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ABSTRACT
Two-dimensional contingency or co-occurrence tables arise
frequently in important applications such as text, web-log
and market-basket data analysis. A basic problem in contin-
gency table analysis is co-clustering: simultaneous clustering
of the rows and columns. A novel theoretical formulation
views the contingency table as an empirical joint probabil-
ity distribution of two discrete random variables and poses
the co-clustering problem as an optimization problem in in-
formation theory — the optimal co-clustering maximizes the
mutual information between the clustered random variables
subject to constraints on the number of row and column
clusters. We present an innovative co-clustering algorithm
that monotonically increases the preserved mutual informa-
tion by intertwining both the row and column clusterings
at all stages. Using the practical example of simultaneous
word-document clustering, we demonstrate that our algo-
rithm works well in practice, especially in the presence of
sparsity and high-dimensionality.

Categories and Subject Descriptors
E.4 [Coding and Information Theory]: Data compaction
and compression; G.3 [Probability and Statistics]: Con-
tingency table analysis; H.3.3 [Information Search and
Retrieval]: Clustering; I.5.3 [Pattern Recognition]: Clus-
tering

Keywords
Co-clustering, information theory, mutual information

1. INTRODUCTION
Clustering is a fundamental tool in unsupervised learning
that is used to group together similar objects [14], and has
practical importance in a wide variety of applications such
as text, web-log and market-basket data analysis. Typically,
the data that arises in these applications is arranged as a
contingency or co-occurrence table, such as, word-document
co-occurrence table or webpage-user browsing data. Most
clustering algorithms focus on one-way clustering, i.e., clus-
ter one dimension of the table based on similarities along the
second dimension. For example, documents may be clus-
tered based upon their word distributions or words may be
clustered based upon their distribution amongst documents.
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It is often desirable to co-cluster or simultaneously cluster
both dimensions of a contingency table [11] by exploiting the
clear duality between rows and columns. For example, we
may be interested in finding similar documents and their in-
terplay with word clusters. Quite surprisingly, even if we are
interested in clustering along one dimension of the contin-
gency table, when dealing with sparse and high-dimensional
data, it turns out to be beneficial to employ co-clustering.

To outline a principled approach to co-clustering, we treat
the (normalized) non-negative contingency table as a joint
probability distribution between two discrete random vari-
ables that take values over the rows and columns. We define
co-clustering as a pair of maps from rows to row-clusters
and from columns to column-clusters. Clearly, these maps
induce clustered random variables. Information theory can
now be used to give a theoretical formulation to the prob-
lem: the optimal co-clustering is one that leads to the largest
mutual information between the clustered random variables.
Equivalently, the optimal co-clustering is one that minimizes
the difference (“loss”) in mutual information between the
original random variables and the mutual information be-
tween the clustered random variables. In this paper, we
present a novel algorithm that directly optimizes the above
loss function. The resulting algorithm is quite interesting:
it intertwines both row and column clustering at all stages.
Row clustering is done by assessing closeness of each row
distribution, in relative entropy, to certain “row cluster pro-
totypes”. Column clustering is done similarly, and this pro-
cess is iterated till it converges to a local minimum. Co-
clustering differs from ordinary one-sided clustering in that
at all stages the row cluster prototypes incorporate column
clustering information, and vice versa. We theoretically es-
tablish that our algorithm never increases the loss, and so,
gradually improves the quality of co-clustering.

We empirically demonstrate that our co-clustering algorithm
alleviates the problems of sparsity and high dimensionality
by presenting results on joint word-document clustering. An
interesting aspect of the results is that our co-clustering ap-
proach yields superior document clusters as compared to
the case where document clustering is performed without
any word clustering. The explanation is that co-clustering
implicitly performs an adaptive dimensionality reduction at
each iteration, and estimates fewer parameters than a stan-
dard “one-dimensional” clustering approach. This results in
an implicitly “regularized” clustering.



A word about notation: upper-case letters such as X, Y ,
X̂, Ŷ will denote random variables. Elements of sets will
be denoted by lower-case letters such as x and y. Quanti-
ties associated with clusters will be “hatted”: for example,
X̂ denotes a random variable obtained from a clustering
of X while x̂ denotes a cluster. Probability distributions
are denoted by p or q when the random variable is obvious
or by p(X, Y ), q(X, Y, X̂, Ŷ ), p(Y |x), or q(Y |x̂) to make the
random variable explicit. Logarithms to the base 2 are used.

2. PROBLEM FORMULATION
Let X and Y be discrete random variables that take values
in the sets {x1, . . . , xm} and {y1, . . . , yn} respectively. Let
p(X, Y ) denote the joint probability distribution between X
and Y . We will think of p(X, Y ) as a m×n matrix. In prac-
tice, if p is not known, it may be estimated using observa-
tions. Such a statistical estimate is called a two-dimensional
contingency table or as a two-way frequency table [9].

We are interested in simultaneously clustering or quantizing
X into (at most) k disjoint or hard clusters, and Y into
(at most) ℓ disjoint or hard clusters. Let the k clusters of
X be written as: {x̂1, x̂2, . . . , x̂k}, and let the ℓ clusters of
Y be written as: {ŷ1, ŷ2, . . . , ŷℓ}. In other words, we are
interested in finding maps CX and CY ,

CX : {x1, x2, . . . , xm} → {x̂1, x̂2, . . . , x̂k}

CY : {y1, y2, . . . , yn} → {ŷ1, ŷ2, . . . , ŷℓ}.

For brevity, we will often write X̂ = CX(X) and Ŷ =

CY (Y ); X̂ and Ŷ are random variables that are a deter-
ministic function of X and Y , respectively. Observe that X
and Y are clustered separately, that is, X̂ is a function of
X alone and Ŷ is a function of Y alone. But, the partition
functions CX and CY are allowed to depend upon the entire
joint distribution p(X, Y ).

