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Abstract—The emergent role of information theory in image measures of optimality that can be used to judge estimates of
formation is surveyed. Unlike the subject of information-theoretic images, for addressing issues associated with the development

communication theory, information-theoretic imaging is far from ¢ 5 04rithms based on these optimality criteria, and for
a mature subject. The possible role of information theory in prob-

lems of image formation is to provide a rigorous framework for quantifying the statistical quality of the approximations.

defining the imaging problem, for defining measures of optimality ~ To this end, the domain of information theory may be
used to form estimates of images, for addressing issues associatedlivided into two parts: communication and observation. The
with the development of algorithms based on these optimality problems of communication have been very successfully

criteria, and for quantifying the quality of the approximations. - - .
The definition of the imaging problem consists of an appropriate treated by information theory, in part because Shannon had the

model for the data and an appropriate model for the reproduction ~ foresight to overlay the subject of communication with a clear
space, which is the space within which image estimates take partitioning into sources channels encodersanddecoders
values. Each problem statement has an associated optimality Although Shannon’s formalization seems quite obvious in our
criterion that measures the overall quality of an estimate. The {ime it was not so obvious half a century ago. In contrast, the
optimality criteria include maximizing the likelihood function . . L :
and minimizing mean squared error for stochastic problems, and Pro‘?'ems of observation, In_cludlng I_maglng, have been slower
minimizing squared error and discrimination for deterministic ~ t0 Yyield to the methods of information theory, partly because
problems. The development of algorithms is closely tied to the the image formation problems are harder, and perhaps partly
de_Iini_tion Xr th‘?trimagi”_?hpmbt'em a_”‘: the ?ssotcriatedtpptim?lity because a formal framework for the subject is still emerging.
criterion. oritnms wi a strong intormation-tneoretic moti- H H .
vation are ogbtained by the metho?:l of expectation maximization. Even the terms_source sensor anq image Caf‘ be slippery;
Related alternating minimization algorithms are discussed. In Our understanding of these terms is closely tied to and colored
quantifying the quality of approximations, global and local mea- by our view of a particular physical problem. It is not yet
sures are discussed. Global measures include the (mean) squareccommon practice to study problems of image formation in
error and discrimination between an estimate and the truth, tarmg of an abstract formalization that is not connected to a
and probability of error for recognition or hypothesis testing o .
problems. Local measures include Fisher information. specific physical problem. . .
o o One may take the natural position that an image forma-
_Index Terms—mage analysis, image formation, image process- i, nroblem consists of a source to be imaged, a sensor
Ing, Image reconstruction, image restoration, imaging, inverse that collects data about the source, and an algorithm that
problems, maximume-likelihood estimation, pattern recognition. ’
estimates the image from the data. Thus it seems that image
formation closely corresponds to our commonplace notion of
. INTRODUCTION photography. However, upon closer examination one can find
MAGE formation is the process of computing (or refiningylifficulties with this simple view. A physical scene has a
an image both from raw sensor data that is related tehness and complexity well beyond what we may wish to
that image and from prior information about that imagemodel or can model. In some problems, the sensor data may
Information about the image is contained in the raw sensoontain very little information but the prior knowledge may
data, and the task of image formation is to extract thize considerable. Then one uses the sensor data to supplement
information so as to compute the image. Thus it appears tlia¢ prior model to produce the image. This is callethge
information-theoretic notions can play an important role in thisnhancemenin some contexts anchodel-based imagingr
process. We will survey the emergent role that informatiguhysics-based imagirig others. In an extreme case of model-
theory now plays in the subject of image formation or mayased imaging, the imaging task may well degenerate into the
play in the future. This role could be to provide a rigorousstimation of several parameters, or even a singgkeor no
framework for defining the imaging problem, for defininglecision, meaning only that a previously designated object or
target appears somewhere in the scene.
Similarly, the meaning of the term “sensor” can be hard to
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Because we lack the greatness of Shannon, we have difsignificant component of the image formation problem. Such
ficulty moving from these abstract questions to an abstratstems may need to use prior information about the scene, or
model. Instead, we tend to answer such questions only irthe equivalent, to augment the limitations of the sensor data.
narrower context by relating back to specific physical situ- Image formation using a prior model often can be treated
ations. Nevertheless, we shall press forward in this paperas an inverse scattering problem. The measurements of the
describe the emergent role of information theory in the imagirsgattered signal are inverted to estimate the parameters of a
problem. Because imaging sensors of the future will providaodel. Inverse algorithms iterate a forward algorithm, which
massive amounts of data, and computers of the future wdthiculates the far-field scattering of known illumination by a
be able to process massive amounts of data, the theory thadwn object, and compares that to the measured field. The
we seek is needed to guide the development of these imagedel parameters are then adjusted to reduce the discrep-
formation systems of the future. This implies that there is @ancy between calculations and measurements. This process is
need for a formal information-theoretic framework that carepeated until there is a satisfactory agreement.
offer advice about how to process massive data sets so as t@/hile the task of image formation can be viewed abstractly
extract all of the information relevant to the task of imagsimply as a problem of estimation, it can also be viewed
formation. as having a character and content of its own. The problems

Many kinds of sensors passively collect data from amddressed, the cost functions used, and the specific models
environment already rich with many kinds of signals, anthat are used for images and image sensors lead to new
these data sets may contain information about an object gqpfestions and mathematical techniques, such as the estimation
interest. In many cases, this information is very deeply buried random processes on manifolds or other complex surfaces.
in the data. Powerful methods are necessary to examine @meating a formal information-theoretic framework forces one
data by applying the various techniques of filtering, correlée think through general principles and to either justify or
tion, inference, and so forth. Seismic and acoustic systemegect existingad hoc procedures.
may consist of large arrays of many small devices. Optical Thus we come to our thesis. The time is right for a
sensors and infrared sensors now contain very large detedtorreaching study into our notions of extracting images or
arrays, such as charge-coupled device (CCD) arrays, in whimtfer object information from very large data sets, including
individual pixels can be addressed and archived. Indeed,data sets from multiple sensors, and possibly enriched by
a low-light environment, the time of occurrence of individuahrchived models and archived data. Various communities will
photon conversions can be reported one-by-one by each semsact to this statement differently. The information theory
pixel. Optical sensors used in imaging spectropolarimetand statistics community will think of maximum-likelihood
produce enormous quantities of data. Electromagnetic sensoidels, information-theoretic measures of performance, and
in the microwave, ultra-high frequency (UHF), or very-highdata fusion. The statistics community will also invoke methods
frequency (VHF) band can report massive amounts of datadditcorrelation and statistical inference. The computer science
every antenna. Lidars can now remotely probe the absorpticommunity, under the term “data mining,” will think of
spectrum of trace gases in the atmosphere. Even pasdarge archived data structures and various search engines to
electromagnetic sensors at lower frequencies can reporsupplement sensor data. All, however, will agree that such
considerable amount of useful data. methods can be very powerful, and can extract information

To enrich the collection of data, many sensors activethat is very subtly and deeply buried in a massive data set. Itis
probe the environment with transmitted signals, such as radaow timely and appropriate to attempt to survey a framework
seismic, or lidar signals. This illumination may be necessary &t this level for image formation. Insights will emerge from an
order to create the necessary data-bearing reflections. It shanfdrmation-theoretic framework that may not be seen when
also be noted, however, that in many cases, active probes sttalying an individual application. This paper has been written
designed not just to increase the amount of illumination fallings an early step in this direction.
upon the scene, but rather to put that illumination into a form This paper deals with the information-theoretic aspects of
so that the received sensor data are in a convenient folimage formation. Another important area in imaging that bene-
Although the environment may already contain many sourctts from information-theoretic methods is image compression.
of energy that provide illumination and scattered reflection¥his is an area of active research with a large literature
this energy is not usually organized into waveforms that asmd is beyond the scope of this paper, which focuses on
easy to process by image formation algorithms. image formation. For an introduction to this literature, see for

To extract information from the collected data, models muskample [36], [65], and [14].
be developed for the objects of interest, for the environment,The paper is organized as follows. The problem is first
and for the sensor. A system that observes a remote area nstrstctured in Sections I, Ill, and IV entitled “Image Space,”
process signals that propagate long distances, and possilflgnsor Data,” and “Reproduction Spaces.” Then perfor-
through complex environments. A system that extracts infamance measures are discussed in Sections V and VI, en-
mation from weakly radiating objects will usually need largétled “Information-Theoretic Measures,” and “Performance
amounts of data and long integration times. A system that udgsunds.” Sections VII and VIII, entitled “Image Formation”
imaging radar for the detection of objects masked by foliagand “Computational Algorithms,” are the core of the paper.
and other clutter or a system that uses acoustic sensors forExamples are given in Section X, entitled “Modalites and
detection of underwater objects must treat the environmentAgplications.”
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Fig. 2. Communications model.
Il. IMAGE SPACE Rc}, wheree is an image D¢ is the domain of the image,

We shall discuss the image formation problem shown f'd Rc is the range of the image. Models of image space
Fig. 1. This model, which can describe many estimatidhat describe an image by an infinite nur2nber of parameters,
problems, will be interpreted herein in the context of imagdPically consisting of a real function oR”, are known as
formation. The image formation model shown in Fig. 1 jgonparametric modelsA traditional n02nparametr|c imaging
analogous to the standard communications model shownPpblem may have domaiRc equal toR” or a compact subset
Fig. 2. The communications model consists of a source,ChR". The range of the imageis commonlyR, C, or R, but
channel, and a user, and these are connected by an encodefaRtetimes it is a vector spad&™, C™, or R consisting of
a decoder. Information theory studies these abstract modeldli set of elements dR™ with nonnegative components. For
communications and image formation. example, densities of particles, attenuation functions, intensity

The image formation problem is concerned with an undeiinctions, and power spectra have nonnegative values. Radar
lying image or scene that is analogous to the source out@nd coherent laser signals are complex-valued and may lead to
in a communications problem. The source selects one imag@nplex-valued images of target reflectivity. To give a more
from a set called aimage spaceand the selected image—orelaborate example of an image, we note that a real-valued
an adequate reproduction of that image—is to be providétree-dimensional scene may be time-varying and so may be
to the user. The images in the image space are abstractisiggotede(x, y, z,t). In this case, the domain iB* and the
perhaps similar to photographs of an underlying physiceange isR. If viewed through a spectrally sensitive device,
scene. Just as a photograph is a compressed representatidhroftly be advantageous additionally to model each point in
some underlying physical reality, so too, images in the imagpace and time as having a spectrum associated with it. The
space are abstract compressed representations of a physicailain is therD- = Rs x Rx R, corresponding to a point in
reality. space, time, and frequency, so the domain is five-dimensional.

The sensors in Fig. 1 play the role of the channel. THeet ¢ = [z.y,2]” € R® denote positiont € R denote time,
“imagator” or image-formation algorithm plays the role of thend f € R, denote frequency. Thedaz, ¢, f) is a point in
demodulator and decoder. Unlike the communication modéhe image, and(z, ¢, -) : R — D¢ is the frequency-dependent
the ways in which the images can be encoded or otherwigmction associated with the point at positisrat timez.
modulated into sensor waveforms is quite limited by the While typical scenes may be five-dimensional, or even
physics of the sensor interaction with the environment. Therger if polarization effects are included, particular sensors
image data are encoded by nature into radiated signals sugdly be insensitive to one or more of these dimensions. In that
as electromagnetic waves, diffracted X-rays, acoustic wavease, it is sufficient to project the five-dimensional function
or seismic waves. These signals interact with the sensorsoitto the appropriate lower dimensional function. For example,
produce the data available in imaging problems. if only a single measurement is made at a given fixed time,

In some cases, only parameters of the image are of interggbn the time variation may be ignored. If the measurement
and the mapping from the parameters to the image may é&pends on the spectrum only through an inner product with
viewed as a modulation of the data. The parameter space ragspecified spectrum (the transfer function of the sensor), then
be a low-dimensional space, with dimension COfreSpOﬂdiﬂ% Spectraj dependence may be ignored, keeping On|y this
to the position and orientation of an object of interest, or Hrojection. If the sensor is invariant to one of the three spatial
may be of moderate dimension, such as when it consists f¥fnensions, then that dimension may be ignored.
the parameters in a mixture model (as in a segmentation ofyiodels that describe an image by a finite number (or,
the image). It may be of high dimension, such as a colpjrely, by a countable number) of parameters are known as

spectrum that varies with position. parametric modelsParametric models are important in model-
) ) based imaging or imaging. Aonparametric modefor an
A. Nonparametric and Parametric Models image may consist of a restriction of the image to a function

Image space is the set of model images that represent sppace or of a representation of the image as a countable
true, underlying physical distributions that are measured kigpear combination of basis functions. The basis functions
the sensors. The image space is denoted by {c : Dc — may correspond to a representation of the image in terms
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of pixels, in terms of a transform-domain expansion, or in When there is such a parametgrthat characterizes the
terms of an orthonormal set of functions. Even when thscene, it may provide a complete or a partial characterization.
expansion is limited to a finite number of basis functiondf it completely characterizes the scene, thdaa a function of

the terminology would still be determined by the underlying; that is, there is a deterministic mapping fragénto C that
view of the image as a function oR?, so the model could assigns to each an imagec. If it is a partial characterization,
still be called a nonparametric model. An intermediate classly part of the scene is characterizedthyThe remainder of
consists of models that have a very large, but finite, numbiiie scene may be modeled either as an unknown deterministic
of parameters. These are calleghberparametric modeldlost function or as a stochastic process. In the latter case, a prior on
image space models, including the use of random field priotee scene given the parameters is required and will be denoted
are nonparametric descriptions. Hierarchical image models &xe 1.(c|6).

usually hyperparametric models. To recognize rigid objects in a scene automatically, the

The standard imaging approach, which is to reconstruzackground is not directly of interest and so is regarded as a
an image as a finite array of pixels or voxels, is vieweduisance parameter. Conversely, to determine the background
as nonparametric. Occasionally it is desirable to combineiraage in the presence of a rigid body, the rigid body may be
parametric model with a nonparametric model. This means tliagarded as the nuisance parameter. Alternatively, it may be
an expansion of an image in terms of basis functions may bkinterest to estimate parameters associated with elements of
found, and the coefficients in the expansion may be functiotiee scene (such as positions and orientations of rigid bodies)
of the parameters of interest. This approach, because it reesl to form an image of the entire scene. This is the case in
on two steps, may not be optimal (by the data processisgiral tomographic imaging in the presence of high-density
inequality) but may be necessary due to constraints on systattenuators. Then the position and orientation of the high-
implementation. density object are of interest, while simultaneously it is of
interest to remove the streaking artifacts commonly seen in
the images in the neighborhood of the object [103].

The observation space is denotéd= {o : Do — Ro} In object recognition problems, it may be that the image
with domainDy and rangeR o, respectively. A sensor mapscontains an object of interest, and the object is one of a
the image spac€ = {c : D¢ — R} into the observation finite number of object types. Further, it may be that only
space; often this mapping is stochastic. Imaging problems areletermination of the object class is of interest. If the number
classified as either deterministic or stochastic according ¢ possible classes is fixed, then the problem of interest is
whether the image and the sensor are described by deterngiie of hypothesis testing. Then the set of hypotheses will be

B. Priors

istic or stochastic models. Typically, a deterministic model genoted = {H;,Ho,---,H,,}. The corresponding prior

used if little or nothing is known about the image and if thgrobability distribution on this set of hypotheses, if there

sensor noise is negligible. is a prior probability distribution, will be denoted® =
Deterministic constraints are often a part of the modelP,, P, ---, P, }.

