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Abstract

We establish lower bounds on minimax risks for distributed statistical estima-
tion under a communication budget. Such lower bounds revealthe minimum
amount of communication required by any procedure to achieve the centralized
minimax-optimal rates for statistical estimation. We study two classes of proto-
cols: one in which machines send messages independently, and a second allowing
for interactive communication. We establish lower bounds for several problems,
including various types of location models, as well as for parameter estimation in
regression models.

1 Introduction

Rapid growth in the size and scale of datasets has fueled increasing interest in statistical estimation
in distributed settings [see, e.g., 5, 23, 7, 9, 17, 2]. Modern data sets are often too large to be stored
on a single machine, so that it is natural to consider methodsthat involve multiple machines, each
assigned a smaller subset of the full dataset. An essential design parameter in such methods is the
amount of communication required between machines or chips. Bandwidth limitations on network
and inter-chip communication often impose significant bottlenecks on algorithmic efficiency.

The focus of the current paper is the communication complexity of various classes of statistical
estimation problems. More formally, suppose that we are interested in estimating the parameterθ
of some unknown distributionP , based on a dataset ofN i.i.d. samples. In the classical setting,
one considerscentralized estimatorsthat have access to allN samples, and for a given estimation
problem, the optimal performance over all centralized schemes can be characterized by the minimax
rate. By way of contrast, in the distributed setting, one is given m different machines, and each
machine is assigned a subset of samples of sizen = ⌊N

m⌋. Each machine is allowed to perform
arbitrary operations on its own subset of data, and then communicate results of these intermediate
computations to the other processors, or to a central fusionnode. In this paper, we try to answer the
following question: what is the minimal number of bits that must be exchanged in order to achieve
the optimal estimation error achievable by centralized schemes?

There is a substantial literature on communication complexity in many settings, including function
computation in theoretical computer science (e.g., [21, 1,13]), decentralized detection and estima-
tion (e.g., [18, 16, 15]) and information theory [11]. For instance, Luo [15] considers architectures
in which machines may send only a single bit to a centralized processor; for certain problems, he
shows that if each machine receives a single one-dimensional sample, it is possible to achieve the
optimal centralized rate up to constant factors. Among other contributions, Balcan et al. [2] pro-
vide lower bounds for Probably Approximately Correct (PAC)learning in the distributed setting;
however, their stated lower bounds do not involve the numberof machines. In contrast, our work
focuses on scaling issues, both in terms of the number of machines as well as the dimensionality of
the underlying data, and formalizes the problem in terms of statistical minimax theory.
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More precisely, we study the following problem: given a budget B of the total number of bits that
may be communicated from them distributed datasets, what is the minimax risk of any estimator
based on the communicated messages? While there is a rich literature connecting information-
theoretic techniques with the risk of statistical estimators (e.g. [12, 22, 20, 19]), little of it character-
izes the effects of limiting communication. In this paper, we present some minimax lower bounds for
distributed statistical estimation. By comparing our lower bounds with results in statistical estima-
tion, we can identify the minimal communication cost that a distributed estimator must pay to have
performance comparable to classical centralized estimators. Moreover, we show how to leverage
recent work [23] so as to achieve these fundamental limits.

2 Problem setting and notation

We begin with a formal description of the statistical estimation problems considered here. Let
P denote a family of distributions and letθ : P → Θ ⊆ R

d denote a function defined onP.
A canonical example throughout the paper is the problem of mean estimation, in whichθ(P ) =
EP [X]. Suppose that, for some fixed but unknown memberP of P, there arem sets of data stored
on individual machines, where each subsetX(i) is an i.i.d. sample of sizen from the unknown
distributionP .1 Given this distributed collection of local data sets, our goal is to estimateθ(P )
based on them samplesX(1), . . . ,X(m), but using limited communication.

We consider a class of distributed protocolsΠ, in which at each roundt = 1, 2, . . ., machinei sends a
messageYt,i that is a measurable function of the local dataX(i), and potentially of past messages. It
is convenient to model this message as being sent to a centralfusion center. LetY t = {Yt,i}i∈[m] de-
note the collection of all messages sent at roundt. Given a total ofT rounds, the protocolΠ collects
the sequence(Y 1, . . . , Y T ), and constructs an estimatorθ̂ := θ̂(Y 1, . . . , Y T ). The lengthLt,i of
messageYt,i is the minimal number of bits required to encode it, and the total L =

∑T
t=1

∑m
i=1 Lt,i

of all messages sent corresponds to thetotal communication costof the protocol. Note that the com-
munication cost is a random variable, since the length of themessages may depend on the data, and
the protocol may introduce auxiliary randomness.

It is useful to distinguish two different classes, namelyindependentversusinteractiveprotocols. An
independent protocolΠ is based on a single round (T = 1) of communication, in which machine
i sends messageY1,i to the fusion center. Since there are no past messages, the messageY1,i can
depend only on the local sampleX(i). Given a familyP, the class of independent protocols with
budgetB ≥ 0 is given by

Aind(B,P) =

{
independent protocolsΠ such that sup

P∈P
EP

[ m∑

i=1

Li

]
≤ B

}
. (1)

(For simplicity, we useYi to indicate the message sent from processori andLi to denote its length
in the independent case.) It can be useful in some situationsto have more granular control on the
amount of communication, in particular by enforcing budgets on a per-machine basis. In such cases,
we introduce the shorthandB1:m = (B1, . . . , Bm) and define

Aind(B1:m,P) =

{
independent protocolsΠ such that sup

P∈P
EP [Li] ≤ Bi for i ∈ [m]

}
. (2)

In contrast to independent protocols, the class of interactive protocols allows for interaction at dif-
ferent stages of the message passing process. In particular, suppose that machinei sends message
Yt,i to the fusion center at timet, who then posts it on a “public blackboard,” where all machines can
readYt,i. We think of this as a global broadcast system, which may be natural in settings in which
processors have limited power or upstream capacity, but thecentralized fusion center can send mes-
sages without limit. In the interactive setting, the message Yt,i should be viewed as a measurable
function of the local dataX(i), and the past messagesY 1:t−1. The family of interactive protocols
with budgetB ≥ 0 is given by

Ainter(B,P) =

{
interactive protocolsΠ such that sup

P∈P
EP [L] ≤ B

}
. (3)

1 Although we assume in this paper that every machine has the same amountof data, our technique gener-
alizes easily to prove tight lower bounds for distinct data sizes on different machines.
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We conclude this section by defining the minimax framework used throughout this paper. We wish to
characterize the best achievable performance of estimators θ̂ that are functions of only the messages
(Y 1, . . . , Y T ). We measure the quality of a protocol and estimatorθ̂ by the mean-squared error

EP,Π

[
‖θ̂(Y 1, . . . , Y T )− θ(P )‖22

]
,

where the expectation is taken with respect to the protocolΠ and them i.i.d. samplesX(i) of size
n from distributionP . Given a class of distributionsP, parameterθ : P → Θ, and communication
budgetB, theminimax risk for independent protocolsis

M
ind(θ,P, B) := inf

Π∈Aind(B,P)
inf

bθ
sup
P∈P

EP,Π

[∥∥∥θ̂(Y1, . . . , Ym)− θ(P )
∥∥∥

2

2

]
. (4)

Here, the infimum is taken jointly over all independent procotolsΠ that satisfy the budget constraint
B, and over all estimatorŝθ that are measurable functions of the messages in the protocol. This min-
imax risk should also be understood to depend on both the number of machinesm and the individual
sample sizen. Theminimax risk for interactive protocols, denoted byMinter, is defined analogously,
where the infimum is instead taken over the class of interactive protocols. These communication-
dependent minimax risks are the central objects in this paper: they provide a sharp characterization
of the optimal rate of statistical estimation as a function of the communication budgetB.

3 Main results

With our setup in place, we now turn to the statement of our main results, along with some discussion
of their consequences.

3.1 Lower bound based on metric entropy

We begin with a general but relatively naive lower bound thatdepends only on the geometric struc-
ture of the parameter space, as captured by its metric entropy. In particular, given a subsetΘ ⊂ R

d,
we say{θ1, . . . , θK} are δ-separated if

∥∥θi − θj
∥∥

2
≥ δ for i 6= j. We then define thepacking

entropyof Θ as

log MΘ(δ) := log2

[
max

{
K ∈ N | {θ1, . . . , θ

K} ⊂ Θ areδ-separated
}]

. (5)

The functionθ 7→ log MΘ(δ) is left-continuous and non-increasing inδ, so we may define the
inverse functionlog M−1

Θ (B) := sup{δ | log MΘ(δ) ≥ B}.