Definition 2.1. We refer to the tuple (CX , CY ) as a co-
clustering.

Suppose we are given a co-clustering. Let us “re-order” the
rows of the joint distribution p such that all rows mapping
into x̂1 are arranged first, followed by all rows mapping into
x̂2, and so on. Similarly, let us “re-order” the columns of
the joint distribution p such that all columns mapping into
ŷ1 are arranged first, followed by all columns mapping into
ŷ2, and so on. This row-column reordering has the effect of
dividing the distribution p into little two-dimensional blocks.
We refer to each such block as a co-cluster.

A fundamental quantity that measures the amount of infor-
mation random variable X contains about Y (and vice versa)
is the mutual information I(X; Y ) [3]. We will judge the
quality of a co-clustering by the resulting loss in mutual in-
formation, I(X; Y )−I(X̂; Ŷ ) (note that I(X̂; Ŷ ) ≤ I(X; Y )
by Lemma 2.1 below).

Definition 2.2. An optimal co-clustering minimizes

I(X; Y ) − I(X̂; Ŷ ) (1)

subject to the constraints on the number of row and column
clusters.

For a fixed distribution p, I(X; Y ) is fixed; hence minimiz-

ing (1) amounts to maximizing I(X̂, Ŷ ).

Let us illustrate the situation with an example. Consider the
6 × 6 matrix below that represents the joint distribution:

p(X, Y ) =

2

6

6

6

6

6

4

.05 .05 .05 0 0 0

.05 .05 .05 0 0 0
0 0 0 .05 .05 .05
0 0 0 .05 .05 .05

.04 .04 0 .04 .04 .04

.04 .04 .04 0 .04 .04

3

7

7

7

7

7

5

(2)

Looking at the row distributions it is natural to group the
rows into three clusters: x̂1 = {x1, x2}, x̂2 = {x3, x4} and
x̂3 = {x5, x6}. Similarly the natural column clustering is:
ŷ1 = {y1, y2, y3}, ŷ2 = {y4, y5, y6}. The resulting joint dis-

tribution p(X̂, Ŷ ), see (6) below, is given by:

p(X̂, Ŷ ) =

2

4

.3 0
0 .3
.2 .2

3

5 . (3)

It can be verified that the mutual information lost due to this
co-clustering is only .0957, and that any other co-clustering
leads to a larger loss in mutual information.

The following lemma shows that the loss in mutual infor-
mation can be expressed as the “distance” of p(X, Y ) to
an approximation q(X, Y ) — this lemma will facilitate our
search for the optimal co-clustering.

Lemma 2.1. For a fixed co-clustering (CX , CY ), we can
write the loss in mutual information as

I(X; Y ) − I(X̂, Ŷ ) = D(p(X, Y )||q(X, Y )), (4)

where D(·||·) denotes the Kullback-Leibler(KL) divergence,
also known as relative entropy, and q(X, Y ) is a distribution
of the form

q(x, y) = p(x̂, ŷ)p(x|x̂)p(y|ŷ), where x ∈ x̂, y ∈ ŷ. (5)

Proof. Since we are considering hard clustering,

p(x̂, ŷ) =
X

x∈x̂

X

y∈ŷ

p(x, y), (6)

p(x̂) =
P

x∈x̂
p(x), and p(ŷ) =

P

y∈ŷ
p(y). By definition,

I(X; Y ) − I(X̂; Ŷ )

=
X

x̂

X

ŷ

X

x∈x̂

X

y∈ŷ

p(x, y) log
p(x, y)

p(x)p(y)

−
X

x̂

X

ŷ

0

@

X

x∈x̂

X

y∈ŷ

p(x, y)

1

A log
p(x̂, ŷ)

p(x̂)p(ŷ)

=
X

x̂

X

ŷ

X

x∈x̂

X

y∈ŷ

p(x, y) log
p(x, y)

p(x̂, ŷ) p(x)
p(x̂)

p(y)
p(ŷ)

=
X

x̂

X

ŷ

X

x∈x̂

X

y∈ŷ

p(x, y) log
p(x, y)

q(x, y)
,

where the last step follows since p(x|x̂) = p(x)
p(x̂)

for x̂ = CX(x)

and 0 otherwise, and similarly for p(y|ŷ). ⊔⊓



Lemma 2.1 shows that the loss in mutual information must
be non-negative, and reveals that finding an optimal co-
clustering is equivalent to finding an approximating distri-
bution q of the form (5) that is close to p in Kullback-Leibler
divergence. Note that the distribution q preserves marginals
of p, that is, for x̂ = CX(x) and ŷ = CY (y),

q(x) =
X

y

q(x, y) =
X

ŷ

X

y∈ŷ

p(x̂, ŷ)p(x|x̂)p(y|ŷ) = p(x, x̂) = p(x).

Similarly, q(y) = p(y). In Section 4 we give further prop-
erties of the approximation q. Recall the example p(X, Y )
in (2) and the “natural” row and column clusterings that
led to (3). It is easy to verify that the corresponding ap-
proximation q(X, Y ) defined in (5) equals

q(X, Y ) =

2

6

6

6

6

6

4

.054 .054 .042 0 0 0

.054 .054 .042 0 0 0
0 0 0 .042 .054 .054
0 0 0 .042 .054 .054

.036 .036 .028 .028 .036 .036

.036 .036 .028 .028 .036 .036

3

7

7

7

7

7

5

, (7)

and that D(p||q) = .0957. Note that the row and column
sums of the above q are identical to those of p given in (2).