These constraints will include nonnegativity constraints for Finally, generalizations of these problems are often of in-
functions such as intensity, attenuation, density, and scatteritgrest. For example, in automatic object recognition problems,
The image may be known to take values in some convex subigetay be required to estimate the number of objects in a
of C. Alternatively, the image may be parameterized in sondene, perform recognition on each detected object, estimate
way. the position and orientation of each object, and form an image
Other deterministic effects that must be captured inclu@dg the background. In this case, inference is performed on a
the projection effects of the sensor. For optical imaging, thery complicated, high-dimensional space.
projection onto the focal plane may be an orthographic or . )
perspective projection; the projection onto the retina may e Mathematical Representations
modeled as a spherical projection. For tomographic imaging,Scenes may be described either nonparametrically as func-
the data may be collected in parallel or fan beams. tions taking values in a specified function space, parametrically
In the remainder of this section, we consider the case im terms of known functions of parameters, or as some
which something is known about the image. Prior knowledg®mbination of these two. For example, a three-dimensional
about an image is most naturally incorporated through the usgene may have a known rigid object embedded in an unknown
of a prior probability distribution;:(¢) on the image space. background. In this case, the image has both parametric and
Such priors may be specified directly on the image sga@ nonparametric components. The position and orientation of
may be specified on parameters in a parametric representatton rigid object take values in the six-dimensional space cor-
of the image space. responding to both translations and rotations; the background
For some problems, the prior may be on a finite-dimensionial an unknown function.
parameter vectof € © that characterizes the uncertainty in This example illustrates a complicating aspect of many
the image. For rigid objects®y may be the special Euclideaninference problems in imaging: the parameter space need not
group of translations and rotations. In some passive scenati@sisomorphic toR™. For example, the six-dimensional space
(optical imaging, for example), there may be a scale parametértranslations and rotations, denoté@ (3), forms a non-
included in®. We assume that the s@tis a finite-dimensional Abelian group. Letz € R® be a point on the rigid object. Let
space with probability density functiopy. R(6) be a3 x 3 rotation matrix, andt € R? be a translation.
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Then the pointz is mapped according to A random fieldis a multidimensional random process.
For example, a Gaussian random field is determined by
z— R(O)x+1t. (1) a mean functiony(z,t, f) and an autocovariance function

K(z1,t1, f1; 22,12, f2). A random field, possibly Gaussian,
An n x n rotation matrix takes values in the special orthogongd zn appropriate model for both real-valued images and
group of dimensiom, denotedSO (n). A rotation—translation complex-valued images. A prior that has been used success-
pair takes values in the special Euclidean grdulg (n). In  fylly for imaging problems is the Markov random field.
many problemsSE (2) and SE (3) are the groups that are  Random variables characterized by conditional priors that
relevant, these corresponding to translation and rotatid®’in account for local interactions are often used as natural and
and in R, respectively. convenient priors in imaging problems. These conditional

More generally, let® be a finite-dimensional parameterpriors' p|aced direct|y on the image spmeor on a sub-

space. The spac® may be a subset aR™ or it may be a set or subspace of, are usually the most natural way
group. An imager in the image space may be written as thgy quantify our understanding of a problem. However, the

sum of two components fundamental probability distribution on the field is the joint
probability distribution, and this is difficult or impossible
c=c(f) +c to specify directly. One needs to verify that the chosen

specification of conditional distributions is sufficient and con-

¥yherec1 : © — Cis the part of the ir?]age determined by thgigsent in the sense that a unique joint probability distribution
Inite parameterization and; € € IS the nonparametric part corresponds to this set of conditional probability distribu-
of the image. This may be generalized furtheras f(0, c2), tions. The simplest example is the Ising random field, which

where f is an arbitrary function o and c,. consists of a binary random variable defined at each site

A commonly used example of a parameterization iS & he integer latticeZ* with each random variable con-
hierarchical parameterization. A hierarchy Qf parameters dgional on the value realized at each of the four nearest
an ordered set of paramete(8y, bz, - - -, 6m) W'th_ a Markov neighbors. An important aid in describing such collections
structure. Leb,. € ©y. If 6, corresponds to the finest scale o o itional priors is the Hammersley—Clifford theorem
the hierarchy, then there is a mapping: ©, — C. For other which states that under certain conditions, the most natural

scales in the hierarchy, there are mappihgs O — @’“*1: conditional probability functions do uniquely define global
In general, the mappings:, ho, - - -, h.,, } may be stochastic. robability functions

Inference is performed on the hierarchy, with different ScalgSThe notion of a Markov random field extends the notion of

p[)(_)wdlng _d;]fferehnt pieces of information about the scene andy, oy process to multidimensional spaces by generalizing
objects within the scene. the concept of order dependence that is fundamental in the

A simple example of a hierarchical model would have tW@efinition of a Markov process. The well-known works of

SC‘?"ES- LPTEQ be a.set of possible obje(?ts. Assume there is OrI‘ﬁng contain the earliest application of Markov random fields.
object of interest in the scene. Selection of an elemer@-of

q h K of obiect d . S : Later, Onsager used the classic Ising random-field model to
corresponds to the task of object detection. Suppose fUrth@r, o terize magnetic domains. Important early applications

that the mappingh corresponds to trans_,lation .and rotatior?0 the imaging problem include the work of Besag [4], who
of the object in the scene. The functieq is the image that discusses a broad variety of Markov random fields and their

results, given the object position, orientation, and type. applications, and of Geman and Geman [34] as well as
More complicated examples of hierarchical models m hellappa [13]

involve building complex objects up from simple objects. The The generalization of a one-dimensional Markov random

hierarchy may progress from pixel Va'“?s to edges, from qug?cess to a multidimensional Markov random field is not
to bOF‘”da“eS' from boundaries to regions, and from regio aightforward because the concepts of past and future, which
to object types. are quite natural in one dimension, do not have counterparts in
higher dimensional spaces. Instead, the conceptraighbor

D. Markov Random Fields is used. A random process with index sBtis given by

To employ probabilistic methods, one may regard an im«(t) | t € T, T" = {t1,t>,---,tx}}. The random process
age as a random element drawn from a prespecified setiofalled a random field if the elements Bfare vectors from
possible images. Then one must assign a prior probabil@ymultidimensional space, such as the two-dimensional plane
distribution to the set of images, and this assignment leadfs. Assume that the random variableg1), z(t2), - -, #(tx)
to the introduction of the notion of a random field. A randondre continuous random variables and that their joint probability
field is a generalization of a random process to two or mof@nsity functionps,) x(t,), - (e, (X1, X2, -+, Xz) exists.
dimensions. Random-field models are important in imag¥e shall also require for each 1 < ¢ < k, that the joint
formation because of analytic tractability, because they aiensity of thek—1 random variable$z(t;); j #¢,1 < j < k}
a very good fit for many images in applications, because thd8estrictly greater than zero
methods are robust and still give satisfactory results even when
not a good fit to a particular application, and because they
can convert in an orderly way an ill-posed problem into Bo(t), 2t )a(tign) () (K1 Xy, iy, oo, Xi)
well-posed problem. >0. (3)
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The reason for imposing this positivity condition is to ensuns a random process with a discrete index SBt =

the existence of the conditional densities {t1,t2,---,tx} where each; is a real number representing
time. The neighborhood structureds, = {t;_1}, Ny = {t2},
Pa(t;)|a(te), 2 (tio1)@(tig1), - @(tr) and N; = {t;,_1,t;+1}. This is the standard definition of a
x(X; | X1+, Xi—1,Xiq1,---,Xx) (4) first-order Markov random process.

Another simple example of a Markov random field can be

for 1 << < k. Sitet; is said to be aeighborof site; if the  cqnstructed as follows. Define the index set to be of the form

above conditional density for(¢;) is dependent ok ;. Thus
T=1{t; |0<i< M, —1,0<j<M; -1}
Pa(t;)|a(te), - @(ti—1),(tig1),a(ty)
X (X | Xpyooo s Xy, X, Xi) which may arise as a Markov field on the lattice points of
= Patenee)tsen: (Xi | {X; for all j such thatt; € N;}) @ discrete pixelization of a finite rectangular region of the
R 5) plane. Suppose that each interior pdintof a region has four
neighbors defined as the four lattice points lying to the North,

whereN; is the set of neighbors df. The neighbor relation- East, South, and West, so the neighborhood; pfs
ship is symmetric: ift; € INV;, thent; € N;. N(tij) = {tij1stivt,jr tij—1:tio1 i -

A random process{z(t)|t € T} with a discrete index
set T = {t,t2,---,tx} and a set of neighborhoods
{N1, N3, ---, Ni } and conditional densities is calledviarkov
random field A common example of a Markov random fIeldconditional density for the process at each lattice point defines

prior'1s & Gauss—Markov random_ _f'eld' Fo_r a Gau_ss—l\/_lark Vtwo-dimensional Markov random field with nearest neighbor
random field, each of the probability density functions in (

. . ependency.
is Gaussian. P 4

| ical impl tation. th . ¢ tati It can be cumbersome to perform inference on the random
h any numerical implementation, the region of computatiog, 4 directly, so typically some discretization of the problem
must be truncated to a region of finite size. When this happe

some assumntions about boundary conditions must be m ‘required. Such a discretization may be a pixelization or
P y an’ expansion in some other basis. For Gaussian random

gnd these assumptions may play a crucial role in th? resultlp d models, the natural expansion would be in terms of
image reconstructions because the Markov random field modS? eigenfunctions of the autocovariance function. For other

may (?Xh'p't phase transmon; due to the boundary condltloqahdom field models, different expansions may be appropriate,
resulting in poor reconstructions. ;
" . . as discussed below.
The boundary conditions generally fall into three categories:
periodic boundaries, random boundaries, and fixed boundaries.
For periodic boundaries, the neighborhood structure is made ll. SENSOR DATA

periodic, so that every lattice site has the same neigborhoodrhe observation data are available at the output of the set of
structure. For other choices, the lattice is truncated, so spec§ighsors. These data may be modeled either deterministically
assumptions must be made about how that truncation takgsstochastically, as appropriate for the given application.
place. Lattice sites whose neighborhood structure differs fromstgchastic models arise naturally in many situations. In
others due to truncation are called boundary sites. For randgmadar receiver there is internal noise, and there may be
boundaries, the boundary site values are chosen randomly freffernal sources of noise as well. Both of these impairments
the marginal distribution. For fixed boundaries, the boundagf the desired signal are unrelated to the scene in question,
values are set to specific values such as the mean of §ig| both are often modeled as additive Gaussian noise in

Each boundary point of a region has its neighbors defined
similarly except that only lattice points within the region can
be neighbors. This set of neighborhoods along with a specified

marginal distribution. the microwave frequency band or the intermediate frequency
~ We shall now give several examples of Markov randof§and, or as complex Gaussian noise at complex baseband.
fields. In optical bands, the data arise from photoconversions in the

The simplest example of a Markov random field is one i§ensor. This situation is naturally modeled using a Poisson
which the neighbors of; for eachi, areall the other indices counting process model or, if readout noise is significant,
{t;.J # 4,1 <4 < k}. For this choice, as a Poisson—Gaussian mixture model. In positron-emission

tomography, the production of annihilation photons within the
le{t27t37"'7tk} : : : H .
patient volume is accurately modeled as a spatial point process;

N ={ts,t2, - ti—r } the resulting positron detections are well-modeled as Poisson
and distributed events.
Ni={tr, - tiit,tip1, - e} In many problems, however, noise is insignificant, and

stochastic models are not as well motivated, so deterministic

for 2 < ¢ < k — 1. This example, with no restrictions on themodels are used. In photographic applications, the intensity
statistical dependencies between the variables, indicates thatdent on the film is blurred by the lens and other known
Markov random fields can be quite general. guantities in the optical path. For such optical imaging sys-

A temporal Markov random process is another simplkems, the data are collected as images in a focal plane; there
example of a Markov random field. Suppose thaft)|teT} is also a known perspective or orthographic projection of the
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three-dimensional scene to the focal plane. In X-ray tomduction space must anticipate the needs and limitations of the
graphic applications, the intensity may be high enough that tbemputational algorithm. In the selection of the reproduction
Poisson statistics of the detection process can be ignored apelce, there is a tradeoff between its ability to represent images
the data reasonably modeled as being deterministic; standiard closely and the computational complexity of the resulting
analysis of computed tomography systems models the data #igorithm.
way, and the problem of recovery of the unknown attenuation The estimated image itself is often a discrete approximation
function is treated as a deterministic inverse problem. of the underlying conceptual image which usually is a continu-
In general, both deterministic and stochastic effects musiis distribution. The discreteness could be due to quantization
be taken into account. The finite size of detectors hasofivalues associated with the image, but usually also includes
deterministic effect on the collected data. The bandwidt representation of the continuous image that is sampled or
of radar signals, the motion between the antenna and igelated in some way. For example, in astronomical imaging,
scene, and the geometry and electrical characteristics of raghaire is an underlying intensity distribution corresponding
antennas yield deterministic effects on radar data and agythe distribution of the astronomical object being viewed.
images generated from the radar data such as synthefiis intensity function is defined on a continuous domain.
aperture radar images. These may then need to be combigeshputed images are presented as discrete values on an array
with stochastic models for the detection process and receiygrpixels, which may be considered to be an approximation
noise. In optical systems, a deterministic model for the effec#$ this true underlying distribution, this approximation or
of the lens and the known geometry may need to be combinggtimate consisting of a summation of pixel values that scale
with a stochastic model for the detector and a stochastic mog@@hropriate basis functions.
for turbulence in the optical path. There is also a tradeoff between bias and variance, or a
If the model for the available data is a deterministic ongadeoff between approximation error and estimation error.
then the observation is a deterministic function of the imageThe higher the dimension of the reproduction space, the
¢, o = f(c). Examples of such models are discussed iore closely the underlying image & may be represented.
the applications section. A stochastic model is defined bytat is, the discrepancy between the closest element of the
conditional distribution on the observation given the imag?eproduction space and the true image decreases as the size
When coupled with a deterministic projection, the likelihoogs ihe reproduction space grows (or its bias decreases). On
often can be writterL(o | f(c)), wheref is a known function. the other hand, as the dimension of the reproduction space
There may be parameters that enter into the problem dfs, the statistical variation in the estimate grows. That is,
various ways. For high-precision problems of machine Visioghe giscrepancy between the estimate in the reproduction space
a known object may be viewed using a camera that hgsq the element of the reproduction space closest to the truth
unkpown parameters. In the calibration step, the focal leng{fcreases (or its variance increases). For any given imaging
the image center on the focal plane, and parameters for Iedi'éblem and some measure of the sum of these two terms,

distortion and focal plane nonuniformity often need {0 bggre is usually an optimal size of the reproduction space that
estimated from the data. In actual use, the position and tkinimizes the measure.

entation of the object must be estimated. For typical machineThe reproduction space is typically a subset or a subspace
vision problems, a deterministic model is used and gene@l the image space. Often, the reproduction space is pa-
optimization procedures are applied to find the param?tf?ﬁﬁneterized and the parameters may be varied as data are
[45], [97]. In other problems, analogous parameters describiggacted to refine existing image estimates as more data
blurring f.unctlons,_optlc.al Cef‘ter?’ and prolecjuons may NegRcomes available. The refinements should take values in
0 gte e;tmtw'ated,deltlher n Ct?“brat'%r.] SISpS.tﬁr In every Im"’lgguccessively higher dimensional subsets of image space. The
rochastic mocels may be combined WIth priors on SCEeNgs, of sieves provides a framework for indexing the parameter
to find joint likelihoods for the data and for the underlqun the refinements in order to achieve consistency of the

fsscfhneer;s.'c;:e :S:jm;t“ztf”tkl)qlét'ggnzgrtgecg?fﬁ\éig?g_ssﬁrng tthoensg' Sge estimates as the amount of data collected increases (see
: produ . IStributl rZglrenander [42]).

the prior, 7(o | )u(<). Much of the theory underlying this formulation falls within
IV. REPRODUCTION SPACES the subject of approximation theory. We will not attempt to