Proposition 1 For any family of distributionsP and parameter setΘ = θ(P), the interactive
minimax risk is lower bounded as

M
inter(θ,P, B) ≥

(1

4
log M−1

Θ (2B + 2)
)2

. (6)

Of course, the same lower bound also holds forM
ind(θ,P, B), since any independent protocol is

a special case of an interactive protocol. Although Proposition 1 is a relatively generic statement,
not exploiting any particular structure of the problem, it is in general unimprovable by more than
constant factors, as the following example illustrates.

Example: Bounded mean estimation. Suppose that our goal is to estimate the meanθ = θ(P )
of a class of distributionsP supported on the interval[0, 1], so thatΘ = θ(P) = [0, 1]. Suppose
that a single machine (m = 1) receivesn i.i.d. observationsXi according toP . Since the packing
entropy is lower bounded aslog MΘ(δ) ≥ log(1/δ), the lower bound (6) implies

M
ind(θ,P, B) ≥M

inter(θ,P, B) ≥ e−2

4
e−2B .

Thus, settingB = 1
2 log n yields the lower boundMind(θ,P([0, 1]), B) ≥ e−2

4n . This lower bound
is sharp up to the constant pre-factor, since it can be achieved by a simple method. Given itsn
observations, the single machine can compute the sample mean Xn = 1

n

∑n
i=1 Xi. Since the

sample mean lies in the interval[0, 1], it can be quantized to accuracy1/n usinglog(n) bits, and this
quantized version̂θ can be transmitted. A straightforward calculation shows that E[(θ̂ − θ)2] ≤ 2

n ,
so Proposition 1 yields an order-optimal bound in this case.

3



3.2 Multi-machine settings

We now turn to the more interesting multi-machine setting (m > 1). Let us study how thebudget
B—meaning the of bits required to achieve the minimax rate—scales with the number of machines
m. We begin by considering the uniform location familyU = {Pθ, θ ∈ [−1, 1]}, wherePθ is
the uniform distribution on the interval[θ − 1, θ + 1]. For this problem, a direct application of
Proposition 1 gives a nearly sharp result.

Corollary 1 Consider the uniform location familyU with n i.i.d. observations per machine:

(a) Whenever the communication budget is upper bounded asB ≤ log(mn), there is a univer-
sal constantc such that

M
inter(θ,U , B) ≥ c

(mn)2
.

(b) Conversely, given a budget ofB =
[
2+2 ln m

]
log(mn) bits, there is a universal constant

c′ such that

M
inter(θ,U , B) ≤ c′

(mn)2
.

If each ofm machines receivesn observations, we have a total sample size ofmn, so the minimax
rate over all centralized procedures scales as1/(mn)2 (for instance, see [14]). Consequently, Corol-
lary 1(b) shows that the number of bits required to achieve the centralized rate has onlylogarithmic
dependence on the numberm of machines. Part (a) shows that this logarithmic dependence onm is
unavoidable.

It is natural to wonder whether such logarithmic dependenceholds more generally. The following
result shows that it does not: for some problems, the dependence onm must be (nearly) linear. In
particular, we consider estimation in a normal location family model, where each machine receives
an i.i.d. sample of sizen from a normal distributionN(θ, σ2) with unknown meanθ.

Theorem 1 For the univariate normal familyN = {N(θ, σ2) | θ ∈ [−1, 1]}, there is a universal
constantc such that

M
inter(θ,N , B) ≥ c

σ2

mn
min

{
mn

σ2
,

m

log m
,

m

B log m

}
. (7)

The centralized minimax rate for estimating a univariate normal mean based onmn observations
is σ2

mn ; consequently, the lower bound (7) shows that at leastB = Ω
(

m
log m

)
bits are required for a

decentralized procedure to match the centralized rate in this case. This type of scaling is dramati-
cally different than the logarithmic scaling for the uniform family, showing that establishing sharp
communication-based lower bounds requires careful study of the underlying family of distributions.

3.3 Independent protocols in multi-machine settings

Departing from the interactive setting, in this section we focus on independent protocols, providing
somewhat more general results than those for interactive protocols. We first provide lower bounds
for the problem of mean estimation in the parameter for ad-dimensional normal location family

Nd = {N(θ, σ2Id×d) | θ ∈ Θ = [−1, 1]d}, (8)

Theorem 2 For i = 1, . . . ,m, assume that each machine has communication budgetBi, and re-
ceives an i.i.d. sample of sizen from a distributionP ∈ Nd. There exists a universal (numerical)
constantc such that

M
ind(θ,Nd, B1:m) ≥ c

σ2d

mn
min

{
mn

σ2
,

m

log m
,

m(∑m
i=1 min{1, Bi

d }
)

log m

}
. (9)

Given centralized access to the fullmn-sized sample, a reasonable procedure would be to compute
the sample mean, leading to an estimate with mean-squared error σ2d

mn , which is minimax optimal.
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Consequently, Theorem 2 shows that to achieve an order-optimal mean-squared error, the total num-
ber of bits communicated must (nearly) scale with the product of the dimensiond and number of
machinesm, that is, asdm/ log m. If we ignore logarithmic factors, this lower bound is achievable
by a simple procedure: each machine computes the sample meanof its local data and quantizes each
coordinate to precisionσ2/n usingO(d log(n/σ2)) bits. These quantized sample averages are com-
municated to the fusion center usingB = O(dm log(n/σ2)) total bits. The fusion center averages
them, obtaining an estimate with mean-squared error of optimal orderσ2d/(mn) as required.

We finish this section by presenting a result that is sharp up to numerical constant prefactors. It is a
minimax lower bound for mean estimation over the familyPd = {P supported on[−1, 1]d}.

Proposition 2 Assume that each ofm machines receives a single sample (n = 1) from a distribution
in Pd. There exists a universal (numerical) constantc such that

M
ind(θ,Pd, B1:m) ≥ c

d

m
min

{
m,

m
∑m

i=1 min{1, Bi

d }

}
, (10)

whereBi is the budget for machinei.

The standard minimax rate ford-dimensional mean estimation scales asd/m. The lower bound (10)
shows that in order to achieve this scaling, we must have

∑m
i=1 min{1, Bi

d } & m, showing that each
machine must sendBi & d bits.

Moreover, this lower bound is achievable by a simple scheme.Suppose that machinei receives
a d-dimensional vectorXi ∈ [−1, 1]d. Based onXi, it generates a Bernoulli random vector
Zi = (Zi1, . . . , Zid) with Zij ∈ {0, 1} taking the value1 with probability (1 + Xij)/2, indepen-
dently across coordinates. Machinei usesd bits to send the vectorZi ∈ {0, 1}d to the fusion center.
The fusion center then computes the averageθ̂ = 1

m

∑m
i=1(2Zi − 1). This average is unbiased, and

its expected squared error is bounded byd/m.

4 Consequences for regression

In this section, we turn to identifying the minimax rates fora pair of important estimation problems:
linear regression and probit regression.

4.1 Linear regression

We consider a distributed instantiation of linear regression with fixed design matrices. Concretely,
suppose that each ofm machines has stored a fixed design matrixA(i) ∈ R

n×d and then observes a
response vectorb(i) ∈ R

d from the standard linear regression model

b(i) = A(i)θ + ε(i), (11)

whereε(i) ∼ N(0, σ2In×n) is a noise vector. Our goal is to estimate unknown regressionvector
θ ∈ Θ = [−1, 1]d, shared across all machines, in a distributed manner, To state our result, we
assume uniform upper and lower bounds on the eigenvalues of the rescaled design matrices, namely

0 < λmin ≤ min
i∈{1,...,m}

ηmin(A(i))√
n

and max
i∈{1,...,m}

ηmax(A
(i))√

n
≤ λmax. (12)

Corollary 2 Consider an instance of the linear regression model(11)under condition(12).

(a) Then there is a universal positive constantc such that

M
ind(θ,P, B1:m) ≥ c

σ2d

mn
min

{
mn

σ2
,

m

λ2
max log m

,
m

λ2
max

(∑m
i=1 min{1, Bi

d }
)
log m

}
.

(b) Conversely, given budgetsBi ≥ d log(mn) for i = 1, . . . ,m, there is a universal constant
c′ such that

M
ind(θ,P, B1:m) ≤ c′

λ2
min

σ2d

mn
.
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It is a classical fact (e.g. [14]) that the minimax rate ford-dimensional linear regression scales as
dσ2/(nm). Part (a) of Corollary 2 shows this optimal rate is attainable only if the budgetBi at each
machine is of the orderd/ log(m), meaning that the total budgetB =

∑m
i=1 Bi must grow as dm

log m .
Part (b) of the corollary shows that the minimax rate is achievable with budgets that match the lower
bound up to logarithmic factors.

