate of
OFDM systems is strongly affected by both the delay and
the Doppler spread and decreases as the channel gets more
dispersive. Note that as the rectangular prototype function
is not equally localized in time and frequency, there is not
a single performance point for a given spread factor. For
∆H ≤ 10−3 and ρ = 15 dB, OFDM systems should be able to
communicate at roughly 4 bits/s/Hz, which represents 80%
of the achievable rate in an AWGN channel at the same SNR.
Such systems can be relatively efficient as long as ∆H < 10−1.
However, for ∆H > 1, there is no guarantee that any data can
be reliably transmitted.

4.2. Experimental UA Channels Recorded at Sea. Three
different shallow water channels, recorded in the Atlantic
ocean and the Mediterranean sea, are considered. Table 1
summarizes the main characteristics of these channels, and
Figure 2 shows the evolution of their respective power
delay profiles as a function of time. Channel (a) results
from data collected by the DGA-TN (Direction Générale
de l’Armement-Techniques Navales) in the Atlantic ocean
off Brest (France) in October 2007, and channels (b) and
(c) result from sea trials performed by Thales Underwater
Systems in the Mediterranean sea off La Ciotat (France) in
October 2004. From the raw data and for each channel,
the trend hH(τ, t) is separated from the random component

h̃H(τ, t) using the empirical mode decomposition method
[2]. The maximum time delay spread is estimated as the
difference between the longest and the shortest delay, where
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Table 1: Summary of at sea experiments.

Channel
Center frequency

(kHz)
Bandwidth

(kHz)
Distance

(m)
Water depth

(m)
τmax

(ms)
νmax

(Hz)
κ

(dB)

(a) 17.5 2.9 1000 10–40 2.1 1.5 15.5

(b) 6 1 2500 60–120 35 2.7 4.9

(c) 6 1 5000 60–120 47 3.2 1.6
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Figure 2: Time evolution of the power delay profiles of the channels depicted in Table 1.

the average power delay profile exceeds 1% of its maximum
value (i.e., taps that are 20 dB below the strongest tap are
assumed to result from noise and are artificially set to

0). The scattering function S̃H(τ, τ′, ν) is obtained from
a correlogram estimate of PSD. The maximum Doppler
spread is similarly defined from the Doppler power spectrum
as the maximum delay spread from the average power
delay profile. (The Doppler power spectrum is defined as∫
τ

∫
τ′ S̃H(τ, τ′, ν)dτ′dτ.) To compute the various expectations

required to evaluate the bound CL1, a large number of chan-
nel realizations are generated using the channel stochastic
replay approach presented in [2]. Throughout this analysis,
T and F satisfy the grid-matching rule mentioned previously
(i.e., T/F = τmax/νmax).

In Figure 3, the average SIR is plotted as a function of TF
for the three channels. It can be noticed that as TF increases,
the duration of the guard interval increases as well, which
results in a lower interference at reception. The SIR increases
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Figure 3: Average signal-to-interference ratio as a function of TF.
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Figure 4: Lower-bound CL1 as a function of TF and the SNR ρ for the three channels depicted in Table 1.

significantly as long as TF is such that the guard interval
duration is lower than the maximum time delay spread. A
further increase of TF produces a slighter increase of the
SIR, which indicates that ISI is more detrimental than ICI.
The average SIR also depends on the channel properties. As
expected, for a given TF, the larger the spread factor, the
smaller the SIR.

