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Abstract—The emergent role of information theory in image
formation is surveyed. Unlike the subject of information-theoretic
communication theory, information-theoretic imaging is far from
a mature subject. The possible role of information theory in prob-
lems of image formation is to provide a rigorous framework for
defining the imaging problem, for defining measures of optimality
used to form estimates of images, for addressing issues associated
with the development of algorithms based on these optimality
criteria, and for quantifying the quality of the approximations.
The definition of the imaging problem consists of an appropriate
model for the data and an appropriate model for the reproduction
space, which is the space within which image estimates take
values. Each problem statement has an associated optimality
criterion that measures the overall quality of an estimate. The
optimality criteria include maximizing the likelihood function
and minimizing mean squared error for stochastic problems, and
minimizing squared error and discrimination for deterministic
problems. The development of algorithms is closely tied to the
definition of the imaging problem and the associated optimality
criterion. Algorithms with a strong information-theoretic moti-
vation are obtained by the method of expectation maximization.
Related alternating minimization algorithms are discussed. In
quantifying the quality of approximations, global and local mea-
sures are discussed. Global measures include the (mean) squared
error and discrimination between an estimate and the truth,
and probability of error for recognition or hypothesis testing
problems. Local measures include Fisher information.

Index Terms—Image analysis, image formation, image process-
ing, image reconstruction, image restoration, imaging, inverse
problems, maximum-likelihood estimation, pattern recognition.

I. INTRODUCTION

I MAGE formation is the process of computing (or refining)
an image both from raw sensor data that is related to

that image and from prior information about that image.
Information about the image is contained in the raw sensor
data, and the task of image formation is to extract this
information so as to compute the image. Thus it appears that
information-theoretic notions can play an important role in this
process. We will survey the emergent role that information
theory now plays in the subject of image formation or may
play in the future. This role could be to provide a rigorous
framework for defining the imaging problem, for defining
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measures of optimality that can be used to judge estimates of
images, for addressing issues associated with the development
of algorithms based on these optimality criteria, and for
quantifying the statistical quality of the approximations.

To this end, the domain of information theory may be
divided into two parts: communication and observation. The
problems of communication have been very successfully
treated by information theory, in part because Shannon had the
foresight to overlay the subject of communication with a clear
partitioning into sources, channels, encoders, anddecoders.
Although Shannon’s formalization seems quite obvious in our
time, it was not so obvious half a century ago. In contrast, the
problems of observation, including imaging, have been slower
to yield to the methods of information theory, partly because
the image formation problems are harder, and perhaps partly
because a formal framework for the subject is still emerging.
Even the termssource, sensor, and image can be slippery;
our understanding of these terms is closely tied to and colored
by our view of a particular physical problem. It is not yet
common practice to study problems of image formation in
terms of an abstract formalization that is not connected to a
specific physical problem.

One may take the natural position that an image forma-
tion problem consists of a source to be imaged, a sensor
that collects data about the source, and an algorithm that
estimates the image from the data. Thus it seems that image
formation closely corresponds to our commonplace notion of
photography. However, upon closer examination one can find
difficulties with this simple view. A physical scene has a
richness and complexity well beyond what we may wish to
model or can model. In some problems, the sensor data may
contain very little information but the prior knowledge may
be considerable. Then one uses the sensor data to supplement
the prior model to produce the image. This is calledimage
enhancementin some contexts andmodel-based imagingor
physics-based imagingin others. In an extreme case of model-
based imaging, the imaging task may well degenerate into the
estimation of several parameters, or even a simpleyesor no
decision, meaning only that a previously designated object or
target appears somewhere in the scene.

Similarly, the meaning of the term “sensor” can be hard to
define. How much of the processing is part of the sensor and
how much not? The placement or motion of a physical device
does affect the data collected by the device. Is this placement
or motion to be viewed as part of the sensor or as part of an
encoder that prepares data for a sensor? Should one introduce
the notion of an encoder into an imaging problem?
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Because we lack the greatness of Shannon, we have dif-
ficulty moving from these abstract questions to an abstract
model. Instead, we tend to answer such questions only in a
narrower context by relating back to specific physical situ-
ations. Nevertheless, we shall press forward in this paper to
describe the emergent role of information theory in the imaging
problem. Because imaging sensors of the future will provide
massive amounts of data, and computers of the future will
be able to process massive amounts of data, the theory that
we seek is needed to guide the development of these image
formation systems of the future. This implies that there is a
need for a formal information-theoretic framework that can
offer advice about how to process massive data sets so as to
extract all of the information relevant to the task of image
formation.

Many kinds of sensors passively collect data from an
environment already rich with many kinds of signals, and
these data sets may contain information about an object of
interest. In many cases, this information is very deeply buried
in the data. Powerful methods are necessary to examine the
data by applying the various techniques of filtering, correla-
tion, inference, and so forth. Seismic and acoustic systems
may consist of large arrays of many small devices. Optical
sensors and infrared sensors now contain very large detector
arrays, such as charge-coupled device (CCD) arrays, in which
individual pixels can be addressed and archived. Indeed, in
a low-light environment, the time of occurrence of individual
photon conversions can be reported one-by-one by each sensor
pixel. Optical sensors used in imaging spectropolarimetry
produce enormous quantities of data. Electromagnetic sensors
in the microwave, ultra-high frequency (UHF), or very-high
frequency (VHF) band can report massive amounts of data at
every antenna. Lidars can now remotely probe the absorption
spectrum of trace gases in the atmosphere. Even passive
electromagnetic sensors at lower frequencies can report a
considerable amount of useful data.

To enrich the collection of data, many sensors actively
probe the environment with transmitted signals, such as radar,
seismic, or lidar signals. This illumination may be necessary in
order to create the necessary data-bearing reflections. It should
also be noted, however, that in many cases, active probes are
designed not just to increase the amount of illumination falling
upon the scene, but rather to put that illumination into a form
so that the received sensor data are in a convenient form.
Although the environment may already contain many sources
of energy that provide illumination and scattered reflections,
this energy is not usually organized into waveforms that are
easy to process by image formation algorithms.

To extract information from the collected data, models must
be developed for the objects of interest, for the environment,
and for the sensor. A system that observes a remote area must
process signals that propagate long distances, and possibly
through complex environments. A system that extracts infor-
mation from weakly radiating objects will usually need large
amounts of data and long integration times. A system that uses
imaging radar for the detection of objects masked by foliage
and other clutter or a system that uses acoustic sensors for the
detection of underwater objects must treat the environment as

a significant component of the image formation problem. Such
systems may need to use prior information about the scene, or
the equivalent, to augment the limitations of the sensor data.

Image formation using a prior model often can be treated
as an inverse scattering problem. The measurements of the
scattered signal are inverted to estimate the parameters of a
model. Inverse algorithms iterate a forward algorithm, which
calculates the far-field scattering of known illumination by a
known object, and compares that to the measured field. The
model parameters are then adjusted to reduce the discrep-
ancy between calculations and measurements. This process is
repeated until there is a satisfactory agreement.

While the task of image formation can be viewed abstractly
simply as a problem of estimation, it can also be viewed
as having a character and content of its own. The problems
addressed, the cost functions used, and the specific models
that are used for images and image sensors lead to new
questions and mathematical techniques, such as the estimation
of random processes on manifolds or other complex surfaces.
Creating a formal information-theoretic framework forces one
to think through general principles and to either justify or
reject existingad hocprocedures.

Thus we come to our thesis. The time is right for a
far-reaching study into our notions of extracting images or
other object information from very large data sets, including
data sets from multiple sensors, and possibly enriched by
archived models and archived data. Various communities will
react to this statement differently. The information theory
and statistics community will think of maximum-likelihood
models, information-theoretic measures of performance, and
data fusion. The statistics community will also invoke methods
of correlation and statistical inference. The computer science
community, under the term “data mining,” will think of
large archived data structures and various search engines to
supplement sensor data. All, however, will agree that such
methods can be very powerful, and can extract information
that is very subtly and deeply buried in a massive data set. It is
now timely and appropriate to attempt to survey a framework
at this level for image formation. Insights will emerge from an
information-theoretic framework that may not be seen when
studying an individual application. This paper has been written
as an early step in this direction.

This paper deals with the information-theoretic aspects of
image formation. Another important area in imaging that bene-
fits from information-theoretic methods is image compression.
This is an area of active research with a large literature
and is beyond the scope of this paper, which focuses on
image formation. For an introduction to this literature, see for
example [36], [65], and [14].

The paper is organized as follows. The problem is first
structured in Sections II, III, and IV entitled “Image Space,”
“Sensor Data,” and “Reproduction Spaces.” Then perfor-
mance measures are discussed in Sections V and VI, en-
titled “Information-Theoretic Measures,” and “Performance
Bounds.” Sections VII and VIII, entitled “Image Formation”
and “Computational Algorithms,” are the core of the paper.
Examples are given in Section IX, entitled “Modalites and
Applications.”
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Fig. 1. Image formation model.

Fig. 2. Communications model.

II. I MAGE SPACE

We shall discuss the image formation problem shown in
Fig. 1. This model, which can describe many estimation
problems, will be interpreted herein in the context of image
formation. The image formation model shown in Fig. 1 is
analogous to the standard communications model shown in
Fig. 2. The communications model consists of a source, a
channel, and a user, and these are connected by an encoder and
a decoder. Information theory studies these abstract models of
communications and image formation.

The image formation problem is concerned with an under-
lying image or scene that is analogous to the source output
in a communications problem. The source selects one image
from a set called animage space, and the selected image—or
an adequate reproduction of that image—is to be provided
to the user. The images in the image space are abstractions,
perhaps similar to photographs of an underlying physical
scene. Just as a photograph is a compressed representation of
some underlying physical reality, so too, images in the image
space are abstract compressed representations of a physical
reality.

The sensors in Fig. 1 play the role of the channel. The
“imagator” or image-formation algorithm plays the role of the
demodulator and decoder. Unlike the communication model,
the ways in which the images can be encoded or otherwise
modulated into sensor waveforms is quite limited by the
physics of the sensor interaction with the environment. The
image data are encoded by nature into radiated signals such
as electromagnetic waves, diffracted X-rays, acoustic waves,
or seismic waves. These signals interact with the sensors to
produce the data available in imaging problems.

In some cases, only parameters of the image are of interest,
and the mapping from the parameters to the image may be
viewed as a modulation of the data. The parameter space may
be a low-dimensional space, with dimension corresponding
to the position and orientation of an object of interest, or it
may be of moderate dimension, such as when it consists of
the parameters in a mixture model (as in a segmentation of
the image). It may be of high dimension, such as a color
spectrum that varies with position.

A. Nonparametric and Parametric Models

Image space is the set of model images that represent the
true, underlying physical distributions that are measured by
the sensors. The image space is denoted by

, where is an image, is the domain of the image,
and is the range of the image. Models of image space
that describe an image by an infinite number of parameters,
typically consisting of a real function on , are known as
nonparametric models. A traditional nonparametric imaging
problem may have domain equal to or a compact subset
of . The range of the imageis commonly , , or , but
sometimes it is a vector space , , or consisting of
the set of elements of with nonnegative components. For
example, densities of particles, attenuation functions, intensity
functions, and power spectra have nonnegative values. Radar
and coherent laser signals are complex-valued and may lead to
complex-valued images of target reflectivity. To give a more
elaborate example of an image, we note that a real-valued
three-dimensional scene may be time-varying and so may be
denoted . In this case, the domain is and the
range is . If viewed through a spectrally sensitive device,
it may be advantageous additionally to model each point in
space and time as having a spectrum associated with it. The
domain is then , corresponding to a point in
space, time, and frequency, so the domain is five-dimensional.
Let denote position, denote time,
and denote frequency. Then is a point in
the image, and is the frequency-dependent
function associated with the point at positionat time .

While typical scenes may be five-dimensional, or even
larger if polarization effects are included, particular sensors
may be insensitive to one or more of these dimensions. In that
case, it is sufficient to project the five-dimensional function
onto the appropriate lower dimensional function. For example,
if only a single measurement is made at a given fixed time,
then the time variation may be ignored. If the measurement
depends on the spectrum only through an inner product with
a specified spectrum (the transfer function of the sensor), then
the spectral dependence may be ignored, keeping only this
projection. If the sensor is invariant to one of the three spatial
dimensions, then that dimension may be ignored.

Models that describe an image by a finite number (or,
rarely, by a countable number) of parameters are known as
parametric models. Parametric models are important in model-
based imaging or imaging. Anonparametric modelfor an
image may consist of a restriction of the image to a function
space or of a representation of the image as a countable
linear combination of basis functions. The basis functions
may correspond to a representation of the image in terms
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of pixels, in terms of a transform-domain expansion, or in
terms of an orthonormal set of functions. Even when this
expansion is limited to a finite number of basis functions,
the terminology would still be determined by the underlying
view of the image as a function on , so the model could
still be called a nonparametric model. An intermediate class
consists of models that have a very large, but finite, number
of parameters. These are calledhyperparametric models. Most
image space models, including the use of random field priors,
are nonparametric descriptions. Hierarchical image models are
usually hyperparametric models.

The standard imaging approach, which is to reconstruct
an image as a finite array of pixels or voxels, is viewed
as nonparametric. Occasionally it is desirable to combine a
parametric model with a nonparametric model. This means that
an expansion of an image in terms of basis functions may be
found, and the coefficients in the expansion may be functions
of the parameters of interest. This approach, because it relies
on two steps, may not be optimal (by the data processing
inequality) but may be necessary due to constraints on system
implementation.