Proof: The proof of part (b) follows from techniques of Zhang et al. [23], who show that solving
each regression problem separately and then performing a form of approximate averaging, in which
each machine usesBi = d log(mn) bits, achieves the minimax rate up to constant prefactors.

To prove part (a), we show that solving an arbitrary Gaussianmean estimation problem can be
reduced to solving a specially constructed linear regression problem. This reduction allows us to
apply the lower bound from Theorem 2. Givenθ ∈ Θ, consider the Gaussian mean model

X(i) = θ + w(i), where w(i) ∼ N

(
0,

σ2

λ2
maxn

Id×d

)
.

Each machinei has its own design matrixA(i), and we use it to construct a response vector
b(i) ∈ R

n. Sinceηmax(A
(i)/
√

n) ≤ λmax, the matrixΣ(i) := σ2In×n − σ2

λ2
maxnA(i)(A(i))⊤ is

positive semidefinite. Consequently, we may form a responsevector via

b(i) = A(i)X(i) + z(i), z(i) ∼ N
(
0,Σ(i)

)
is drawn independently ofw(i). (13)

The independence ofw(i) and z(i) guarantees thatb(i) ∼ N(A(i)θ, σ2In×n), so that the pair
(b(i), A(i)) is faithful to the regression model (11).

Now consider any protocolΠ ∈ Aind(B,P) that can solve any regression problem to within accu-
racy δ, so thatE[‖θ̂ − θ‖22] ≤ δ2. By the previously described reduction, the protocolΠ can also
solve the mean estimation problem to accuracyδ, in particular via the pair(A(i), b(i)) constructed
via expression (13). Combined with this reduction, the corollary thus follows from Theorem 2.�

4.2 Probit regression

We now turn to the problem of binary classification, in particular considering the probit re-
gression model. As in the previous section, each ofm machines has a fixed design matrix
A(i) ∈ R

n×d, whereA(i,k) denotes thekth row of A(i). Machinei receivesn binary responses
Z(i) = (Z(i,1), . . . , Z(i,n)), drawn from the conditional distribution

P(Z(i,k) = 1 | A(i,k), θ) = Φ(A(i,k)θ) for some fixedθ ∈ Θ = [−1, 1]d, (14)

whereΦ(·) denotes the standard normal CDF. The log-likelihood of the probit model (14) is con-
cave [4, Exercise 3.54]. Under condition (12) on the design matrices, we have:

Corollary 3 Consider the probit model(14)under condition(12). Then

(a) There is a universal constantc such that

M
ind(θ,P, B1:m) ≥ c

d

mn
min

{
mn,

m

λ2
max log m

,
m

λ2
max

(∑m
i=1 min{1, Bi

d }
)

log m

}
.

(b) Conversely, given budgetsBi ≥ d log(mn) for i = 1, . . . ,m, there is a universal constant
c′ such that

M
ind(θ,P, B1:m) ≤ c′

λ2
min

d

mn
.

Proof: As in the previous case with linear regression, Zhang et al.’s study of distributed convex
optimization [23] gives part (b): each machine solves the local probit regression separately, after
which each machine sendsBi = d log(mn) bits to average its local solution.

To prove part (a), we show that linear regression problems can be solved via estimation in a specially
constructed probit model. Consider an arbitraryθ ∈ Θ; assume we have a regression problem of the
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form (11) with noise varianceσ2 = 1. We construct the binary responses for our probit regression
(Z(i,1), . . . , Z(i,n)) by

Z(i,k) =

{
1 if b(i,k) ≥ 0,

0 otherwise.
(15)

By construction, we haveP(Z(i,k) = 1 | A(i), θ) = Φ(A(i,k)θ) as desired for our model (14). By
inspection, any protocolΠ ∈ Aind(B,P) solving the probit regression problem provides an esti-
mator with the same error (risk) as the original linear regression problem via the construction (15).
Corollary 2 provides the desired lower bound. �

5 Proof sketches for main results

We now give an outline of the proof of each of our main results (Theorems 1 and 2), providing a
more detailed proof sketch for Proposition 2, since it displays techniques common to our arguments.

5.1 Broad outline

Most of our lower bounds follow the same basic strategy of reducing an estimation problem to
a testing problem. Following this reduction, we then develop inequalities relating the probability
of error in the test to the number of bits contained in the messagesYi sent from each machine.
Establishing these links is the most technically challenging aspect.

Our reduction from estimation to testing is somewhat more general than the classical reductions
(e.g., [22, 20]), since we do not map the original estimationproblem to a strict test, but rather a
test that allows some errors. LetV denote an index set of finite cardinality, whereν ∈ V indexes a
family of probability distributions{P (· | ν)}ν∈V . For each member of this family, associate with a
parameterθν := θ(P (· | ν)) ∈ Θ, whereΘ denotes the parameter space. In our proofs applicable to
d-dimensional problems, we setV = {−1, 1}d, and we index vectorsθν by ν ∈ V. Now, we sample
V uniformly at random fromV. Conditional onV = ν, we then sampleX from a distribution
PX(· | V = ν) satisfyingθν := θ(PX(· | ν)) = δν, whereδ > 0 is a fixed quantity that we control.
We definedham(ν, ν′) to be the Hamming distance betweenν, ν′ ∈ V. This construction gives

‖θν − θν′‖2 = 2δ
√

dham(ν, ν′).

Fixing t ∈ R, the following lemma reduces the problem of estimatingθ to finding a pointν ∈ V
within distancet of the random variableV . The result extends a result of Duchi and Wainwright
[8]; for completeness we provide a proof in Appendix H.

Lemma 1 LetV be uniformly sampled fromV. For any estimator̂θ and anyt ∈ R, we have

sup
P∈P

E[‖θ̂ − θ(P )‖22] ≥ δ2(⌊t⌋+ 1) inf
bν

P (dham(ν̂, V ) > t) ,

where the infimum ranges over all testing functions.

Lemma 1 shows that minimax lower lower bound can be derived byshowing that, for somet > 0
to be chosen, it is difficult to identifyV within a radius oft. The following extension of Fano’s
inequality [8] can be used to control this type of error probability:

Lemma 2 LetV → X → V̂ be a Markov chain, whereV is uniform onV. For anyt ∈ R, we have

P(dham(V̂ , V ) > t) ≥ 1− I(V ;X) + log 2

log |V|
Nt

,

whereNt := max
ν∈V
|{ν′ ∈ V : dham(ν, ν′) ≤ t}| is the size of the largestt-neighborhood inV.

Lemma 2 allows flexibility in the application of the minimax bounds from Lemma 1. If there is a
large setV for which it is easy to controlI(V ;X), whereas neighborhoods inV are relatively small
(i.e.,Nt is small), then we can obtain sharp lower bounds.
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In a distributed protocol, we have a Markov chainV → X → Y , whereY denotes the messages the
different machines send. Based on the messagesY , we consider an arbitrary estimatorθ̂(Y ). For
0 ≤ t ≤ ⌈d/3⌉, we haveNt =

∑t
τ=0

(
d
τ

)
≤ 2
(
d
t

)
. Since

(
d
t

)
≤ (de/t)t, for t ≤ d/6 we have

log
|V|
Nt
≥ d log 2− log 2

(
d

t

)
≥ d log 2− d

6
log(6e)− log 2 = d log

2

21/d 6
√

6e
>

d

6

for d ≥ 12 (the cased < 12 can be checked directly). Thus, combining Lemma 1 and Lemma 2
(using the Markov chainV → X → Y → θ̂), we find that fort = ⌊d/6⌋,

sup
P∈P

E

[
‖θ̂(Y )− θ(P )‖22

]
≥ δ2(⌊d/6⌋+ 1)

(
1− I(Y ;V ) + log 2

d/6

)
. (16)

With inequality (16) in hand, it then remains to upper bound the mutual informationI(Y ;V ), which
is the main technical content of each of our results.