The | is desianed del losel survey the results within this broad research area, but will
e image space is designed to mode| as closely as P3mmarize some of the aspects that are relevant to image

sible an idealized representatmn of the physical ProcesGination problems. In applications, computational issues may
that generate the data. There will always be aspects of mﬁuence the choice of the reproduction space used.

underlying physical situation that are not captured in the image, - ation-theoretic discrepancy measures are useful

space model. Indeed, one of the most challenging promemsfﬁ?oughout this paper. For each space, we assume that there

|nformat|on—the9ret|c imaging 1S the development of modelfg a discrepancy measure between two elements of that space.
for the underlying physical processes that are adequate for

the problem at hand, but not so complicated as to presenDefinition: A discrepancy measure on a spageis any
intractable mathematics. The reproduction space is the s®ppingd : X x X — R, such thatd(z;,z2) > 0 for all
of functions in which a computational algorithm for imagéxy,22) € X x & andd(zy,22) = 0 if and only if 21 = 2>
formation produces its output values. The selection of a rep@most everywhere.
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For the space§, O, ©, and’H, we will require that discrep-  The intention behind this definition is that, when the prob-
ancy measuresdc, dc, dg, andd: have been defined. lem is well-posed, small changes in the data should produce
small changes in the estimate. The size of a change is measured
using a discrepancy measure. If a problem is well-posed,

In most imaging problems, the underlying image take®en the value of the limit in (7) is one measure of the
values in an infinite-dimensional space. The reconstruction @ggree to which the problem is well-posed. For deterministic
estimation of the image based on some given data then impliegerse problems, the condition number of the mapping may
that an infinite number of variables that represent the imape preferred as an alternative measure.
must be determined. Such problems are usually ill-posed, inFor a deterministic inverse problem, with the data modeled
the sense described below, and some form of regularizati@go = f(c), the norm off is defined by
is required to reduce the sensitivity of the reconstruction to do(F(er), F(e))
variations in the observed data, mismatches between the data |f]| = sup lim —2~ 0 A0
and the model adopted for the data, and to choices made in cccere de(er,c)
the implementation of the reconstruction algorithm (such as thef is invertible (that is, for eacls € O, there is a unique

number of bits of precision and the order in which arithmetig ¢ ¢ such thatf(c) = o), then the norm off ~! is defined as
operations are performed). One approach to regularizationiris(g). The condition number of is then

the representation of an image using pixels or voxels, but .
this can exhibit the undesirable consequences of “dimensional x() = AP )

instability,” as described by Tapia and Thompson [55], andgyte that this definition is the square of the standard definition
tradeoff between reconstruction accuracy (when a continuQySe,nition number ifd is squared error. This definition of

Image 1S appr.OX|mated_by a plech|se—cont|nuous one) a_@&'ldition number is suitable for our consideration because a
resolution. This necessity for making tradeoffs accompanigg, change in:, from c to ¢, yields a change i that is

other form; of regular.|zat|on as well; that trade.off may PRss than||f||dc(c1, ). In tumn, the discrepancy between the
between bias and variance, or between approximation erfg, ting estimate of and the original value is less than
and estimation error. Tikhonov [96], Hadamard, and Joyce and

Root [53] have addressed the instability problems caused by WA 1 de(er, €) = x(fde(ers c). (10)

ill-posedness and have suggested approaches for regularization ,. . . . .
to avoid such problems. s discussed extensively in the literature of numerical anal-

Anticipating the formal statement of an image formatiof>'"> (see Golub and Van Loan [37]), the condition number

problem below, suppose that the optimal image is defined guantifies the sensitivity of the problem to numerical and

as thec that achieves approximation errors. . .
lll-posed problems such as the image formation problem

&(0) = arg min (o, c) (6) dgfined in (6) using the objective functiez/nmay pe associqted
ceC with a family of well-posed problems, by defining a family of
subsets of that converge t@. Suppose that a one-parameter

wherei(o, ¢) is a given objective function. The notatiéfo) family of sets{C”, » > 0} is given and that the closure of
in (6) implies that there is a mapping frof to C. If there g family eqUaIsC :

are multiplec € € that achieve the minimum, then we require

that one of them is chosen arbitrarily. While typical examples Closurgu, ~.oC"] =C. (11)
of possible choices fot) are discussed in Section VII, we
introduce a few possibilities here.

For stochastic modelg; may equal the negative of the log-
likelihood function ofo. If ¢ has a deterministic model, then
this is the conditional log-likelihood of givenc. If ¢ has a lim dc(c”,¢) = 0. 12)
stochastic model, then this is the joint log-likelihood of the v=0
pair (o, ¢), and the minimization is equivalent to finding the
maximuma posteriori (MAP) estimate ofc given o.

For deterministic modelsyy may be the discrepancy be-
tween a predicted observatigiic) and the true observation

As discussed below, additional terms may be includeg.in ¢”(0) = argmin ¥ (o, c) (13)
ceCr

A. Regularization

(8)

This assumes the definition of a topology @nn many cases,
the interest is in constructing, for eaehe C, a sequence of
functionsc¢” € C” such that

Definition: Suppose that the family of subse&fs satisfies
(11) and that for eactv € O there is a uniquei(o) that
achieves the minimum in (6). The family of problems

Definition: A statement posing therg minimum is well-
posedif for eacho € O, there is a unique € C that achieves
the minimum, and

is aregularizationof the image formation problem defined in
(6) if for eachw the problem defined by (13) is well-posed
and if for almost allo € O

- de(2(01), #0)) N
sup B = on0) Y lim &*(0) = &(o). (14)

exists and is finite. A statement posing the minimum that If the discrepancy measure is a distance or a squared dis-
is not well-posed idll-posed tance, then for each, the mapping® : © — C is continuous.
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For an ill-posed problem, the functiahis discontinuous, so For a stochastic problem, this error is a random variable.
that even small amounts of noise in the observations can I€pgically, the first term (the estimation error) is monotonically
to large changes in the estimates. For each nonzero valuénafeasing and the second term (the approximation error)
v, however, the mapping” is continuous so the regularizedis monotonically decreasing as decreases. For a typical
solution is less sensitive to noise. The functi@gfisconverge problem, there is typically an optimal that minimizes a

to ¢ asw goes to zero, so the sensitivity to noise increases asneasure 06" (¢, o) such as its expected value. The motivation
goes to zero. For pixelization of images, this problem is callddr defining the sum in (16) is that for some discrepancy
“dimensional instability” by Tapia and Thompson [95], whaneasures of interest, { is a linear subspace

observe that the estimates become increasingly ill-behaved and

unstable as the discretization is refined even as more data are de (& (0), ¢) = de(e7(0), &™) + de(d*, ¢). a7
collected.

This definition of a regularization is a modification of theThis holds for discrimination and squared error as discrepancy
statements in Youla [106], Grenander [42, p. 358], and Kirsgheasures. Choosing to minimize the expected value of
[54, pp. 24-26], modified to account for the statement @f.(¢*(0),c) is a precise way to define an optimal regular-
the imaging problem as an inverse problem, the solutigration. If C¥ is a convex set, then for these same discrepancy
of which is defined in terms of the objective criteriah measures
Various models, including linear, nonlinear, stochastic, and
deterministic models are included within this statement. A dc(¢”(0),¢) > de(¢¥(0), ") + de(c*, ). (18)
feature of this definition of regularization is that it is in terms
of the reproduction space rather than the mappifig3hisis a |n this case, choosing to minimize the expected value of

departure from the statements by Youla and Kirsch who requiigs) corresponds to minimizing a lower bound on the mean
directly that the mappingg” are continuous. Grenander’spf de(&(0), ¢).

definition [42, p. 358] is in terms of a one-parameter family
of oper_atoArs acting Qrdl. That Is, his mapping is megnt FOB. Pixelization
regularizeé(o), by using operations such as lowpass filtering
(projections onto subspaces or subset<pfLater in [42], The reproduction space often can be viewed as consisting
and in other settings using his method of sieves, Grenan@®é@ linear combination of basis functions. The most common
uses a concept of regularization consistent with the definitiééfample of such a representation is when the basis functions
given here. are indicator functions on some domain, and the resulting
A regularization method in general provides a frameworliepresentation is referred to as a pixelization. When an image
within which the ill-posedness can be addressed quantitativelfy.represented as an array, the elements in the array are the
We discuss the use of penalties, prior probability distributiongoefficients in the linear combination. The basis functions
kernel sieves, and choice of reproduction space as reguﬁeed not always be viewed as indicator functions, however.
ization methods. The simplest and most common way lbthe image is assumed to have a fixed bandwidth and the
regularize a problem is by the use of pixelization. An imagé&Presentation is on a fine enough scale, the coefficients may
displayed using pixels is really a projection onto a finitede viewed as samples of the image. In that case, the basis
dimensional subspace. A measure of the size of a pixelfigfictions are optimal interpolation functions. If the data are
the regularization parameter There are many other standardctually the result of integrating the image against a known
restrictions of images to subspaces, with corresponding kernel, then the coefficients may be viewed as the values used
roughly to the dimension of the subspace. in a discrete approximation of the integral. If the integration
A penalty regularization alters the objective function bjf modeled as a Riemann sum, then the basis functions are
adding a penalty to it. Tikhonov [96] introduced a quadratigdicator functions. If the integration is modeled as using
penalty. More generally, a penalty can be added to the gb-trapezoid rule for numerical integration, then the basis
jective function as a discrepancy between the estimate ané/actions are first-order splines.
nominal valued(c, co). We shall describe some of the issues first in a one-
Given a model for the data in terms of a conditiondlimensional setting and then a multidimensional setting. Let
likelihood function L(o | f(c)), and a discrepancy measure(t) be a function of time, and le, for & = 1,2,---,n,
de onC, there may be an optimal that minimizes a tradeoff P& samples ofu(t) at timeskT. If a(t) is represented by
between approximation error and estimation error, as descridBf samples, there is an assumed nominal representation. One

next. representation is as a linear combination of indicator functions
Assume thate** € C* is the unique element of that N
minimizes &(t) — Z ak(I)T(t _ ]%T) (19)
¢’ = argmindc(cy, ¢) (15) k=1
c1CCV
where

wherec € C is the true image. Then the sum of the estimation

error and the approximation error is 1, ~“T/2<t<T/2

Or(t) = . 20
6" (c,0) = dc(&"(0), ™) + de(c”", c). (16) r(®) {0, otherwise (20)
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Another choice, for lowpass functions, is as a linear combindescriptions of the use of “frames” to cover this situation (see

tion of interpolation functions [26] and [46]).
n Often, the expansion functiong; are translated versions
alt) = Z arpr(t — kT) (21) of a single-basis function”. Specifically, assume that =
=1 L,(R™), and that the sample points occur on a regular lattice

in R with lattice basis elemeng ,&,, ---,£,,. Any point on
the lattice is then specified by a unique integer vedtar Z
pr(t) = sinc (¢/T) (22) and equalsy__; k;£;. We then have

where

andsinc (t) = sin (#t) /7t. Other choices can be made for the n
interpolation function, and the values, do not necessarily Pr(@) =" <$ - Z/ﬂﬁz) (29)
correspond to samples eft). In orthogonal representations, i=1
the values typically represent inner products of the functi%e parameter
with basis functions.

For the multidimensional setting, 16t = {¢}, k € L} be

ank_orthonlormal se:\oflfunctlons,dwhikes a discrete index 5 o nomial in itsn arguments. Clearly, there are infinitely
taking values on the latticé, and wherev is a parameter ., choices for the degree of the polynomial in its argu-
roughly correspond_mg to the resplutlon of the TunCt'on‘T‘nents. For a general discussion of splines, see the books
Assume thgtC consists of square |ntegrab!e func'uons,_angy Chui and by Wahba [16], [102]. The simplest polynomial
denote the inner product @hby (., -). Then anideal expanSIonspline is a constant over an interval and zero outside of that

of ¢ € C using the basig” is obtained as interval. For the lattice described above, let

is a measure of the size of the Voronoi cells
in the lattice.
In polynomial spline expansions, the basis functioh is

&= clk]oy (23) n
2 W (@) = {ﬁ lel* < llo = 33 |,k #0
where 0, otherwise )
c[k] = (¢, Pk)- (24)

Note thatiy§ is proportional to an indicator function on the
Voronoi cell of the lattice point at the origin and thdt, is
the volume of the Voronoi cell. The reproduction space in this

The expansion in (23) is a representatiorcah the subspace
C” C C consisting of all linear combinations such that

> |elk]? < oo, (25) case consists of images that are piecewise-constant.
kL
The parameter indexes the subspaces so that C. Penalty and Constraint Methods
limC”"=¢C (26) A common method of regularization of image estimates is to
_ v0 use penalty or constraint methods. To motivate these methods,
in the sense that for att € C a specific class of examples is used.
. " A Suppose that” = {c € C : d¢(c,co) £ 1/v}, wherecg
l - -y =0. 27) . : V= .
uli%@ & e=t) 27 is a nominal value. Then the regularization problem (13) is

The statement in (27) is valid for deterministic converd constrained optimization problem. The constraint may be
gence. For the stochastic setting, the corresponding stateni@f@rporated using a Lagrange multipliex, changing the
involves stochastic convergence. For convergence in a me&fitérion to
square sense, given a prior on the image sgaceich that
E{{c,c)} < >0, the sequence of functiori¥ converges ta:
in a mean-square sense if

(o, ¢) + ade(c, cg). (31)

For a wide class of discrepancy measures and criteri#
lim E{(c— &, c— &)} =0. (28) the constraint is satisfied with equality, then there is a one-to-
v=0 one correspondence between the valuexofind the value
A more general setting involves convergence of the mean dad- the constraintl /. This shows an equivalence between
crepancyE{d:(¢”,c)} to zero. Other modes of convergenceonstraint methods and penalty methods, where the additional
of ¢¥ to ¢ may also be studied. term ade(c, co) is viewed as a penalty.