B. Priors

The observation space is denoted
with domain and range , respectively. A sensor maps
the image space into the observation
space; often this mapping is stochastic. Imaging problems are
classified as either deterministic or stochastic according to
whether the image and the sensor are described by determin-
istic or stochastic models. Typically, a deterministic model is
used if little or nothing is known about the image and if the
sensor noise is negligible.

Deterministic constraints are often a part of the model.
These constraints will include nonnegativity constraints for
functions such as intensity, attenuation, density, and scattering.
The image may be known to take values in some convex subset
of . Alternatively, the image may be parameterized in some
way.

Other deterministic effects that must be captured include
the projection effects of the sensor. For optical imaging, the
projection onto the focal plane may be an orthographic or
perspective projection; the projection onto the retina may be
modeled as a spherical projection. For tomographic imaging,
the data may be collected in parallel or fan beams.

In the remainder of this section, we consider the case in
which something is known about the image. Prior knowledge
about an image is most naturally incorporated through the use
of a prior probability distribution on the image space.
Such priors may be specified directly on the image space, or
may be specified on parameters in a parametric representation
of the image space.

For some problems, the prior may be on a finite-dimensional
parameter vector that characterizes the uncertainty in
the image. For rigid objects, may be the special Euclidean
group of translations and rotations. In some passive scenarios
(optical imaging, for example), there may be a scale parameter
included in . We assume that the setis a finite-dimensional
space with probability density function .

When there is such a parameterthat characterizes the
scene, it may provide a complete or a partial characterization.
If it completely characterizes the scene, thenis a function of
; that is, there is a deterministic mapping fromto that

assigns to each an image . If it is a partial characterization,
only part of the scene is characterized by. The remainder of
the scene may be modeled either as an unknown deterministic
function or as a stochastic process. In the latter case, a prior on
the scene given the parameters is required and will be denoted
by .

To recognize rigid objects in a scene automatically, the
background is not directly of interest and so is regarded as a
nuisance parameter. Conversely, to determine the background
image in the presence of a rigid body, the rigid body may be
regarded as the nuisance parameter. Alternatively, it may be
of interest to estimate parameters associated with elements of
the scene (such as positions and orientations of rigid bodies)
and to form an image of the entire scene. This is the case in
spiral tomographic imaging in the presence of high-density
attenuators. Then the position and orientation of the high-
density object are of interest, while simultaneously it is of
interest to remove the streaking artifacts commonly seen in
the images in the neighborhood of the object [103].

In object recognition problems, it may be that the image
contains an object of interest, and the object is one of a
finite number of object types. Further, it may be that only
a determination of the object class is of interest. If the number
of possible classes is fixed, then the problem of interest is
one of hypothesis testing. Then the set of hypotheses will be
denoted . The corresponding prior
probability distribution on this set of hypotheses, if there
is a prior probability distribution, will be denoted

.
Finally, generalizations of these problems are often of in-

terest. For example, in automatic object recognition problems,
it may be required to estimate the number of objects in a
scene, perform recognition on each detected object, estimate
the position and orientation of each object, and form an image
of the background. In this case, inference is performed on a
very complicated, high-dimensional space.

C. Mathematical Representations

Scenes may be described either nonparametrically as func-
tions taking values in a specified function space, parametrically
in terms of known functions of parameters, or as some
combination of these two. For example, a three-dimensional
scene may have a known rigid object embedded in an unknown
background. In this case, the image has both parametric and
nonparametric components. The position and orientation of
the rigid object take values in the six-dimensional space cor-
responding to both translations and rotations; the background
is an unknown function.

This example illustrates a complicating aspect of many
inference problems in imaging: the parameter space need not
be isomorphic to . For example, the six-dimensional space
of translations and rotations, denoted , forms a non-
Abelian group. Let be a point on the rigid object. Let

be a rotation matrix, and be a translation.
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Then the point is mapped according to

(1)

An rotation matrix takes values in the special orthogonal
group of dimension , denoted . A rotation–translation
pair takes values in the special Euclidean group . In
many problems, and are the groups that are
relevant, these corresponding to translation and rotation in
and in , respectively.

More generally, let be a finite-dimensional parameter
space. The space may be a subset of or it may be a
group. An image in the image space may be written as the
sum of two components

(2)

where is the part of the image determined by the
finite parameterization and is the nonparametric part
of the image. This may be generalized further as ,
where is an arbitrary function of and .

A commonly used example of a parameterization is a
hierarchical parameterization. A hierarchy of parameters is
an ordered set of parameters, with a Markov
structure. Let . If corresponds to the finest scale of
the hierarchy, then there is a mapping . For other
scales in the hierarchy, there are mappings .
In general, the mappings may be stochastic.
Inference is performed on the hierarchy, with different scales
providing different pieces of information about the scene and
objects within the scene.

A simple example of a hierarchical model would have two
scales. Let be a set of possible objects. Assume there is one
object of interest in the scene. Selection of an element of
corresponds to the task of object detection. Suppose further
that the mapping corresponds to translation and rotation
of the object in the scene. The function is the image that
results, given the object position, orientation, and type.

More complicated examples of hierarchical models may
involve building complex objects up from simple objects. The
hierarchy may progress from pixel values to edges, from edges
to boundaries, from boundaries to regions, and from regions
to object types.

D. Markov Random Fields

To employ probabilistic methods, one may regard an im-
age as a random element drawn from a prespecified set of
possible images. Then one must assign a prior probability
distribution to the set of images, and this assignment leads
to the introduction of the notion of a random field. A random
field is a generalization of a random process to two or more
dimensions. Random-field models are important in image
formation because of analytic tractability, because they are
a very good fit for many images in applications, because these
methods are robust and still give satisfactory results even when
not a good fit to a particular application, and because they
can convert in an orderly way an ill-posed problem into a
well-posed problem.

A random field is a multidimensional random process.
For example, a Gaussian random field is determined by
a mean function and an autocovariance function

. A random field, possibly Gaussian,
is an appropriate model for both real-valued images and
complex-valued images. A prior that has been used success-
fully for imaging problems is the Markov random field.

Random variables characterized by conditional priors that
account for local interactions are often used as natural and
convenient priors in imaging problems. These conditional
priors, placed directly on the image spaceor on a sub-
set or subspace of , are usually the most natural way
to quantify our understanding of a problem. However, the
fundamental probability distribution on the field is the joint
probability distribution, and this is difficult or impossible
to specify directly. One needs to verify that the chosen
specification of conditional distributions is sufficient and con-
sistent in the sense that a unique joint probability distribution
corresponds to this set of conditional probability distribu-
tions. The simplest example is the Ising random field, which
consists of a binary random variable defined at each site
of the integer lattice with each random variable con-
ditional on the value realized at each of the four nearest
neighbors. An important aid in describing such collections
of conditional priors is the Hammersley–Clifford theorem
which states that under certain conditions, the most natural
conditional probability functions do uniquely define global
probability functions.

The notion of a Markov random field extends the notion of
a Markov process to multidimensional spaces by generalizing
the concept of order dependence that is fundamental in the
definition of a Markov process. The well-known works of
Ising contain the earliest application of Markov random fields.
Later, Onsager used the classic Ising random-field model to
characterize magnetic domains. Important early applications
to the imaging problem include the work of Besag [4], who
discusses a broad variety of Markov random fields and their
applications, and of Geman and Geman [34] as well as
Chellappa [13].

The generalization of a one-dimensional Markov random
process to a multidimensional Markov random field is not
straightforward because the concepts of past and future, which
are quite natural in one dimension, do not have counterparts in
higher dimensional spaces. Instead, the concept of aneighbor
is used. A random process with index set is given by

. The random process
is called a random field if the elements ofare vectors from
a multidimensional space, such as the two-dimensional plane

. Assume that the random variables
are continuous random variables and that their joint probability
density function exists.
We shall also require for each, , that the joint
density of the random variables
is strictly greater than zero

(3)
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The reason for imposing this positivity condition is to ensure
the existence of the conditional densities

(4)

for . Site is said to be aneighborof site if the
above conditional density for is dependent on . Thus

for all such that

(5)

where is the set of neighbors of . The neighbor relation-
ship is symmetric: if , then .

A random process with a discrete index
set and a set of neighborhoods

and conditional densities is called aMarkov
random field. A common example of a Markov random field
prior is a Gauss–Markov random field. For a Gauss–Markov
random field, each of the probability density functions in (5)
is Gaussian.

In any numerical implementation, the region of computation
must be truncated to a region of finite size. When this happens,
some assumptions about boundary conditions must be made,
and these assumptions may play a crucial role in the resulting
image reconstructions because the Markov random field model
may exhibit phase transitions due to the boundary conditions,
resulting in poor reconstructions.

The boundary conditions generally fall into three categories:
periodic boundaries, random boundaries, and fixed boundaries.
For periodic boundaries, the neighborhood structure is made
periodic, so that every lattice site has the same neigborhood
structure. For other choices, the lattice is truncated, so specific
assumptions must be made about how that truncation takes
place. Lattice sites whose neighborhood structure differs from
others due to truncation are called boundary sites. For random
boundaries, the boundary site values are chosen randomly from
the marginal distribution. For fixed boundaries, the boundary
values are set to specific values such as the mean of the
marginal distribution.

We shall now give several examples of Markov random
fields.

The simplest example of a Markov random field is one in
which the neighbors of for each , areall the other indices

. For this choice,

and

for . This example, with no restrictions on the
statistical dependencies between the variables, indicates that
Markov random fields can be quite general.

A temporal Markov random process is another simple
example of a Markov random field. Suppose that

is a random process with a discrete index set
where each is a real number representing

time. The neighborhood structure is
and . This is the standard definition of a
first-order Markov random process.

Another simple example of a Markov random field can be
constructed as follows. Define the index set to be of the form

which may arise as a Markov field on the lattice points of
a discrete pixelization of a finite rectangular region of the
plane. Suppose that each interior pointof a region has four
neighbors defined as the four lattice points lying to the North,
East, South, and West, so the neighborhood ofis

Each boundary point of a region has its neighbors defined
similarly except that only lattice points within the region can
be neighbors. This set of neighborhoods along with a specified
conditional density for the process at each lattice point defines
a two-dimensional Markov random field with nearest neighbor
dependency.

It can be cumbersome to perform inference on the random
field directly, so typically some discretization of the problem
is required. Such a discretization may be a pixelization or
an expansion in some other basis. For Gaussian random
field models, the natural expansion would be in terms of
the eigenfunctions of the autocovariance function. For other
random field models, different expansions may be appropriate,
as discussed below.

III. SENSOR DATA

The observation data are available at the output of the set of
sensors. These data may be modeled either deterministically
or stochastically, as appropriate for the given application.

Stochastic models arise naturally in many situations. In
a radar receiver there is internal noise, and there may be
external sources of noise as well. Both of these impairments
of the desired signal are unrelated to the scene in question,
and both are often modeled as additive Gaussian noise in
the microwave frequency band or the intermediate frequency
band, or as complex Gaussian noise at complex baseband.
In optical bands, the data arise from photoconversions in the
sensor. This situation is naturally modeled using a Poisson
counting process model or, if readout noise is significant,
as a Poisson–Gaussian mixture model. In positron-emission
tomography, the production of annihilation photons within the
patient volume is accurately modeled as a spatial point process;
the resulting positron detections are well-modeled as Poisson
distributed events.

In many problems, however, noise is insignificant, and
stochastic models are not as well motivated, so deterministic
models are used. In photographic applications, the intensity
incident on the film is blurred by the lens and other known
quantities in the optical path. For such optical imaging sys-
tems, the data are collected as images in a focal plane; there
is also a known perspective or orthographic projection of the
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three-dimensional scene to the focal plane. In X-ray tomo-
graphic applications, the intensity may be high enough that the
Poisson statistics of the detection process can be ignored and
the data reasonably modeled as being deterministic; standard
analysis of computed tomography systems models the data this
way, and the problem of recovery of the unknown attenuation
function is treated as a deterministic inverse problem.

In general, both deterministic and stochastic effects must
be taken into account. The finite size of detectors has a
deterministic effect on the collected data. The bandwidth
of radar signals, the motion between the antenna and the
scene, and the geometry and electrical characteristics of radar
antennas yield deterministic effects on radar data and any
images generated from the radar data such as synthetic-
aperture radar images. These may then need to be combined
with stochastic models for the detection process and receiver
noise. In optical systems, a deterministic model for the effects
of the lens and the known geometry may need to be combined
with a stochastic model for the detector and a stochastic model
for turbulence in the optical path.

If the model for the available data is a deterministic one,
then the observation is a deterministic function of the image
, . Examples of such models are discussed in

the applications section. A stochastic model is defined by a
conditional distribution on the observation given the image.
When coupled with a deterministic projection, the likelihood
often can be written , where is a known function.

There may be parameters that enter into the problem in
various ways. For high-precision problems of machine vision,
a known object may be viewed using a camera that has
unknown parameters. In the calibration step, the focal length,
the image center on the focal plane, and parameters for lens
distortion and focal plane nonuniformity often need to be
estimated from the data. In actual use, the position and ori-
entation of the object must be estimated. For typical machine
vision problems, a deterministic model is used and general
optimization procedures are applied to find the parameters
[45], [97]. In other problems, analogous parameters describing
blurring functions, optical centers, and projections may need
to be estimated, either in calibration steps or in every image.