5.2 Proof sketch of Proposition 2

Following the general outline of the previous section, letV be uniform onV = {−1, 1}d. Letting
0 < δ ≤ 1 be a positive number, fori ∈ [m] we independently sampleX(i) ∈ R

d according to

P (X
(i)
j = νj | V = ν) =

1 + δ

2
and P (X

(i)
j = −νj | V = ν) =

1− δ

2
. (17)

Under this distribution, we can give a sharp characterization of the mutual informationI(V ;Yi). In
particular, we show in Appendix B that under the sampling distribution (17), there exists a numerical
constantc such that

I(V ;Yi) ≤ cδ2I(X(i);Yi). (18)

Since the random variableX takes discrete values, we have

I(X(i);Yi) ≤ min{H(X(i)),H(Yi)} ≤ min{d,H(Yi)}.
Since the expected length of messageYi is bounded byBi, Shannon’s source coding theorem [6]
implies thatH(Yi) ≤ Bi. In particular, inequality (18) establishes a link betweenthe initial distri-
bution (17) and the number of bits used to transmit information, that is,

I(V ;Yi) ≤ cδ2 min{d,Bi}. (19)

We can now apply the quantitative data processing inequality (19) in the bound (16). By the in-
dependence of the communication scheme,I(V ;Y1:m) ≤ ∑m

i=1 I(V ;Yi), and thus inequality (16)
simplifies to

M
ind(θ,P, B1:m) ≥ δ2(⌊d/6⌋+ 1)

(
1− cδ2

∑m
i=1 min{d,Bi}+ log 2

d/6

)
.

Assumingd ≥ 9, so1 − 6 log 2/d > 1/2, we see that choosingδ2 = min{1, d
24c

P

m
i=1 min{Bi,d}}

implies

M
ind(θ,P, B1:m) ≥ δ2(⌊d/6⌋+ 1)

4
=
⌊d/6⌋+ 1

4
min

{
1,

d

24c
∑m

i=1 min{Bi, d}

}
.

Rearranging slightly gives the statement of the proposition.

Acknowledgments

We thank the anonymous reviewers for their helpful feedbackand comments. JCD was supported
by a Facebook Graduate Fellowship. Our work was supported inpart by the U.S. Army Research
Laboratory, U.S. Army Research Office under grant number W911NF-11-1-0391, and Office of
Naval Research MURI grant N00014-11-1-0688.

8



References

[1] H. Abelson. Lower bounds on information transfer in distributed computations.Journal of the
ACM, 27(2):384–392, 1980.

[2] M.-F. Balcan, A. Blum, S. Fine, and Y. Mansour. Distributed learning, communication com-
plexity and privacy. InProceedings of the Twenty Fifth Annual Conference on Computational
Learning Theory, 2012. URLhttp://arxiv.org/abs/1204.3514.

[3] K. Ball. An elementary introduction to modern convex geometry. In S. Levy, editor,Flavors
of Geometry, pages 1–58. MSRI Publications, 1997.

[4] S. Boyd and L. Vandenberghe.Convex Optimization. Cambridge University Press, 2004.

[5] S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein. Distributed optimization and statis-
tical learning via the alternating direction method of multipliers. Foundations and Trends in
Machine Learning, 3(1), 2011.

[6] T. M. Cover and J. A. Thomas.Elements of Information Theory, Second Edition. Wiley, 2006.

[7] O. Dekel, R. Gilad-Bachrach, O. Shamir, and L. Xiao. Optimal distributed online prediction
using mini-batches.Journal of Machine Learning Research, 13:165–202, 2012.

[8] J. C. Duchi and M. J. Wainwright. Distance-based and continuum fano inequalities with appli-
cations to statistical estimation.arXiv [cs.IT], to appear, 2013.

[9] J. C. Duchi, A. Agarwal, and M. J. Wainwright. Dual averaging for distributed optimization:
convergence analysis and network scaling.IEEE Transactions on Automatic Control, 57(3):
592–606, 2012.

[10] J. C. Duchi, M. I. Jordan, and M. J. Wainwright. Local privacy and statistical minimax rates.
arXiv:1302.3203 [math.ST], 2013. URLhttp://arXiv.org/abs/1302.3203.

[11] S. Han and S. Amari. Statistical inference under multiterminal data compression.IEEE Trans-
actions on Information Theory, 44(6):2300–2324, 1998.

[12] I. A. Ibragimov and R. Z. Has’minskii.Statistical Estimation: Asymptotic Theory. Springer-
Verlag, 1981.

[13] E. Kushilevitz and N. Nisan.Communication Complexity. Cambridge University Press, 1997.

[14] E. L. Lehmann and G. Casella.Theory of Point Estimation, Second Edition. Springer, 1998.

[15] Z.-Q. Luo. Universal decentralized estimation in a bandwidth constrained sensor network.
IEEE Transactions on Information Theory, 51(6):2210–2219, 2005.

[16] Z.-Q. Luo and J. N. Tsitsiklis. Data fusion with minimalcommunication.IEEE Transactions
on Information Theory, 40(5):1551–1563, 1994.

[17] R. McDonald, K. Hall, and G. Mann. Distributed trainingstrategies for the structured percep-
tron. In North American Chapter of the Association for Computational Linguistics (NAACL),
2010.

[18] J. N. Tsitsiklis. Decentralized detection. InAdvances in Signal Processing, Vol. 2, pages
297–344. JAI Press, 1993.

[19] A. B. Tsybakov.Introduction to Nonparametric Estimation. Springer, 2009.

[20] Y. Yang and A. Barron. Information-theoretic determination of minimax rates of convergence.
Annals of Statistics, 27(5):1564–1599, 1999.

[21] A. C.-C. Yao. Some complexity questions related to distributive computing (preliminary re-
port). In Proceedings of the Eleventh Annual ACM Symposium on the Theory of Computing,
pages 209–213. ACM, 1979.

[22] B. Yu. Assouad, Fano, and Le Cam. InFestschrift for Lucien Le Cam, pages 423–435.
Springer-Verlag, 1997.

[23] Y. Zhang, J. C. Duchi, and M. J. Wainwright. Communication-efficient algorithms for statisti-
cal optimization. InAdvances in Neural Information Processing Systems 26, 2012.

9

http://arxiv.org/abs/1204.3514
http://arXiv.org/abs/1302.3203


Appendices

A Notation and proof setup

In these appendices, we provide the proofs of all our major results. Note that we prove the theorems
out of the order in which they are presented: many of the theorems build on one another, so we
present them in (rough) order of most basic to most complex. Before proceeding to the proofs
proper, we give notation.

Notation in proofs

The distributed machines are indexed byi ∈ {1, . . . ,m}. For machinei, it receives local dataset
Di. If Di contains multiple examples, we may denote thek-th example byX(i,k). If each example
has more than one coordinate, then thej-th coordinate is represented byX

(i,k)
j .

For a random variableX, we letPX denote the probability measure onX, so thatPX(S) = P (X ∈
S), and we abuse notation by writingpX for the probability mass function or density ofX, depend-
ing on the situation, so thatpX(x) = P (X = x) in the discrete case and denotes the density ofX
atx whenpX is a density. For discrete random variableX, we letH(X) = −∑x pX(x) log pX(x)
denote the (Shannon) entropy, and for probability distributionsP,Q on a setX , with densitiesp, q
with respect to a base measureµ, we write the KL-divergence as

Dkl (P ||Q) :=

∫

X
p(x) log

p(x)

q(x)
dµ(x).

The mutual informationI(X;Y ) between random variablesX andY whereY has distributionPY

is defined as

I(X;Y ) := EPX
[Dkl (PY (· | X)||PY (·))] =

∫
Dkl (PY (· | X = x)||PY (·)) dPX(x).

Le Cam’s method

In low-dimensional settings, it is sometimes difficult to apply our incarnation of Fano’s inequality
as outlined in Section 5.1. In these settings, we use a minimax lower bound based on a two-point
family. In this setting, we letV = {−1, 1}, and defineθν = θ(Pν) as usual. Then Le Cam’s
inequality (e.g. [22] or [19, Theorem 2.2]) guarantees thatfor V chosen uniformly asV = 1 or
V = −1 we have

inf
bν

P(ν̂ 6= V ) ≥ 1

2
− 1

2
‖P1 − P−1‖TV .

As a consequence, if by constructionθν = δν, then Lemma 1 implies that

inf
bθ

max
P∈{P1,P−1}

E[‖θ̂ − θ(P )‖22] ≥ δ2

(
1

2
− 1

2
‖P1 − P−1‖TV

)
. (20)

We use arguments based on Le Cam’s method (20) when the dimension d is small.

In addition, it will be useful to have a few simple upper bounds on the distance‖P1 − P−1‖TV. We
claim that if we have the Markov chainV → Y , for any random variableY , then forV chosen
uniformly in a setV = {ν, ν′},

‖PY (· | V = ν)− PY (· | V = ν′)‖2TV ≤ 2I(Y, V ). (21)

To see inequality (21), letPν be shorthand forPY (· | V = ν). The triangle inequality implies that

‖Pν − Pν′‖TV ≤ ‖Pν − (1/2)(Pν + Pν′)‖TV +
1

2
‖Pν − Pν′‖TV ,

and similarly swapping the roles ofν′ andν, whence

‖Pν − Pν′‖TV ≤ 2min{‖Pν − (1/2)(Pν′ + Pν)‖TV , ‖Pν′ − (1/2)(Pν′ + Pν)‖TV}.
By Pinsker’s inequality, we thus have the upper bound

‖Pν − Pν′‖2TV ≤ 2min{Dkl (Pν ||(1/2)(Pν + Pν′)) ,Dkl (Pν′ ||(1/2)(Pν + Pν′))}
≤ Dkl (Pν ||(1/2)(Pν + Pν′)) + Dkl (Pν′ ||(1/2)(Pν + Pν′)) = 2I(Y ;V )

by the definition of mutual information.