We end this section by providing another motivation based
on the theory of source coding and transmission. Let us
set-up an artificial data compression problem, where we
want to transmit X and Y from a source to a destina-
tion. Let us insist that this transmission be done in two-
stages: (a) first compute X̂ = CX(X) and Ŷ = CY (Y ),

and transmit the cluster identifiers X̂ and Ŷ jointly; and
(b) separately transmit X given that the destination already

knows X̂ and transmit Y given that the destination already
knows Ŷ . The first step will require, on an average, at least,
H(X̂, Ŷ ) bits, and, the second step will require, on an aver-

age, H(X|X̂) + H(Y |Ŷ ) bits. For every fixed co-clustering,
the average number of bits that must be transmitted from
the source to the destination is:

H(X̂, Ŷ ) + H(X|X̂) + H(Y |Ŷ ). (8)

However, by noting the parallel between (5) and (8), it easy
to show that:

H(X̂, Ŷ ) + H(X|X̂) + H(Y |Ŷ ) − H(X, Y )

= D(p(X, Y )||q(X, Y )).

Thus, to find an optimal co-clustering it is sufficient to mini-
mize (8) subject to the constraints on the number of row and
column clusters. Observe that (8) contains the cross-term

H(X̂, Ŷ ) that captures the interaction between row and col-
umn clusters. This underscores the fact that clustering of
rows and columns must interact in a “good” co-clustering. A
naive algorithm that clusters rows without paying attention
to columns and vice versa will miss this critical interaction
that is the essence of co-clustering.

3. RELATED WORK
Most of the clustering literature has focused on one-sided
clustering algorithms [14]. There was some early work on
co-clustering, such as in [11] which used a local greedy split-
ting procedure to identify hierarchical row and column clus-
ters in matrices of small size. Co-clustering has also been

called biclustering and block clustering in [2] and [17] respec-
tively. Recently [4] used a graph formulation and a spectral
heuristic that uses eigenvectors to co-cluster documents and
words; however, a restriction in [4] was that each word clus-
ter was associated with a document cluster. We do not
impose such a restriction in this paper; see Section 5.3 for
examples of different types of associations between row and
column clusters.

Our information-theoretic formulation of preserving mutual
information is similar to the information bottleneck (IB)
framework [20], which was introduced for one-sided cluster-

ing, say X to X̂. IB tries to minimize the quantity I(X, X̂)
to gain compression while maximizing the mutual informa-
tion I(X̂, Y ); the overall quantity considered in [20] is I(X, X̂)−

βI(X̂, Y ) where β reflects the tradeoff between compression
and preservation of mutual information. The resulting algo-
rithm yields a “soft” clustering of the data using a determin-
istic annealing procedure. For a hard partitional clustering
algorithm using a similar information-theoretic framework,
see [6]. These algorithms were proposed for one-sided clus-
tering.

An agglomerative hard clustering version of the IB method
was used in [19] to cluster documents after clustering words.
The work in [8] extended the above work to repetitively
cluster documents and then words. Both these papers use
heuristic procedures with no guarantees on a global loss
function; in contrast, in this paper we first quantify the loss
in mutual information due to co-clustering and then pro-
pose an algorithm that provably reduces this loss function
monotonically, converging to a local minimum.

Recently, when considering a clustering framework using
Bayesian belief networks, [10] proposed an iterative opti-
mization method that amounts to a multivariate generaliza-
tion of [20], and, once again, uses deterministic annealing. A
later paper [18] presented a hard agglomerative algorithm for
the same problem that has advantages over [10] in that “it
is simpler, fully deterministic, and non-parametric. There
is no need to identify cluster splits which is rather tricky”.
However, [18] pointed out that their “agglomeration proce-
dures do not scale linearly with the sample size as top down
methods do . . .”. In this paper, we present a principled,
top-down hard clustering method that scales well. Also,
the results in [18] amount to first finding a word clustering
followed by finding a document clustering (without any it-
eration), whereas we present a procedure that intertwines
word and document clusterings at all stages and continually
improves both until a local minimum is found, and, hence,
is a true co-clustering procedure.

By Lemma 2.1, our co-clustering procedure is intimately re-
lated to finding a matrix approximation q(X, Y ). A soft ver-
sion of our procedure is related to the PLSI scheme of [12];
however the latter uses a single latent variable model. A
two-sided clustering model is given in [13] that uses maxi-
mum likelihood in a model-based generative framework.

4. COCLUSTERING ALGORITHM
We now describe a novel algorithm that monotonically de-
creases the objective function (1). To describe the algorithm
and related proofs, it will be more convenient to think of the



joint distribution of X, Y, X̂, and Ŷ . Let p(X, Y, X̂, Ŷ ) de-
note this distribution. Observe that we can write:

p(x, y, x̂, ŷ) = p(x̂, ŷ)p(x, y|x̂, ŷ). (9)

By Lemma 2.1, for the purpose of co-clustering, we will
seek an approximation to p(X, Y, X̂, Ŷ ) using a distribution

q(X, Y, X̂, Ŷ ) of the form:

q(x, y, x̂, ŷ) = p(x̂, ŷ)p(x|x̂)p(y|ŷ). (10)

The reader may want to compare (5) and (10): observe
that the latter is defined for all combinations of x, y, x̂,
and ŷ. Note that in (10) if x̂ 6= CX(x) or ŷ 6= CY (y)
then q(x, y, x̂, ŷ) is zero. We will think of p(X, Y ) as a

two-dimensional marginal of p(X, Y, X̂, Ŷ ) and q(X, Y ) as

a two-dimensional marginal of q(X, Y, X̂, Ŷ ). Intuitively, by

(9) and (10), within the co-cluster denoted by X̂ = x̂ and

Ŷ = ŷ, we seek to approximate p(X, Y |X̂ = x̂, Ŷ = ŷ) by

a distribution of the form p(X|X̂ = x̂)p(Y |Ŷ = ŷ). The
following proposition (which we state without proof) estab-
lishes that there is no harm in adopting such a formulation.

Proposition 4.1. For every fixed “hard” co-clustering,

D(p(X, Y )||q(X, Y )) = D(p(X, Y, X̂, Ŷ )||q(X, Y, X̂, Ŷ )).

We first establish a few simple, but useful equalities that
highlight properties of q desirable in approximating p.