Stochastic models may be combined with priors on scenes
to find joint likelihoods for the data and for the underlying
scenes. The joint distribution on the observations and the scene
is then the product of the sensor’s conditional distribution and
the prior, .

IV. REPRODUCTION SPACES

The image space is designed to model as closely as pos-
sible an idealized representation of the physical processes
that generate the data. There will always be aspects of the
underlying physical situation that are not captured in the image
space model. Indeed, one of the most challenging problems in
information-theoretic imaging is the development of models
for the underlying physical processes that are adequate for
the problem at hand, but not so complicated as to present
intractable mathematics. The reproduction space is the set
of functions in which a computational algorithm for image
formation produces its output values. The selection of a repro-

duction space must anticipate the needs and limitations of the
computational algorithm. In the selection of the reproduction
space, there is a tradeoff between its ability to represent images
in closely and the computational complexity of the resulting
algorithm.

The estimated image itself is often a discrete approximation
of the underlying conceptual image which usually is a continu-
ous distribution. The discreteness could be due to quantization
of values associated with the image, but usually also includes
a representation of the continuous image that is sampled or
pixelated in some way. For example, in astronomical imaging,
there is an underlying intensity distribution corresponding
to the distribution of the astronomical object being viewed.
This intensity function is defined on a continuous domain.
Computed images are presented as discrete values on an array
of pixels, which may be considered to be an approximation
of this true underlying distribution, this approximation or
estimate consisting of a summation of pixel values that scale
appropriate basis functions.

There is also a tradeoff between bias and variance, or a
tradeoff between approximation error and estimation error.
The higher the dimension of the reproduction space, the
more closely the underlying image in may be represented.
That is, the discrepancy between the closest element of the
reproduction space and the true image decreases as the size
of the reproduction space grows (or its bias decreases). On
the other hand, as the dimension of the reproduction space
grows, the statistical variation in the estimate grows. That is,
the discrepancy between the estimate in the reproduction space
and the element of the reproduction space closest to the truth
increases (or its variance increases). For any given imaging
problem and some measure of the sum of these two terms,
there is usually an optimal size of the reproduction space that
minimizes the measure.

The reproduction space is typically a subset or a subspace
of the image space. Often, the reproduction space is pa-
rameterized and the parameters may be varied as data are
collected to refine existing image estimates as more data
becomes available. The refinements should take values in
successively higher dimensional subsets of image space. The
use of sieves provides a framework for indexing the parameter
in the refinements in order to achieve consistency of the
image estimates as the amount of data collected increases (see
Grenander [42]).

Much of the theory underlying this formulation falls within
the subject of approximation theory. We will not attempt to
survey the results within this broad research area, but will
summarize some of the aspects that are relevant to image
formation problems. In applications, computational issues may
influence the choice of the reproduction space used.

Information-theoretic discrepancy measures are useful
throughout this paper. For each space, we assume that there
is a discrepancy measure between two elements of that space.

Definition: A discrepancy measure on a spaceis any
mapping such that for all

and if and only if
almost everywhere.
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For the spaces , and , we will require that discrep-
ancy measures , and have been defined.

A. Regularization

In most imaging problems, the underlying image takes
values in an infinite-dimensional space. The reconstruction or
estimation of the image based on some given data then implies
that an infinite number of variables that represent the image
must be determined. Such problems are usually ill-posed, in
the sense described below, and some form of regularization
is required to reduce the sensitivity of the reconstruction to
variations in the observed data, mismatches between the data
and the model adopted for the data, and to choices made in
the implementation of the reconstruction algorithm (such as the
number of bits of precision and the order in which arithmetic
operations are performed). One approach to regularization is
the representation of an image using pixels or voxels, but
this can exhibit the undesirable consequences of “dimensional
instability,” as described by Tapia and Thompson [55], and a
tradeoff between reconstruction accuracy (when a continuous
image is approximated by a piecewise-continuous one) and
resolution. This necessity for making tradeoffs accompanies
other forms of regularization as well; that tradeoff may be
between bias and variance, or between approximation error
and estimation error. Tikhonov [96], Hadamard, and Joyce and
Root [53] have addressed the instability problems caused by
ill-posedness and have suggested approaches for regularization
to avoid such problems.

Anticipating the formal statement of an image formation
problem below, suppose that the optimal image is defined
as the that achieves

(6)

where is a given objective function. The notation
in (6) implies that there is a mapping from to . If there
are multiple that achieve the minimum, then we require
that one of them is chosen arbitrarily. While typical examples
of possible choices for are discussed in Section VII, we
introduce a few possibilities here.

For stochastic models, may equal the negative of the log-
likelihood function of . If has a deterministic model, then
this is the conditional log-likelihood of given . If has a
stochastic model, then this is the joint log-likelihood of the
pair , and the minimization is equivalent to finding the
maximuma posteriori (MAP) estimate of given .

For deterministic models, may be the discrepancy be-
tween a predicted observation and the true observation.
As discussed below, additional terms may be included in.

Definition: A statement posing the minimum is well-
posedif for each , there is a unique that achieves
the minimum, and

(7)

exists and is finite. A statement posing the minimum that
is not well-posed isill-posed.

The intention behind this definition is that, when the prob-
lem is well-posed, small changes in the data should produce
small changes in the estimate. The size of a change is measured
using a discrepancy measure. If a problem is well-posed,
then the value of the limit in (7) is one measure of the
degree to which the problem is well-posed. For deterministic
inverse problems, the condition number of the mapping may
be preferred as an alternative measure.

For a deterministic inverse problem, with the data modeled
as , the norm of is defined by

(8)

If is invertible (that is, for each , there is a unique
such that ), then the norm of is defined as

in (8). The condition number of is then

(9)

Note that this definition is the square of the standard definition
of condition number if is squared error. This definition of
condition number is suitable for our consideration because a
small change in , from to , yields a change in that is
less than . In turn, the discrepancy between the
resulting estimate of and the original value is less than

(10)

As discussed extensively in the literature of numerical anal-
ysis (see Golub and Van Loan [37]), the condition number
quantifies the sensitivity of the problem to numerical and
approximation errors.

Ill-posed problems such as the image formation problem
defined in (6) using the objective functionmay be associated
with a family of well-posed problems, by defining a family of
subsets of that converge to . Suppose that a one-parameter
family of sets is given and that the closure of
this family equals

Closure (11)

This assumes the definition of a topology on. In many cases,
the interest is in constructing, for each , a sequence of
functions such that

(12)

Definition: Suppose that the family of subsets satisfies
(11) and that for each there is a unique that
achieves the minimum in (6). The family of problems

(13)

is a regularizationof the image formation problem defined in
(6) if for each the problem defined by (13) is well-posed
and if for almost all

(14)

If the discrepancy measure is a distance or a squared dis-
tance, then for each, the mapping is continuous.
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For an ill-posed problem, the functionis discontinuous, so
that even small amounts of noise in the observations can lead
to large changes in the estimates. For each nonzero value of

, however, the mapping is continuous so the regularized
solution is less sensitive to noise. The functionsconverge
to as goes to zero, so the sensitivity to noise increases as
goes to zero. For pixelization of images, this problem is called
“dimensional instability” by Tapia and Thompson [95], who
observe that the estimates become increasingly ill-behaved and
unstable as the discretization is refined even as more data are
collected.

This definition of a regularization is a modification of the
statements in Youla [106], Grenander [42, p. 358], and Kirsch
[54, pp. 24–26], modified to account for the statement of
the imaging problem as an inverse problem, the solution
of which is defined in terms of the objective criterion.
Various models, including linear, nonlinear, stochastic, and
deterministic models are included within this statement. A
feature of this definition of regularization is that it is in terms
of the reproduction space rather than the mappings. This is a
departure from the statements by Youla and Kirsch who require
directly that the mappings are continuous. Grenander’s
definition [42, p. 358] is in terms of a one-parameter family
of operators acting on . That is, his mapping is meant to
regularize , by using operations such as lowpass filtering
(projections onto subspaces or subsets of). Later in [42],
and in other settings using his method of sieves, Grenander
uses a concept of regularization consistent with the definition
given here.

A regularization method in general provides a framework
within which the ill-posedness can be addressed quantitatively.
We discuss the use of penalties, prior probability distributions,
kernel sieves, and choice of reproduction space as regular-
ization methods. The simplest and most common way to
regularize a problem is by the use of pixelization. An image
displayed using pixels is really a projection onto a finite-
dimensional subspace. A measure of the size of a pixel is
the regularization parameter. There are many other standard
restrictions of images to subspaces, with corresponding
roughly to the dimension of the subspace.

A penalty regularization alters the objective function by
adding a penalty to it. Tikhonov [96] introduced a quadratic
penalty. More generally, a penalty can be added to the ob-
jective function as a discrepancy between the estimate and a
nominal value .

Given a model for the data in terms of a conditional
likelihood function , and a discrepancy measure

on , there may be an optimal that minimizes a tradeoff
between approximation error and estimation error, as described
next.

Assume that is the unique element of that
minimizes

(15)

where is the true image. Then the sum of the estimation
error and the approximation error is

(16)

For a stochastic problem, this error is a random variable.
Typically, the first term (the estimation error) is monotonically
increasing and the second term (the approximation error)
is monotonically decreasing as decreases. For a typical
problem, there is typically an optimal that minimizes a
measure of such as its expected value. The motivation
for defining the sum in (16) is that for some discrepancy
measures of interest, if is a linear subspace

(17)

This holds for discrimination and squared error as discrepancy
measures. Choosing to minimize the expected value of

is a precise way to define an optimal regular-
ization. If is a convex set, then for these same discrepancy
measures

(18)

In this case, choosing to minimize the expected value of
(16) corresponds to minimizing a lower bound on the mean
of .

B. Pixelization

The reproduction space often can be viewed as consisting
of a linear combination of basis functions. The most common
example of such a representation is when the basis functions
are indicator functions on some domain, and the resulting
representation is referred to as a pixelization. When an image
is represented as an array, the elements in the array are the
coefficients in the linear combination. The basis functions
need not always be viewed as indicator functions, however.
If the image is assumed to have a fixed bandwidth and the
representation is on a fine enough scale, the coefficients may
be viewed as samples of the image. In that case, the basis
functions are optimal interpolation functions. If the data are
actually the result of integrating the image against a known
kernel, then the coefficients may be viewed as the values used
in a discrete approximation of the integral. If the integration
is modeled as a Riemann sum, then the basis functions are
indicator functions. If the integration is modeled as using
a trapezoid rule for numerical integration, then the basis
functions are first-order splines.

We shall describe some of the issues first in a one-
dimensional setting and then a multidimensional setting. Let

be a function of time, and let , for ,
be samples of at times . If is represented by
the samples, there is an assumed nominal representation. One
representation is as a linear combination of indicator functions

(19)

where

otherwise
(20)
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Another choice, for lowpass functions, is as a linear combina-
tion of interpolation functions

(21)

where

(22)

and . Other choices can be made for the
interpolation function, and the values do not necessarily
correspond to samples of . In orthogonal representations,
the values typically represent inner products of the function
with basis functions.

For the multidimensional setting, let be
an orthonormal set of functions, whereis a discrete index
taking values on the lattice , and where is a parameter
roughly corresponding to the resolution of the functions.
Assume that consists of square integrable functions, and
denote the inner product onby . Then an ideal expansion
of using the basis is obtained as

(23)

where

(24)

The expansion in (23) is a representation ofin the subspace
consisting of all linear combinations such that

(25)

The parameter indexes the subspaces so that

(26)

in the sense that for all

(27)

The statement in (27) is valid for deterministic conver-
gence. For the stochastic setting, the corresponding statement
involves stochastic convergence. For convergence in a mean-
square sense, given a prior on the image spacesuch that

, the sequence of functions converges to
in a mean-square sense if

(28)

A more general setting involves convergence of the mean dis-
crepancy to zero. Other modes of convergence
of to may also be studied.

This description can be modified to allow for to consist of
functions that do not form an orthonormal set. This is the typ-
ical case for polynomial splines and for some multiresolution
expansions. The extension involves using a different function
to extract the coefficients than is used in the expansion itself.
For polynomial splines there is an additional complication
that, for expansions that are not ideally chosen, the functions
often are not linearly independent. There have been some

descriptions of the use of “frames” to cover this situation (see
[26] and [46]).

Often, the expansion functions are translated versions
of a single-basis function . Specifically, assume that

, and that the sample points occur on a regular lattice
in with lattice basis elements . Any point on
the lattice is then specified by a unique integer vector
and equals . We then have

(29)

The parameter is a measure of the size of the Voronoi cells
in the lattice.

In polynomial spline expansions, the basis function is
a polynomial in its arguments. Clearly, there are infinitely
many choices for the degree of the polynomial in its argu-
ments. For a general discussion of splines, see the books
by Chui and by Wahba [16], [102]. The simplest polynomial
spline is a constant over an interval and zero outside of that
interval. For the lattice described above, let

otherwise
(30)

Note that is proportional to an indicator function on the
Voronoi cell of the lattice point at the origin and that is
the volume of the Voronoi cell. The reproduction space in this
case consists of images that are piecewise-constant.