10



Tensorization of information

We also require a type of tensorization inequality in each ofour proofs for independent protocols.
WhenYi is constructed based only onX(i), we have

I(V ;Y1:m) =

m∑

i=1

I(V ;Yi | Y1:i−1) =

m∑

i=1

H(Yi | Y1:i−1)−H(Yi | V, Y1:i−1)

≤
m∑

i=1

H(Yi)−H(Yi | V, Y1:i−1)

=

m∑

i=1

H(Yi)−H(Yi | V ) =

m∑

i=1

I(V ;Yi) (22)

where we have used that conditioning reduces entropy andYi is conditionally independent ofY1:i−1

givenV .

B Proof of Proposition 2

The proof of this proposition follows the basic outline described in Section 5.

We first describe the distribution of the stepV → X. Givenν ∈ V, we assume that each machinei
receives ad-dimensional sampleX(i) with coordinates independently sampled according to

P (Xj = νj | ν) =
1 + δνj

2
and P (Xj = −νj | ν) =

1− δνj

2
.

Let δ ≤ 1
4 . Thenθν = Eν [X], and moreover we have the likelihood ratio bound

P (Xj ∈ S | ν)

P (Xj ∈ S | ν′)
≤ 1 + δ

1− δ
≤ exp

(
17

8
δ

)
, and exp

(
17

4
δ

)
≤ 1 + 8δ.

We now present a lemma that relates this ratio bound via a typeof quantitative data processing
inequality. The lemma is actually somewhat more general than what we require, and we prove it in
Section B.1. The result is similar to recent results of Duchiet al. [10, Theorems 1 and 2], who show
similar strong data processing inequalities in the contextof privacy-preserving data analysis. Our
proof, however, is different, as we have the Markov chainV → X → Y , and instead of a likelihood
ratio bound on the channelX → Y , we place a likelihood ratio bound onV → X.

Lemma 3 Let V be sampled uniformly at random from{−1, 1}d. For any(i, j), assume thatX(i)
j

is independent of{X(i)
j′ : j′ 6= j} ∪ {Vj′ : j′ 6= j} givenVj . LetPXj

be the probability measure of

X
(i)
j and assume in addition that

sup
S∈σ(Xj)

PXj
(S | V = ν)

PXj
(S | V = ν′)

≤ exp(α).

Then
I(V ;Yi) ≤ 2(e2α − 1)2I(X(i);Yi).

Lemma 3 provides a quantitative data processing inequalityrelating the mutual information in the
channelX(i) → Yi to that inV → Yi. In particular, we find that

I(V ;Yi) ≤ 2
(
e(17/4)δ − 1

)2

I(X(i);Yi) ≤ 128δ2I(X(i);Yi).

This is the claimed strong data processing inequality (18),which almost completes our proof. To
complete the proof, note thatθ(P (· | V = ν)) = E[Y | ν] = δν. Recalling the tensorization
inequality (22), we also have

I(V ;Y1:m) ≤
m∑

i=1

I(V ;Yi) ≤ 128δ2
m∑

i=1

I(Yi;X
(i)).
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The remainder of the proof we break into two cases: whend ≥ 9 and whend < 9. For the case
d ≥ 9, our proof sketch in Section 5.2, beginning from inequality(18) with c = 128, completes the
proof. Whend < 9, we use a slightly different argument. By a reduction to smaller dimensions, we
may assume without loss of generality thatd = 1, and we setV = {−1, 1}. In this case, Le Cam’s
method (20) coupled with the subsequent information inequality (21) implies that

M
ind(θ,P, B1:m) ≥ δ2

(
1

2
− 1

2

√
2I(V ;Y1:m)

)
. (23)

Applying our previous boundI(V ;Y1:m) ≤ 128δ2
∑m

i=1 I(Yi;X
(i)), and noting thatI(X(i);Yi) ≤

min{H(X(i)),H(Yi)} ≤ min{1,H(Yi)} sinceX(i) ∈ {−1, 1}, we obtain

M
ind(θ,P, B1:m) ≥ δ2

(
1

2
− 8

(
δ2

m∑

i=1

min{1,H(Yi)}
) 1

2

)
.

SinceH(Yi) ≤ Bi by Shannon’s source coding theorem [6], setting

δ2 = min

{
1,

1

400
∑m

i=1 min{1, Bi}

}

completes the proof.

B.1 Proof of Lemma 3

Let Y = Yi; we suppress the dependence on the indexi (and similarly letX = X(i) denote a single
fixed sample). We begin with the simple observation that, by the chain rule for mutual information,

I(V ;Y ) =

d∑

j=1

I(Vj ;Y | V1:j−1).

Using the definition of mutual information and non-negativity of the KL-divergence, we have

I(Vj ;Y | V1:j−1) = EV1:j−1

[
EY

[
Dkl

(
PVj

(· | Y, V1:j−1)||PVj
(· | V1:j−1)

)
| V1:j−1

]]

≤ EV1:j−1

[
EY

[
Dkl

(
PVj

(· | Y, V1:j−1)||PVj
(· | V1:j−1)

)

+Dkl

(
PVj

(· | V1:j−1)||PVj
(· | Y, V1:j−1)

)
| V1:j−1

]]
.

Now, we require an argument that builds off of a technical lemma we present in Appendix G,
Lemma 8. We claim that Lemma 8 implies that

|P (Vj = νj | V1:j−1, Y )− P (Vj = νj | V1:j−1)|
≤ 2(e2α − 1)min {P (Vj = νj | V1:j−1, Y ), P (Vj = νj | V1:j−1)}
×
∥∥PXj

(· | V1:j−1, Y )− PXj
(· | V1:j−1)

∥∥
TV

. (24)

Indeed, making the identification

Vj ↔ A, Xj ↔ B, V1:j−1 ↔ C, Y ↔ D

gives inequality (24), by our independence assumptions. Expanding our KL divergence bound, we
have

Dkl

(
PVj

(· | Y, V1:j−1)||PVj
(· | V1:j−1)

)

≤
∑

νj

(
PVj

(νj | Y, V1:j−1)− PVj
(νj | V1:j−1)

)
log

PVj
(νj | Y, V1:j−1)

PVj
(νj | V1:j−1)

.

Now, using the elementary inequality fora, b ≥ 0 that

∣∣∣log
a

b

∣∣∣ ≤ |a− b|
min{a, b} ,
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we have
(
PVj

(νj | Y, V1:j−1)− PVj
(νj | V1:j−1)

)
log

PVj
(νj | Y, V1:j−1)

PVj
(νj | V1:j−1)

≤ (PVj
(νj | Y, V1:j−1)− PVj

(νj | V1:j−1))
2

min{PVj
(νj | Y, V1:j−1), PVj

(νj | V1:j−1)}
≤ 4(e2α − 1)2 min

{
PVj

(νj | Y, V1:j−1), PVj
(νj | V1:j−1)

}

×
∥∥PXj

(· | V1:j−1, Y )− PXj
(· | V1:j−1)

∥∥2

TV

by inequality (24).

Substituting this into our bound on KL-divergence, we obtain

I(Vj ;Y | V1:j−1)

= EV1:j−1

[
EY

[
Dkl

(
PVj

(· | Y, V1:j−1)||PVj
(· | V1:j−1)

)
| V1:j−1

]]

≤ 4(e2α − 1)2EV1:j−1

[
EY

[∥∥PXj
(· | V1:j−1, Y )− PXj

(· | V1:j−1)
∥∥2

TV
| V1:j−1

]]
.

Using Pinsker’s inequality, we then find that

EV1:j−1

[
EY

[∥∥PXj
(· | V1:j−1, Y )− PXj

(· | V1:j−1)
∥∥2

TV
| V1:j−1

]]

≤ 1

2
EV1:j−1

[
EY

[
Dkl

(
PXj

(· | Y, V1:j−1)||PXj
(· | V1:j−1)

)
| V1:j−1

]]
=

1

2
I(Xj ;Y | V1:j−1).

In particular, we have

I(Vj ;Y | V1:j−1) ≤ 2
(
e2α − 1

)2
I(Xj ;Y | V1:j−1) (25)

Lastly, we argue thatI(Xj ;Y | V1:j−1) ≤ I(Xj ;Y | X1:j−1). Indeed, we have by definition2 that

I(Xj ;Y | V1:j−1)
(i)
= H(Xj)−H(Xj | Y, V1:j−1)

(ii)

≤ H(Xj)−H(Xj | Y, V1:j−1,X1:j−1)

(iii)
= H(Xj | X1:j−1)−H(Xj | Y,X1:j−1) = I(Xj ;Y | X1:j−1).