Through the evolution of the achievable rate (36) as a
function of TF and the SNR, Figure 4 shows possible trade-
offs between interference minimization and loss of signal-
space dimensions. It provides a measure of reassurance that
current practice in designing OFDM systems for underwater
channels is reasonable. That is, oversizing guard intervals
duration (i.e., choosing large TF) compared to the channel
maximum delay spread is not much detrimental to the
information rate, whereas a too small TF can significantly
decreases this rate, especially in highly dispersive channels
such as channel (c). The results of Figure 4 also suggest
that significant rate improvements are possible compared
to state-of-the-art UA-OFDM systems. For instance, in
channels (b) and (c), reliable OFDM transmissions at 2
to 4 bits/sec/Hz are achievable provided an average signal-
to-noise ratio of 15 to 20 dB, whereas in the same SNR
range, single-input single-output UA-OFDM systems usually
operate with a spectral efficiency around 1 bit/sec/Hz [6–8].
The lower bound (36) obtained for channel (a) corroborates
the results of the previous subsection related to channels with

small spread factors, that is, over such channels we should be
able to communicate at 80% of the theoretical rate obtained
over AWGN channels.

UA-OFDM systems are not genie-aided and have to
spend some resources to acquire CSI at reception, with the
consequence of decreasing the data rate. Insights on how
CSI impact the information rate can be obtained through
the numerical analysis of the ratio CL1/Ccoh, where Ccoh

is defined as the achievable rate of UA-OFDM systems
with perfect channel knowledge at reception. According to
Appendix C, we have

Ccoh = lim
K→∞

1

KT
EH

{
log det

(
I +

PT

N
HH† diag (rw)−1

)}
,

(43)

which corresponds to the first term on the RHS of (36). Note
that Ccoh is also an upperbound on C. (This can easily be
shown by noticing that I(y; x) ≤ I(y; x | H).) As shown
in Figure 5, the penalty induced by the absence of CSI is
stronger for channels with larger Doppler spread (estimating
H gets more difficult as the channel starts to fluctuate more
rapidly) and can lead up to a 30% rate loss for a SNR of
20 dB. In addition, CL1/Ccoh decreases with the SNR, which
indicates that CSI acquisition may become a rate-limiting
factor at high SNR.
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5. Conclusions and Perspectives

The information-theoretic analysis provided in this paper led
to the following conclusions:

(i) the information rate decreases with the channel
spread factor but remains acceptable (i.e., greater
than 1 bits/sec/Hz) as long as this factor is smaller
than 10−1 and the signal-to-noise ratio is greater than
15 dB;

(ii) numerical assessments on real UA channels with
spread factors around 10−1 showed that reliable
OFDM transmissions at 2 to 4 bits/sec/Hz are achiev-
able provided an average signal-to-noise ratio of
15 to 20 dB;

(iii) current practices in designing OFDM systems for
underwater channels are reasonable. More precisely,
slightly oversizing guard intervals duration compared
to the channel maximum delay spread is not much
detrimental to the information rate, whereas under-
estimating this duration can be devastating.

Although quite realistic, the system model used in this
paper could be more constrained. In particular, to strengthen
our results, it would be interesting to add to our model
a peak-power limitation, as in [31]. It is well known that
OFDM systems can be sensitive to this limitation when
power amplifiers do not operate with a large backoff. One
way to tackle the problem would be to consider, in the
information theoretic-treatment, the nonlinear distortion
due to possible clipping as additional noise. Another point
that deserves further attention is to study the information
rate bound CL1 as a figure of merit for pulse-shaping
optimization. While experimental results showed that large
rates can be achieved with rectangular pulses, the bound

provided in this paper could be tightened by maximizing it
over all Weyl-Heisenberg sets.

Appendices

A. Noise Model Approximation

To model the ambient noise in the sea, four sources are
usually considered: turbulence, shipping, waves, and thermal
noise. These four noise components can be modeled by a
colored Gaussian noise with the following empirical power
spectral density (PSD) given in dB re µPa2 per Hz as a
function of frequency f in Hz [24]:

turbulence: 10 logWt

(
f
)
= 17− 30 log

(
10−3 f

)
,

shipping: 10 logWs

(
f
)
= 40 + 20(s− 0.5) + 26 log

(
10−3 f

)