C. Penalty and Constraint Methods

A common method of regularization of image estimates is to
use penalty or constraint methods. To motivate these methods,
a specific class of examples is used.

Suppose that , where
is a nominal value. Then the regularization problem (13) is
a constrained optimization problem. The constraint may be
incorporated using a Lagrange multiplier,, changing the
criterion to

(31)

For a wide class of discrepancy measures and criteria, if
the constraint is satisfied with equality, then there is a one-to-
one correspondence between the value ofand the value
of the constraint . This shows an equivalence between
constraint methods and penalty methods, where the additional
term is viewed as a penalty.

If a squared-error discrepancy measure is used, then this
yields a quadratic penalty; typically would be chosen to be
zero. If discrimination is used as the discrepancy measure,
then this yields entropy-type penalties. For example, if
is a constant then is the Shannon entropy of the
function .

This approach also yields a method to combine positive-
valued images with real- or complex-valued data. Then the
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function may be a squared error, and the discrepancy
measure may be discrimination. Similarly, if the images
are real- or complex-valued and the data are positive,may
be discrimination and may be squared error.

Roughness penalties are often based on Good’s roughness
measure [38], [61], [69], [95]. When restricted to a pixeliza-
tion, Good’s roughness measure may be written as a sum of
discriminations between the image and shifted copies of the
image [69].

D. Transform-Domain Representations

A traditional engineering approach to the study of
function representation is to manipulate a function in
its transform-domain representation. This includes Fourier
representations and wavelet representations as special cases.
In Fourier-domain representations, there are several options
for considering convergence of the representations. One is
to assume that the image space is space-limited. The set of
Fourier-series coefficients obtained by considering a periodic
extension of the image space completely characterizes the
image space. The parameter may correspond to the
number of coefficients used in an expansion.

A second Fourier-domain option is to assume that the
image is effectively bandlimited with bandwidth proportional
to . For each value of , the image is represented by
its samples using the Nyquist–Shannon interpolation formula.
This is equivalent to the ideal interpolation discussed in the
pixelization subsection above.

There are other options for Fourier-domain representations.
Typically, they correspond to expansions of the image space
in the Fourier domain.

In wavelet representations, the parametermay correspond
to the number of scaling levels considered or to sampling in
the time-scale domain.

E. Sieves

A powerful method for regularization, which incorporates
additional structure, is the method of sieves due to Grenander
[42]. In the method of sieves, a sequence of subsets of the im-
age space is defined and used to address issues of convergence
of image estimates as the amount of data increases. For this
discussion, we follow [42], assuming the underlying image

is a deterministic parameter and that there is a stochastic
model for the data given . The conditional likelihood for
the observation given the underlying image is denoted

. In this setting, there is a true underlying image
which is denoted .

Definition: A one-parameter family of subsets of,
is a sieveif the following conditions hold:

1) for almost every , the maximum-likelihood esti-
mate of ,

(32)

exists and is unique;
2) the closure of the union of subsets equals

Closure (33)

3) for each , the maximum-likelihood estimate restricted
to

(34)

exists and is unique.

Note that this definition is essentially the same as the
definition of regularization. The most visible use of sieves
has been in studying the consistency of estimates. Let

be independent and identically distributed
(i.i.d.) observations with distribution function . Denote
the maximum-likelihood estimate of restricted to by

. Grenander [42, Ch. 9] proves that under conditions
on the continuity and boundedness of the restricted log-
likelihood function, and uniqueness and continuity of the
discrimination function, there is a sequence of so that

converges to , with probability one.
The parameter in the definition of a sieve is referred to

as the mesh size. In some instances, the sequence of spaces
is nested (monotonic) in the sense that if , then

. This might appear to be a natural condition, but
it is not necessary. Further details are given by Grenander
[42], Chow and Grenander [15], Moulin [64], and Moulin,
O’Sullivan, and Snyder [67].

Let , so that . Let be a function
indexed by , referred to as the kernel. Akernel sieveis a
set all of whose elements can be written as the result of
a convolution with

(35)

The functions converge in distribution to a Dirac delta
function as . One choice, discussed in [89], is a
circularly symmetric Gaussian kernel with space parameter

(36)

F. Convergence of Sequences

The asymptotic properties of estimators are often impor-
tant in estimation problems. As the amount of information
increases, the estimates should converge to the truth in some
sense. For regularization as described above, a setting for
studying convergence is introduced.

Let be a discrepancy measure. Suppose now that
the estimate is formed from the observations. Let be a
measure of how informative the observations are. For example,

could be the time-integration interval over which data are
collected or the number of independent observations in a
dataset. Suppose for each, that the estimate lies within .
Then, is a random variable indexed by.
Its randomness arises due to the observations and possibly due
to being a random process. The family of estimatorsis said
to be consistent in the “” sense if the random variables
converge to zero in the “” sense. Here “ ” may be almost
everywhere, mean-square, in probability, or in distribution.
That is, convergence of a discrepancy measure between the
truth and the estimate in some sense.
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G. Convex Constraints

The reproduction space may be constrained either by prior
knowledge or by the limitations of the available sensor data.
We shall be especially interested in those constraints that
satisfy a convexity property because they are analytically
tractable and arise frequently. In particular, the set of prob-
ability distributions on a finite set is a convex set, and
information-theoretic constraints usually satisfy a convexity
property. For deterministic models, the problem becomes one
of finding an element of the convex set that is most consistent
with the data in terms of minimizing the discrepancy between
the predicted data and the available data (as discussed in
Section VII). A general introduction to convex constraints is
given by Combettes [17].

A set is convex if each convex combination of two
elements from is also in . That is, for any , then
for all , . The intersection of any
number of convex sets is a convex set. Aconvex constraintis
a statement that the image lies in a given convex set.

Many constraints that arise very naturally are convex con-
straints. One example is a nonnegativity constraint. Ifis real-
valued, then the nonnegativity constraint that for all

is a convex constraint. This nonnegativity constraint can also
be used within the class of complex-valued functions because
the set of functions that are both real and nonnegative
is a convex set within the set of complex functions. Thus
the convex constraint can be used to enforce a very natural
property of images while still allowing the larger space of
complex functions to play a role in the theory.

Our second example of a convex constraint is an energy
constraint for square-integrable functions. Suppose that the
image space is equipped with an inner product , and
a corresponding norm

(37)

Let be defined as the set of images whose norm is
less than some constant

(38)

By the triangle inequality on the inner product norm

(39)

so we can conclude that is a convex set. More gener-
ally, convex constraints often may be defined in terms of
discrepancy measures. For this to hold, we need that for each

(40)

is a convex set. If, in addition, the sets in (40) are compact,
then they may be used to define a regularization. Simply set

and .
Our third example of a convex constraint is a support

constraint. Let the set be the support of the function.
A typical support constraint is the requirement that
for all . Clearly, for all

if the same holds for and individually.
Likewise, a support constraint on the Fourier transform of the
function is also a convex constraint.

H. Stochastic Complexity and Shrinkage Techniques

If a prior on the image is not known, the regularization
approaches described above may not be desired. Alternatives
to these approaches include stochastic complexity, wavelet
shrinkage techniques, and complexity regularization. The goal
is either to define a universal prior, the use of which will
achieve asymptotically near-optimal performance for a variety
of true priors, or without reference to a prior to derive a simple
algorithm that achieves near-optimal performance for a variety
of underlying image spaces.

To give specific examples, assume that

(41)

where is a set of basis functions such as a Fourier
basis or a wavelet basis, and the coefficients are real-
valued. In the image processing community, wavelet bases
play an important role because of several empirically observed
properties such as sparseness of significant coefficients. Sup-
pose that we have the simple case where the observations
are

(42)

where and are real-valued, so that the coefficients of
are given by

(43)

The specific problem addressed by these methods is to esti-
mate the coefficients . The Bayesian shrinkage, minimum
description length, and complexity regularization techniques
may be extended to the general case by simply adding the
equivalent of a log-prior to the objective function.

Definition: A function is a called shrinkage
function if

and (44)

Examples of shrinkage functions are the soft threshold

(45)

and the hard threshold

(46)

These simple shrinkage functions have been shown, with
proper choice of the thresholds, to provide good asymptotic
performance [28]. The threshold , where is the
number of terms in the basis expansion andis the stan-
dard deviation of the additive noise, is called the universal
threshold. Minimax methods may be used to determine the
threshold [28].

Bayesian methods within this category define a prior on
that models the coefficients as independent and identically
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distributed, with common density function . Model the
noise samples as independent and identically distributed
Gaussian random variables with zero mean and variance.
The optimal estimate under this model has the form

(47)

which reflects the Gaussian assumption on . The resulting
estimated function has coefficients

(48)

If is a Gaussian density with zero mean and variance,
then the result is

(49)

which is the standard Wiener filter. If is a Laplacian
density

(50)

then the soft threshold is the optimal estimator

(51)

where . The universal threshold corre-
sponds to [66].

Moulin and Liu [66] study the more general set of general
Gaussian distributions whose log-priors are proportional to

, for . They note that the resulting estimator
has a threshold whenever the derivative of the log-prior is not
continuous at ; this is the case for . The
estimator converges to the hard threshold shrinkage function
as tends to zero.

Physics-based models provide prior information that can
affect the process of image formation, and also other signal
processing tasks such as detection, estimation, classification,
and compression. The notion ofminimum description length,
or Rissanen length, plays a fundamental role in this study. The
Rissanen-length estimation criterion minimizes the quantity

over , where is a measure of com-
plexity.

There are several closely related techniques for regularizing
estimates using complexity methods and shrinkage estimators.
Several of these techniques have nearly optimal performance
for a variety of measures, if the true image can be assumed
to belong to broad classes of signals such as Besov classes
[29], [30].

V. INFORMATION-THEORETIC MEASURES

There are various measures that can be used to quantify the
performance of an imaging system. The information that is
available prior to acquiring data that is to be used for making
inference about a scene is quantified by a prior probability
distribution on the space of images. Measurements provided

by the sensors add information to this prior information. The
value of the new information in terms of implications on
performance depends on the goal of the imaging system. The
goal may be some combination of detection, recognition, pa-
rameter estimation, and scene estimation. For these goals, there
are associated performance measures including probability of
detection, probability of false alarm, probability of correct
classification, mean-squared error, and discrepancy between
the estimated image and the true image.

Each of the information measures discussed in this section
is important, and each has a role in a specific class of
problem. One measure is not fundamentally more important
than any other. They all share an ability to quantify the
information provided by a measurement, and they all depend
on the likelihood of the data. In this sense, the likelihood
function itself is more fundamental than any single measure
of performance. Each measure reduces the likelihood function
to a form that is more appropriate to a particular problem.
We note, however, that for some imaging situations there is
as yet no information or discrepancy measure that is entirely
satisfactory. This is especially true when seeking to emulate
the performance of human observers of images.

A well-known statement of information theory is the data
processing theorem, which says that processing cannot in-
crease information; processing can only refine information by
presenting it in a more accessible form. The data processing
theorem is an important statement whose validity is based on
a formal definition of the term information. In common use,
the term information is often used in a casual and imprecise
way. There is always a danger of allowing the imprecision in
our everyday notion of information to confuse the precision
necessary in formal work.

A trivial, though perhaps not obvious, corollary of the data
processing theorem is the statement that appending more data
to a problem cannot decrease the amount of information and
so cannot decrease the performance of an optimal algorithm.

Closely related to the data processing theorem is the concept
of a sufficient statistic. The data processing theorem, and
notions of uncertainty and entropy lead to the concepts of
maximum entropy and minimum discrimination and thereby to
the Cramer–Rao bounds, the Fisher information, least squares
processing, and the maximum entropy principle.

A. Discrepancy Measures

As defined above, a discrepancy measureon a space
is a mapping such that ,
with equality if and only if .

Discrepancy measures are assumed to be defined for each of
the spaces in the imaging problem. Often it is natural to define
discrepancy measures as sqared distances on the spaces. For
example, if the space has an inner product, then a
natural discrepancy measure is squared error

(52)

If the space consists of positive-valued functions, then,
as discussed below, discrimination is a natural discrepancy
measure. In many problems the image spaces are assumed to
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be linear spaces equipped with distances and norms in addition
to discrepancy measures.

There have been several information-theoretic derivations
of discrepancy measures presented in the literature, including
[23], [51], [52], and [85]. These lead to characterizations of
various discrepancy measures including squared error, dis-
crimination, Ali–Silvey distances [1] or -divergences [20],
Bregman distances [7], and the Itakura–Saito distance [50].
From the axiomatic derivation of Csisz´ar [23], the discrim-
ination for positive-valued functions and squared error for
real-valued (and complex-valued) functions play unique roles
in the analysis.

The discrimination function was introduced by Kullback
[55], [67], under the nameinformation for discrimination.
Kullback took the view that the discrimination is an infor-
mation measure that is more fundamental in some sense than
the entropy.