Proposition 4.2. For a distribution q of the form (10),
the following marginals and conditionals are preserved:

q(x̂, ŷ) = p(x̂, ŷ), q(x, x̂) = p(x, x̂) & q(y, ŷ) = p(y, ŷ). (11)

Thus,

p(x) = q(x), p(y) = q(y), p(x̂) = q(x̂), p(ŷ) = q(ŷ), (12)

p(x|x̂) = q(x|x̂), p(y|ŷ) = q(y|ŷ), (13)

p(ŷ|x̂) = q(ŷ|x̂), p(x̂|ŷ) = q(x̂|ŷ) (14)

∀x, y, x̂, and ŷ. Further, if ŷ = CY (y) and x̂ = CX(x), then

q(y|x̂) = q(y|ŷ)q(ŷ|x̂), (15)

q(x, y, x̂, ŷ) = p(x)q(y|x̂), (16)

and, symmetrically,

q(x|ŷ) = q(x|x̂)q(x̂|ŷ), (17)

q(x, y, x̂, ŷ) = p(y)q(x|ŷ).

Proof. The equalities of the marginals in (11) are simple
to show and will not be proved here for brevity. Equalities
(12), (13), and (14) easily follow from (11). Equation (15)
follows from

q(y|x̂) = q(y, ŷ|x̂) =
q(y, ŷ, x̂)

q(x̂)
= q(y|ŷ, x̂)q(ŷ|x̂) = q(y|ŷ)q(ŷ|x̂).

Equation (16) follows from

q(x, y, x̂, ŷ) = p(x̂, ŷ)p(x|x̂)p(y|ŷ)

= p(x̂)p(x|x̂)p(ŷ|x̂)p(y|ŷ)

= p(x, x̂)p(ŷ|x̂)p(y|ŷ)

= p(x)q(ŷ|x̂)q(y|ŷ)

= p(x)q(y|x̂),

where the last equality follows from (15). ⊔⊓

Interestingly, q(X, Y ) also enjoys a maximum entropy prop-
erty and it can be verified that H(p(X, Y )) ≤ H(q(X, Y ))
for any input p(X, Y ).

Lemma 2.1 quantified the loss in mutual information upon
co-clustering as the KL-divergence of p(X, Y ) to q(X, Y ).
Next, we use the above proposition to prove a lemma that
expresses the loss in mutual information in two revealing
ways. This lemma will lead to a “natural” algorithm.

Lemma 4.1. The loss in mutual information can be ex-
pressed as (i) a weighted sum of the relative entropies be-
tween row distributions p(Y |x) and “row-lumped” distribu-
tions q(Y |x̂), or as (ii) a weighted sum of the relative en-
tropies between column distributions p(X|y) and “column-
lumped” distributions q(X|ŷ), that is,

D(p(X, Y, X̂, Ŷ )||q(X, Y, X̂, Ŷ ))

=
X

x̂

X

x:CX (x)=x̂

p(x)D(p(Y |x)||q(Y |x̂)),

D(p(X, Y, X̂, Ŷ )||q(X, Y, X̂, Ŷ ))

=
X

ŷ

X

y:CY (y)=ŷ

p(y)D(p(X|y)||q(X|ŷ)).

Proof. We show the first equality, the second is similar.

D(p(X, Y, X̂, Ŷ )||q(X, Y, X̂, Ŷ ))

=
X

x̂,ŷ

X

x:CX (x)=x̂,y:CY (y)=ŷ

p(x, y, x̂, ŷ) log
p(x, y, x̂, ŷ)

q(x, y, x̂, ŷ)

(a)
=

X

x̂,ŷ

X

x:CX (x)=x̂,y:CY (y)=ŷ

p(x)p(y|x) log
p(x)p(y|x)

p(x)q(y|x̂)

=
X

x̂

X

x:CX (x)=x̂

p(x)
X

y

p(y|x) log
p(y|x)

q(y|x̂)
,

where (a) follows from (16) and since p(x, y, x̂, ŷ) = p(x, y) =
p(x)p(y|x) when ŷ = CY (y), x̂ = CX(x). ⊔⊓

The significance of Lemma 4.1 is that it allows us to express
the objective function solely in terms of the row-clustering,
or in terms of the column-clustering. Furthermore, it allows
us to define the distribution q(Y |x̂) as a “row-cluster proto-
type”, and similarly, the distribution q(X|ŷ) as a “column-
cluster prototype”. With this intuition, we now present the
co-clustering algorithm in Figure 1. The algorithm works

as follows. It starts with an initial co-clustering (C
(0)
X , C

(0)
Y )

and iteratively refines it to obtain a sequence of co-clusterings:

(C
(1)
X , C

(1)
Y ), (C

(2)
X , C

(2)
Y ), . . .. Associated with a generic co-

clustering (C
(t)
X , C

(t)
Y ) in the sequence, the distributions p(t)

and q(t) are given by: p(t)(x, y, x̂, ŷ) = p(t)(x̂, ŷ)p(t)(x, y|x̂, ŷ)

and q(t)(x, y, x̂, ŷ) = p(t)(x̂, ŷ)p(t)(x|x̂)p(t)(y|ŷ). Observe that

while as a function of four variables, p(t)(x, y, x̂, ŷ) depends

upon the iteration index t, the marginal p(t)(x, y) is, in fact,
independent of t. Hence, we will write p(x), p(y), p(x|y),

p(y|x), and p(x, y), respectively, instead of p(t)(x), p(t)(y),

p(t)(x|y), p(t)(y|x), and p(t)(x, y).



Algorithm Co Clustering(p,k,ℓ,C†
X

,C†
Y

)

Input: The joint probability distribution p(X, Y ), k the desired
number of row clusters, and ℓ the desired number of column
clusters.

Output: The partition functions C
†
X

and C
†
Y

.