This description can be modified to allow @Y to consist of If a squared-error discrepancy measure is used, then this
functions that do not form an orthonormal set. This is the tygields a quadratic penalty; typicalky would be chosen to be
ical case for polynomial splines and for some multiresolutiarero. If discrimination is used as the discrepancy measure,
expansions. The extension involves using a different functidimen this yields entropy-type penalties. For examplegyif
to extract the coefficients than is used in the expansion itseff.a constant thenic(c, co) is the Shannon entropy of the
For polynomial splines there is an additional complicatiofunction c.
that, for expansions that are not ideally chosen, the functionsThis approach also yields a method to combine positive-
often are not linearly independent. There have been sowaued imageg with real- or complex-valued data Then the
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function ¢»(0, ¢) may be a squared error, and the discrepancy3) for eachy, the maximum-likelihood estimate restricted

measured: may be discrimination. Similarly, if the images to C¥

are real- or complex-valued and the data are positiveyay »

be discrimination andlc may be squared error. (o) = arfgcrlyaxﬂo o) (34)
Roughness penalties are often based on Good's roughness . .

measure [38], [61], [69], [95]. When restricted to a pixeliza- exists and is unique.

tion, Good'’s roughness measure may be written as a sum Ofote that this definition is essentially the same as the
discriminations between the image and shifted copies of thgfinition of regularization. The most visible use of sieves

image [69]. has been in studying the consistency of estimates.olet
. ) {01,02,---,0,} be independent and identically distributed
D. Transform-Domain Representations (i.i.d.) observations with distribution function(-, c). Denote

A traditional engineering approach to the study ohe maximum-likelihood estimate of restricted toC* by
function representation is to manipulate a function i (o}). Grenander [42, Ch. 9] proves that under conditions
its transform-domain representation. This includes Fourien the continuity and boundedness of the restricted log-
representations and wavelet representations as special cdi#@dihood function, and uniqueness and continuity of the
In Fourier-domain representations, there are several optighscrimination function, there is a sequence:rdf) so that
for considering convergence of the representations. Oneé;fé")(o?) converges ta, with probability one.
to assume that the image space is space-limited. The set ofhe parameter in the definition of a sieve is referred to
Fourier-series coefficients obtained by considering a periodis the mesh size. In some instances, the sequence of spaces
extension of the image space completely characterizes thenested (monotonic) in the sense thatwvif > 1o, then
image space. The parametéyr may correspond to the C** C C¥2. This might appear to be a natural condition, but
number of coefficients used in an expansion. it is not necessary. Further details are given by Grenander

A second Fourier-domain option is to assume that tljg2], Chow and Grenander [15], Moulin [64], and Moulin,
image is effectively bandlimited with bandwidth proportiona®’Sullivan, and Snyder [67].
to 1/». For each value o/, the image is represented by Let X = R", so thatc: R" — R. Let k,(x) be a function
its samples using the Nyquist-Shannon interpolation formuiadexed by, referred to as the kernel. Aernel sieveis a
This is equivalent to the ideal interpolation discussed in thgetC” all of whose elements can be written as the result of

pixelization subsection above. a convolution withk,
There are other options for Fourier-domain representations.
Typically, they correspond to expansions of the image space olz) = /kl,(a: — &)y (&) dE. (35)

in the Fourier domain.
In wavelet representations, the parametenay correspond The functionsk, converge in distribution to a Dirac delta
to the number of scaling levels considered or to sampling fanction as» — 0. One choice, discussed in [89], is a

the time-scale domain. circularly symmetric Gaussian kernel with space parameter
1 LT
E. Sieves k()= ————e 2% %, 36
( ) (27Tl/)n/26 ( )

A powerful method for regularization, which incorporates
additional structure, is the method of sieves due to GrenangerConvergence of Sequences
[42]. In the method of sieves, a sequence of subsets of the im-

. ) ) The asymptotic properties of estimators are often impor-
age space is defined and used to address issues of converg ymp brop P

) : . fﬁ?ﬁein estimation problems. As the amount of information
of image estimates as the amount of data increases. For this . )
InCreases, the estimates should converge to the truth in some

discussion, we follow [42], assuming the underlying image o . .
; o ; ense. For regularization as described above, a setting for
¢ is a deterministic parameter and that there is a stochasic | . L
. o o studying convergence is introduced.
model for the data given c. The conditional likelihood for Let de(é,c) be a discrepancy measure. Suppose now that
the observatiornu given the underlying image is denoted c\® pancy - SUPp

. . . L the estimatet is formed from the observations. L&t be a
7(o | ¢). In this setting, there is a true underlying image . . )
) measure of how informative the observations are. For example,
which is denoted:. Lo L .
7" could be the time-integration interval over which data are

Definition: A one-parameter family of subsets af, collected or the number of independent observations in a

{C”,v > 0} is asieveif the following conditions hold: dataset. Suppose for ea€hthat the estimate lies withie¥ (7).
1) for almost everyo € O, the maximum-likelihood esti- Then,dr = dc(¢”(or), ¢) is a random variable indexed Y.
mate of c, Its randomness arises due to the observations and possibly due

to ¢ being a random process. The family of estimatois said

to be consistent in theR" sense if the random variable&r
converge to zero in theR” sense. Here R’ may be almost
everywhere, mean-square, in probability, or in distribution.
That is, convergence of a discrepancy measure between the
ClosureglU,»0C"] = C; (33) truth and the estimate in some sense.

émrn(o) = argmaxw(o | ¢) (32)
ceC
exists and is unique;
2) the closure of the union of subsets equals
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G. Convex Constraints x € A&, if the same holds fog;(x) and cz(2) individually.
kewise, a support constraint on the Fourier transform of the

The reproduction space may be constrained either by er X )
is also a convex constraint.

knowledge or by the limitations of the available sensor datnction c(z)
We shall be especially interested in those constraints that
satisfy a convexity property because they are analyticafjs Stochastic Complexity and Shrinkage Techniques
tractable and arise frequently. In particular, the set of prob-If a prior on the image is not known, the regularization
ability distributions on a finite set is a convex set, andpproaches described above may not be desired. Alternatives
information-theoretic constraints usually satisfy a convexity these approaches include stochastic complexity, wavelet
property. For deterministic models, the problem becomes oslerinkage techniques, and complexity regularization. The goal
of finding an element of the convex set that is most consistésteither to define a universal prior, the use of which will
with the data in terms of minimizing the discrepancy betweeithieve asymptotically near-optimal performance for a variety
the predicted data and the available data (as discussedbfiirue priors, or without reference to a prior to derive a simple
Section VII). A general introduction to convex constraints ialgorithm that achieves near-optimal performance for a variety
given by Combettes [17]. of underlying image spaces.

A set A is convexif each convex combination of two To give specific examples, assume that
elements fromA is also inA. That is, for anye;, co € A, then

forall0 < A <1, Ae;+(1—\)ez € A. The intersection of any c=Y_ clklgy (41)
number of convex sets is a convex setcénvex constrainis kec
a statement that the image lies in a given convex set.  \here{g k € £} is a set of basis functions such as a Fourier

Many constraints that arise very naturally are convex COpasis or a wavelet basis, and the coefficieif§ are real-
straints. One example isanc_mnegativity constraintisfreal- \jued. In the image processing community, wavelet bases
valued, then the nonnegativity constraint that) > 0 for all b5y an important role because of several empirically observed
x is a convex constraint. This nonnegativity constraint can alseoperties such as sparseness of significant coefficients. Sup-

be used within the class of complex-valued functions becaysgse that we have the simple case where the observations
the set of functions:(x) that are both real and nonnegativey e

is a convex set within the set of complex functions. Thus

the convex constraint can be used to enforce a very natural o=ctw (42)

E:)?}ﬁﬁreti gnggsgsstowg}gi Z“:Lli"ic:]vvtlgg ttt:]ee Orl;rger space O\];vhere 0, ¢, andw are real-valued, so that the coefficients of

Our second example of a convex constraint is an enerijare given by

constraint for square-integrable functions. Suppose that the o[k] = clk] + w[k]. (43)

image spac€ is equipped with an inner produgt,-), and

a corresponding norm The specific problem addressed by these methods is to esti-

mate the coefficientg[k]. The Bayesian shrinkage, minimum

lell* = (e, ). (37) description length, and complexity regularization techniques

may be extended to the general case by simply adding the

Let Ap C C be defined as the set of images whose norm é%}uivalent of a log-prior to the objective function.

less than some constaft
Definition: A function ¢ : R — R is a called shrinkage

Ap={ceC:|d| < B}. (38) function if
By the triangle inequality on the inner product norm |é(z)] < |x| and =zé(z) > 0. (44)
[Aer + (1 = Nez| < [[Aee]] +[[(T = Aez| Examples of shrinkage functions are the soft threshold

= Nlel[+ @ =2 fleall  (39) é&(z) = min(0, z — Asgn(xr)) (45)

so we can conclude thatlg is a convex set. More gener-

ally, convex constraints often may be defined in terms &nd the hard threshold

discrepancy measures. For this to hold, we need that for each oy S0, El <A
éw) = (46)
cp € C €, |$| > A
Ap = {c€C:de(c,co) < B} (40) These simple shrinkage functions have been shown, with

proper choice of the thresholds, to provide good asymptotic

is a convex set. If, in addition, the setls; in (40) are compact, performance [28]. The thresholgh/21n N, where N is the
then they may be used to define a regularization. Simply satmber of terms in the basis expansion ands the stan-
v =1/BandC” = Ay,. dard deviation of the additive noise, is called the universal

Our third example of a convex constraint is a suppothreshold. Minimax methods may be used to determine the
constraint. Let the sets C X be the support of the function. threshold [28].
A typical support constraint is the requirement thét) = 0 Bayesian methods within this category define a priorcon
for all z ¢ Xs. Clearly, Aei(z) + (1 — A)ea(z) = 0 for all  that models the coefficient$k] as independent and identically
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distributed, with common density functiop(-). Model the by the sensors add information to this prior information. The
noise samplew[k] as independent and identically distributedalue of the new information in terms of implications on
Gaussian random variables with zero mean and variafice performance depends on the goal of the imaging system. The

The optimal estimate under this model has the form goal may be some combination of detection, recognition, pa-
R rameter estimation, and scene estimation. For these goals, there
&z) = argf:naXp(x | hp(c) are associated performance measures including probability of
1 ) detection, probability of false alarm, probability of correct
= argcmm@(gc —¢)” —Inp(c) (47)  classification, mean-squared error, and discrepancy between

_ _ _ ~ the estimated image and the true image.
which reflects the Gaussian assumptionugk]. The resulting  Each of the information measures discussed in this section
estimated function has coefficients is important, and each has a role in a specific class of
k= 2(olk]). 48 problem. One measure is not fundameqt_ally more important
ekl = elolk]) (48) than any other. They all share an ability to quantify the
If p(c) is a Gaussian density with zero mean and variarfce information provided by a measurement, and they all depend

then the result is on the likelihood of the data. In this sense, the likelihood
o2 function itself is more fundamental than any single measure
ox) = — J: 5T (49) of performance. Each measure reduces the likelihood function
o o;

to a form that is more appropriate to a particular problem.
which is the standard Wiener filter. |f(c) is a Laplacian We note, however, that for some imaging situations there is
density as yet no information or discrepancy measure that is entirely

1 —pevs satisfactory. This is especially true when seeking to emulate

p(c) = e oo (50) the performance of human observers of images.
oeV2 A well-known statement of information theory is the data
then the soft threshold is the optimal estimator processing theorem, which says that processing cannot in-
crease information; processing can only refine information by
N x— Asgn(z), |z|> A PR ible f The d ;
éx) = )\ (51) presenting it in a more accessible form. The data processing
0, 2] < theorem is an important statement whose validity is based on

where A = v/2¢°. The universal threshold/2In NV corre- a formal Qeflnltlon of.the term |nfor.mat|on. In common use,
4 the term information is often used in a casual and imprecise

_ —1/2
sponds_ too. = _U(ln N)~/2 [66]. way. There is always a danger of allowing the imprecision in
Moulin and Liu [66] study the more general set of generg), everyday notion of information to confuse the precision

Gaussian distributions whose log-priors are proporti_onal Fﬂecessary in formal work.
—|c|”, for 0 < o < 2. They note that the resulting estimator s rivial, though perhaps not obvious, corollary of the data
has a threshold whenever the derivative of the log-prior is ngf, .essing theorem is the statement that appending more data
cor_mnuous ale = 0; this is the case fop < « < 1. The to a problem cannot decrease the amount of information and
estimator converges to the hard threshold shrinkage functigh - nnot decrease the performance of an optimal algorithm.
as«a tends to zero. . o , Closely related to the data processing theorem is the concept
Physics-based models provide prior information that caff 5 gfficient statistic. The data processing theorem, and
affect the process of image formation, and also other signgliions of uncertainty and entropy lead to the concepts of
processing tasks such as detection, estimation, cIas&ﬁcaU%imum entropy and minimum discrimination and thereby to

and compression. The notion ofinimum description 1ength o cramer—Rao bounds, the Fisher information, least squares
or Rissanen lengtiplays a fundamental role in this study. Th rocessing, and the maximum entropy principle
Rissanen-length estimation criterion minimizes the quantity '

logw(o|c) + L(c) over ¢, where L(c) is a measure of com-
plexity.

There are several closely related techniques for regularizingAs defined above, a discrepancy measijeon a spacet
estimates using complexity methods and shrinkage estimatd$sa mappingdy : X x & — Ry such thatdy (zy,z2) > 0,
Several of these techniques have nearly optimal performanti#h equality if and only ifz; = xs.
for a variety of measures, if the true image can be assumedPiscrepancy measures are assumed to be defined for each of
to belong to broad classes of signals such as Besov clagégsspaces in the imaging problem. Often it is natural to define

A. Discrepancy Measures

[29], [30]. discrepancy measures as sgared distances on the spaces. For
example, if the spac&’ has an inner product,,-), then a
V. INFORMATION-THEORETIC MEASURES natural discrepancy measure is squared error
There are various measures that can be used to quantify the dy(ry,72) = ||z — 352||2 = (z1 — 2,71 — T2). (52)

performance of an imaging system. The information that is

available prior to acquiring data that is to be used for makirn§ the spaceX’ consists of positive-valued functions, then,
inference about a scene is quantified by a prior probabilias discussed below, discrimination is a natural discrepancy
distribution on the space of images. Measurements providegasure. In many problems the image spaces are assumed to
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be linear spaces equipped with distances and norms in additiamere
to discrepancy measures.

There have been several information-theoretic derivations
of discrepancy measures presented in the literature, including
[23], [51], [52], and [85]. These lead to characterizations 4k A is further restricted to be an affine subspace, then
vgnqus .dlscrepan.cy measures mcIudmg_squared error, dis- dly,z) = d(y,y") + d(y", z), Yo,y € A. (57)
crimination, Ali-Silvey distances [1] orf-divergences [20],
Bregman distances [7], and the Itakura—Saito distance [50].The proof of this statement for discrimination is based on the
From the axiomatic derivation of Cs&z[23], the discrim- following argument [18]. Becausg® achieves the minimum,
ination for positive-valued functions and squared error fal(y,z) > d(y*,«) for all y € A; so for all e > 0, and
real-valued (and complex-valued) functions play unique rolgs + cAy € A
in the analysis. 1

The discrimination function was introduced by Kullback Jldly” +eAy,z) —d(y",2)] 2 0. (58)
[55], [67], under the namenformation for discrimination
Kullback took the view that the discrimination is an infor-
mation measure that is more fundamental in some sense than V,d(y", ) Ay > 0. (59)
the entropy.

1) Axiomatic FormulationShannon [83] gave a reasonabléNow let Ay = y — y*, and rearrange this to get

y* = argmind(y, ). (56)
yeA

Take the limit asc goes to zero to obtain

set of axioms that a measure of information should satisfy. yr

Shannon’s approach leads to the logarithm as a measure of Z (yz - yf) <10g —Z>

information. Csisaf [23], in the tradition of this approach *x”

to the entropy function and the mutual information, gives — Z [yz 1Ogy_vi +yi—y + 10g&

an axiomatic development for selecting discrepancy functions. ; Yi Zi

Suppose a solution to the matrix vector equatioflec = a yr

is sought. Starting with a set of reasonable axioms that a — it T =y 108_ Ty — 952}

measure of discrepancy should satisfy, Caiszoncludes that — —d(y,y*) + d(y,z) — d(y*,z) > 0. (60)

if the elements ofH, ¢, anda are required to be real-valued
and are otherwise arbitrary, then the only function consistent the case that4d is an affine subspace, bothy and —Ay
with his axioms is the squared errfHc — a||*. It is well are allowable directions, yielding equality in (58).
known that the choice af that minimizes the squared erroris The inequality (55) (or the equality (57) whed is an
thené = (H” H)#H" a, where the notatiodd denotes the affine subspace) can be viewed as a statement of the tradeoff
pseudoinverse oM. On the other hand, if all entries iH, between approximation error and estimation error. The term
¢, anda are required to be both real and nonnegative, asdsy*,x) is a measure of the approximation error because it is
often the case for inverse problems in imaging, then the ordydiscrepancy between the closest element in the convex set
discrepancy function consistent with Csiss axioms is the andz. The termd(y,y*) is a measure of the estimation error
discrimination since it is a discrepancy between the estimated valaad
the closest element in the convex sét The inequality says
that the discrepancy between the estimate and bounded

a(y)
—7<§ h(-, x)c(x) ) > a(y)ln Eh(y’ Yel) below by the sum of these two terms.
= v For the squared-error discrepandy, z) = ||y — z||?, the

same argument as above holds, until (59) becogigs—
Z ay Zh Y, - y*,y* — ) > 0, which immediately implies
Y z
G3) M=zl =lly—y P +lly —zlP + 2y —y"y" — )
> ly =y 1> +ly* —=|*. (61)

~

Explicit analytical expressions for the = ¢ minimizing
discrimination are difficult to obtain, and so numerical methoqI
are appropriate.