− 60 log
(
10−3 f + 0.03

)
,

waves: 10 logWw

(
f
)
= 50 + 7.5v

1

2 + 20 log
(
10−3 f

)

− 40 log
(
10−3 f + 0.4

)
,

thermal noise: 10 logWth

(
f
)
= −15 + 20 log

(
10−3 f

)
,

(A.1)

where 0 ≤ s ≤ 1 is the shipping activity, and v is the wind
speed in m/s. The baseband equivalent noise PSD, as defined
in (8), is then given by

W
(
f
)
= Wt

(
f + fc

)
+ Ws

(
f + fc

)

+ Ww

(
f + fc

)
+ Wth

(
f + fc

)
,

(A.2)

where fc is the carrier frequency corresponding the 0th
subcarrier.

As noticed in [24], in the frequency region where most
OFDM communication systems operate (1 kHz to 100 kHz),
the noise PSD decays almost linearly on the logarithmic
scale. (Surface motion, caused by wind-driven waves is the
main contributor to the noise in that frequency range.) This
indicates that a simple expression may be found for the auto-
correlation function Rw(τ). In fact, by expressing Rw(τ) as

Rw(τ) = βe−µ|τ|e− j2π fcτ , (A.3)

where β > 0 and µ > 0, we get the following PSD [32]:

W
(
f
)
= β

2µ

µ2 + 4π
(
f + fc

)2 , (A.4)

that turns out to be a good approximation of the noise PSD
in frequency range of interest. This approximation is shown
in Figure 6 with µ = 5.103, and β is chosen such that the noise
powers of models (A.2) and (A.4) perfectly match at 10 kHz.
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B. Computation of the Signal and
the Interference Power

For all k, k′,n,n′ ∈ Z, we have that

[
H(k,k′)

]
n,n′

�
〈
Hgk′,n′ , γk,n

〉

(a)=
∫

t

∫

τ

∫

ν

GH(τ, ν)g(t − k′T − τ)e j2πn
′F(t−τ)

× e j2πνtγ∗(t − kT)e− j2πnFtdνdτdt

(b)=
∫

τ

∫

ν

GH(τ, ν)e− j2πn′Fτ

×
[∫

t
g∗(t − k′T − τ)γ(t − kT)

×e− j2πνte− j2π(n′−n)Ftdt

]∗
dνdτ

(c)=
∫

τ

∫

ν

GH(τ, ν)

× A∗γ,g(τ + (k′ − k)T , ν + (n′ − n)F)

× e− j2πn′Fτe j2π(ν+(n′−n)F)kT dνdτ,

(B.1)

where (a) and (b) follows from (9), (13), and (14), and (c)
follows from the change of variables t′ = t − kT and from
(27).

From this expression, we can now derive the signal power

E

{∣∣∣∣
[

H(k,k)
]
n,n

∣∣∣∣
2
}

(a)= E
{∣∣∣∣
∫

τ

∫

ν

(
GH(τ, ν) + G̃H(τ, ν)

)

×A∗γ,g(τ, ν)e j2π(νkT−nFτ) dν dτ
∣∣∣2
}

,

(b)≈ E
{∣∣∣∣
∫

τ

∫

ν

G̃H(τ, ν)A∗γ,g(τ, ν)e j2π(νkT−nFτ) dν dτ

∣∣∣∣
2
}

+

∣∣∣∣
∫

τ
hH(τ, kT)A∗γ,g(τ, 0)e− j2πnFτdτ

∣∣∣∣
2

,

(c)=
∫

τ

∫

ν

∫

τ′

∫

ν
′
E

{
G̃H(τ, ν)G̃∗H(τ′, ν

′)
}
A∗γ,g(τ, ν)Aγ,g(τ′, ν

′)

× e j2π(νkT−nFτ)