1) Axiomatic FormulationShannon [83] gave a reasonable
set of axioms that a measure of information should satisfy.
Shannon’s approach leads to the logarithm as a measure of
information. Csisz´ar [23], in the tradition of this approach
to the entropy function and the mutual information, gives
an axiomatic development for selecting discrepancy functions.
Suppose a solution to the matrix vector equation
is sought. Starting with a set of reasonable axioms that a
measure of discrepancy should satisfy, Csiszár concludes that
if the elements of , , and are required to be real-valued
and are otherwise arbitrary, then the only function consistent
with his axioms is the squared error . It is well
known that the choice of that minimizes the squared error is
then , where the notation denotes the
pseudoinverse of . On the other hand, if all entries in ,
, and are required to be both real and nonnegative, as is

often the case for inverse problems in imaging, then the only
discrepancy function consistent with Csiszár’s axioms is the
discrimination

(53)

Explicit analytical expressions for the minimizing
discrimination are difficult to obtain, and so numerical methods
are appropriate.

2) A Discrepancy InequalityFor any convex set ,
both the discrimination

(54)

and the squared euclidean distance satisfy
the inequality

(55)

where

(56)

If is further restricted to be an affine subspace, then

(57)

The proof of this statement for discrimination is based on the
following argument [18]. Because achieves the minimum,

for all ; so for all , and

(58)

Take the limit as goes to zero to obtain

(59)

Now let , and rearrange this to get

(60)

In the case that is an affine subspace, both and
are allowable directions, yielding equality in (58).

The inequality (55) (or the equality (57) when is an
affine subspace) can be viewed as a statement of the tradeoff
between approximation error and estimation error. The term

is a measure of the approximation error because it is
a discrepancy between the closest element in the convex set
and . The term is a measure of the estimation error
since it is a discrepancy between the estimated valueand
the closest element in the convex set. The inequality says
that the discrepancy between the estimate andis bounded
below by the sum of these two terms.

For the squared-error discrepancy , the
same argument as above holds, until (59) becomes

, which immediately implies

(61)

The interpretation of this inequality is the same as interpreta-
tion of the discrimination criterion.

B. Mutual Information

The uncertainty associated with a random vectoris quan-
tified by its differential entropy (or, if takes on only discrete
values by its entropy). Denote this differential entropy by

(62)

The observations may be viewed as decreasing the uncertainty
in the underlying parameters. In this view, the mutual informa-
tion between the parameters and the observation quantifies the
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decrease in uncertainty obtained by making an observation,
because

(63)

where

(64)

This view is helpful in coding applications. To be more
precise, the rate-distortion curves forwith the observation

lies below the rate-distortion curve for in the absence of
observations. For any fixed distortion, the difference in the two
curves is never greater than .

C. Fisher Information

For parameter estimation, a standard performance measure,
which will be discussed in Section VI-A, is the Cramer–Rao
bound and its extensions. The information provided by sensor
measurements can be quantified in terms of the reduction in
the variance of a parameter estimate due to the measurement.
This is equivalent to looking at the increase in the Fisher
information, as outlined below.

Suppose that, the parameters to be estimated, take values
in . Let the prior probability density function on be

and let the conditional distribution for the sensor data
be . The posterior density on is proportional to

; denote it by . Prior to making any
measurements, the Fisher information matrix is

(65)

where the partial derivatives are assumed to exist and yield
column vectors, and denotes transpose. After an observation,
the Fisher information matrix is

(66)

where is given above and

(67)

Let be the mean-squared-error matrix for any specified
estimator. Then the matrix is nonnegative definite.

The matrix quantifies the increase in the Fisher in-
formation obtained from the observations. For estimation
problems, the relative increase in the Fisher information is
one way to quantify the value of observations and the value
in making additional observations.

The difference between matrices can be measured in several
ways. One way is by examining the increase in the Fisher in-
formation, as in (66). Another is to examine the corresponding
decrease in the inverse of the Fisher information matrix, which
determines the Cramer–Rao bound on estimation (see Section
VI-A)

(68)

A third is to measure the decrease in the inverse of the Fisher
information relative to the prior

(69)

Here, .
Other bounds for parameter estimations can be examined in

a similar way.
There is a link between differential entropy and Fisher

information given by de Bruijn’s identity [19, pp. 494–495].
Let be a Gaussian random variable with mean zero and
variance one. Let equal plus a scalar times

(70)

Then, de Bruijn’s identity says that (assuming natural loga-
rithms)

(71)

where is the differential entropy of parameterized
by . In terms of the observation

(72)

so

(73)

Another interpretation of the Fisher-information matrix is
given by Amari [2] in his discussion of the differential
geometry of statistical models. Here, a parametric model

is interpreted as defining a manifoldin the space
of all models . Amari defines an inner product between
vectors in tangent planes ofas covariances, then arguing that

is the metric tensor in the resulting Riemannian space.
Amari uses this framework to establish general asymptotic
properties of maximum-likelihood estimators of, such as
asymptotic efficiency, consistency, and normality.

VI. PERFORMANCE BOUNDS

A goal of information-theoretic image formation is to bound
achievable performance in terms of the information measures.
Whenever these measures cannot be evaluated analytically, an
important technique is to append information that is actually
unknown so that the bounds can be evaluated analytically.
The actual performance cannot be better than such a bound.
An early use of this technique is in the classical book on
communication theory by Wozencraft and Jacobs [104]. They
introduce a “genie” in their analysis of the performance of
coding systems. In a general form of the argument, the
genie is assumed to provide gratuitous side information that
embellishes the actual data. The performance without the
genie’s side information cannot be better than the performance
with this extra information. The technique of introducing
a genie to embellish the actual data set so that a bound
on performance can be computed is quite similar to the
technique of Dempster, Laird, and Rubin [27] who introduce
a “complete data set” so that calculation of the maximum-
likelihood solution becomes analytically tractable.
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A. Cramer–Rao Bounds

The simplest problem of estimation theory involves an
unknown parameter and a random measurement
from which is to be determined. The measurement
has probability distribution function depending on
the parameter. The unknown parametermust be estimated
based upon an observation of. The estimate of , given the
measurement , is a function . This estimate is itself
a random variable because it is a function of the random
measurement .

The quality of an estimator is often judged by its mean value

(74)

and by its mean-squared-error

(75)

When is not random, an unbiased estimator ofis any
function satisfying

(76)

For any unbiased estimator, the matrix

(77)

is nonnegative definite; this is the Cramer–Rao bound. When
is random, then

(78)

is nonnegative definite.
Other bounds on the variance of an estimate can sometimes

be tighter, including the Ziv–Zakai bound, the Barankin bound,
and the Bhattacharyya bound. The Cramer–Rao bound when
the parameters to be estimated are constrained to lie in a
nonopen subset of is developed by Gorman and Hero
[41]; this bound is useful in imaging problems, for example,
when the intensity has a known support or is smooth. For
imaging problems, the Fisher information matrix can be, and
usually is, too large to invert practically so that computing the
Cramer–Rao bound on the error covariance in estimating all of
the parameters that define the image is infeasible. To address
this problem, Hero and Fessler [47] and Hero, Usman, Sauve,
and Fessler [48] have developed a recursive procedure for
computing submatrices of the inverse of the Fisher matrix; this
can be especially useful for establishing Cramer–Rao bounds
on subsets of the parameters (corresponding to a region in an
image) that are of particular interest.

B. Bounds on Groups

If the parameters in the problem are not real-valued, then
bounds other than the Cramer–Rao bound may be appropriate.
A measure analogous to squared-error must be defined on the
space, and bounds on errors in terms of the mean of this
measure found. One approach detailed in this section is valid
for group-valued parameters.

If a scene has objects of interest that are rigid bodies,
the group actions consist of translation and rotation. When
restricted to the plane, the group is which is isomorphic

to the circle. Rotations in three dimensions take values in
. In either case, the group of rotations is compact, so

there is a maximum distance between any two elements of the
group. For small errors, as are typically encountered in high
signal-to-noise-ratio problems, expansion in a local coordinate
system followed by standard Cramer–Rao analysis in those
coordinates is appropriate. When the estimation errors are not
local, however, the curvature of the parameter space becomes
important, and this local analysis does not apply. If this
curvature is ignored, then it is possible to get so-called lower
bounds that get arbitrarily large as a parameter (typically,
signal-to-noise ratio) gets small. But this is impossible because
the largest error possible on a compact set is bounded.

One approach that avoids this difficulty has been proposed
by Grenander, Miller, and Srivastava [44]. It is explained here
within the context of rotation groups, but can be extended to
other groups.

Elements of are mapped to their matrix group
representative so that matrix multiplication is equivalent to the
group action. For , the matrices are of the form

(79)

where is the one-dimensional parameter of the group. Any
norm on matrices induces a norm on the group. Define
the Hilbert–Schmidt norm by

(80)

The squared distance between two elements of the group
equals the distance between their matrix representatives

(81)

This is referred to as the Hilbert–Schmidt distance squared, and
it is the natural extension of squared error in to .
Note that

(82)

Group-valued estimators may be evaluated in terms of
this Hilbert–Schmidt distance squared. The Hilbert–Schmidt
estimator is the minimum expected Hilbert–Schmidt distance-
squared estimator (the extension of the minimum mean-
squared-error estimator to the special orthogonal group

)

(83)

That is, is the orientation that minimizes the expected
Hilbert–Schmidt squared error given the observations. Note
that the estimator must be defined in this way because mean
values are not defined on the group. There is only one
operation available to combine two elements of the group;
this operation is not necessarily addition.

There is a straightforward algorithm to compute the
Hilbert–Schmidt estimator if the posterior is known. From
(82), the optimal estimate is the one that maximizes
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. First, compute ,
where the expectation is well-defined because this is a linear
combination of matrices. Next, find the singular value
decomposition of as

(84)

Assume that is ordered so that the smallest eigenvalue is
in the lower right corner. Then let be a diagonal matrix
whose diagonal entries are all one, except possibly for the
lower right corner. The estimate is

(85)

and the lower right entry of is chosen to ensure that the
determinant of is equal to one. Finally, is the group
element corresponding to . The performance of any group-
valued estimator is bounded as follows [44].

Theorem: Let be any estimator. Then

(86)

It is interesting to note that for small variations, the
Hilbert–Schmidt squared distance is essentially the same as
would be obtained using a linearization of the space. To see
this for , note that (82) becomes . For
small differences , and

(87)

This is twice the squared error between the angles, so for
small errors this is equivalent to linearizing the space and
using squared error in .

C. Resolution

The resolution achieved in image formation is an important
attribute that is often cited. However, a universally acceptable
definition of resolution as a performance measure is elusive.
The Rayleigh criterion is often used to quantify the resolution
of optical images. The width of the main lobe of the point-
spread function of an imaging system is another frequently
used measure of resolution. However, these measures are
typically applied to image data rather than to post-processed
data. Model-based processing can result in sharper image detail
and, hence, improved resolution; good examples of this are
the images that result from processing image data acquired
in the presence of spherical aberration in the Hubble space
telescope. The resolution achieved with image restoration and
image estimation is more difficult to quantify. One approach
is through computer simulation in which a known object is
synthetically imaged and the resulting image processed for
restoration. The restored imaged can be correlated against
a test image formed by convolving the known object with
a given point-spread function and then adjusting a “width”
parameter of this function to achieve maximum correlation. An
example is a circular Gaussian point spread in which the width
(or spread) parameter is adjusted for maximum correlation,
then used as a measure of resolution [11], [73]. The benefit
of such an approach in practice depends on how well the
synthetic image data matches data actually produced by the
imaging system of interest.

D. Information Rate Functions

If the goal is object detection (binary hypothesis testing),
then the performance may be quantified by error rates. For
example, the Chernoff information determines the rate of the
minimum probability of error detector, and hence can be used
as a measure of information contained in a measurement.
Let and be the probability distributions on the sensor
data under hypotheses and , respectively. Let the log-
moment-generating function for the loglikelihood ratio be
denoted by

(88)

where denotes expectation with respect to. The infor-
mation rate function for the problem is given by [9], [31]

(89)

Then the Chernoff information equals [99, p. 123].
Similarly, Stein’s lemma says that fixing the probability of

one type of error and minimizing the probability of the other
type yields the relative entropy between the distributions under

and as the measure of the information provided by a
measurement. Put another way, let

(90)

and

(91)

then [19, pp. 309–311]

(92)

Because the Chernoff information and the rate in Stein’s
lemma are just samples of the information rate function ,
for , the rate function may be the proper measure
of information provided by the sensor for detection problems.

The purpose of an imaging system may be to recognize, de-
tect, or locate an object within the image; the image itself may
be only of passing interest. In such a case, the performance
of the imaging system is measured by the performance of the
recognition or detection function. The overall performance of a
system that is designed to recognize objects within an image is
ultimately determined by the performance of the final decision
that declares an object present. The detection algorithm may
be constructed in stages where the output of one stage is fed
to the next, or the detection algorithm may be designed in
terms of a single, unified optimization problem. To predict
the performance of an object recognition algorithm, we ask
how the system would operate if the receiver knew everything
except the decision.

Assume that two scenes are completely specified and that
the available data are Poisson-distributed with means and

, where is a measure of the signal-to-noise ratio such
as the integration time. Then the log-likelihood function for
the data may be written

(93)
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where

is discrimination. From Stein’s lemma, for a fixed probability
of false alarm, the probability of detection converges to one
exponentially fast in with exponent . Thus
discrimination predicts asymptotic rates.