2) A Discrepancy Inequality=or any convex sed C R",
both the discrimination

The interpretation of this inequality is the same as interpreta-
on of the discrimination criterion.

B. Mutual Information

The uncertainty associated with a random veétis quan-
_ _ e Fo . tified by its differential entropy (or, i# takes on only discrete
d(y,xz) = I{y||lx) = 1; log Y + x5 54 > Ak .
() Wle) z; {U 5 Z; v } 4) values by its entropy). Denote this differential entropy/t§y¢)
hMo) = —E{logp(6)}. 62
and the squared euclidean distankg, «) = ||y — z||? satisfy ) {los p(6)} (62)
the inequality The observations may be viewed as decreasing the uncertainty
in the underlying parameters. In this view, the mutual informa-
d(y,z) > d(y,y™) + d(y", ), Vrz,y € A (55) tion between the parameters and the observation quantifies the
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decrease in uncertainty obtained by making an observatidnthird is to measure the decrease in the inverse of the Fisher

because information relative to the prior
1(0;0) = h(6) — h(6]o) ©3)  Ji (I I = I+ 5P T (69)
where Here, J,/° 0%/ = J,.
Other bounds for parameter estimations can be examined in
h(8|o) = —E{logp(f|o)}. (64) a similar way.

There is a link between differential entropy and Fisher

This view is hel_pful @n coding appligations. To be MOrGhtormation given by de Bruijn’s identity [19, pp. 494-495].
precise, the rate-distortion curves férwith the observation Let Z be a Gaussian random variable with mean zero and

o lies be!ow the rate—d!stortlc_)n curve f@rln_the abse_nce of variance one. Let equalé plus a scalar timeg
observations. For any fixed distortion, the difference in the two
curves is never greater thaio; 6). p=0+ itz (70)

C. Fisher Information Then, de Bruijn’s identity says that (assuming natural loga-

rithms)
For parameter estimation, a standard performance measure, OR((8))
which will be discussed in Section VI-A, is the Cramer—Rao ZT =Jy (71)

bound and its extensions. The information provided by sensor
measurements can be quantified in terms of the reductionviRere k(¢(t)) is the differential entropy ofy parameterized
the variance of a parameter estimate due to the measuremewtt. In terms of the observation
This is equivalent to looking at the increase in the Fisher Oh(o | (1))
information, as outlined below. — = Joje (72)
Suppose tha#, the parameters to be estimated, take valugg
in R™. Let the prior probability density function o be
p(6) and let the conditional distribution for the sensor data 28/1(0 | #(t)) +28h(‘7)(t)) = T+ Jo=Jopo. (73)
be 7(0 | ¢(#)). The posterior density ofl is proportional to ot ot ‘ ‘
m(o | ¢(8))p(6); denote it byp(é | o). Prior to making any  Another interpretation of the Fisher-information matrix is
measurements, the Fisher information matrix is given by Amari [2] in his discussion of the differential
T geometry of statistical models. Here, a parametric model
o= E{ d1np(#) 91n p(6) } (65) 7(olc(®)) is interpreted as defining a manifoilin the space
a6 a6 of all models7(o). Amari defines an inner product between
vectors in tangent planes Sfas covariances, then arguing that
where the partial derivatives are assumed to exist and yield, is the metric tensor in the resulting Riemannian space.
column vectors, and’ denotes transpose. After an observatiolymari uses this framework to establish general asymptotic
the Fisher information matrix is properties of maximum-likelihood estimators 6f such as
Joto = oo + Jo (66) asymptotic efficiency, consistency, and normality.

where J, is given above and VI. PERFORMANCE BOUNDS
T A goal of information-theoretic image formation is to bound
5 E{alm(o | ¢(6)) dln(o | ¢(6)) }
ol =

(67) achievable performance in terms of the information measures.
a0 a0 Whenever these measures cannot be evaluated analytically, an
important technique is to append information that is actually
Let R be the mean-squared-error matrix for any specifigthknown so that the bounds can be evaluated analytically.
estimator. Then the matriR — J,,; is nonnegative definite. The actual performance cannot be better than such a bound.

The matrixJ,, quantifies the increase in the Fisher inan early use of this technique is in the classical book on
formation obtained from the observations. For estimatigfhmmunication theory by Wozencraft and Jacobs [104]. They
prOblemS, the relative increase in the Fisher information i-ﬁtroduce a “genie” in their ana|ysis of the performance of
one way to quantify the value of observations and the Val%ding Systems_ In a genera| form of the argument, the
in making additional observations. genie is assumed to provide gratuitous side information that

The difference between matrices can be measured in sev@i@bellishes the actual data. The performance without the
ways. One way is by examining the increase in the Fisher igenje’s side information cannot be better than the performance

formation, as in (66). Another is to examine the correspondigith this extra information. The technique of introducing
decrease in the inverse of the Fisher information matrix, whigh genie to embellish the actual data set so that a bound

determines the Cramer—Rao bound on estimation (see Sect@nperformance can be computed is quite similar to the
VI-A) technique of Dempster, Laird, and Rubin [27] who introduce
-1 -1 214 h—1 a “complete data set” so that calculation of the maximum-

Jo~ —Jy, = (J9 + JgJolng) ’ (68) likelihood solution becomes analytically tractable.
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A. Cramer—Rao Bounds to the circle. Rotations in three dimensions take values in

The simplest problem of estimation theory involves afC (3)- In either case, the group of rotations is compact, so
unknown parametet € R™ and a random measurement © there is a maximum distance between any two elements of the
from which @ is to be determined. The measurement @ droup. For small errors, as are typically encountered in high

has probability distribution function (o | ¢(6)) depending on signal-to-noise-ratio problems, expansion in a local coordinate

the parametef. The unknown parametérmust be estimated system followed by standard Cramer—Rao analysis in those
based upon an observation af The estimate of, given the coordinates is appropriate. When the estimation errors are not
measuremenb. is a functioné(o). This estimatéé is itself local, however, the curvature of the parameter space becomes

a random variable because it is a function of the randofPortant, and this local analysis does not apply. If this
measurement. curvature is ignored, then it is possible to get so-called lower

The quality of an estimator is often judged by its mean valRPunds that get arbitrarily large as a parameter (typically,
. . signal-to-noise ratio) gets small. But this is impossible because
E[0] = E[6(0)] (74) the largest error possible on a compact set is bounded.
One approach that avoids this difficulty has been proposed
by Grenander, Miller, and Srivastava [44]. It is explained here
R = E[(6(0) — 6)(6(0) — 6)T]. (75) Within the context of rotation groups, but can be extended to
other groups.
When ¢ is not random, an unbiased estimator tbfis any  Elements ofSO (n) are mapped to thei x n matrix group

and by its mean-squared-error

function é(o) satisfying representative so that matrix multiplication is equivalent to the
E[é] _a (76) group action. ForSO (2), the matrices are of the form
cosf —sinf
For any unbiased estimator, the matrix o(9) = Line cosf } (79)

R - Jo_|é (77)  where# is the one-dimensional parameter of the group. Any

is nonnegative definite; this is the Cramer—Rao bound. Wh@hﬂrm onn x n ma_trlces induces a norm on the group. Define
the Hilbert—Schmidt norm by

6 is random, then

R—[J, 5+ o] (78) IAllfs = >0 al. (80)
. . _ i=1 j=1
is nonnegative definite.

Other bounds on the variance of an estimate can sometinlé$ squared distance between two elements of the group
be tighter, including the Ziv—Zakai bound, the Barankin boungduals the distance between their matrix representatives
and the Bhattacharyya bOL_md. The Cramer—Rao boun(_JI when dis(61,82) = [|0(81) — O(6:)|2s. (81)
the parameters to be estimated are constrained to lie in a
nonopen subset oR"™ is developed by Gorman and HeroThis is referred to as the Hilbert—-Schmidt distance squared, and
[41]; this bound is useful in imaging problems, for examplét is the natural extension of squared errorRf to SO (n).
when the intensity has a known support or is smooth. Fiiote that
imaging problems, the Fisher information matrix can be, a
usually is, too large to invert practically so that computing th O(61)—0(62)l[fis =Tx [(O(61) —O(62))(O(8:) —O(62))"]
Cramer—Rao bound on the error covariance in estimating all of =2n—-2Tr[0(6,)0(62)"]. (82)
the parameters that define the image is infeasible. To addres

this problem, Hero and Fessler [47] and Hero, Usman, Saufﬁs Hilbert—Schmidt distance squared. The Hilbert—Schmidt

and Fe_ssler [48] h_ave develpped a recursive proced_ure Limator is the minimum expected Hilbert—Schmidt distance-
computing submatrices of the inverse of the Fisher matrix; thé uared estimator (the extension of the minimum mean-

can be especially useful for establishing Cramer—Rao bou ared-error estimator to the special orthogonal group
on subsets of the parameters (corresponding to a region inéa(g (n)

image) that are of particular interest.

éroup—valued estimators may be evaluated in terms of

éHS = arg}nin Eldus(0, é) | o]. (83)
B. Bounds on Groups ’

If the parameters in the problem are not real-valued, thdhat is, 6 is the orientation that minimizes the expected
bounds other than the Cramer—Rao bound may be appropriatdbert—Schmidt squared error given the observations. Note
A measure analogous to squared-error must be defined onttiet the estimator must be defined in this way because mean
space, and bounds on errors in terms of the mean of thilues are not defined on the group. There is only one
measure found. One approach detailed in this section is vatigeration available to combine two elements of the group;
for group-valued parameters. this operation is not necessarily addition.

If a scene has objects of interest that are rigid bodies,There is a straightforward algorithm to compute the
the group actions consist of translation and rotation. Whétilbert—Schmidt estimator if the posterior is known. From
restricted to the plane, the groupd¢’ (2) which is isomorphic (82), the optimal estimate is the one that maximizes
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E{Tr[0(0)O(8)T]|o}. First, computeA = E{O(f)|o}, D. Information Rate Functions
where the expectation is well-defined because this is a lineals o goal is object detection (binary hypothesis testing)

combination ofn x n matrices. Next, find the singular valuehen, the performance may be quantified by error rates. For
decomposition ot4 as example, the Chernoff information determines the rate of the
A=UxVT, (84) minimum probability of error detector, and hence can be used
. . as a measure of information contained in a measurement.
Assume thati)_ is ordered so that the smalle_.\st elgenvalu_e et 7, and 7o be the probability distributions on the sensor
in the lower right corner. Then leD be a diagonal matrix data under hypothesd; and H., respectively. Let the log-

whose diagonal entries are all one, except possibly for tPr‘neoment—generating function for the loglikelihood ratio be

lower right corner. The estimate is denoted bys(s)
Ons = UDVT (85) iy
=logk log — 88
and the lower right entry o) is chosen to ensure that the #(s) =log l{eXp <8 8 d7ro>} (88)

determinant 00y is equal to one. Finallydys is the group where E; denotes expectation with respectsp. The infor-
element corresponding @ys. The performance of any group-mation rate function for the problem is given by [9], [31]
valued estimator is bounded as follows [44].

A I(z) = - . 89
Theorem: Let 6(0) € SO (n) be any estimator. Then (=) ozssuzp—l[sx ?o) (89)
E[dyus(0,0(0))] > E[dus(6, fus(0))]. (86) Then the Chernoff information equalg0) [99, p. 123].

Similarly, Stein’s lemma says that fixing the probability of
It is interesting to note that for small variations, thene type of error and minimizing the probability of the other
Hilbert—Schmidt squared distance is essentially the sametgse yields the relative entropy between the distributions under
would be obtained using a linearization of the space. To ség and H; as the measure of the information provided by a
this for n = 2, note that (82) becomes— 4 cos (6; — 6»). For measurement. Put another way, let
small difference®) = 6; — 65, cos 6 ~ 1 — #2/2, and

o ‘d7T1 _
4 —4cos(b; — 02) = 2(0; — 92)2. (87) = El{log d—Wo} = D(71 | mo) (90)

This is twice the squared error between the angles, so fond

small errors this is equivalent to linearizing the space and dro
using squared error itR. T = Eo{logd—m} = D(mq | m1) (91)
The resolution achieved in image formation is an important I(—z0) = wo. (92)

attribute that is often cited. However, a universally acceptabéeecause the Chernoff information and the rate in Stein's

definition of resolution as a performance measure is elusi\fgmma are just samples of the information rate funciian)
The Rayleigh criterion is often used to quantify the resolutiofrg)r 0 < & < 1, the rate function may be the proper mea'sure

of optical images. The width of the main lobe of the point-. . - : .
. . ) ) f information provided by the sensor for detection problems.
spread function of an imaging system is another frequently : . .
i The purpose of an imaging system may be to recognize, de-
used measure of resolution. However, these measures ar . s - ) . .
i . . tect, or locate an object within the image; the image itself may
typically applied to image data rather than to post-proces

: . . e.only of passing interest. In such a case, the performance
data. Model-based processing can result in sharper image de ﬂlh ; : :
and, hence, improved resolution: good examples of this afe. - ad'Nd system is measured by the performance of the
" » Imp » good € P .re&ognition or detection function. The overall performance of a
the images that result from processing image data acquire : : . : S . )
. . S 2 system that is designed to recognize objects within an image is
in the presence of spherical aberration in the Hubble spa

. . o N ﬁmately determined by the performance of the final decision
telescope. The resolution achieved with image restoration j : . .
%hat declares an object present. The detection algorithm may

Image estimation Is more d|ff|cul_t 0 qgantn‘y. One approagll, onstructed in stages where the output of one stage is fed
is through computer simulation in which a known object If

. . A 0 the next, or the detection algorithm may be designed in
synthetically imaged and the resulting image processed {or . e A .
. : erms of a single, unified optimization problem. To predict
restoration. The restored imaged can be correlated agains . o .
. ) ) - the performance of an object recognition algorithm, we ask
a test image formed by convolving the known object wit

a given point-spread function and then adjusting a “widthégxgﬁetﬁgsézn;iggﬁld operate if the receiver knew everything

parameter of this function to achieve maximum correlation. An Assume that two .scenes are completely specified and that

example is a circular Gaussian point spread in which the WidtWe available data are Poisson-distributed with mé&akg and

(or spread) parameter is adjusted for maximum correlatio%XO whereT is a measure of the signal-to-noise ratio such
o,

then used as a measure of re_solutlon [11], [73]. The ben S the integration time. Then the log-likelihood function for
of such an approach in practice depends on how well tﬁi,?e datan mav be written
synthetic image data matches data actually produced by thé Yy may

imaging system of interest. Wy) =T[I(y/T,Ao) — I(y/T, A1) (93)
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where maximum-likelihood estimate of the imageis an imagec
i that maximizes the log-likelihood functional
I(a:,ﬁ):inlog%—xi—i—Si g
g ¢ = argmaxlogn(o: ¢). (95)

is discrimination. From Stein’s lemma, for a fixed probability €€
of false alarm, the probability of detection converges to oreyr an image restricted to be a function of a parameter vector
exponentially fast in7" with exponent—7I(Ag,A1). Thus ¢, the image estimate i& = (), where
discrimination predicts asymptotic rates. R