1. Initialization: Set t = 0. Start with some initial partition

functions C
(0)
X

and C
(0)
Y

. Compute

q(0)(X̂, Ŷ ), q(0)(X|X̂), q(0)(Y |Ŷ )

and the distributions q(0)(Y |x̂), 1 ≤ x̂ ≤ k using (18).

2. Compute row clusters: For each row x, find its new cluster
index as

C
(t+1)
X

(x) = argminx̂ D
“

p(Y |x)||q(t)(Y |x̂)
”

,

resolving ties arbitrarily. Let C
(t+1)
Y

= C
(t)
Y

.

3. Compute distributions

q(t+1)(X̂, Ŷ ), q(t+1)(X|X̂), q(t+1)(Y |Ŷ )

and the distributions q(t+1)(X|ŷ), 1 ≤ ŷ ≤ ℓ using (19).

4. Compute column clusters: For each column y, find its new
cluster index as

C
(t+2)
Y

(y) = argminŷ D
“

p(X|y)||q(t+1)(X|ŷ)
”

,

resolving ties arbitrarily. Let C
(t+2)
X

= C
(t+1)
X

.

5. Compute distributions

q(t+2)(X̂, Ŷ ), q(t+2)(X|X̂), q(t+2)(Y |Ŷ )

and the distributions q(t+2)(Y |x̂), 1 ≤ x̂ ≤ k using (18).

6. Stop and return C
†
X

= C
(t+2)
X

and C
†
Y

= C
(t+2)
Y

if the change in objective function value, that is,
D(p(X, Y )||q(t)(X, Y )) − D(p(X, Y )||q(t+2)(X, Y )), is
“small” (say 10−3); Else set t = t + 2 and go to step 2.

Figure 1: Information theoretic co-clustering algo-
rithm that simultaneously clusters both the rows
and columns

In Step 1, the algorithm starts with an initial co-clustering

(C
(0)
X , C

(0)
Y ) and computes the required marginals of the re-

sulting approximation q(0) (the choice of starting points is
important, and will be discussed in Section 5). The algo-
rithm then computes the appropriate “row-cluster proto-
types” q(0)(Y |x̂). While the reader may wish to think of

these as “centroids”, note that q(0)(Y |x̂) is not a centroid,

q(0)(Y |x̂) 6=
1

|x̂|

X

x∈x̂

p(Y |x),

where |x̂| denotes the number of rows in cluster x̂. Rather,
by (15), for every y, we write

q(t)(y|x̂) = q(t)(y|ŷ)q(t)(ŷ|x̂), (18)

where ŷ = CY (y). Note that (18) gives a formula that would
have been difficult to guess a priori without the help of anal-
ysis. In Step 2, the algorithm “re-assigns” each row x to
a new row-cluster whose row-cluster prototype q(t)(Y |x̂) is
closest to p(Y |x) in Kullback-Leibler divergence. In essence,

Step 2 defines a new row-clustering. Also, observe that the
column clustering is not changed in Step 2. In Step 3, using
the new row-clustering and the old column clustering, the al-
gorithm recomputes the required marginals of q(t+1). More
importantly, the algorithm recomputes the column-cluster
prototypes. Once again, these are not ordinary centroids,
but rather by using (17), for every x, we write

q(t+1)(x|ŷ) = q(t+1)(x|x̂)q(t+1)(x̂|ŷ), (19)

where x̂ = CX(x). Now, in Step 4, the algorithm “re-
assigns” each column y to a new column-cluster whose column-
cluster prototype q(t+1)(X|ŷ) is closest to p(X|y) in Kullback-
Leibler divergence. Step 4 defines a new column-clustering
while holding the row-clustering fixed. In Step 5, the algo-
rithm re-computes marginals of q(t+2). The algorithm keeps
iterating Steps 2 through 5 until some desired convergence
condition is met. The following reassuring theorem, which
is our main result, guarantees convergence. Note that co-
clustering is NP-hard and a local minimum does not guar-
antee a global minimum.

Theorem 4.1. Algorithm Co Clustering monotonically de-
creases the objective function given in Lemma 2.1.

Proof.
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(g)
= D(p(t+1)(X, Y, X̂, Ŷ )||q(t+1)(X, Y, X̂, Ŷ )), (20)

where (a) follows from Lemma 4.1; (b) follows from Step 2 of
the algorithm; (c) follows by rearranging the sum and from
(15); (d) follows from Step 3 of the algorithm, (6) and (11);
(e) follows by non-negativity of the Kullback-Leibler diver-
gence; and (f) follows since we hold the column clusters fixed

in Step 2, that is, C
(t+1)
Y = C

(t)
Y , and (g) is due to (15) and

Lemma 4.1. By using an identical argument, which we omit
for brevity, and by using properties of Steps 4 and 5, we can
show that

D(p(t+1)(X, Y, X̂, Ŷ )||q(t+1)(X, Y, X̂, Ŷ ))

≥ D(p(t+2)(X, Y, X̂, Ŷ )||q(t+2)(X, Y, X̂, Ŷ )). (21)

By combining (20) and (21), it follows that every iteration
of the algorithm never increases the objective function. ⊔⊓

Corollary 4.1. The algorithm in Figure 1 terminates
in a finite number of steps at a cluster assignment that is
locally optimal, that is, the loss in mutual information can-
not be decreased by either (a) re-assignment of a distribution
p(Y |x) or p(X|y) to a different cluster distribution q(Y |x̂)
or q(X|ŷ), respectively, or by (b) defining a new distribution
for any of the existing clusters.

Proof. The result follows from Theorem 4.1 and since the
number of distinct co-clusterings is finite. ⊔⊓

Remark 4.1. The algorithm is computationally efficient
even for sparse data as its complexity can be shown to be
O(nz · τ · (k + ℓ)) where nz is the number of nozeros in
the input joint distribution p(X, Y ) and τ is the number of
iterations; empirically 20 iterations are seen to suffice.