The rate depends on the clutter. If has only clutter and
has a target and clutter, then this rate is a measure of the clutter
complexity in the sense that in quantifies the clutter’s ability
to reduce the detection rate. For systems with small point-
spread functions, the discrimination between images without
and with a target is alocal measure. This measure can be
used to gain a confidence measure on the output of an object
recognition system. Suboptimal algorithms may be compared
on the basis of their rates. That is, a fixed algorithm will exhibit
a performance that varies with signal-to-noise ratio. For large
signal-to-noise ratio, the rate is all that matters.

VII. I MAGE FORMATION

We call the process of forming images from data acquired
with a sensorimagationor image formation. In our use of this
term, imagation includes: image reconstruction (the common
term used for building a tomographic image from projection
data), image restoration (a term used for correcting image data
that are marred by camera defects or motion), image estimation
(used for forming images from data that are stochastic), and
image formation from data that indirectly depend on an image,
such as in synthetic-aperture radar.

The type of models used for describing the image and data
spaces, as well as the discrepancy measures that are adopted
for assessing performance, influence the approaches used for
imagation. Deterministic models and the use of least squares,
discrimination, and maximum-entropy discrepancy-measures
with and without constraints lead to one set of approaches,
while stochastic models and the use of likelihood discrepancy-
measures with and without priors and constraints leads to
another.

A. Maximum Likelihood

The maximum-likelihood method is a long-standing method
for estimating unknown, deterministic parameters that in-
fluence a set of stochastic data. The maximum-likelihood
principle is a general principle of data reduction in which when
reducing a set of data described by a log-likelihood function

, one chooses a that maximizes the
log-likelihood function

(94)

A maximum-likelihood estimate has the desired properties that
it is asymptotically unbiased and efficient.

Its use for imagation follows the usual prescription of
formulating a model for the data acquired with an imaging
system, with this model being in the form of a probability
distribution that is a functional of the image;
is called thelikelihood or data likelihood in this context. A

maximum-likelihood estimate of the imageis an image
that maximizes the log-likelihood functional

(95)

For an image restricted to be a function of a parameter vector
, the image estimate is , where

(96)

For example, the image could be of a known object whose
position and orientation are unknown. In this instance, the
likelihood can be regarded as a function of the parameters,
which would be estimated by maximizing the likelihood in
the usual manner.

If the image is regarded simply as an unknown function,
then the problem is often ill-posed, and some regularization is
required. One approach is to discretize the image, treating it as
piecewise constant over pixels or by representing it as a linear
combination of orthonormal functions as discussed in Section
IV-B. This in effect converts the imagation problem into a
parameter-estimation problem, and the maximum-likelihood
method can in principle be used straightforwardly to estimate
the parameterized image. For example, if the data source is
modeled as a spatial Poisson process
with an intensity function , the log-likelihood
functional is

(97)

This likelihood is unbounded over the space of nonnegative
functions, so a maximum-likelihood estimate does not exist.
Overcoming this difficulty requires the use of some form of
regularization as discussed in Section IV-A, which can be
in the form of imposing a discretization, imposing a prior
distribution on image values, imposing a penalty functional
that restricts the roughness of the estimated image values, or
using Grenander’s sieves [42] to restrict maximizers to a subset
of the nonnegative functions.

B. Maximum a Posteriori

Maximum a posteriori probability (MAP) estimation is
also a long-standing method of estimating parameters from
observed data; it is used when the parameters to be estimated
are random and have a known prior probability distribution

. If the data likelihood is for some given data,
then a MAP estimate of is a maximizer of the posterior
distribution . Because this conditional distribution is
proportional to the product of the data likelihood
and the prior, this procedure is analogous to maximum-
likelihood (ML) estimation of the parameters but with the
likelihood scaled by the prior. MAP imagation is similar to ML
imagation with a prior distribution on image values included
in the functional being maximized.

C. Maximum Entropy and Minimum Discrimination

TheJaynes maximum-entropy principleis a principle of data
reduction that says that when reducing a set of data into the
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form of an underlying model, one should be maximally non-
committal with respect to missing data. If one must estimate a
probability distribution on the data source satisfying certain
known constraints on, such as

(98)

then, of those distributions that are consistent with the con-
straints, one should choose as the estimate ofthe probability
distribution that has maximum entropy. A nice example can
be given for a probabilistic source with a real output. Suppose
the source produces a real-valued random variablewhose
mean and variance are known, and otherwise the probabil-
ity distribution governing the source is unknown. Then the
maximum-entropy principle says that one should estimate that
the probability density is a Gaussian probability density
with the given mean and variance. This is a consequence of
the well-known fact that a Gaussian random variable has the
largest differential entropy of any random variable of a given
mean and variance.

The maximum-entropy and maximum-likelihood principles
are equivalent when the constraint to be enforced when esti-
mating a probability distribution is not in the form of some
given moments but, rather, of some given data. When given
some statistical data from which a distribution or image is to
be estimated, one approach is to use those data to estimate
some moments and then to use these estimated moments
as if they were the exact (deterministic) moments when
maximizing entropy. However, the estimated moments are
exact only in the limit of a large data set and otherwise are
random, resulting in a conceptual inconsistency. As discussed
by Miller and Snyder [62], when entropy is maximized subject
only to the constraint of some given, statistical data rather
than deterministic moments, the resulting maximum-entropy
estimates are also maximum-likelihood estimates.

The Kullback minimum-discrimination principleis an al-
ternative principle that applies when one is given both a
probability distribution as a prior estimate of and also a set
of constraints, such as moment constraints, that the probability
distribution must satisfy. Under this principle, the optimal

is

(99)

where is the set of probability distributions that satisfy the
moment constraints [57], [56], and is discrimination.
If the prior estimate is a uniform distribution, then this
principle yields the maximum-entropy distribution subject to
the moment constraints.

D. Minimum Discrepancy: Least Squares and Discrimination

For observations in , assume the information-theoretic
discrepancy measure . In deterministic problems, there is
some model for the observed datain terms of the underlying
image . Let this model be a function . Then
the minimum-discrepancy problem is to find the that

minimizes the predicted discrepancy from the observation

(100)

This formalism includes least-squares, minimum-
discrimination, and related methods.

If consists of real- or complex-valued functions, then
the squared error is the natural discrepancy measure. Let
denote an inner product on. The discrepancy measure is then

(101)

The least-squares problem is

(102)

If consists of positive-valued functions, then discrimina-
tion is the natural discrepancy measure. Assume

, and let be the value of the observation at the point
. The discrimination is defined as

(103)

In applications, the observations are often vectors rather than
functions, in which case (103) is written as a summation as
in (54) rather than an integral. For either the integral or the
summation form, the optimization problem as stated in (100)
becomes

(104)

For linear inverse problems, this formulation leads to the
generalized iterative scaling or SMART (simultaneous mul-
tiplicative algebraic reconstruction technique) algorithm [12],
[25].

The discrimination may be used with the arguments re-
versed. In this second formulation, the minimum discrepancy
statement in (100) becomes

(105)

Since discrimination is not symmetric in its arguments, the
criteria (104) and (105) can have different solutions and they
lead to very different algorithms.

VIII. C OMPUTATIONAL ALGORITHMS

Information-theoretic image formation yields images by the
optimization of performance metrics. Analytical intractability
usually accompanies any attempt to form images in this way,
so numerical algorithms must be used; many algorithms used
have a strong infomration-theoretic motivation. An impor-
tant exception can occur with some linear problems having
Gaussian statistics and quadratic metrics, but even in these
cases numerical methods for performing matrix inversions or
solving integral equations are often needed. For example, the
original method by Rockmore and Macovski [76] for forming
maximum-likelihood images for emission tomography was
realized practically only when Shepp and Vardi [84] later
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introduced the expectation-maximization method of Dempster,
Laird, and Rubin [27] as a means of constructing algorithms
for computing the maximum-likelihood image. A wide variety
of computational algorithms are in use for producing images
numerically. Standard methods of numerical optimization,
such as gradient descent, are widely used. In this section, we
shall review methods based on information-theoretic concepts
that have become popular and are presently finding their way
into practical imaging systems. This includes the expectation-
maximization method and its recent extensions introduced by
Fessler and Hero [32]. Also mentioned is a similar method
introduced by Snyder, Schulz, and O’Sullivan [92] for de-
terministic problems in which the discrepancy metric is the
discrimination in the form of (105). A related algorithm
originally proposed by Darroch and Ratcliff [25] for computing
the distribution that maximizes entropy subject to constraints
has been used to solve linear inverse problems by Byrne [12]
and others. This is the generalized iterative scaling or SMART
algorithm for deterministic problems in which the discrepancy
metric is the discrimination in the form of (104). Stochastic
search by means of the jump-diffusion algorithm of Grenander
and Miller [43] is another powerful tool which we shall review
briefly.

There are many other algorithms with an information-
theoretic motivation that are not discussed here. Simulated
annealing for imaging problems was discussed by Geman
and Geman [34]; the jump-diffusion algorithm is a stochastic
search without the annealing process. In addition to these
stochastic search methods to combat the multimodality of opti-
mization criteria, there are deterministic methods including the
graduated nonconvexity algorithm [5] and its improvements
[68]. The SMART algorithm is a descendent of ART and
MART, algorithms that have been used in image reconstruction
algorithms for many years (see the references in [12]). There
have been many methods proposed for increasing the conver-
gence rate of the expectation–maximization (EM) algorithm.
Among the more promising techniques in the literature are
those based on partitioning of the data space such as the
ordered-subset EM algorithm and its variants [8], [49].

A. The Expectation–Maximization Method

The expectation–maximization method of Dempster, Laird,
and Rubin [27] is a general approach for formulating recursive
algorithms that can be used to determine the maximum-
likelihood estimate of a parameter vectorin terms of some
measured data. To apply the method requires judgment,
and the structure of the problem must be appropriate. When
successfully applied to a particular problem, the EM method
yields a particular algorithm that is specific to that problem.
Indeed, the EM method can even yield more than one algo-
rithm for the same problem because there can be more than
one way to apply the method. For imaging problems,is
composed of the unknown parameters, such as pixel values,
that comprise the image to be estimated, andis composed
of the data values produced by the imaging system. If some
prior information regarding is available, this can readily be
incorporated into the method by either adding the logarithm of

the prior on to the log-likelihood function being maximized,
thereby producing MAP estimates of the parameters, or by
adding a penalty function during the maximization.

The EM method begins by selecting some hypothetical
data, , called the “complete data.” There is considerable
flexibility is making this selection, and making a good choice
has largely been based on experience drawn from a familiarity
with the physical problem at hand and its mathematical
model. The choice can influence the behavior of the recursive
algorithm that results, such as its rate of convergence, so
careful consideration is warranted. Roughly speaking, the
choice should be such that there is a function such that
the actual data , here termed the “incomplete data,” can be
recovered from the complete data, , and such that
the log-likelihood function of the complete data can
be formulated and the required analytical steps can be accom-
plished. At the very least, the conditional likelihood of the
incomplete data given the complete data must be independent
of the parameters. The issue of selecting complete data is
discussed further in the next section.

The recursion proceeds as follows. Suppose that is
an estimate of that has been formed at some stage of the
recursion. To get to the next stage, an-step and an -
step must be performed. The-step consists of evaluating
the conditional expectation of the complete-data log-likelihood
given the incomplete data and the parameter estimate available
at that stage resulting in a function , defined by

The -step is then performed to obtain an updated and
possibly improved parameter estimate, according to

In many interesting situations, this maximization can be per-
formed analytically, but in others numerical optimization is
required, resulting in an iteration nested within the EM recur-
sions.

Following Dempster, Laird, and Rubin [27], it is straight-
forward to demonstrate that the recursion produces a nonde-
creasing sequence

of log-likelihoods , of the incomplete data . The
limit, , if it exists, satisfies the necessary conditions
for a maximizer of . To see this, let and

denote the likelihood functions for the incomplete
and complete data, respectively. These are related according to

(106)

Also, define the conditional likelihood according
to Bayes rule

(107)

Then

(108)
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where

and

Multiplying both sides of this equation by and
integrating over then yields

(109)

It follows from this expression that

(110)

The entropy (discrimination) inequality, ,
then yields

(111)

Noting that the maximization step in the expecta-
tion–maximization method implies that

(112)

then establishes that and, hence,
that the sequence produced recursively via the expecta-
tion–maximization method does not reduce the incomplete-
data log-likelihood at any stage.

If an estimate of is sought that maximizes ,
corresponding to estimating subject to a penalty constraint
with penalty function or to estimating with a log-prior

, then the expectation–maximization method
can be used with the maximization step becoming

Wu [105], Shepp and Vardi [84], and Csiszár and Tusnady
[24] address the convergence properties of the sequence of pa-
rameter estimates and corresponding sequence of incomplete-
data log-likelihoods towards local and global maximizers of
the incomplete-data log-likelihood.

B. Space-Alternating Generalized Expectation–Maximization

The expectation–maximization method as originally for-
mulated maximizes a conditional expectation of
a single complete-data log-likelihood function and
simultaneously updates estimates of all the parameters com-
prising the parameter vector. While this method does permit
maximum-likelihood estimates of images to be obtained nu-
merically, it is slow in convergence, and penalty functions to
enforce regularization and priors can make the maximization

step difficult. Fessler and Hero [32] address these deficien-
cies in a method they term “space-alternating generalized
expectation–maximization,” or SAGE. In their SAGE method,
parameters in are grouped into subsets that are sequentially
updated by alternating between multiple, small, hidden-data
spaces rather than a single, large complete-data space. The
result is a numerical approach that, in comparison to the
usual expectation–maximization method, produces maximum-
likelihood estimates of an image with a convergence rate that
is potentially greater and with a complexity that may be less
in the presence of constraints.