The rate depends on the clutterAlf has only clutter and; ¢ = argmaxlog (o : ¢(6)). (96)
has a target and clutter, then this rate is a measure of the clutter 6o
complexity in the sense that in quantifies the clutter’s abilityor example, the image could be of a known object whose
to reduce the detection rate. For systems with small poirtesition and orientation are unknown. In this instance, the
spread functions, the discrimination between images withdikelihood can be regarded as a function of the parameters,
and with a target is docal measure. This measure can b&hich would be estimated by maximizing the likelihood in
used to gain a confidence measure on the output of an objé& usual manner.
recognition system. Suboptimal algorithms may be comparedif the image is regarded simply as an unknown function,
on the basis of their rates. That is, a fixed algorithm will exhibthen the problem is often ill-posed, and some regularization is
a performance that varies with signal-to-noise ratio. For largiequired. One approach is to discretize the image, treating it as

signal-to-noise ratio, the rate is all that matters. piecewise constant over pixels or by representing it as a linear
combination of orthonormal functions as discussed in Section
VII. | MAGE FORMATION IV-B. This in effect converts the imagation problem into a

We call th f forming i f d _%ﬁ\rameter-estimation problem, and the maximume-likelihood
. e call t (_a procgss 0 . orming |mages rom data acqyw ethod can in principle be used straightforwardly to estimate
with a sensoimagationor image formationIn our use of this

. . . . the parameterized image. For example, if the data source is
term, imagation includes: image reconstruction (the comman teled as a spatial Poisson procdg(A), A ¢ O_(RQ)}
term used for building a tomographic image from projectio\g\llith an intensity function{c(z), = € R} the’ log-likelihood
data), image restoration (a term used for correcting image dﬁmctional is ’ ’

that are marred by camera defects or motion), image estimation

(used for forming images from data that are stochastic), and In7(N :c) = _/ c(z)dx +/ Inc(z)N(dz). (97)

image formation from data that indirectly depend on an image, R2 R?

such as in synthetic-aperture radar. This likelihood is unbounded over the space of nonnegative
The type of models used for describing the image and daf@ctions, so a maximum-likelihood estimate does not exist.

spaces, as well as the discrepancy measures that are adop{gstcoming this difficulty requires the use of some form of

for assessing performance, influence the approaches usedrdgiilarization as discussed in Section IV-A, which can be

imagation. Deterministic models and the use of least squargs.the form of imposing a discretization, imposing a prior

discrimination, and maximum-entropy discrepancy-measurgstribution on image values, imposing a penalty functional

with and without constraints lead to one set of approachggat restricts the roughness of the estimated image values, or

while stochastic models and the use of likelihood discrepanqysing Grenander's sieves [42] to restrict maximizers to a subset
measures with and without priors and constraints leads dp the nonnegative functions.

another.

B. Maximum a Posteriori

A. Maximum Likelihood . . . S
Maximum a posteriori probability (MAP) estimation is

The maximum-likelihood method is a long-standing methoglso a long-standing method of estimating parameters from
for estimating unknown, deterministic parameters that ishserved data; it is used when the parameters to be estimated
fluence a set of stochastic data. The maximum-likelihoqge random and have a known prior probability distribution
principle is a general principle of data reduction in which Whep(g). If the data likelihood isr(r|#) for some given data,
reducing a set of data described by a log-likelihood function ihen a MAP estimaté of @ is a maximizer of the posterior
A(y) = logp(z | 7), one chooses & that maximizes the gistribution p(6|r). Because this conditional distribution is

log-likelihood function proportional to the product(r|6)p(6) of the data likelihood
4 = arg max A(7). (94) and the prior, this procedure is analogous to maximum-
v likelihood (ML) estimation of the parameters but with the

A maximum-likelihood estimate has the desired properties tﬂg&ellho_od Scaled by_the prior. M.AP |ma_gat|on IS S'm""’?f to ML
it is asymptotically unbiased and efficient Imagation with a prior distribution on image values included

Its use for imagation follows the usual prescription of! the functional being maximized.
formulating a model for the data acquired with an imagin
system, with this model being in the form of a probabilit
distribution(o : ¢) that is a functional of the image 7(o : ¢) TheJaynes maximum-entropy principtea principle of data
is called thelikelihood or data likelihoodin this context. A reduction that says that when reducing a set of data into the

. Maximum Entropy and Minimum Discrimination
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form of an underlying model, one should be maximally norminimizes the predicted discrepancy from the observation
committal with respect to missing data. If one must estimate a 5(0) — are i d 100
probability distributiong on the data source satisfying certain &o) = arg 1t o(f(e),0). (100)

known constraints owg, such as ] ) ) o
This  formalism includes least-squares, minimum-

Z _ discrimination, and related methods.

e fr =1 (98) : .

" If O consists of real- or complex-valued functions, then
the squared error is the natural discrepancy measure- gt

then, of those distributions that are consistent with the cofienote an inner product @. The discrepancy measure is then

straints, one should choose as the estimaggtbé probability o

distributiong that has maximum entropy. A nice example can do(or,02) = (01 = 03,01 = 02). (101)

be given for a probabilistic source with a real output. Suppos@e |east-squares problem is

the source produces a real-valued random varidble/hose

mean and variance are known, and otherwise the probabil- ¢(o) = argmin(f(c) — o, f(c) — o). (102)

ity distribution governing the source is unknown. Then the ece

maximume-entropy principle says that one should estimate thatf O consists of positive-valued functions, then discrimina-

the probability density;(z) is a Gaussian probability densitytion is the natural discrepancy measure. AssumeR" —

with the given mean and variance. This is a consequenceldf, and leto(y) be the value of the observation at the point

the well-known fact that a Gaussian random variable has tec R". The discrimination is defined as

largest differential entropy of any random variable of a given o1 (y)
mean and variance. do(o1,02) :/ [01( ) B o1(y) + o2(y) | dy
The maximum-entropy and maximum-likelihood principles 2\Y
= I{01]|02). (103)

are equivalent when the constraint to be enforced when esti-

mating a probability distribution is not in the form of somqp gpplications, the observations are often vectors rather than
given moments but, rather, of some given data. When giVefhctions, in which case (103) is written as a summation as
some statistical data from which a distribution or image is tg (54) rather than an integral. For either the integral or the

be estimated, one approach is to use those data to estimg{@&mation form, the optimization problem as stated in (100)
some moments and then to use these estimated momesymes

as if they were the exact (deterministic) moments when

maximizing entropy. However, the estimated moments are ¢(o) = argmin I(f(c)||o). (104)

exact only in the limit of a large data set and otherwise are ecc

random, resulting in a conceptual inconsistency. As discusdear linear inverse problems, this formulation leads to the

by Miller and Snyder [62], when entropy is maximized subjedeneralized iterative scaling or SMART (simultaneous mul-

only to the constraint of some given, statistical data rath#éplicative algebraic reconstruction technique) algorithm [12],

than deterministic moments, the resulting maximum-entrofg5].

estimates are also maximum-likelihood estimates. The discrimination may be used with the arguments re-
The Kullback minimum-discrimination principlés an al- versed. In this second formulation, the minimum discrepancy

ternative principle that applies when one is given both statement in (100) becomes

probability distributionp as a prior estimate af and also a set R .

of constraints, such as moment constraints, that the probability &0) = arg it (ol f(c))- (105)

distribution ¢ must satisfy. Under this principle, the optimal S o
p is Since discrimination is not symmetric in its arguments, the
criteria (104) and (105) can have different solutions and they
p = arg Iginl(pllq) (99) lead to very different algorithms.
prC

. e , VIIl. COMPUTATIONAL ALGORITHMS
whereP is the set of probability distributions that satisfy the

moment constraints [57], [56], ané(-||) is discrimination. Ipfqrmgtion-theoretic image formation yields images by Fhe
If the prior estimateq is a uniform distribution, then this optimization of performance metrics. Analytical intractability

principle yields the maximum-entropy distribution subject tgSually accompanies any attempt to form images in this way,
the moment constraints. so numerical algorithms must be used; many algorithms used

have a strong infomration-theoretic motivation. An impor-
o ) .. . . tant exception can occur with some linear problems having
D. Minimum Discrepancy: Least Squares and Discriminatiogs g ssian statistics and quadratic metrics, but even in these
For observations in®, assume the information-theoreticcases numerical methods for performing matrix inversions or
discrepancy measuré». In deterministic problems, there issolving integral equations are often needed. For example, the
some model for the observed dat& terms of the underlying original method by Rockmore and Macovski [76] for forming
image c. Let this model be a functiorf : ¢ — O. Then maximum-likelihood images for emission tomography was
the minimum-discrepancy problem is to find thes C that realized practically only when Shepp and Vardi [84] later
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introduced the expectation-maximization method of Dempstéinge prior oné to the log-likelihood function being maximized,
Laird, and Rubin [27] as a means of constructing algorithnteereby producing MAP estimates of the parameters, or by
for computing the maximum-likelihood image. A wide varietyadding a penalty function during the maximization.
of computational algorithms are in use for producing imagesThe EM method begins by selecting some hypothetical
numerically. Standard methods of numerical optimizatiomata, r.4, called the “complete data.” There is considerable
such as gradient descent, are widely used. In this section, flexibility is making this selection, and making a good choice
shall review methods based on information-theoretic concepias largely been based on experience drawn from a familiarity
that have become popular and are presently finding their wajth the physical problem at hand and its mathematical
into practical imaging systems. This includes the expectatiomodel. The choice can influence the behavior of the recursive
maximization method and its recent extensions introduced blgorithm that results, such as its rate of convergence, so
Fessler and Hero [32]. Also mentioned is a similar methazhreful consideration is warranted. Roughly speaking, the
introduced by Snyder, Schulz, and O’Sullivan [92] for deehoice should be such that there is a functign) such that
terministic problems in which the discrepancy metric is thine actual data, here termed the “incomplete data,” can be
discrimination in the form of (105). A related algorithmrecovered from the complete data= h(r.;), and such that
originally proposed by Darroch and Ratcliff [25] for computinghe log-likelihood functionL.4(6) of the complete data can
the distribution that maximizes entropy subject to constrainte formulated and the required analytical steps can be accom-
has been used to solve linear inverse problems by Byrne [Jished. At the very least, the conditional likelihood of the
and others. This is the generalized iterative scaling or SMARficomplete data given the complete data must be independent
algorithm for deterministic problems in which the discrepanayf the parameterg. The issue of selecting complete data is
metric is the discrimination in the form of (104). Stochastidiscussed further in the next section.
search by means of the jump-diffusion algorithm of GrenanderThe recursion proceeds as follows. Suppose 4t is
and Miller [43] is another powerful tool which we shall reviewan estimate of that has been formed at some stage of the
briefly. recursion. To get to the next stage, &hstep and ani/-
There are many other algorithms with an informationstep must be performed. ThE-step consists of evaluating
theoretic motivation that are not discussed here. Simulatége conditional expectation of the complete-data log-likelihood
annealing for imaging problems was discussed by Gemgiven the incomplete data and the parameter estimate available
and Geman [34]; the jump-diffusion algorithm is a stochastat that stage resulting in a functi@p(|§°'!), defined by
search without the annealing process. In addition to these - -
stochastic search methods to combat the multimodality of opti- Q(616°') = ElLea(6)|r,07).

mization Criteria, there are deterministic methods inCIUding thQ]e M-Step is then performed to obtain an updated and

graduated nonconvexity algorithm [5] and |tS improVemenFﬁ)ssi[ﬂy improved parameter estimafé?w according to
[68]. The SMART algorithm is a descendent of ART and

. .. . n o fvor nold
MART, algorithms that have been used in image reconstruction 0" = arg max Q(6]6°).

algorithms for many years (see the references in [12]). There . . L . o
have been many methods proposed for increasing the conyBrMany interesting situations, this maximization can be per-

gence rate of the expectation—maximization (EM) algorithrﬁqrm?d analyti(?ally', but .in others numeri(?al' optimization is
Among the more promising techniques in the literature angwred, resulting in an iteration nested within the EM recur-

those based on partitioning of the data space such as

ordered-subset EM algorithm and its variants [8], [49]. Following Dempster, Laird, and Rubin [27], it is straight-

forward to demonstrate that the recursion produces a nonde-
creasing sequence

A. The Expectation—Maximization Method Lig(0©) < Lig(dD) < -+ < Lig(6®) < ...

The expectation—maximization method of Dempster, Laird . . )

and Rubin [27] is a general approach for formulating recursi\?é _Iog—Allkehh_oo_ds L?d(e)’ Of_ the incomplete datar. Th_e_
algorithms that can be used to determine the maximuminit 6><), if it exists, satisfies the necessary conditions
likelihood estimate of a parameter vectbin terms of some 0 @ maximizer ofL;y(6). To see this, lepiy(r : ¢) and
measured data. To apply the method requires judgment;,acd(rcdze) denote the I|keI|_hood functions for the mcomplgte
and the structure of the problem must be appropriate. Wh@ﬂd complete data, respectively. These are related according to

successfully applied to a particular problem, the EM method N m o ]
yields a particular algorithm that is specific to that problem. pia(r - 0) = [ p(rlrea)pea(rea - 0) drea. (106)

Indeed, the EM method can even yield more than one aIgR
rithm for the same problem because there can be more t
one way to apply the method. For imaging problerfisis
composed of the unknown parameters, such as pixel values,
that comprise the image to be estimated, and composed

of the data values produced by the imaging system. If somg .,
prior information regarding is available, this can readily be
incorporated into the method by either adding the logarithm ofL;4(6) = L.q(6) — logp (1cq | 7 : 6) +logp (r | rcq) (108)

a{_so, define the conditional likelihoog(r.4|r : ) according
onBayes rule

p(r | rea)pea(red : 9)_ (107)

Area [ 720 =2 0)
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where step difficult. Fessler and Hero [32] address these deficien-
cies in a method they term “space-alternating generalized

Liq(#) = logpia(r : ) expectation—maximization,” or SAGE. In their SAGE method,

and parameters i are grouped into subsets that are sequentially
Lea(0) =logpea(rra : 6). updated by alternating between multiple, small, hidden-data

spaces rather than a single, large complete-data space. The
Multiplying both sides of this equation by(r.q|r : ¢) and result is a numerical approach that, in comparison to the
integrating overr.q then yields usual expectation—maximization method, produces maximum-
likelihood estimates of an image with a convergence rate that
Lis0)=0Q0|8¢)— /p (rea |7 :0")logp(rea | 7:0)drea is potentially greater and with a complexity that may be less
in the presence of constraints.