Remark 4.2. A closer examination of the above proof
shows that Steps 2 and 3 together imply (20) and Steps 4 and
5 together imply (21). We show how to generalize the above
convergence guarantee to a class of iterative algorithms. In
particular, any algorithm that uses an arbitrary concate-
nations of Steps 2 and 3 with Steps 4 and 5 is guaranteed
to monotonically decrease the objective function. For exam-
ple, consider an algorithm that flips a coin at every iteration
and performs Steps 2 and 3 if the coin turns up heads, and
performs Steps 4 and 5 otherwise. As an another example,
consider an algorithm that keeps iterating Steps 2 and 3,
until no improvement in the objective function is noticed.
Next, it can keep iterating Steps 4 and 5, until no further

improvement in the objective function is noticed. Now, it
can again iterate Steps 2 and 3, and so on and so forth.
Both these algorithms as well all algorithms in the same
spirit are guaranteed to monotonically decrease the objec-
tive function. Such algorithmic flexibility can allow explo-
ration of various local minima when starting from a fixed
initial random partition in Step 1.

Remark 4.3. While our algorithm is in the spirit of k-
means, the precise algorithm itself is quite different. For
example, in our algorithm, the distribution q(t)(Y |x̂) serves
as a “row-cluster prototype”. This quantity is different from
the naive “centroid” of the cluster x̂. Similarly, the column-
cluster prototype q(t+1)(X|ŷ) is different from the obvious
centroid of the cluster ŷ. In fact, detailed analysis (as is
evident from the proof of Theorem 4.1) was necessary to
identify these key quantities.

4.1 Illustrative Example
We now illustrate how our algorithm works by showing how
it discovers the optimal co-clustering for the example p(X, Y )
distribution given in (2) of Section 2. Table 1 shows a typical
run of our co-clustering algorithm that starts with a random
partition of rows and columns. At each iteration Table 1
shows the steps of Algorithm Co Clustering, the resulting
approximation q(t)(X, Y ) and the corresponding compressed

distribution p(t)(X̂, Ŷ ). The row and column cluster num-
bers are shown around the matrix to indicate the clustering
at each stage. Notice how the intertwined row and column
co-clustering leads to progressively better approximations to
the original distribution. At the end of four iterations the
algorithm almost accurately reconstructs the original dis-
tribution, discovers the natural row and column partitions
and recovers the ideal compressed distribution p(X̂, Ŷ ) given

in (3). A pleasing property is that at all iterations q(t)(X, Y )
preserves the marginals of the original p(X, Y ).

5. EXPERIMENTAL RESULTS
This section provides empirical evidence to show the benefits
of our co-clustering framework and algorithm. In particu-
lar we apply the algorithm to the task of document clus-
tering using word-document co-occurrence data. We show
that the co-clustering approach overcomes sparsity and high-
dimensionality yielding substantially better results than the
approach of clustering such data along a single dimension.
We also show better results as compared to previous algo-
rithms in [19] and [8]. The latter algorithms use a greedy
technique ([19] uses an agglomerative strategy) to cluster
documents after words are clustered using the same greedy
approach. For brevity we will use the following notation
to denote various algorithms in consideration. We call the
Information Bottleneck Double Clustering method in [19]
as IB-Double and the Iterative Double Clustering algorithm
in [8] as IDC. In addition we use 1D-clustering to denote
document clustering without any word clustering i.e, clus-
tering along a single dimension.

5.1 Data Sets and Implementation Details
For our experimental results we use various subsets of the 20-
Newsgroup data(NG20) [15] and the SMART collection from
Cornell (ftp://ftp.cs.cornell.edu/pub/smart). The NG20 data



q(t)(X, Y ) p(t)(X̂, Ŷ )
ŷ1 ŷ1 ŷ2 ŷ1 ŷ2 ŷ2

x̂3 .029 .029 .019 .022 .024 .024 0.10 0.05
x̂1 .036 .036 .014 .028 .018 .018 0.10 0.20
x̂2 .018 .018 .028 .014 .036 .036 0.30 0.25
x̂2 .018 .018 .028 .014 .036 .036
x̂3 .039 .039 .025 .030 .032 .032
x̂3 .039 .039 .025 .030 .032 .032

↓ steps 2 & 3 of Figure 1

ŷ1 ŷ1 ŷ2 ŷ1 ŷ2 ŷ2

x̂1 .036 .036 .014 .028 .018 .018 0.20 0.10
x̂1 .036 .036 .014 .028 .018 .018 0.18 0.32
x̂2 .019 .019 .026 .015 .034 .034 0.12 0.08
x̂2 .019 .019 .026 .015 .034 .034
x̂3 .043 .043 .022 .033 .028 .028
x̂2 .025 .025 .035 .020 .046 .046

↓ steps 4 & 5 of Figure 1

ŷ1 ŷ1 ŷ1 ŷ2 ŷ2 ŷ2

x̂1 .054 .054 .042 0 0 0 0.30 0
x̂1 .054 .054 .042 0 0 0 0.12 0.38
x̂2 .013 .013 .010 .031 .041 .041 0.08 0.12
x̂2 .013 .013 .010 .031 .041 .041
x̂3 .028 .028 .022 .033 .043 .043
x̂2 .017 .017 .013 .042 .054 .054

↓ steps 2 & 3 of Figure 1

ŷ1 ŷ1 ŷ1 ŷ2 ŷ2 ŷ2

x̂1 .054 .054 .042 0 0 0 0.30 0
x̂1 .054 .054 .042 0 0 0 0 0.30
x̂2 0 0 0 .042 .054 .054 0.20 0.20
x̂2 0 0 0 .042 .054 .054
x̂3 .036 .036 .028 .028 .036 .036
x̂3 .036 .036 .028 .028 .036 .036

Table 1: Algorithm Co Clustering of Figure 1 gives
progressively better clusterings and approximations
till the optimal is discovered for the example p(X, Y )
given in Section 2.