The SAGE method can be summarized as follows. Let
be a -dimensional vector of parameters to be estimated, and
index these parameters using the set of integers .
Let and be subsets of these indices such that

and . Denote by the -dimensional
vector of elements of having indices in , where is the
number of indices in . Similarly, define to be the vector
of dimension formed from the remaining elements
of . In general, may be partitioned into more than just
two subvectors in this way using multiple disjoint index sets

, whose union covers . Functions
of the - and -dimensional vectors and

are interpreted as equal to the function of the -
dimensional vector . In the SAGE method, updates are
performed by sequencing through the different index sets

and updating only those parameters in while
holding the other parameters fixed.

Hidden-data spaces must also be defined and selected; doing
so requires that complete data be selected in the usual way
for estimating but now assuming that is known. Let

be an initial estimate of . A sequence of estimates that
results in a nondecreasing sequence of incomplete-data log-
likelihoods is produced by the Fessler–Hero SAGE algorithm
[32], which repeats the following iteration:

Step 1. Choose an index set ;
Step 2. Choose complete data for ;
Step 3. (E-step) Compute ;
Step 4. (M-step)

(113)

(114)

Step 5. (optional) Repeat Step 3 and Step 4.

The th iteration consists of this sequence of steps. The
iterations are repeated for halting when the
iterates reach an equilibrium. Thus it is necessary to prove that
the iterates of the algorithm do converge to an equilibrium. The
convergence properties of the SAGE algorithm and consider-
ations to be made in selecting complete data are discussed by
Fessler and Hero [32], and extensions are given in [33].

C. The Random Sampling Method

The EM and SAGE methods for numerically producing
maximizers of likelihood functionals, both with and without
priors, proceed deterministically: a sequence of functions or
images is produced that is predetermined by the data given
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and the function chosen to initiate the iteration. Although also
iterative, the jump-diffusion method does not proceed deter-
ministically but, rather, via a random search for maximizers
or for estimates, such as the conditional mean (i.e., minimum
mean-squared-error estimate). The method as introduced by
Grenander and Miller [43] and discussed by Miller, Srivastava,
and Grenander [63], [94], provides a numerical method for
sampling from complicated distributions when the parameter
space has both discrete and continuous components. It has
been used effectively in a variety of applications, including
identifying the number and shape of mitochondria in electron
microscope images [43], deforming a labeled anatomy in a
textbook to match a patient’s anatomy [98], and detecting
the number and orientation of targets in infrared images
[59]. These various applications share the characteristic of
having quantities in an image that are both discrete, such
as the number of objects or the labeling of objects by their
type, and continuous, such as the position and orientation of
objects or spatially varying intensities in a scene containing
the objects. The “jumps” in the method provide estimates of
the discrete quantities by means of a stochastic search of the
Metropolis–Hastings type, and the “diffusions” yield estimates
of the continuous quantities through a stochastic optimization
[35].

For example, let represent parameters (such as the poses)
and the types of objects in a scene. Denote the logarithm
of the posterior likelihood of the data by for
given and . The approach is to formulate a diffusion
process that has the property that the log-
distribution of converges with increasing towards

. This diffusion is produced by the stochastic
differential equation

where is a standard -dimensional Wiener process.
Jumps between different choices of and are performed
at the times of a Poisson process, and decisions of whether
to select new values for and or to retain old ones
are made in a manner similar to decisions made with the
Metropolis–Hastings method of stochastic search. The cited
references can be consulted for further details of the jump-
diffusion approach.

D. Iterative Minimization of Discrimination

An iterative method that is similar to the expecta-
tion–maximization algorithm can be used to produce minimiz-
ers of discrimination for deterministic linear inverse problems.
This approach has been suggested by Snyder, Schulz, and
O’Sullivan [92]. Similar approaches are given by Vardi and
Lee [100] and Byrne [12].

Linear inverse problems that can be approached with this
method have the form

(115)

where the three functions , , and are nonnegative,
with and being given and to be determined.

Joyce and Root [53] and many others have commented on
the notoriously ill-posed character of many linear inverse
problems. Various approaches have been suggested for solving
them while introducing regularization to stabilize solutions.
Most of these approaches are based on least squares op-
timization with constraints to enforce regularization, such
as described by Tikhonov and Arsenin [96]. Youla [107]
has proposed a method for accommodating nonnegativity
constraints with least squares optimization.

As already noted, Csiszár [23] identified the important role
of discrimination as a discrepancy measure for optimization
when comparing nonnegative functions or images. Recogniz-
ing that a solution to the linear inverse problem described by
(115) will necessarily be an approximation, a function is
sought such that the function , defined by

(116)

is a good approximation to the given function in the
sense that the discrimination between and

is minimized. Let be a nonnegative function
selected as an initial guess. Then, the sequence of functions

produced by the following recur-
sion produces a corresponding sequence of discriminations

that is nonincreasing, where

(117)

Properties of the sequence and con-
ditions for convergence are discussed by Snyder, Schulz, and
O’Sullivan [92]; these are established using results from Cover
[18] and Vardi, Shepp, and Kaufmann [101]; see also Vardi
and Lee [100]. Applications to tomographic imaging are given
by Wang, Snyder, O’Sullivan, and Vannier [103], and by
Robertson, Yuan, Wang, and Vannier [75].

E. Generalized Iterative Scaling or SMART

The generalized iterative scaling algorithm was originally
introduced to find the distribution that maximizes entropy
subject to a set of linear (mean-value) constraints by Darroch
and Ratcliff [25]. It was shown by Byrne to minimize the
discrimination in the form of (104) for linear inverse prob-
lems with nonnegative data, using an alternating minimization
approach [12]. Byrne referred to this algorithm as SMART for
the simultaneous multiplicative algebraic reconstruction tech-
nique. Csisźar [22] showed that generalized iterative scaling
can be interpreted as alternating I-projections and the conver-
gence is thus covered by his more general results [21]. Byrne
explicitly showed that this algorithm is in fact an alternating
minimization algorithm whose convergence is covered by
Csisźar and Tusnady [24]. O’Sullivan [70] discussed several
alternating minimization algorithms including this one.

For linear inverse problems as in (115), the problem is to
minimize , where is the estimate for as in
(116). Let be a nonnegative function selected as
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an initial guess. Then, the sequence of functions
produced by the following recursion produces a

corresponding sequence of discriminations that is
nonincreasing, where

(118)

If there is a nonnegative solutionto (115), then the iterates
converge to the solution of (115) that minimizes

[25], [12].

F. Projection onto Convex Sets

The operation of projection onto a closed convex set in a
Hilbert space is an example of a nonlinear procedure that can
be explained in simple abstract terms. It is not normally viewed
as a statistical method. Projection onto convex sets plays a
role in image formation because the constraints on the image
space are often convex. Moreover, the topic of projection onto
convex sets can be expanded into the study of the powerful
methods of alternating maximization [24], [70], [106]. These
methods of alternating maximization applied to problems of
information theory appeared earlier in the literature [3], [6] in
the context of computing channel capacity and rate-distortion
functions.

A general discussion of the topic of projection onto convex
sets can be found in the paper of Combettes [17] and the
work of Youla [106], Youla and Webb [108], and Segan and
Stark [82]. The projection is unique and often can be found
by analytically tractable methods, including iterative methods.
Because the intersection of a finite number of convex sets

is convex, one may wish to project onto by
interatively projecting onto the individual . This procedure
need not converge in general, but will always converge if the
individual are affine subspaces.

IX. M ODALITIES AND APPLICATIONS

Some representative applications of information-theoretic
imaging are described in this section. For each, the application
is reviewed briefly and a likelihood model given for the data
acquired for image formation. The applications are drawn from
optical imaging, tomographic imaging, and radar imaging.
The models include deterministic and random data, with the
random data modeled by Poisson processes, Poisson–Gaussian
mixtures, and Gaussian processes.

A. Deterministic Models

Imagation in which deterministic models are used for im-
ages and sensor data is often derived as a solution to a linear
inverse problem in the form of a Fredholm integral equation

(119)

where are the sensor data,
is a (point-spread) function characterizing the sensor,

and is the image to be formed. Some examples
that illustrate the nature of the image and data spaces,and

, respectively, and functions that are encountered are given
next.

Optical Imaging In optical imaging problems, rep-
resents the data acquired by a camera,is typically a
two-dimensional subset of the plane, is the point-
spread function of the optical elements of the camera,
such as telescope and microscope lenses, field stops, and
mirrors, is the scene being imaged, and is typically
a subset of or . For coherent imaging, where phase
information is maintained, the functions , , and

are complex-valued functions. For incoherent imaging,
these functions are real-valued and nonnegative functions.
For multispectral, hyperspectral, polarimetric, or spectropo-
larimetric imaging, these functions are vector-valued.

Tomographic Imaging In tomographic imaging problems,
represents the logarithm of the data acquired by the

tomograph, is typically a subset of , with
or corresponding to planar or volumetric imaging,

is the point-spread function of the tomograph,
is the X-ray absorption density being imaged, andis
typically a subset of or . For example, in helical-
scan X-ray tomographic imaging in the fan-beam geometry,

is three-dimensional with , where is
the angular position of the X-ray source, is the angle
of a particular source to detector element, andis the
axial position of the source, is three-dimensional
with being the coordinates of a point
location in the target volume, and, for perfectly collimated
source–detector combinations

(120)

where is the distance from the source to the axis of
rotation, , and is the pitch of the helical scan.
All functions in the linear inverse problem of tomographic
imaging are constrained to be nonnegative.

Radar Imaging Complex-valued reflectance functions and
real, nonnegative scattering functions are images of radar
targets formed from high-resolution radar range data. If the
signal transmitted by the radar is , the ideal echo-signal
received from a point reflector is ,
where is the strength of the reflector, is the two-way
propagation delay of the transmitted signal to and from the
point reflector, and is the Doppler frequency shift due
to relative motion between the radar transmitter and the
reflector along the line of sight. For a spatially extended
reflector, the received signal to a first approximation is the
superposition of the signal reflected from each point; this
neglects, for example, secondary reflections of the signal
from one location on the reflector to another before returning
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to the radar receiver. The received signal is then

(121)

where is the range of Doppler shifts,
is the range of propagation delays that cover

the reflector. This is in the form of (119) with being
the time interval of the measurement, being the two-
dimensional space of delay-Doppler shifts

and .

The linear inverse problem described (119) is routinely
discretized to facilitate numerical solutions. While this can
be accomplished in various ways, the result can generally be
placed in the form of an algebraic, linear inverse problem of
the form

(122)

where and are discrete-valued or, alternatively, in ma-
trix–vector form

(123)

in which is a vector-valued discretization of the given data,
is a discretization of the kernel of the Fredholm equation

(119), and is a discretization of the unknown function that
is sought. If is invertible, then the obvious solution is

. However, this ideal solution is usually impractical
because often is not invertible or is poorly conditioned so
that solutions are extremely sensitive to the detailed choices
made in designing a numerical implementation and to the
effects of finite-precision arithmetic. Joyce and Root [53]
provide a good discussion of this issue.

B. Stochastic Models

Sensor noise can be significant in inverse problems encoun-
tered in imaging. A variety of noise models are useful with
the most successful results in applications occurring when the
noise model selected is a good representation of the data-
acquisition sensor being used. For radar sensors, an additive
Gaussian model is a reasonable first choice, and for focal-
plane arrays, such as a CCD camera, a Poisson model or
a Poisson–Gaussian-mixture model is an appropriate initial
choice. In stringent applications where high performance is
sought, more refined models that account for significant effects
present in a sensor must be formulated and used, so that, for
example, nonuniformity of response and offset in focal plane
arrays usually needs to be taken into account in scientific
applications.

In the presence of additive Gaussian noise, the discrete
inverse problem given by (119) becomes

where is white with mean zero and variance, and the
image recovery problem is to estimate given a realization
of . For describing photoconversion electrons in a focal-
plane array, in (119) becomes a Poisson process
with mean-value function , and the restoration
problem is to estimate from a realization of the Poisson
process. If nonuniformity of response, offset, and thermoelec-
trons are significant, then the Poisson process modeling
photoconversions has intensity .
Here, and are functions that account for nonuni-
formity and offset, respectively; these functions are routinely
determined in calibration measurements using a flat field and a
dark field exposure of the focal-plane array. If read-out noise
is a significant factor in a focal-plane-array sensor, then (119)
becomes

(124)

where is a Poisson process modeling photoconversions
and offset, and is an independent, white, Gaussian process
modeling read-out noise. The mean-value function of is

(125)

and the mean and variance of are and .
The data log-likelihoods for each of these models is a

functional of that is fundamental to the problem of
estimating from the available data. For the additive
Gaussian noise model, the data log-likelihood (when reduced
to only terms that are-dependent) is

(126)

For the Poisson model, it is

(127)

And, for the Poisson–Gaussian-mixture model

(128)

where

(129)

The purpose of imagation is to recover or estimate the object
given the data available. The method of maximum-

likelihood estimation can be applied to this problem, and if
there are constraints on the form of or if is a random
process with a prior distribution, the method of maximuma
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posteriori probability estimation can be used. A closed-form
solution is well known for the additive Gaussian model without
constraints or a prior, which is . However,
a closed-form solution is not possible for the Poisson and
Poisson–Gaussian-mixture models, and numerical solutions
such as those discussed in the next section must be employed.