Here, equality(i) follows sinceXj is independent ofV1:j−1, inequality(ii) because conditioning
reduces entropy, and equality(iii) becauseXj is independent ofX1:j−1. Thus

I(V ;Y ) =

d∑

j=1

I(Vj ;Y | V1:j−1) ≤ 2(e2α − 1)2
d∑

j=1

I(Xj ;Y | X1:j−1) = 2(e2α − 1)2I(X1:d;Y ),

which completes the proof.

C Proof of Theorem 2

In this section, we represent theith sample by anni sample matrixX(i) ∈ R
d×ni , where thekth

column ofX(i) is X(i,k) and jth row of X(i) is X
(i)
j . As usual, we assume the testing Markov

chainV → X(i) → Yi, as in the setup for our proofs. We assume thatm ≥ 4, since otherwise the
interactive lower bound (Proposition 1) provides a stronger result.

We have the following lemma, which is an analogue of Lemma 3.

Lemma 4 Let V be sampled uniformly at random from{−1, 1}d. For any(i, j), assume thatX(i)
j

is independent of{X(i)
j′ : j′ 6= j} ∪ {Vj′ : j′ 6= j} givenVj . LetPXj

be the probability measure of

X
(i)
j and assume in addition that

sup
S∈σ(Bj)

PXj
(S | V = ν)

PXj
(S | V = ν′)

≤ exp(α).

2We assume thatX is discrete or has a density with respect to Lebesgue measure.
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Define the random variableEj = 1 if X
(i)
j ∈ Bj and 0 otherwise. Then

I(V ;Yi) ≤ 2
(
e4α − 1

)2
I(X(i);Yi) +

d∑

j=1

H(Ej) +

d∑

j=1

P (Ej = 0).

For the next lemma, we assume that as usualV = {−1, 1}d, and the parameterθν has coordinates
given by(θν)j = νjδ. Moreover, we assume that each machinei hasni independent samples from
aN(νδ, σ2I) distribution, soEν [X] = θν . For conciseness we define the shorthand

bi = min

{
128

a2

σ2
H(Yi), d

}
.

Lemma 5 Let a > 0 andδ > 0 be chosen such that
√

niaδ
σ2 ≤ 1.2564

4 for any i ∈ {1, . . . ,m}, and
let h(p) = −p log(p)− (1− p) log(1− p) be binary entropy. Then

I(V ;Yi) ≤
niδ

2

σ2
min

{
128

a2

σ2
H(Yi), d

}
+ dh

(
2 exp

(
− (a−√niδ)

2

2σ2

))

+ 2d exp

(
− (a−√niδ)

2

2σ2

)
.

(26)

With the bound (26) on the mutual informationI(Yi;V ), we may now divide our proof into two
cases: whend ≥ 9 andd < 9. Let us being withd ≥ 9. Recalling our earlier minimax bound (16),
we have—sinceθ(Pν) = δν—that

M
ind(θ,P, B1:m) ≥ δ2(⌊d/6⌋+ 1)

(
1− I(Y1:m;V ) + log 2

d/6

)
.

If we can choose appropriateδ so thatI(Y1:m;V ) < 3/10, then (sinced ≥ 9), we will obtain that
the minimax error is lower bounded byδ2(⌊d/6⌋+ 1)/2, which will complete the proof.

Now, we consider each of the terms in the bound in Lemma 5 in turn, finding settings ofδ anda so
that each is small. Specifically, recalling the assumption thatm ≥ 2, we will find settings ofδ anda
so that the sum is bounded by3/10. We begin with the third term in the bound, where we note that
if

δ2
3 ≤

σ2

25 · 16 log(m)maxi ni
and a = 5σ

√
log m, (27a)

then the condition
√

niaδ
σ2 ≤ 1.2564

4 in Lemma 5 is satisfied. In addition, we have(a − √niδ3)
2 ≥

(5− 1/20)2σ2 log m ≥ 24σ2 log m, so

m∑

i=1

4 exp

(
− (a−√niδ3)

2

2σ2

)
≤ 4m exp (−12 log m) =

4

m11
< 10−6.

For the first term in the bound from Lemma 5, we note that with the identical choice ofa =
5σ
√

n log m, by taking

δ2
1 ≤

dσ2

10
∑m

i=1 bini
, (27b)

we have that
∑m

i=1 2biniδ
2
1/(dσ2) ≤ 1/5. Lastly, we haveh(q) ≤ (6/5)

√
q for q ≥ 0. As a

consequence, we see that forδ2
2 chosen identically to the choice (27a) forδ3, we have

m∑

i=1

2h

(
2 exp

(
− (a−√niδ2)

2

2σ2

))
≤ 12m

5

√
2 exp

(
−24

4
log m

)
≤ 1

300
.

In particular, combining bounds (27a) and (27b), we see thatif we choose

δ2 = min

{
1,

σ2

400 log(m)maxi ni
,

dσ2

10
∑m

i=1 bini

}
and a = 5σ

√
log m,
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then
m∑

i=1

2biniδ
2

dσ2
+ 2h

(
2 exp

(
− (a−√niδ)

2

2σ2

))
+ 4 exp

(
− (a−√niδ)

2

2σ2

)
<

3

10
.

This completes the proof for the case thatd ≥ 9, since

bi ≤ min

{
128

a2

σ2
H(Yi), d

}
= min {25 · 128H(Yi) log m, d} ≤ min {25 · 128Bi log m, d}

by Shannon’s source coding theorem.

Whend < 9, an appeal to Le Cam’s method (20), as in the proof of Proposition 2, and an identical
series of steps to bound the mutual information using inequality (26) (i.e., again applying inequali-
ties (27a)–(27b)) completes the proof.

C.1 Proof of Lemma 4

The proof is substantially similar to that of Lemma 3, but we exhibit some care since we must
condition on the event thatX(i)

j ∈ Bj . For notational simplicity, we again suppress all dependence
of X andY on the machine indexi.

We begin by noting that givenEj , the variableVj is independent ofV1:j−1, X1:j−1, Vj+1:d, and
Xj+1:d. Moreover, by the assumption in the lemma we have for anyS ∈ σ(Bj) that

PXj
(S | V = ν,Ej = 1)

PXj
(S | V = ν′, Ej = 1)

=
PXj

(S | V = ν)

PXj
(Xj ∈ Bj | V = ν)

PXj
(Xj ∈ Bj | V = ν′)

PXj
(Xj ∈ S | V = ν′)

≤ exp(2α),

so we have the analogue of the bound (24) that

P (Vj = νj | V1:j−1, Y, Ej = 1)− P (Vj = νj | V1:j−1, Ej = 1)

≤ 2
(
e4α − 1

) ∥∥PXj
(· | V1:j−1, Y, Ej = 1)− PXj

(· | V1:j−1, Ej = 1)
∥∥

TV
· . . . (28)

min {P (Vj = νj | V1:j−1, Y, Ej = 1), P (Vj = νj | V1:j−1, Ej = 1)} .

Thus, proceeding as in the proof of Lemma 3 (specifically the argument preceding inequality (25)),
the expression (28) implies

I(Vj ;Y | V1:j−1, Ej = 1) ≤ 2
(
e4α − 1

)2
I(Xj ;Y | V1:j−1, Ej = 1). (29)

The bound (29) as stated conditions onEj , which makes it somewhat unwieldy. We turn to removing
this conditioning. By the definition of (conditional) mutual information, we have

P (Ej = 1)I(Vj ;Y | V1:j−1, Ej = 1)

= I(Vj ;Y | V1:j−1, Ej)− I(Vj ;Y | V1:j−1, Ej = 0)P (Ej = 0)

= I(Vj ;Ej , Y | V1:j−1)− I(Vj ;Ej | V1:j−1)− I(Vj ;Y | V1:j−1, Ej = 0)P (Ej = 0)

Since conditioning reduces entropy,

I(Vj ;Ej , Y | V1:j−1) = H(Vj | V1:j−1)−H(Vj | Ej , Y, V1:j−1)

≥ H(Vj | V1:j−1)−H(Vj | Y, V1:j−1) = I(Vj ;Y | V1:j−1),

and noting thatI(Vj ;Y | V1:j−1, Ej = 0) ≤ H(Vj) ≤ 1 andI(Vj ;Ej | V1:j−1) ≤ H(Ej) gives

P (Ej = 1)I(Vj ;Y | V1:j−1, Ej = 1) ≥ I(Vj ;Y | V1:j−1)−H(Ej)− P (Ej = 0). (30)

We now combine inequalities (30) and (29) to complete the proof of the lemma. By the definition
of conditional mutual information,

I(Xj ;Y | V1:j−1, Ej = 1) ≤ I(Xj ;Y | V1:j−1, Ej)

P (Ej = 1)
≤ I(Xj ;Y | V1:j−1)

P (Ej = 1)
.