+ /p(TCd |7:60) ogp (r | req) drea. (109) The SAGE method can be summarized as follows. et
be ap-dimensional vector of parameters to be estimated, and
It follows from this expression that index these parameters using the set of integ@sg, - - -, p}.
R R Let S and S be subsets of these indices such tRay S =
Lig(60"") — Lia(6°'%) {1,2,---,p} andSNS = (. Denote byds the m-dimensional

Ay hnew | Aold fold | Aold ) _ pold vector of elements of having indices inS, wherem is the
= QU [97) — QO™ | 07) — /p(%d [726"5) humber of indices irs. Similarly, definef; to be the vector
P(req | 7 i 69 of dimensionp — m formed from the remaining elements
x log [m} dred. (110) of 4. In general,# may be partitioned into more than just
two subvectors in this way using multiple disjoint index sets
The entropy (discrimination) inequalitys [ plogq/p > 0, §% ¢ =12 ... whose union cover§l,?2,---,p}. Functions
then yields f(6s,0z) of the m- and p — m-dimensional vector#s and
P o frew | Ao ~old | o 6z are interpreted as equal to the functigif¢) of the p-
Lig(6"") = Lia(6°) = QO™ | 6°) = (67 | 9. diqmensional vectord. In the SAGE metholgj,) updates are
(111) performed by sequencing through the different index sets
= S and updating only those parameters dg while
ding the other parametets; fixed.
Hidden-data spaces must also be defined and selected; doing
QA | 61 > (61 | §o) (112) Sorequires that complete datg, be selected in the usual way
for estimatingés but now assuming thafz is known. Let
then establishes thaLid(é“eW) > Lid(éom) and, hence, 6 pe an initial estimate of. A sequence of estimates that
that the sequence produced recursively via the expectasults in a nondecreasing sequence of incomplete-data log-
tion—maximization method does not reduce the incompletiékelihoods is produced by the Fessler—Hero SAGE algorithm
data log-likelihood at any stage. [32], which repeats the following iteration:
If an estimate of is sought that maximizes; ;(6)+a®(6), Step 1. Choose an index s§t= S¢;
corresponding to estimatinf subject to a penalty constraint  gtep 2. Choose complete datﬁ for O
with penalty function®(#) or to estimating? with a log-prior Step 3. (E-step) Comput@;(fs: é(i));
log p(8) = a®(9), then the expectation—maximization method Step 4. (M-step)
can be used with the maximization step becoming

. S . S
Noting that the maximization step in the expectah ol
tion—maximization method implies that

. A 6uty = arg max Q; (05 | ) (113)
62 = argmax[Q(8 | 6°) + a (). S b
puty =4, (114)

Wu [105], Shepp and Vardi [84], and Cs&szand Tusnady
[24] address the convergence properties of the sequence of patep 5. (optional) Repeat Step 3 and Step 4.
rameter estimates and corresponding sequence of incompl&tee ith iteration consists of this sequence of steps. The
data log-likelihoods towards local and global maximizers aferations are repeated fér= 0,1,2,---, halting when the
the incomplete-data log-likelihood. iterates reach an equilibrium. Thus it is necessary to prove that

the iterates of the algorithm do converge to an equilibrium. The

B. Space-Alternating Generalized Expectation—Maximizationonvergence properties of the SAGE algorithm and consider-
Ations to be made in selecting complete data are discussed by

The expectation—maximization method as originally fo ) ) )
Fessler and Hero [32], and extensions are given in [33].

mulated maximizes a conditional expectatiGf{(#|¢°!) of
a single complete-data log-likelihood functidn.y(r.q) and )
simultaneously updates estimates of all the parameters cdm-1"e Random Sampling Method

prising the parameter vectér While this method does permit The EM and SAGE methods for numerically producing
maximum-likelihood estimates of images to be obtained nmaximizers of likelihood functionals, both with and without
merically, it is slow in convergence, and penalty functions tpriors, proceed deterministically: a sequence of functions or
enforce regularization and priors can make the maximizatiomages is produced that is predetermined by the data given
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and the function chosen to initiate the iteration. Although alsibyce and Root [53] and many others have commented on
iterative, the jump-diffusion method does not proceed detdhe notoriously ill-posed character of many linear inverse
ministically but, rather, via a random search for maximizeqgroblems. Various approaches have been suggested for solving
or for estimates, such as the conditional mean (i.e., minimuhrem while introducing regularization to stabilize solutions.
mean-squared-error estimate). The method as introducedNdyst of these approaches are based on least squares op-
Grenander and Miller [43] and discussed by Miller, Srivastavéimization with constraints to enforce regularization, such
and Grenander [63], [94], provides a numerical method fas described by Tikhonov and Arsenin [96]. Youla [107]
sampling from complicated distributions when the parametkas proposed a method for accommodating nonnegativity
space has both discrete and continuous components. It basstraints with least squares optimization.
been used effectively in a variety of applications, including As already noted, Csiéz [23] identified the important role
identifying the number and shape of mitochondria in electraf discrimination as a discrepancy measure for optimization
microscope images [43], deforming a labeled anatomy invehen comparing nonnegative functions or images. Recogniz-
textbook to match a patient's anatomy [98], and detectirigg that a solution to the linear inverse problem described by
the number and orientation of targets in infrared imagé$15) will necessarily be an approximation, a functigr) is
[59]. These various applications share the characteristic ssfught such that the functidi{r : ¢), defined by
having quantities in an image that are both discrete, such
as the number of objects or the labeling of objects by their b(r:&) =Y h(r,x)é(x) (116)
type, and continuous, such as the position and orientation of z
objects or spatially varying intensities in a scene containing a good approximation to the given functiarfr) in the
the objects. The “jumps” in the method provide estimates génse that the discriminatiof(a||b) betweend(r : &) and
the discrete quantities by means of a stochastic search of &Pqe) is minimized. Letc(?)(z) > 0 be a nonnegative function
Metropolis—Hastings type, and the “diffusions” yield estimateselected as an initial guess. Then, the sequence of functions
of the continuous quantities through a stochastic optimizatiq@(k)(a;%k = 0,1,---} produced by the following recur-
[35]. sion produces a corresponding sequence of discriminations

For example, let v represent parameters (such as the poseg),||5(*)) that is nonincreasing, whefé® (1) = b(r : &*))
anday the types ofV objects in a scene. Denote the logarithm
of the posterior likelihood of the data i(xn : NV, an) for " ", 1 h(r, z)
given N and ay. The approach is to formulate a diffusion & (z) = &*(x) > T a(r).

" Ho(k) = | 3 h(r,2")e®) (27)

process{zn(t), ¢ > 0} that has the property that the log- L
distribution of xx(t) converges with increasing towards (117)

L(xzn : N,ay). This diffusion is produced by the stochastic )
differential equation Properties of the sequendé®)(z),k = 0,1,---} and con-

ditions for convergence are discussed by Snyder, Schulz, and
den(t) = ViuL(zy : N,an) dt + dwn(t) O’Sullivan [92]; these are established using results from Cover
[18] and Vardi, Shepp, and Kaufmann [101]; see also Vardi
where wy(-) is a standardV-dimensional Wiener process.and Lee [100]. Applications to tomographic imaging are given

Jumps between different choices &fanday are performed by Wang, Snyder, O'Sullivan, and Vannier [103], and by
at the times of a Poisson process, and decisions of wheth@hertson, Yuan, Wang, and Vannier [75].

to select new values fo’V and an or to retain old ones
are made in a manner similar to decisions made with tfp:g Generalized Iterative Scaling or SMART

Metropolis—Hastings method of stochastic search. The cited ) ) i , ) .
references can be consulted for further details of the jump-1he generalized iterative scaling algorithm was originally
diffusion approach. introduced to find the distribution that maximizes entropy

subject to a set of linear (mean-value) constraints by Darroch
and Ratcliff [25]. It was shown by Byrne to minimize the
discrimination in the form of (104) for linear inverse prob-
An iterative method that is similar to the expectaems with nonnegative data, using an alternating minimization
tion—-maximization algorithm can be used to produce minimizpproach [12]. Byrne referred to this algorithm as SMART for
ers of discrimination for deterministic linear inverse prOblemﬂqe simultaneous mu|tip|icative a|gebraic reconstruction tech-
This approach has been suggested by Snyder, Schulz, grflie. Csisar [22] showed that generalized iterative scaling
O'Sullivan [92]. Similar approaches are given by Vardi angan be interpreted as alternating I-projections and the conver-

D. lterative Minimization of Discrimination

Lee [100] and Byrne [12]. ~gence is thus covered by his more general results [21]. Byrne
Linear inverse problems that can be approached with thigplicitly showed that this algorithm is in fact an alternating
method have the form minimization algorithm whose convergence is covered by

Csisar and Tusnady [24]. O’Sullivan [70] discussed several
alternating minimization algorithms including this one.
For linear inverse problems as in (115), the problem is to

where the three functions-), A(-, -), ande(-) are nonnegative, minimize I(b||a), whereb(r : ¢é) is the estimate for as in
with a(-) and h(-,-) being given and:(-) to be determined. (116). Letc® (z) > 0 be a nonnegative function selected as

a(r) = Z h(r, z)c(x) (115)
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an initial guess. Then, the sequence of functi¢®’(z),k = where {a(y),y € Y} are the sensor datdj(y,z),y € Y,
0,1,---} produced by the following recursion produces a € X} is a (point-spread) function characterizing the sensor,
corresponding sequence of discriminatiai*)||a) that is and{c(z),z € X} is the image to be formed. Some examples

nonincreasing, wheré®) (r) = b(r : &*)) that illustrate the nature of the image and data spateand
- Y, respectively, and functions that are encountered are given
R () next.

h(r,z ,h Lz . . . . .
. (o)) 2 hr'2) Optical Imaging In optical imaging problemsa(-) rep-
_ Alk) a(r) : : ;
=c (w)H S e () h(r, o) . resents the data acquired by a cameérajs typically a
’ two-dimensional subset of the pla®, &(-, -) is the point-
(118) spread function of the optical elements of the camera,
such as telescope and microscope lenses, field stops, and
If there is a nonnegative solutianto (115), then the iterates mirrors, ¢(-) is the scene being imaged, a&dis typically
&*)(x) converge to the solution of (115) that minimizes a subset ofR? or R®. For coherent imaging, where phase

r
!

I(¢)|é® (x)) [25], [12]. information is maintained, the functions(-), A(-,-), and
¢(-) are complex-valued functions. For incoherent imaging,
F. Projection onto Convex Sets these functions are real-valued and nonnegative functions.

. S . _For multispectral, hyperspectral, polarimetric, or spectropo-
The operation of projection onto a closed convex set in a,_ . o . .

. ) . larimetric imaging, these functions are vector-valued.
Hilbert space is an example of a nonlinear procedure that can

be explained in simple abstract terms. It is not normally viewed Tomographic Imaging In tomographic imaging problems,
as a statistical method. Projection onto convex sets plays ai(-) represents the logarithm of the data acquired by the
role in image formation because the constraints on the imaggomograph,Y is typically a subset ofR™, with n = 2
space are often convex. Moreover, the topic of projection ontoor n = 3 corresponding to planar or volumetric imaging,
convex sets can be expanded into the study of the powerful(-,-) is the point-spread function of the tomograg;)
methods of alternating maximization [24], [70], [106]. These is the X-ray absorption density being imaged, akidis
methods of alternating maximization applied to problems of typically a subset ofR’ or R®. For example, in helical-
information theory appeared earlier in the literature [3], [6] in scan X-ray tomographic imaging in the fan-beam geometry,
the context of computing channel capacity and rate-distortiony € Y is three-dimensional witly = (3, ~, z), whereg is
functions. the angular position of the X-ray source,is the angle

A general discussion of the topic of projection onto convex of a particular source to detector element, ands the
sets can be found in the paper of Combettes [17] and theaxial position of the source; € X is three-dimensional
work of Youla [106], Youla and Webb [108], and Segan and with z = (z1,z2,23 = z) being the coordinates of a point
Stark [82]. The projection is unique and often can be found location in the target volume, and, for perfectly collimated
by analytically tractable methods, including iterative methods. source—detector combinations
Because the intersection of a finite nhumber of convex sets
A, is convex, one may wish to project ontdé = N,.A4, by hy,z) = h(v, B, z; x122, T3)
interatively projecting onto the individuaﬁg. This procedure = §[Dsiny — z1 cos (B + ) — z2sin (8 + )]
need not converge in general, but will always converge if the C6(2 — w3) (120)
individual 4, are affine subspaces. ) 3

where D is the distance from the source to the axis of
IX. MODALITIES AND APPLICATIONS rotation,z = x5 = pJ3, andp is the pitch of the helical scan.
Some representative applications of information-theoretic All functions in the linear inverse problem of tomographic
imaging are described in this section. For each, the applicatioimaging are constrained to be nonnegative.

Is re\_/iewed priefly and a _Iikelihood quel_ given for the data Radar Imaging Complex-valued reflectance functions and
acquired for image formation. The applications are drawn fromreal, nonnegative scattering functions are images of radar

optical imagi_ng, tomograph_ic_ "_“agmg’ and radar im"?‘ging- targets formed from high-resolution radar range data. If the
The models include deterministic and random data, with the ignal transmitted by the radars(), the ideal echo-signal

random data modeleq by Poisson processes, Poisson—Gaussisé%eived from a point reflector iesy(t — 7)ei2rft=/2),
mixtures, and Gaussian processes. wherec is the strength of the reflector, is the two-way
propagation delay of the transmitted signal to and from the
A. Deterministic Models point reflector, andf is the Doppler frequency shift due
Imagation in which deterministic models are used for im- to relative motion between the radar transmitter and the
ages and sensor data is often derived as a solution to a linedi€flector along the line of sight. For a spatially extended
inverse problem in the form of a Fredholm integral equation reflector, the received signal to a first approximation is the
superposition of the signal reflected from each point; this

/ Wy, z)e(z) dz = aly), yey (119) neglects, for example, secondary reflections of the signal
X from one location on the reflector to another before returning
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to the radar receiver. The received signal is then wherew(-) is white with mean zero and varianeé, and the
S T image recovery problem is to estimate) given a realization

a(t) :/ / sp(t — T)ej%f(tff/?)c(fj) dfdr of r(-). For describing photoconversion electrons in a focal-
min ¥ Tmin plane array,a(-) in (119) becomes a Poisson process)

(121) with mean-value functio}_, h(y, x)e(x), and the restoration

) ... problem is to estimate(-) from a realization of the Poisson

where (fuin; fmax) i the range of Doppler shifts, 5 ,cess. If nonuniformity of response, offset, and thermoelec-

(Timin, Tmax) IS the range of propagation delays that covef,ng are significant, then the Poisson proces$ modeling

the r.eflecltor. This is in the form of (119).Wltﬁ being photoconversions has intensify) 3™, h(y. z)c(z) + pio(y)-

the time interval of the measuremen’f,_belng the two- Here, () and uo(-) are functions that account for nonuni-

dimensional space of delay-Doppler shifts formity and offset, respectively; these functions are routinely

h(y,z) = h(t; f.7) = sp(t — T)ejQﬂ-f(t—‘r/Q) determined in calibration measurements using a flat field and a
’ ’ dark field exposure of the focal-plane array. If read-out noise
and ¢(z) = <(f, 7). is a significant factor in a focal-plane-array sensor, then (119)

The linear inverse problem described (119) is routineltglecomeS

discretized to facilitate numerical solutions. While this can r(y) = n(y) + w(y), yey (124)
be accomplished in various ways, the result can generally be ] ) . ]
placed in the form of an algebraic, linear inverse problem ¥fhere n(-) is a Poisson process modeling photoconversions

the form and offset, andu(-) is an independent, white, Gaussian process
Z modeling read-out noise. The mean-value functiom @} is
h(y,x)e(x) = aly) (122)
= Eln(y)] = B) Y _ by, z)e(x) + poly) (125)
where = and y are discrete-valued or, alternatively, in ma- ’
trix=vector form and the mean and variance @fy) arem and 2.
The data log-likelihoods for each of these models is a
He=a (123) functional of ¢(-) that is fundamental to the problem of

estimating ¢(-) from the available data. For the additive
aussian noise model, the data log-likelihood (when reduced
only terms that are-dependent) is

in which a is a vector-valued discretization of the given dat
H is a discretization of the kernel of the Fredholm equatiot%
(119), ande is a discretization of the unknown function that

is sought. If H is invertible, then the obvious solution is 1
¢ = H™'a. However, this ideal solution is usually impractical L{c) = FORE [Z > Wh(y, 37)6(37)]
becauseld often is not invertible or is poorly conditioned so z v
that solutions are extremely sensitive to the detailed choices 1 ?
made in designing a numerical implementation and to the - 2—NOZ > h(y, z)e(z) (126)
effects of finite-precision arithmetic. Joyce and Root [53] v =
provide a good discussion of this issue. For the Poisson model, it is
B. Stochastic Models L(c) = =) > Alwh(y, z)e(x)
Sensor noise can be significant in inverse problems encoun- o
tered in imaging. A variety of noise models are useful with + Zlog [Z h(y, z)c(x) + uo(y)l n(y). (127)
the most successful results in applications occurring when the " -

noise model selected is a good representation of the data- . . _
acquisition sensor being used. For radar sensors, an addifi\d. for the Poisson-Gaussian-mixture model
Gaussian model is a reasonable first choice, and for focal- 1 ’ ’ ’ ’ L
plane arrays, such as a CCD camera, a Poisson modelrge)=> "log | > ——=pu"0)(j)e 0l i) =nG)=mi/20

a Poisson—Gaussian-mixture model is an appropriate initial " n() n(j)!