× e− j2π(ν
′kT−nFτ′)dν

′ dτ′ dν dτ

+

∣∣∣∣
∫

τ
hH(τ, kT)A∗γ,g(τ, 0)e− j2πnFτdτ

∣∣∣∣
2

,

(d)=
∫

τ

∫

τ′

∫

ν

S̃H(τ, τ′, ν)A∗γ,g(τ, ν)Aγ,g(τ′, ν)

× e j2πnF(τ′−τ)dν dτ′dτ

+

∣∣∣∣
∫

τ
hH(τ, kT)A∗γ,g(τ, 0)e− j2πnFτdτ

∣∣∣∣
2

,

(B.2)

where (a) follows from (B.1) and (9). In (b), we use
that E{G̃H(τ, ν)} = 0, and we implicitly assume that
the prototype functions g(t) and γ(t) have a compact

support and that the channel average component hH(τ, t)
is approximately constant (in t) over that support. If we
consider rectangular prototype functions, the duration of
their support is upper-bounded by T , which represents a few
tens or hundreds of milliseconds. This has to be compared
with the fluctuation period of hH(τ, t), which is rather a
few tens or hundreds of seconds [2]. Note that, theoretically,
some prototype functions can have an infinite support.
However, the contribution to the received power from the
part of the pulse that has a support greater than few times the
symbol period T is rather negligible (e.g., for most infinite-
length prototype functions such as Gaussian, Raised-Cosine,

etc., we usually have that
∫ 5T
−5T |g(t)|2dt ≈

∫∞
−∞ |g(t)|2dt).

(d) holds because, according to (4), the zero-mean random

part h̃H(τ, t) of the channel is wide-sense stationary so

that E{G̃H(τ, ν)G̃∗H(τ′, ν
′)} = S̃H(τ, τ′, ν)δ(ν

′ − ν), where

S̃H(τ, τ′, ν) is the channel scattering function defined in (29).
Note that in the case where the scatterers are assumed to be
uncorrelated E{G̃H(τ, ν)G̃∗H(τ′, ν

′)} = S̃H(τ, ν)δ(ν
′−ν)δ(τ′−

τ), so that (B.2) simplifies to

E

{∣∣∣∣
[

H(k,k)
]
n,n

∣∣∣∣
2
}

≈
∫

τ

∫

ν

S̃H(τ, ν)
∣∣∣Aγ,g(τ, ν)

∣∣∣2
dν dτ

+

∣∣∣∣
∫

τ
hH(τ, kT)A∗γ,g(τ, 0)e− j2πnFτdτ

∣∣∣∣
2

.

(B.3)
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Similarly to (B.2), the interference power can be derived
from the following development:

E

{∣∣∣∣
[

H(k,k′)
]
n,n′

∣∣∣∣
2
}

(a)= E
{∣∣∣∣
∫

τ

∫

ν

(
GH(τ, ν) + G̃H(τ, ν)

)

× A∗γ,g(τ + (k′ − k)T , ν + (n′ − n)F)

×e− j2πn′Fτe j2π(ν+(n′−n)F)kT dνdτ
∣∣∣2
}

(b)≈ E
{∣∣∣∣
∫

τ

∫

ν

G̃H(τ, ν)A∗γ,g(τ + (k′ − k)T , ν + (n′ − n)F)

×e− j2πn′Fτe j2π(ν+(n′−n)F)kTdνdτ
∣∣∣2
}

+

∣∣∣∣
∫

τ
hH(τ, k′T)

×A∗γ,g(τ + (k′ − k)T , (n′ − n)F)e− j2πn′Fτdτ
∣∣∣2

(c)=
∫

τ

∫

τ′

∫

ν

S̃H(τ, τ′, ν)

× A∗γ,g(τ + (k′ − k)T , ν + (n′ − n)F)

× Aγ,g(τ′ + (k′ − k)T , ν + (n′ − n)F)

× e j2πn
′F(τ′−τ)dν dτ′dτ

+

∣∣∣∣
∫

τ
hH(τ, k′T)