Combining this with inequalities (30) and (29) yields

I(Vj ;Y | V1:j−1) ≤ H(Ej) + P (Ej = 0) + 2
(
e4α − 1

)2
I(Xj ;Y | V1:j−1).

Up to the additive terms, this is equivalent to the earlier bound (25) in the proof of Lemma 3;
proceedingmutatis mudandiswe complete the proof.
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C.2 Proof of Lemma 5

Inequality (26) is the consequence of two intermediate upper bounds, which we prove separately:

I(V ;Yi) ≤
dniδ

2

σ2
, (31)

I(V ;Yi) ≤ 128
δ2a2

σ4
niH(Yi)

+ dh

(
2 exp

(
− (a−√niδ)

2

2σ2

))
+ 2d exp

(
− (a−√niδ)

2

2σ2

)
. (32)

To prove inequality (31), we note thatV → X(i) → Yi forms a Markov chain. Thus, the data-
processing inequality [6] implies that

I(V ;Yi) ≤ I(V ;X(i)) ≤
ni∑

j=1

I(V ;X(i,j)) = niI(V ;X(i,1))

where the last inequality comes from the independence of theX(i,j). Let Pν denote the conditional
distribution ofX(i,j) givenV = ν. Then the convexity of the KL-divergence implies

I(V ;X(i,j)) ≤ 1

|V|2
∑

ν,ν′∈V
Dkl (Pν ||Pν′) =

δ2

2σ2

1

|V|2
∑

ν,ν′∈V
‖ν − ν′‖22 =

dδ2

σ2
.

This establishes inequality (31).

To prove inequality (32), we apply Lemma 4. First, we note that by taking a ratio of the densities of
two normals withni independent samples, one with meanδ and the other with mean−δ, both with
varianceσ2, we have

exp(− 1
2σ2

∑ni

l=1(xl − δ)2)

exp(− 1
2σ2

∑ni

l=1(xl + δ)2)
= exp

(
2δ

2σ2

ni∑

l=1

xl

)
≤ exp

(√
niδa

σ2

)

whenever|∑l xl| ≤
√

nia. As a consequence, we see that by taking the sets

Bj =

{
x ∈ R

ni :

∣∣∣∣
ni∑

l=1

xl

∣∣∣∣ ≤
√

nia

}
,

we satisfy the conditions of Lemma 4 withα =
√

niδa/σ2. In addition, whenα ≤ 1.2564, we have
exp(α) − 1 ≤ 2α, so under the conditions of the lemma,exp(4α) − 1 = exp(4

√
niδa/σ2) − 1 ≤

8
√

niδa/σ2. Recalling the definition of the eventEj = {X(i)
j ∈ Bj} from Lemma 4, we obtain

I(V ;Yi) ≤ 128
δ2a2

σ4
niI(X(i);Yi) +

d∑

j=1

H(Ej) +

d∑

j=1

P (Ej = 0).

Comparing this inequality with inequality (32), we see thatwe must bound the probability of the
eventEj = 0.

BoundingP (Ej = 0) is not challenging, however. From standard Gaussian tail bounds, we have
for Zi distributed i.i.d. according toN(δ, σ2) that

P (Ej = 0) = P

(∣∣∣∣
ni∑

l=1

Zl

∣∣∣∣ ≥
√

nia

)

= P

( ni∑

l=1

(Zl − δ) ≥ √nia− nδ

)
+ P

( ni∑

l=1

(Zl − δ) ≤ √nia− nδ

)

≤ 2 exp

(
− (a−√niδ)

2

2σ2

)
.
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D Proof of Proposition 1

We prove the lower bound via a standard information-theoretic argument. Fixδ > 0, and let
V = [2log MΘ(2δ)] index a maximal2δ-packing ofΘ, which we identify by{θν}ν∈V ⊂ Θ. Fix
an (arbitrary) protocolΠ for communication.

Following the standard reduction from (worst-case) estimation to testing [20, 22, 19], letV be
sampled uniformly fromV. For messagesY = (Y1, . . . , YT ) sent by the protocolΠ, let θ̂(Y ) denote
the estimator ofθ based onY and definêV = argminν∈V ‖θ̂(Y )− θν‖2. Then‖θ̂(Y )− θν‖2 ≥ δ

if V̂ 6= V , and we have

max
ν∈V

E

[
‖θ̂(Y )− θν‖22

]
≥
∑

ν∈V
P(V = ν)E

[
‖θ̂(Y )− θV ‖22 | V = ν

]

≥
∑

ν∈V
δ2

P(V = ν)P(V̂ 6= V | V = ν) = δ2
P(V̂ 6= V ). (33)

By Fano’s inequality [6], the testing error (33) is lower bounded by

P(V̂ 6= V ) ≥ 1− I(V ;Y ) + 1

log MΘ(2δ)
≥ 1− H(Y ) + 1

log MΘ(2δ)
,

sinceH(Y ) ≥ I(V ;Y ). Shannon’s source coding theorem [6, Chapter 5] guaranteesthe lower
boundB ≥ H(Y ). Since the protocolΠ was arbitrary, we have as an immediate consequence of
inequality (33) that

M
inter(θ,P, B) ≥ δ2

(
1− B + 1

log MΘ(2δ)

)
for anyδ ≥ 0. (34)

Using inequality (34), the remainder of the proof is straightforward. Indeed, we have

1− B + 1

log MΘ(2δ)
≥ 1

2
iff

log MΘ(2δ)

B + 1
≥ 2 iff 2δ ≥ log M−1

Θ (2B + 2).

Settingδ = 1
2 log M−1

Θ (2B + 2) thus gives the result of the theorem.

E Proof of Theorem 1

We follow a standard hypothesis testing setup (recall Section 5.1) to choose a variableV ∈ {−1, 1}
uniformly at random and then sampleX(i) w.r.t. N(δV, σ2) independently on each of them ma-
chines. However, in this situation, while the local samplesare independent, the messages are not:
the sequence of random variablesY = (Y1, . . . , YT ) is generated such that the distribution ofYt is a
measurable function of(X(it), Y1:t−1) whereit ∈ {1, . . . ,m} is the index the existing sample upon
which Yt is based. We assume without loss of generality that the sequence{i1, i2, . . . , } is fixed
in advance—if the choice of indexit is based onY1:t−1 andX, then we simply say there exists a
default value (sayYt =⊥) that indicates “nothing.”

Lemma 6 Assume that|V| = 2. Also assume that there is a setB such that for anyν, ν′ ∈ V we
have

sup

{
PX(i)(S | ν)

PX(i)(S | ν′)

∣∣∣∣S ∈ σ(B), ν, ν′ ∈ V
}
≤ eα. (35)

Let the random variableE = 1 if X(i) ∈ B for all i andE = 0 otherwise. Then

I(V ;Y ) ≤ 2
(
e4α − 1

)2
I(X;Y ) + H(E) + P (E = 0).

Consider the following scheme. Givenν ∈ {−1, 1}, we assume that each machinei receivesn
sampleX(i,k) (k = 1, . . . , n) independently sampled according to

X ∼ N(δν, σ2)
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Following the low dimension case of Proposition 2, inequality (23) implies that

if I(V ;Y ) ≤ 3

10
then sup

θ∈Θ
E[(θ̂ − θ)2] >

δ2

10
. (36)

We focus on showing the conditions for the implication (36) hold. By definingB = {x ∈ R
n :

|∑n
i=1 xi ≤

√
na} and the condition of Lemma 6 is satisfied withα =

√
nδa/σ2. If we assume

thatα ≤ 1.2564 (which is satisfied by the assignment described below), thenexp(α)− 1 ≤ 2α and
henceexp(4α)− 1 = exp(4

√
nδa/σ2)− 1 ≤ 8

√
nδa/σ2. We obtain

I(V ;Y ) ≤ 128
δ2na2

σ4
H(Y ) + H(E) + P (E = 0).