set consists of approximately 20, 000 newsgroup articles col-
lected evenly from 20 different usenet newsgroups. This data
set has been used for testing several supervised text clas-
sification tasks [6] and unsupervised document clustering
tasks [19, 8]. Many of the newsgroups share similar topics
and about 4.5% of the documents are cross posted making
the boundaries between some news-groups rather fuzzy. To
make our comparison consistent with previous algorithms we
reconstructed various subsets of NG20 used in [19, 8]. We
applied the same pre-processing steps as in [19] to all the
subsets, i.e., removed stop words, ignored file headers and
selected the top 2000 words by mutual information1. Spe-
cific details of the subsets are given in Table 2. The SMART

1The data sets used in [19] and [8] differ in their pre-
processing steps. The latter includes subject lines while the
former does not. So we prepared two different data sets one
with subject lines and the other without subject lines.

collection consists of MEDLINE, CISI and CRANFIELD

sub-collections. MEDLINE consists of 1033 abstracts from
medical journals, CISI consists of 1460 abstracts from in-
formation retrieval papers and CRANFIELD consists of
1400 abstracts from aerodynamic systems. After removing
stop words and numeric characters we selected the top 2000
words by mutual information as part of our pre-processing.
We will refer to this data set as CLASSIC3.

Bow [16] is a library of C code useful for writing text analy-
sis, language modeling and information retrieval programs.
We extended Bow with our co-clustering and 1D-clustering
procedures, and used MATLAB for spy plots of matrices.

5.2 Evaluation Measures
Validating clustering results is a non-trivial task. In the
presence of true labels, as in the case of the data sets we use,
we can form a confusion matrix to measure the effectiveness
of the algorithm. Each entry(i, j) in the confusion matrix
represents the number of documents in cluster i that belong
to true class j. For an objective evaluation measure we use
micro-averaged-precision. For each class c in the data set
we define α(c, ŷ) to be the number of documents correctly
assigned to c, β(c, ŷ) to be number of documents incorrectly
assigned to c and γ(c, ŷ) to be the number of documents
incorrectly not assigned to c. The micro-averaged-precision
and recall are defined, respectively, as:

P (ŷ) =

P

c
α(c, ŷ)

P

c
(α(c, ŷ) + β(c, ŷ))

, R(ŷ) =

P

c
α(c, ŷ)

P

c
(α(c, ŷ) + γ(c, ŷ))

.

Note that for uni-labeled data P (ŷ) = R(ŷ).

5.3 Results and Discussion
First we demonstrate that co-clustering is significantly bet-
ter than clustering along a single dimension using word-
document co-occurrence matrices. In all our experiments
since we know the number of true document clusters we can
give that as input to our algorithm. For example in the
case of Binary data set we ask for 2 document clusters. To
show how the document clustering results change with the
number of word clusters, we tried k = 2, 4, 8, . . . , 128 word
clusters. To initialize a co-clustering with k word clusters,
we split each word cluster obtained from a co-clustering run
with k/2 word clusters. Note that this does not increase
the overall complexity of the algorithm. We bootstrap at
k = 2 by choosing initial word cluster distributions to be
“maximally” far apart from each other [1, 6]. Our initial-
ization scheme alleviates, to a large extent, the problem of
poor local minima. To initialize document clustering we use
a random perturbation of the “mean” document, a strategy
that has been observed to work well for document cluster-
ing [5]. Since this initialization has a random component all
our results are averages of five trials unless stated otherwise.

Table 3 shows two confusion matrices obtained on the CLAS-
SIC3 data set using algorithms 1D-clustering and co-clustering
(with 200 word clusters). Observe that co-clustering ex-
tracted the original clusters almost correctly resulting in a
micro-averaged-precision of 0.9835 while 1D-clustering led
to a micro-averaged-precision of 0.9432.



Dataset Newsgroups included #documents Total
per group documents

Binary & Binary subject talk.politics.mideast, talk.politics.misc 250 500
Multi5 & Multi5 subject comp.graphics, rec.motorcycles, rec.sports.baseball,

sci.space, talk.politics.mideast 100 500
Multi10 & Multi10 subject alt.atheism, comp.sys.mac.hardware, misc.forsale,

rec.autos,rec.sport.hockey, sci.crypt, sci.electronics,
sci.med, sci.space, talk.politics.gun 50 500

Table 2: Datasets: Each dataset contains documents randomly sampled from newsgroups in the NG20 corpus.

Co-clustering 1D-clustering
992 4 8 944 9 98
40 1452 7 71 1431 5
1 4 1387 18 20 1297

Table 3: Co-clustering accurately recovers original
clusters in the CLASSIC3 data set.

Binary Binary subject
Co-clustering 1D-clustering Co-clustering 1D-clustering
244 4 178 104 241 11 179 94
6 246 72 146 9 239 71 156

Table 4: Co-clustering obtains better clustering re-
sults compared to one dimensional document clus-
tering on Binary and Binary subject data sets

Table 4 shows confusion matrices obtained by co-clustering
and 1D-clustering on the more “confusable” Binary and Bi-
nary subject data sets. While co-clustering achieves 0.98
and 0.96 micro-averaged precision on these data sets respec-
tively, 1D-clustering yielded only 0.67 and 0.648.

Figure 2 shows how precision values vary with the number of
word clusters for each data set. Binary and Binary subject
data sets reach peak precision at 128 word clusters, Multi5
and Multi5 subject at 64 and 128 word clusters and Multi10
and Multi10 subject at 64 and 32 word clusters respectively.
Different data sets achieve their maximum at different num-
ber of word clusters. In general selecting the number of
clusters to start with is a non-trivial model selection task
and is beyond the scope of this paper. Figure 3 shows the
fraction of mutual information lost using co-clustering with
varied number of word clusters for each data set. For opti-
mal co-clusterings, we expect the loss in mutual information
to decrease monotonically with increasing number of word
clusters. We observe this on all data sets in Figure 2; our
initialization plays an important role in achieving this. Also
note the correlation between Figures 2 & 3: the trend is
that the lower the loss in mutual information the better is
the clustering. To avoid clutter we did not show error bars
in Figures 2 & 3 since the variation in values was minimal.