×A∗γ,g(τ + (k′ − k)T , (n′ − n)F)e− j2πn′Fτdτ

∣∣∣∣
2

,

(B.4)

where (a) follows from (B.1) and (9). For (B.2) and (B.4)
alike, in (b) we assume that hH(τ, t) is approximately
constant over some period of time. We here consider
that hH(τ, t) does not fluctuate much over the duration
that corresponds to the maximal time difference between
two interfering OFDM symbols, that is, hH(τ, kT) ≈
hH(τ, k′T),∀ (k, k′) ∈ {(k, k′)|E{|[H(k,k′)]n,n′ |

2} /= 0}. Once
again, this assumption is not restricting since for most
OFDM systems the duration (k′ − k)T only represents a few
tens or hundreds of milliseconds in worst-case scenarios. In
the case where the scatterers are assumed to be uncorrelated,
(B.4) simplifies to

E

{∣∣∣∣
[

H(k,k′)
]
n,n′

∣∣∣∣
2
}

=
∫

τ

∫

ν

S̃H(τ, ν)

×
∣∣∣Aγ,g(τ + (k′ − k)T , ν + (n′ − n)F)

∣∣∣2
dν dτ

+

∣∣∣∣
∫

τ
hH(τ, k′T)

×A∗γ,g(τ + (k′ − k)T , (n′ − n)F)e− j2πn′Fτdτ

∣∣∣∣
2

.

(B.5)

C. Proof of Theorem 1

A lower bound on C can be obtained by evaluating the
mutual information I(y; x) for a specific input distribution.
Specifically, x is chosen such that x ∼ CN (0, (PT/N)I). The
proof of Theorem 1 next relies on the following information
theoretic inequality [29, 33]:

I
(

y; x
)
≥ I
(

y; x | H
)
− I
(

y; H | x
)
. (C.1)

C.1. Computation of I(y; x | H). The computation of I(y; x |
H) = hE(y | H)− hE(y | x, H) is straightforward since

(i) conditional on H, y is distributed according to a
complex Gaussian distribution with a covariance
matrix equal to (PT/N)HH† + E{ww†};

(ii) conditional on x and H, y is complex Gaussian with
a covariance matrix equal to E{ww†}.

The entries of the NK×NK noise covariance matrix E{ww†}
are given by

[
E

{
ww†

}(k,k′)
]

n,n′
� E

{
wk,nw

∗
k′,n′

}

=
∫

τ
Rw(τ)e− j2πnFτ

× A∗γ,γ(τ + (k′ − k)T , (n′ − n)F)

× e j2πkTF(n′−n)dτ

(a)≈
∫

τ
Rw(τ)e− j2πnFτ

× A∗γ,γ((k′ − k)T , (n′ − n)F)

× e j2πkTF(n′−n)dτ

(b)=
∫

τ
Rw(τ)e− j2πnFτdτ

× δ(k − k′)δ(n− n′)

(c)= W(nF)× δ(k − k′)δ(n− n′).

(C.2)

Here, (a) is based on Appendix A where it is shown that
Rw(τ) can be well approximated by a function that decays
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very fast compared to common pulse durations (i.e., Rw(τ) =
βe−5.103|τ|e− j2π fcτ). (b) follows from the orthogonality of the
receive pulse and (c) from (8). Consequently,

I
(

y; x | H
)
= EH

{
log det

(
I +

PT

N
HH†

E

{
ww†

}−1
)}

= EH

{
log det

(
I +

PT

N
HH†diag(rw)−1

)}
,

(C.3)

where the entries of the NK × 1 vector rw are defined as

rw(n + kK) � W(nF), n ∈ [0,N − 1], k ∈ [0,K − 1].