Regularization is often necessary in order to obtain ac-
ceptable restorations. This is because the stochastic inverse
problems are usually ill-posed and numerically unstable. In
some cases, discretization is imposed by the sensor used to
acquire data, such as with a charge-coupled-device camera
and other focal-plane arrays. Discretization of continuous data
is one form of regularization, but this alone can lead to
the problem of dimensional instability described by Tapia
and Thompson [95]. Grenander sieves [42] can be used to
introduce regularization as was done by Snyder and Miller
[89]. With this method, estimates are restricted to a subset of
the function space supporting . The size of this subset
is controlled by the amount of data available to perform the
estimation, such that the subset grows as the amount of data
increases, but the rate of growth is controlled so that the
estimate of converges in a stable manner. Alternatively,
regularization can be introduced via a penalty function
that enforces smoothness (see O’Sullivan [69]). With penalty
methods, the estimate maximizes the penalized log-likelihood

, where is a Lagrange multiplier that controls
the emphasis given to the data log-likelihood and the penalty
function when selecting the maximizer. When is a random
process with a prior , the MAP estimate of is obtained
by maximizing . It is evident that many penal-
ized maximum-likelihood estimation problems are equivalent
to MAP estimation problems by defining ,
where is a normalization constant; for this equivalence to
hold, must be finite, so that the prior defined in this way
is proper.

C. An Application Modeled by Gaussian Data

For sensors that exhibit additive Gaussian noise, (119)
becomes

(130)

for which the discrete version, analogous to (130) is

(131)

If is deterministic and has zero mean, the data log-
likelihood is

(132)

when terms that do not involve are neglected, where the
superscript denotes the Hermitian transpose.

A model used for spectrum estimation and radar imaging
arises when has a prior distribution that is Gaussian with
zero mean and diagonal covariance[67], [71], [91]. The
element, , of corresponds to the power gain of the signal
reflected from the pixel in the pixelized representation of
the object’s scattering function in delay-Doppler coordinates.

In this case, the data are Gaussian-distributed with zero
mean and covariance , assuming that
the noise is white Gaussian with zero mean and covariance

, so the probability density of is

where is the dimension of . The problem of forming the
scattering-function image is that of estimating the diagonal
matrix from some given data set. The log-likelihood
function is

(133)

The maximization of with respect to is in the class
of problems studied by Burg, Luenberger, and Wenger [10] for
spectrum estimation and in [67], [71], [91] for radar imaging.
The following algorithm, derived using the EM method, was
used in the radar imaging context by Snyder, O’Sullivan, and
Miller [91].

Step 0. Choose an initial estimate , set ;
Step 1. Evaluate and according to

(134)

(135)

Step 2. ;
Step 3. Repeat Step 1 until done.

D. An Application Modeled by Poisson Data

Scintillation detectors are used to sense photons emanating
from radioactive decays in a radionuclide. Some radionuclides
emit a single photon in each decay, as occurs in SPECT
(single-photon-emission computed tomography) systems used
in nuclear medicine. A decay in other radionuclides results
in a positron, which interacts quickly with a nearby electron,
resulting in two annihilation photons that propagate in nearly
opposite directions away from the annihilation site, as in PET
(positron-emission tomography) systems [90, Ch. 3]. A decay
or an annihilation is called anevent. Through the measurement
of single-photon events or annihilation-pair events (typically,
for PET, about events per planar section, acquired in a
time interval on the order of 10 to 20 min), the objective is to
form an image displaying an estimate of the spatial distribu-
tion or concentration of the radionuclide. Three-dimensional,
volumetric imaging is sought. This is usually accomplished by
means of a sequence of planar images spanning the volume of
interest, with each planar image being treated independently of
others; however, direct volumetric imaging that accounts for
intravolume dependencies has been demonstrated to be more
accurate [60].

To obtain estimates of radionuclide concentrations, models
for scintillation data must account for the photon-fluctuation
statistics of radioactive decay and for the effects that occur
when photons propagate through a scattering medium to reach
detectors. The models that are used account only approxi-
mately for some effects and neglect others altogether. For
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example, photon scattering (that is, deviation of a photon’s
flight path from a straight line due to Compton and photoelastic
scattering) is usually only roughly accommodated using an
attenuation function, an additive and independent “photon”
noise in PET, and a point-response function that is broader
than would be predicted by the finite size and geometry of
scintillation detectors alone. Photons that are undetected due
to finite recovery time in a scintillation detector are neglected.
While these effects can be significant in practice, they are
usually neglected to keep data models tractable.

A source-channel model for event detections is a useful con-
ceptual framework for formulating the problem of estimating
the radionuclide distribution. It can be formulated as follows.
The source produces points representing random locations of
radioactive decays or positron–electron annihilations in the
region containing a radionuclide. Let be the source-output
space. This is the space where events occur; an individual
event occurs as a point at position . This source
space can be a subset of (planar SPECT and PET),
(volumetric SPECT and PET), (PET in which the
differential time-of-flight of the annihilation photon pair is
measured [93]), and perhaps other parameters, depending on
the sensor configuration. The channel, representing the sensor
system, produces outputs that are points in a channel-output
space . A detected event occurs as a point at a random
position . The elements of depend on the sensor
configuration. In SPECT, for example, and

, where are the measured positions
of the detection event in the scintillation crystal of the Anger
camera, and is the angle of the camera in its orbit. In PET,

parameterizes the flight line of annihilation photons and, in
time-of-flight PET, the flight-line parameters along with the
differential propagation time. The channel can map a source
point at into channel-output point at, or it can delete the
source point (corresponding to an absorbed photon), and it can
add extraneous points (accounting in part for photon scatter).

A reasonable model for the source, based on the physics
of radioactive decay, is that the source produces points as
an inhomogeneous Poisson process, denoted by

, having an intensity function that is proportional
to the concentration of the radionuclide. Let
denote the intensity function of the source.

We assume that the channel action on individual source
points is independent from point to point. Let

denote the transition probability-density of the chan-
nel; given that the source produces a point atand that this
point is detected, this is the density of the random location
of the detection in the channel-output space. This transition
density of the channel is the normalized point-spread function
of the sensor. Let denote the probability that a source
point at that is headed towards an output locationis
detected (this is the photon survival probability), and let

be the probability that the source point is
undetected (this is the photon-absorption probability). Finally,
we assume that the channel can introduce extraneous (noise)
points into its output and that these occur as an indepen-
dent, inhomogeneous Poisson process with intensity

. It follows from these assumptions, as was dis-

cussed by Miller and Snyder [62], that the channel output is
also an inhomogeneous Poisson process, denoted by

, with intensity function , where

(136)

Thus the log-likelihood functional of the channel-output
process is given by (see Snyder and Miller [90, Chs. 2 and 3]
for further discussion of this point)

(137)

The problem is to estimate the source intensity given the
measured channel output points and the source-channel model.
This problem was first formulated for emission tomography
by Rockmore and Macovski [76] in 1976 using maximum-
likelihood estimation, but their direct formulation proved to
be intractable for producing maximum-likelihood estimates. It
was not made computationally tractable until Shepp and Vardi
[84] and Lange and Carson [58] applied the EM method to this
estimation problem. Following this work, many subsequent
publications have extended the approach. Recognizing that the
EM algorithm will be implemented computationally, the first
step is to discretize the source-output space and the channel-
output space into pixels or voxels, then let
and denote the source-output and channel-
output Poisson processes on the discrete spaces, where
is the number of single or annihilation-pair photons occurring
in pixel , and is the number of detection events in
pixel . The log-likelihood functional of the channel-output
process becomes

(138)

where

(139)

Depending on the choice of complete data, Politte and
Snyder [74] identify the choice of two algorithms formed by
the EM method. The algorithm formed by the EM method
will be either

(140)

or

(141)

depending on the choice of complete data, where
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and where

(142)

While these two EM algorithms converge towards the same
limit point, their convergence rates differ, with the second one
converging more rapidly [74]. This shows that the choice of
complete data does influence algorithm behavior.

The SPECT and PET inverse problems are ill-posed, so
that regularization to stabilize solutions is needed. Sieves and
roughness penalties have been used for this purpose [61], [74],
[89].

Data acquired in optical imaging systems are also often
modeled as Poisson-distributed. One important area where
such models along with information-based image recovery
has been used effectively is in addressing the long-standing
and difficult problem faced by astronomers of forming im-
ages of objects seen through clear-air atmospheric turbulence.
Roggemann and Welsh [77] review the classic methods of
Labeyrie (recovery from Fourier modulus), of Knox and
Thompson (recovery from squared Fourier modulus or second-
order correlations), and of Weigelt (recovery from third-order
correlations) developed and used effectively by astronomers
for this problem. A new method of recovery of an object’s
image from known second-order and higher order correlation
functions of the image has been developed by Snyder and
Schulz [79], [80], [86], based on a Poisson data model and the
use of maximum-likelihood estimation. Paxman, Schulz, and
Fienup [72] and Seldin and Paxman [81] have introduced a
new data-collection approach in which multiple, phase-diverse
snapshots of an object seen through turbulence are used with
a Poisson data model and constrained maximum-likelihood
estimation to produce substantially improved object images.

E. An Application Modeled by Poisson–Gaussian Data

The following source-channel model is a useful framework
for characterizing a wide variety of applications when a
charge-couple-device (CCD) camera is used to image scenes
in the visible and infrared portions of the spectrum. A discrete
model is used because a CCD camera produces data from a
pixel array and, also, because an EM algorithm will be used to
perform imagation. We envision a scene that emits incoherent
radiation that propagates towards a CCD camera. Light falling
onto the focal plane of the camera has an intensity given by

(143)

where is the point-spread function of
the camera, is the radiance of the scene, and are
the source-output and channel-output spaces, respectively. For
light that propagates through free space or through short paths
in the atmosphere, the point-spread function is determined by
the configuration of optical elements in the camera [39], [40],
including pupil shape, obscurations, and any aberrations that
are present. The number of photoelectron conversions
occurring during a -second exposure interval in a pixel at
in the CCD array is Poisson-distributed with mean

, where accounts for nonuniform quantum

efficiency, pattern noise, bad pixels, and charge-transfer in-
efficiency. By assumption, the number of photoconversions is
independent from pixel to pixel. The process of reading out
the pixel values results in the channel-output process

(144)

where is a Poisson-distributed process that
accounts for extraneous thermoelectrons and for offset bias in
the CCD array, and is a Gaussian-distributed
process accounting for noise in the readout amplifier integrated
into the CCD array circuit [88]. The processes , ,
and are mutually independent and independent from
pixel to pixel. The mean-value function for
is assumed to be the known function , and

is assumed to have a constant meanand
variance .

For imagation, it is convenient to embed the scene in a
hypothetical stochastic process, which can be regarded as
the output of the source in the source-channel model. Thus
we imagine a Poisson-distributed process
having intensity ; one can regard the points
of this process as “photons” emanating from the scene. The
source output is the set of points (or counts in the discrete
model) of this hypothetical process in the source space.
This contrived source model is legitimate because the photo-
conversion process will be a Poisson process
with mean function when the source output

is a Poisson process with mean function
and

(145)

The channel, representing the camera, maps the output of the
source into the channel-output process , which
is a Poisson–Gaussian mixture. The log-likelihood functional
for the channel output is

(146)

Selecting complete data and applying the EM algorithm yields
[88]

(147)

where

(148)
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and

(149)

Evaluation of the function through the use of saddle-
point integration and approximations, with applications to
Hubble Space Telescope imagery, is discussed by Snyder,
Helstrom, Lanterman, Faisal, and White [87].

X. CONCLUSIONS AND FUTURE DIRECTIONS

An information-theoretic framework for imaging is in the
earliest stages of development but can already be seen as the
basis for data models, performance metrics, and processing
strategies for treating image formation problems. An all-
encompassing model has yet to be formulated that can play
as powerful a role for imaging as Shannon’s source-channel
model plays for communications. Nonetheless, the importance
that information-theoretic concepts already play leads us to
predict that such a formal model will eventually emerge.

Image formation often involves optimization of metrics
rooted in information theory, such as likelihood, divergence,
discrimination, and entropy. For such methods, it is not only
a requirement but also a strength that accurate models must
be available for scenes, for the environment between scenes
and sensors, and for the image-related data produced by
sensors. These models need to account generally for the way
that the underlying physics governs the production of the
observed data at each stage along the way. Deterministic
and stochastic models may appear different on the surface,
but image-formation methods based on the optimization of
information-theoretic metrics of discrimination and likelihood
share many common features. Scenes exhibit great complexity
and variability; methods for modeling scenes are evolving
rapidly and are already sophisticated mathematically, but in
many respects, available models are still too limited to ac-
commodate effects that can have a pronounced influence on
the performance of imaging systems, such as clutter that
surrounds and often obscures objects to be identified in a
scene. Propagation effects in optical imaging applications,
such as scattering in turbid media and phase and amplitude
fluctuations in turbulent media cannot be easilly modeled.
Sensor technology is complicated and evolves rapidly so that
models for sensor data often have limited accuracy. The future
effectiveness of information-theoretic approaches to image
formation will rely on addressing these modeling issues.
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