choice. In stringent applications where high performance is (128)
sought, more refined models that account for significant effects
present in a sensor must be formulated and used, so that,itxere
example, nonuniformity of response and offset in focal plane
arrays usually needs to be taken into account in scientific

w(d) = B) Y My, x)c(x) + poly).  (129)

applications.
In the presence of additive Gaussian noise, the discrdt@® purpose of imagation is to recover or estimate the object
inverse problem given by (119) becomes ¢(-) given the data available. The method of maximum-
likelihood estimation can be applied to this problem, and if
r(y) = Z h(y, x)e(z) + w(y), yey there are constraints on the formaf) or if <(-) is a random
© process with a prior distribution, the method of maximam



2118 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 44, NO. 6, OCTOBER 1998

posteriori probability estimation can be used. A closed-fornn this case, the data are Gaussian-distributed with zero
solution is well known for the additive Gaussian model withounean and covarianck’, = H'SH + NI, assuming that
constraints or a prior, which &= (H* H)# H” a. However, the noisew is white Gaussian with zero mean and covariance
a closed-form solution is not possible for the Poisson adf = Ny, so the probability density of is
Poisson—-Gaussian-mixture models, and numerical solutions N 1 -

y . _ _—N _ o 1
such as those discussed in the next section must be employed. p(r:E) =n""(det Ko)™ exp(-a'K, a)

Regularization is often necessary in order to obtain aghere v is the dimension of. The problem of forming the
ceptable restorations. This is because the stochastic inve§ggttering-function image is that of estimating the diagonal

problems are usually ill-posed and numerically unstable. |jatrix £ from some given data set. The log-likelihood
some cases, discretization is imposed by the sensor used ittion is

acquire data, such as with a charge-coupled-device camera

and other focal-plane arrays. Discretization of continuous datd®) = —logdet (H'SH + NoI) — o' (H'SH + NoI)a.

is one form of regularization, but this alone can lead to (133)
the problem of dimensional instability described by Tapia o . o

and Thompson [95]. Grenander sieves [42] can be used tol € maximization ofl.(X) with respect ta is in the class
introduce regularization as was done by Snyder and Millgf Problems studied by Burg, Luenberger, and Wenger [10] for
[89]. With this method, estimates are restricted to a subsetHeCrum estimation and in [67], [71], [91] for radar imaging.
the function spac&’ supportinge(-). The size of this subset The following algorithm, derived using the EM method, was
is controlled by the amount of data available to perform tH&€d in the radar imaging context by Snyder, O’Sullivan, and
estimation, such that the subset grows as the amount of dier [91]. )

increases, but the rate of growth is controlled so that theStep 0. Choose an initial estimafé®, setk = 0;

estimate ofc(-) converges in a stable manner. Alternatively, Step 1. Evaluaté® and ©(*+1) according to

regularization can be introduced via a penalty funptqb(m:) o0 _ i(’“)H(HTi(’“)HJr Nol) 'a (134)
that enforces smoothness (see O’Sullivan [69]). With penalty N . . N
methods, the estimate maximizes the penalized log-likelihood =* = £® — SO H(H'SWH + NoI) T H'S®T

L(c) + a®(c), wherec is a Lagrange multiplier that controls R OF IR (135)

the emphasis given to the data log-likelihood and the penalty

function when selecting the maximizer. Whep) is a random Step 2.k — k+1; .

process with a priop(c), the MAP estimate of(-) is obtained ~ Step 3. Repeat Step 1 until done.

by maximizingL(c) +logp (¢). It is evident that many penal-

ized maximum-likelihood estimation problems are equivaleft: An Application Modeled by Poisson Data

to MAP estimation problems by defining(c) = Z¢*®®),  scintillation detectors are used to sense photons emanating
where Z is a normalization constant; for this equivalence tgom radioactive decays in a radionuclide. Some radionuclides
hold, Z must be finite, so that the prior defined in this wagmit a single photon in each decay, as occurs in SPECT

is proper. (single-photon-emission computed tomography) systems used
in nuclear medicine. A decay in other radionuclides results
C. An Application Modeled by Gaussian Data in a positron, which interacts quickly with a nearby electron,
For sensors that exhibit additive Gaussian naige, (119) esulting in two annihilation photons that propagate in nearly
becomes opposite directions away from the annihilation site, as in PET
i (positron-emission tomography) systems [90, Ch. 3]. A decay
/ h(y, x)e(x) de + w(y) = aly), yey (130) or an annihilation is called agvent Through the measurement
X of single-photon events or annihilation-pair events (typically,
for which the discrete version, analogous to (130) is for PET, aboutl0® events per planar section, acquired in a
time interval on the order of 10 to 20 min), the objective is to
He+w=a. (131) form an image displaying an estimate of the spatial distribu-

. N tion or concentration of the radionuclide. Three-dimensional,
If ¢ is deterministic andw has zero mean, the data 109y, metric imaging is sought. This is usually accomplished by
likelihood is means of a sequence of planar images spanning the volume of
L(e) = 2Re (#' W™ He) — ¢ H'W ' He (132) interest, with each planarimage being treated independently of
others; however, direct volumetric imaging that accounts for
when terms that do not involve are neglected, where theintravolume dependencies has been demonstrated to be more
superscriptt denotes the Hermitian transpose. accurate [60].

A model used for spectrum estimation and radar imaging To obtain estimates of radionuclide concentrations, models
arises where has a prior distribution that is Gaussian witHor scintillation data must account for the photon-fluctuation
zero mean and diagonal covaria@d67], [71], [91]. The:; statistics of radioactive decay and for the effects that occur
elementgfj, of X corresponds to the power gain of the signalhen photons propagate through a scattering medium to reach
reflected from theij pixel in the pixelized representation ofdetectors. The models that are used account only approxi-
the object’s scattering function in delay-Doppler coordinatemately for some effects and neglect others altogether. For
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example, photon scattering (that is, deviation of a photontsissed by Miller and Snyder [62], that the channel output is
flight path from a straight line due to Compton and photoelas@so an inhomogeneous Poisson process, denotdd/&(3),
scattering) is usually only roughly accommodated using & € o())}, with intensity function{.:.(w),y € Y}, where
attenuation function, an additive and independent “photon”

noise in PET, and a point-response function that is broader ;(y) :/ By | )ply | 2)A(x) de + po(y). (136)
than would be predicted by the finite size and geometry of x

scintillation detectors alone. Photons that are undetected dtffys the log-likelihood functional of the channel-output

to finite recovery time in a scintillation detector are neglecte@rocess is given by (see Snyder and Miller [90, Chs. 2 and 3]
While these effects can be significant in practice, they afgr further discussion of this point)

usually neglected to keep data models tractable. ) )

A source-channel model for event detections is a useful con- () = _/ 1(y) dy +/ log[(y)] M (dy). (137)
ceptual framework for formulating the problem of estimating Y hY
the radionuclide distribution. It can be formulated as follows.
The source produces points representing random location asured channel output points and the source-channel model.
radioactive decays or positron—electron annihilations in trﬁ\1i

. e . - s problem was first formulated for emission tomograph
region containing a radionuclide. Lét be the source-output b P graphy

This is th h ; ) individ % Rockmore and Macovski [76] in 1976 using maximum-
space. This 1S In€ space Where events occur, an individy !elihood estimation, but their direct formulation proved to
event occurs as a point at position € A’. This source

be intractable for producing maximum-likelihood estimates. It
space can be a subset Bf (planar SPECT and PETR’ was not made computationally tractable until Shepp and Vardi
(volumetric SPECT and PET)R? x R, (PET in which the P y PP

i Al i tdiaht of th i h . . [84] and Lange and Carson [58] applied the EM method to this
literential ime-of-flight of the annihilation photon pair 1Sggimation problem. Following this work, many subsequent

measured [93])'. and _perhaps oher parameters, _dependm Blications have extended the approach. Recognizing that the
the sensor configuration. The channel,. repr.esentmg the se algorithm will be implemented computationally, the first
system, produces outputs that are points n a channel—outgi.étp is to discretize the source-output space and the channel-
spaceY. A detected event occurs as a point at a randogh,[put space into pixels or voxels, then IV (x),z € A’}
pOSIf'Flon u < Y. TShe Elemfents oYy dlepe_nd on th: Sengorand {M(y),y € Y} denote the source-output and channel-
cor1_|%J2rat|on. In F;E T, for examph@, - (p17p2d, ) and  output Poisson processes on the discrete spaces, ii@re

Y =R x[0,2r), where(py, pz) are the measured positionS yhe nymber of single or annihilation-pair photons occurring
of the detection event in the scintillation crystal of the Angep, pixel x, and M(y) is the number of detection events in

camera, and is the angle of the camera in its orbit. In PET ;.0 The |og-likelihood functional of the channel-output
y parameterizes the flight line of annihilation photons and, ocess becomes

time-of-flight PET, the flight-line parameters along with th

differential propagation time. The channel can map a source I\ = Z () + Z log[(y)] M () (138)

point atx into channel-output point af, or it can delete the vy vy

source point (corresponding to an absorbed photon), and it can

add extraneous points (accounting in part for photon scatteyjhere
A reasonable model for the source, based on the physics o

of radioactive decay, is that the source produces points as ) = Z Aly | 2)p(y [ 2)M@) + poly)- (139)

an inhomogeneous Poisson process, denoted{NyA),

A € o(X)}, having an intensity function that is proportional Depending on the choice of complete data, Politte and

to the concentration of the radionuclide. Lgx(z),» € X} Snyder [74] identify the choice of two algorithms formed by

denote the intensity function of the source. the EM method. The algorithm formed by the EM method
We assume that the channel action on individual souregll be either

points is independent from point to point. Lgi(y|x),z € X,

y € YV} denote the transition probability-density of the chark(+1) () = 30 (4)d a(z) + Z [[3(9 | z)p(y | x)} M(y)

nel; given that the source produces a point:and that this 15 (y)

point is detected, this is the density of the random location

of the detection in the channel-output space. This transition

density of the channel is the normalized point-spread functigp

of the sensor. LeB(y|x) denote the probability that a source

point at x that is headed towards an output locatignis AF+D (1) = AW (1) 71 3 {/3(9 Lx)p(y | x)}M(y)

detected (this is the photon survival probability), and let Ale) = 1™ (y)

alyle) = 1-p5(y | z) be the probability that the source point is (141)

undetected (this is the photon-absorption probability). Finally,

we assume that the channel can introduce extraneous (nods)ending on the choice of complete data, where

points into its output and that these occur as an indepen- B

dent, inhomogeneous Poisson process with interfgity(y), pla)y=1-az)=> Bly|=)ply | 2)

y € Y} It follows from these assumptions, as was dis- yeY

he problem is to estimate the source intensity given the

zeEX

yey
(140)
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and where efficiency, pattern noise, bad pixels, and charge-transfer in-
) N efficiency. By assumption, the number of photoconversions is
[ (y) = /Xﬁ(y | 2)p(y | )X () de + po(y).  (142)  independent from pixel to pixel. The process of reading out

] . the pixel values results in the channel-output process
While these two EM algorithms converge towards the same

limit point, their convergence rates differ, with the second one  R(y) = M(y) + Mo(y) + G(v), yey (144)
converging more rapidly [74]. This shows that the choice of
complete data does influence algorithm behavior. where {My(y),y € YV} is a Poisson-distributed process that
The SPECT and PET inverse problems are ill-posed, a@counts for extraneous thermoelectrons and for offset bias in
that regularization to stabilize solutions is needed. Sieves ahé CCD array, andG(y),y € YV} is a Gaussian-distributed
roughness penalties have been used for this purpose [61], [f#hcess accounting for noise in the readout amplifier integrated
[89]. into the CCD array circuit [88]. The processas(-), Mo(-),
Data acquired in optical imaging systems are also ofteind G(-) are mutually independent and independent from
modeled as Poisson-distributed. One important area wheigel to pixel. The mean-value function fdiMo(y),y € V}
such models along with information-based image recoveiy assumed to be the known functigmo(y),y € YV}, and
has been used effectively is in addressing the long-standifg(y),y € Y} is assumed to have a constant mearand
and difficult problem faced by astronomers of forming imvariance 2.
ages of objects seen through clear-air atmospheric turbulenceror imagation, it is convenient to embed the scene in a
Roggemann and Welsh [77] review the classic methods Iefpothetical stochastic process, which can be regarded as
Labeyrie (recovery from Fourier modulus), of Knox andhe output of the source in the source-channel model. Thus
Thompson (recovery from squared Fourier modulus or seconge imagine a Poisson-distributed proce&¥ (z),z € X'}
order correlations), and of Weigelt (recovery from third-ordetfaving intensity{\(z),z € X’}; one can regard the points
correlations) developed and used effectively by astronomeiSthis process as “photons” emanating from the scene. The
for this problem. A new method of recovery of an object'source output is the set of points (or counts in the discrete
image from known second-order and higher order correlatipiodel) of this hypothetical process in the source space
functions of the image has been developed by Snyder ankis contrived source model is legitimate because the photo-
Schulz [79], [80], [86], based on a Poisson data model and thenversion proceséM (y),y € Y} will be a Poisson process
use of maximum-likelihood estimation. Paxman, Schulz, angith mean function{.:(y),v € Y} when the source output
Fienup [72] and Seldin and Paxman [81] have introduced{&(y),y € Y} is a Poisson process with mean function
new data-collection approach in which multiple, phase-diverga(y),y € Y} and
snapshots of an object seen through turbulence are used with
a Poisson data model and constrained maximum-likelihood .(y) = TB3(y) Z hy | z)A(x), ye . (145)
estimation to produce substantially improved object images. zEX

The channel, representing the camera, maps the output of the
source into the channel-output procdd¥(y),v € V}, which

The following source-channel model is a useful framework 5 pgisson—Gaussian mixture. The log-likelihood functional
for characterizing a wide variety of applications when &, he channel output is

charge-couple-device (CCD) camera is used to image scenes
in the visible and infrared portions of the spectrum. A discret (1 n(y)

model is used because a CCD camera produces data frogz)gzz\bg(n(y)![“(y)+“0(y)] exp{—[n(y)+ro(W)l}
pixel array and, also, because an EM algorithm will be used to yey
perform imagation. We envision a scene that emits incoherent

E. An Application Modeled by Poisson—-Gaussian Data

exp{—[R(y) - nly) - m12/202}).

radiation that propagates towards a CCD camera. Light falling .\/27r02
onto the focal plane of the camera has an intensity given by (146)
i)=Y hlylo)\z), yey (143)  selecting complete data and applying the EM algorithm yields
TeX [88]

where{h(y|z),z € X,y € Y} is the point-spread function of _ R 1 Blyply | 2)

the camera{\(z), « € X'} is the radiance of the scene, and ar&* 1) (z) = A (z) — 3 PP r(R(y), i, o]
: : i (x) == | a®(y)

the source-output and channel-output spaces, respectively. For yey

light that propagates through free space or through short paths (147)

in the atmosphere, the point-spread function is determined by

the configuration of optical elements in the camera [39], [40lvhere

including pupil shape, obscurations, and any aberrations that

ey

are present. The numbéd () of photoelectron conversions f (n/n!) exp[—(r — n — m)?/20?]
occurring during dr’-second exposure interval in a pixelsat flr o] = O:=0 (148)
in the CCD array is Poisson-distributed with meaty) = S (1 /)" expv[—(r — n — m)? /202]

TB3(y)i(y), where 8(y) accounts for nonuniform quantum n=0
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