(C.4)

C.2. Computation of I(y;H | x). The offdiagonal ele-
ments of H being generally nonnull in highly dispersive
environments, the derivation of I(y; H | x) is not that easy.
Influenced by [21], we next seek an upper bound on the
penalty term I(y; Hx) by splitting y into an interference-free
part and an interference-only part, so that

y = Hx + w

= h⊙ x + Zx + w

= h⊙ x + w1︸ ︷︷ ︸
�y1

+ Zx + w2︸ ︷︷ ︸
�y2

,
(C.5)

where w1 are two independent random vectors such that
w1 ∼ CN (0,α × diag(rw)) and w2 ∼ CN (0, (1 − α) ×
diag(rw)), with 0 < α < 1.

Let us note that

I
(

y; H | x
) (a)
≤ I

(
y1, y2; H | x

)

(b)
≤ I

(
y1, y2; h, Z | x

)

(c)= I
(

y1; h, Z | x
)

+ I
(

y2; h, Z | x, y1

)

(d)= I
(

y1; h | x
)

+ I
(

y2; h, Z | x, y1

)

(e)= I
(

y1; h | x
)

+ hE
(

y2 | x, y1

)

− hE
(

y2 | x, y1, h, Z
)

(f)= I
(

y1; h | x
)

+ hE
(

y2 | x, y1

)

− hE
(

y2 | x, Z
)

(g)
≤ I

(
y1; h | x

)
+ hE

(
y2 | x

)

− hE
(

y2 | x, Z
)

= I
(

y1; h | x
)

+ I
(

y2; Z | x
)
.

(C.6)

In (a) and (b), we used the data processing inequality, (c)
follows from the chain rule, (d) holds because y1 and Z
are conditionally independent given h, in (e) we expressed

mutual information as a function of entropy, (f) holds
because y2 and y1 are conditionally independent given x and
h, and also because y2 and h are conditionally independent
given x and Z. Finally, the fact that conditioning reduces
entropy leads to (g).

Using that y1 is Gaussian given h and x, and as a
consequence of Jensen’s inequality, I(y1; h | x) can be upper-
bounded as

I
(

y1; h | x
)

= Ex
{

log det

(
I +

diag(x)diag
(

x†
)

α
Rhdiag(rw)−1

)}

≤ log det

(
I +

PT

Nα
Rhdiag(rw)−1

)
,

(C.7)

where Rh denotes the covariance matrix of the direct channel
vector h. From (B.1), we can express the entries of Rh as

[
R

(k,k′)
h

]
n,n′

=
∫

τ

∫

τ′

∫

ν

S̃H(τ, τ′, ν)A∗γ,g(τ, ν)

× Aγ,g(τ′, ν)e j2πνT(k−k′)

× e j2πF(n′τ′−nτ)dν dτ′dτ.

(C.8)

We next seek an upper bound on I(y2; Z | x). Let

Q(x) = EZ{(Zx − EZ{Zx})(Zx − EZ{Zx})†} be the con-
ditional covariance matrix of the vector Zx given x. Zx
being Gaussian given x, using Hadamard’s and Jensen’s
inequalities, I(y2; Z | x) is then upper-bounded as follows:

I
(

y2; Z | x
)

= Ex
{

log det

(
I +

1

1− α
Q(x) diag (rw)−1

)}

≤
K−1∑

k=0

N−1∑
n=0

Ex

{
log

(
1 +

1

(1− α)rw(n + kK)

[
Q(x)(k,k)

]
n,n

)}

≤
K−1∑

k=0

N−1∑
n=0

log

(
1 +

1

(1− α)rw(n + kK)
Ex

{[
Q(x)(k,k)

]
n,n

})

=
K−1∑

k=0

N−1∑
n=0

log

(
1 +

PT

N(1− α)rw(n + kK)
σ̃2
In

)
,

(C.9)

where the last equality holds because the input symbols are
i.i.d. with zero mean, so that

Ex

{[
Q(x)(k,k)