Figure 4 shows a typical run of our co-clustering algorithm
on the Multi10 data set. Notice how the objective func-
tion value(loss in mutual information) decreases monotoni-
cally. We also observed that co-clustering converges quickly
in about 20 iterations on all our data sets.

Table 5 shows micro-averaged-precision measures on all our
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Figure 2: Micro-averaged-precision values with var-
ied number of word clusters using co-clustering on
different NG20 data sets.
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Figure 3: Fraction of mutual information lost with
varied number of word clusters using co-clustering
on different NG20 data sets.

Co-clustering 1D-clustering IB-Double IDC

Binary 0.98 0.64 0.70
Binary subject 0.96 0.67 0.85

Multi5 0.87 0.34 0.5
Multi5 subject 0.89 0.37 0.88

Multi10 0.56 0.17 0.35
Multi10 subject 0.54 0.19 0.55

Table 5: Co-clustering obtains better micro-
averaged-precision values on different newsgroup
data sets compared to other algorithms.
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Figure 4: Loss in mutual information decreases
monotonically with the number of iterations on a
typical co-clustering run on the Multi10 data set.

data sets; we report the peak IB-Double and IDC preci-
sion values given in [19] and [8] respectively. Similarly, in
the column under co-clustering we report the peak preci-
sion value from among the values in Figure 2. On all data
sets co-clustering performs much better than 1D-clustering
clearly indicating the utility of clustering words and doc-
uments simultaneously. Co-clustering is also significantly
better than IB-Double and comparable with IDC support-
ing the hypothesis that word clustering can alleviate the
problem of clustering in high dimensions.

We now show the kind of structure that co-clustering can
discover in sparse word-document matrices. Figure 5 shows
the original word-document matrix and the reordered ma-
trix obtained by arranging rows and columns according to
cluster order to reveal the various co-clusters. To simplify
the figure the final row clusters from co-clustering are or-
dered in ascending order of their cluster-purity distribution
entropy. Notice how co-clustering reveals the hidden spar-
sity structure of various co-clusters of the data set. Some
word clusters are found to be highly indicative of individual
document clusters inducing a block diagonal sub-structure
while the dense sub-blocks at the bottom of the right panel
of Figure 5 show that other word clusters are more uniformly
distributed over the document clusters. We observed similar
sparsity structure in other data sets.

While document clustering is the main objective of our ex-
periments the co-clustering algorithm also returns word clus-
ters. An interesting experiment would be to apply co-clustering
to co-occurrence matrices where true labels are available for
both dimensions. In Table 6 we give an example to show
that word clusters obtained with co-clustering are mean-
ingful and often representative of the document clusters.
Table 6 shows six of the word clusters obtained with co-
clustering on Multi5 subject data set when a total of 50
word clusters and 5 document clusters are obtained. The
clusters x̂13, x̂14, x̂16, x̂23 and x̂24 appear to represent indi-
vidual newsgroups with each word cluster containing words

x̂13 x̂14 x̂16 x̂23 x̂24 x̂47
dod pitching graphics space israel army
ride season image nasa arab working
rear players mac shuttle jewish running
riders scored ftp flight occupied museum
harleys cubs color algorithm rights drive
camping fans cd orbital palestinian visit
carbs teams package satellite holocaust post
bikers yankees display budget syria cpu
tharp braves data srb civil plain
davet starters format prototype racist mass

Table 6: Word Clusters obtained using co-
clustering on the Multi5 subject data set. The
clusters x̂13, x̂14, x̂16, x̂23 and x̂24 represent
rec.motorcycles, rec.sport.baseball, comp.graphics, sci.space
and talk.politics.mideast newsgroups respectively. For
each cluster only top 10 words sorted by mutual in-
formation are shown.

indicative of a single newsgroup. This correlates well with
the co-cluster block diagonal sub-structure observed in Fig-
ure 5. Additionally there are a few clusters like x̂47 which
contained non differentiating words; clustering them into a
single cluster appears to help co-clustering in overcoming
noisy dimensions.

6. CONCLUSIONS AND FUTURE WORK
We have provided an information-theoretic formulation for
co-clustering, and presented a simple-to-implement, top-down,
computationally efficient, principled algorithm that inter-
twines row and column clusterings at all stages and is guar-
anteed to reach a local minimum in a finite number of steps.

We have presented examples to motivate the new concepts
and to illustrate the efficacy of our algorithm. In particular,
word-document matrices that arise in information retrieval
are known to be highly sparse [7]. For such sparse high-
dimensional data, even if one is only interested in document
clustering, our results show that co-clustering is more ef-
fective than a plain clustering of just documents. The rea-
son is that when co-clustering is employed, we effectively
use word clusters as underlying features and not individual
words. This amounts to implicit and adaptive dimensional-
ity reduction and noise removal leading to better clusters.
As a side benefit, co-clustering can be used to annotate the
document clusters.

While, for simplicity, we have restricted attention to co-
clustering for joint distributions of two random variables,
both our algorithm and our main theorem can be easily ex-
tended to co-cluster multi-dimensional joint distributions.

In this paper, we have assumed that the number of row and
column clusters are pre-specified. However, since our formu-
lation is information-theoretic, we hope that a information-
theoretic regularization procedure like MDL may allow us
to select the number of clusters in a data-driven fashion.
Finally, as the most interesting open research question, we
would like to seek a generalization of our “hard” co-clustering
formulation and algorithms to an abstract multivariate clus-
tering setting that would be applicable when more complex
interactions are present between the variables being clus-
tered and the clusters themselves.
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