]
n,n

}

= PT

N

[
E

{
(Z− E{Z})(Z− E{Z})†

}(k,k)
]

n,n

= PT

N
σ̃2
In ,

(C.10)

with σ̃2
In the interference power due to the random part of

the channel as defined in (31). Equation (C.9) can be further
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simplified by noticing that rw(n+ kK) and σ̃2
In do not depend

on k; therefore,

I
(

y2; Z | x
)
≤ K

N−1∑
n=0

log

(
1 +

PT

N(1− α)rw(n)
σ̃2
In

)
. (C.11)

From (C.1), (C.3), (C.7), and (C.11), and for all 0 < α <
1, I(y; x) can be lower-bounded as follows:

I
(

y; x
)
≥ EH

{
log det

(
I +

PT

N
HH†diag(rw)−1

)}

−
⎡
⎣log det

(
I +

PT

Nα
Rhdiag(rw)−1

)

+K
N−1∑
n=0

log

(
1 +

PT

N(1− α)rw(n)
σ̃2
In

)⎤
⎦.

(C.12)

The bound is then tightened by choosing α that mini-
mizes the penalty term, which concludes the proof.

D. Proof of Corollary 2

D.1. White Noise Assumption. Under the white noise
assumption, the noise PSD is flat over the entire bandwidth
so that W( f ) = W0, where W0 is a constant. In that case,
the entries of vector rw are all equal to W0, and the SNR ρ
satisfies ρ = P/(BW0). Given that B = NF, from Theorem 1
we have

C ≥ lim
K→∞

1

KT
EH

{
log det

(
I + ρTFHH†

)}

− inf
0<α<1

1

KT

[
log det

(
I +

ρTF

α
Rh

)

+K
N−1∑
n=0

log

(
1 +

ρTF

1− α
σ̃2
In

)⎤
⎦.

(D.1)

D.2. Uncorrelated Scattering Assumption. In the case where
the scatterers can be assumed as uncorrelated, the lower
bound on the information rate can be further simplified.

First, the channel scattering function is reduced from
three to two dimensions so that σ̃2

In does not depend on n
anymore and is expressed as

σ̃2
In =

K−1∑

k′=1−K

N−1∑

n′=1−N
(k′,n′) /= (0,0)

∫

τ

∫

ν

S̃H(τ, ν)

×
∣∣∣A∗γ,g(τ + k′T , ν + n′F)

∣∣∣2
dν dτ

� σ̃2
I .

(D.2)

Second, the covariance matrix Rh becoming block-Toe-
plitz, the extension of Szegö’s theorem to two-level Toeplitz
matrices can be applied, that is [34, Th. 3]:

lim
K→∞

1

KT
log det

(
I +

ρTF

α
Rh

)

= 1

T

∫ 1/2

−1/2
log det

(
I +

ρTF

α
S̃(θ)

)
dθ,

(D.3)

where S̃(θ) is the power spectral density of the zero-mean

multivariate random process {hk − E{hk}}, with hk �

[hk,0 hk,1 · · ·hk,N−1]T , that is,

S̃(θ) �

∞∑

k=−∞
E

{
(hk − E{hk})(hk − E{hk})†

}
e− j2πkθ . (D.4)

By noticing that the entries on the main diagonal of S̃(θ) are
all equal and by applying Hadamard’s inequality, we have

1

T

∫ 1/2

−1/2
log det

(
I +

ρTF

α
S̃(θ)

)
dθ

≤ N

T

∫ 1/2

−1/2
log

(
1 +

ρTF

α
s̃(θ)

)
dθ,

(D.5)

where s̃(θ) is the PSD of the zero-mean stationary channel
process {hk,n − E{hk,n}}k and is expressed as

s̃(θ) =
∞∑

k=−∞

∫

τ

∫

ν

S̃H(τ, ν)
∣∣∣Aγ,g(τ, ν)

∣∣∣2
e j2πνkTdν dτe− j2πkθ .

(D.6)

Corollary 2 is then obtained by noticing that N/T = B/(TF).
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