Let Ei be the random variable such thatEi = 1 if X(i) ∈ B and Ei = 0 otherwise. Since
E =

∏m
i=1 Ei, we haveP (E = 0) ≤∑m

i=1 P (Ei = 0). We apply the last inequality in the proof of
Lemma 5 to upper boundsP (Ei = 0), which yields that

P (E = 0) ≤
m∑

i=1

P (Ei = 0) ≤ 2m exp

(
− (a−√nδ)2

2σ2

)
.

Consequently,

I(V ;Y ) ≤ 128
δ2na2

σ4
H(Y ) + mh

(
2 exp

(
− (a−√nδ)2

2σ2

))
+ 2m exp

(
− (a−√nδ)2

2σ2

)
,

(37)

whereh(p) = −p log(p) − (1 − p) log(1 − p) is the binary entropy function. We also used the
convexity ofh in [0, 1/2], so thath(p) ≤ mh(p/m) for 0 ≤ p ≤ 1/2.

Given upper bound (37), we follow the proof of Theorem 2 to seethat by choosing

δ2 = min

{
1,

σ2

400 log(m)n
,

σ2

10 · 128 · 36 log(m)nH(Y )

}
and a = 5σ

√
log m,

we obtainI(V ;Y ) ≤ 3
10 . Thus, there is a universal constantc such that

max
ν∈V

E[(θ̂ − θ)2] > cmin

{
1,

σ2

log(m)n
,

σ2

log(m)nH(Y )

}
.

Applying the source coding theorem to boundH(Y ) ≤ B completes the proof.

E.1 Proof of Lemma 6

Lemma 7 Consider the hypothesis testing problem described in the second paragraph of Ap-
pendix E, but assume thatX(i) is sampled from another probability measureQ(· | ν) satisfying

sup

{
Q(S | ν)

Q(S | ν′)
| S ∈ σ(X ), ν, ν′ ∈ V

}
≤ eα. (38)

Then we have
I(V ;Y ) ≤ 2

(
e2α − 1

)2
I(X;Y ).

With Lemma 7 established, the proof of Lemma 6 follows,mutatis mutandis, as in the proof of
Lemma 4 from Lemma 3. Thus, it only remains to prove Lemma 7.

Proof of Lemma 7 By the chain-rule for mutual information, we have that

I(V ;Y ) =

T∑

t=1

I(V ;Yt | Y1:t−1).

Let PYt
(· | Y1:t−1) denote the (marginal) distribution ofYt givenY1:t−1 and definePV (· | Y1:t) to

be the distribution ofV conditional onY1:t. Then we have by marginalization that

PV (· | Y1:t−1) =

∫
PV (· | Y1:t−1, yt)dPYt

(yt | Y1:t−1)
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and thus

I(V ;Yt | Y1:t−1) = EY1:t−1

[
EYt

[Dkl (PV (· | Y1:t)||PV (· | Y1:t−1)) | Y1:t−1]
]
. (39)

We now bound the above KL divergence using the assumptions inthe lemma.

By the nonnegativity of the KL divergence, we have

Dkl (PV (· | Y1:t)||PV (· | Y1:t−1))

≤ Dkl (PV (· | Y1:t)||PV (· | Y1:t−1)) + Dkl (PV (· | Y1:t−1)||PV (· | Y1:t))

=
∑

ν∈V
(pV (ν | Y1:t−1)− pV (ν | Y1:t)) log

pV (ν | Y1:t−1)

pV (ν | Y1:t)

wherepV denotes the p.m.f. ofV . We claim that Lemma 8 implies that

|pV (ν | Y1:t−1)− pV (ν | Y1:t)|
≤ 2

(
e2nα − 1

)
min {pV (ν | Y1:t−1), pV (ν | Y1:t)} ‖PX(it)(· | Y1:t)− PX(it)(· | Y1:t−1)‖TV .

(40)

Deferring the proof of inequality (40) to the end of this section, we give the remainder of the proof.
First, by a first-order convexity argument, we have that for any a, b > 0

log
a

b
≤ |a− b|

min{a, b} .

As a consequence, we find

(pV (ν | Y1:t−1)− pV (ν | Y1:t)) log
pV (ν | Y1:t−1)

pV (ν | Y1:t)
≤ (pV (ν | Y1:t−1)− pV (ν | Y1:t))

2

min{pV (ν | Y1:t−1), pV (ν | Y1:t)}
≤ 4

(
e2nα − 1

)2
min {pV (ν | Y1:t−1), pV (ν | Y1:t)} ‖PX(it)(· | Y1:t)− PX(it)(· | Y1:t−1)‖2TV

by using inequality (40). Using the fact thatpV is a p.m.f., we thus have

Dkl (PV (· | Y1:t)||PV (· | Y1:t−1)) + Dkl (PV (· | Y1:t−1)||PV (· | Y1:t))

≤ 4
(
e2nα − 1

)2 ‖PX(it)(· | Y1:t)− PX(it)(· | Y1:t−1)‖2TV

∑

ν∈V
min {pV (ν | Y1:t−1), pV (ν | Y1:t)}

≤ 4
(
e2nα − 1

)2 ‖PX(it)(· | Y1:t)− PX(it)(· | Y1:t−1)‖2TV .

Using Pinsker’s inequality, we then find that

EY1:t−1

[
EYt

[
‖PX(it)(· | Y1:t)− PX(it)(· | Y1:t−1)‖2TV | Y1:t−1

]]

≤ 1

2
EY1:t−1

[EYt
[Dkl (PX(it)(· | Y1:t)||PX(it)(· | Y1:t−1)) | Y1:t−1]] =

1

2
I(X(it);Yt | Y1:t−1).

Since conditioning reduces entropy andY is discrete, we have

I(X(it);Yt | Y1:t−1) = H(Yt | Y1:t−1)−H(Yt | X(it), Y1:t−1)

≤ H(Yt | Y1:t−1)−H(Yt | X,Y1:t−1) = I(X;Yt | Y1:t−1).

This completes the proof of the lemma, since
∑T

t=1 I(X;Yt | Y1:t−1) = I(X;Y ) by the chain rule
for information.

Proof of inequality (40) To establish the inequality, we give a one-to-one correspondence between
the variables in Lemma 8 and the variables in Lemma 7. We make the following identifications:

V ↔ A X(it) ↔ B Y1:t−1 ↔ C Yt ↔ D.

For Lemma 8 to hold, we must verify conditions (43), (44), and(45). For condition (43) to hold,Yt

must be independent ofV given{Y1:t−1,X
(it)}. Since the distribution ofPYt

(· | Y1:t−1,X
(it)) is

measurable-{Y1:t−1,X
(it)}, Condition (45) is satisfied by the assumption in the lemma.
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Finally, for condition (44) to hold, we must be able to factorthe conditional probability ofY1:t−1

given{V,X(it)} as

P (Y1:t−1 = y1:t−1 | V,X(it)) = Ψ1(V, y1:t−1)Ψ2(X
(it), y1:t−1). (41)

To prove this decomposition, notice that

P (Y1:t−1 = y1:t−1 | V,X(it)) =

t−1∏

k=1

P (Yk = yk | Y1:k−1, V,X(it)).

For anyk ∈ {1, . . . , t − 1}, if ik = it—that is, the messageYk is generated based on sample
X(it) = X(ik)—thenYk is independent ofV given{X(it), Y1:k−1}. Thus,PYk

(· | Y1:k−1, V,X(it))
is measurable-{X(it), Y1:k−1}. If the kth index ik 6= it, thenYk is independent ofX(it) given
{Y1:k−1, V } by construction, which meansPYk

(· | Y1:k−1, V,X(it)) = PYk
(· | Y1:k−1, V ). The

decomposition (41) thus holds, and we have verified that eachof the conditions of Lemma 8 holds.
We thus establish inequality (40).

F Proof of Corollary 1

We prove Corollary 1 in two parts: the upper bound (for part (a)) and lower bound (for part (b)).
We prove the upper bound by exhibiting an interactive protocol Π∗ and prove the lower bound by
applying Proposition 1.

Upper bound on the minimax risk We consider the following communication protocolΠ∗ ∈
Ainter(B,P):

1. Machinei ∈ {1, . . . ,m} computes its local minimuma(i) = min{X(i,k) : k = 1, . . . , n}.
2. Machine1 broadcastsa(1) using2 log(mn) bits. Upon receiving the broadcast, all ma-

chines initialize global minimum variabless← a(1).

3. In the orderi = 2, 3, . . . ,m, machinei performs the following operations:

(i) Check if a(i) < s. If so, machinei performs the updates ← a(i) and broadcastss,
otherwise it does nothing.

(ii) All other machines update their locals after receiving machinei’s update. All real
numbers in the message are rounded down to2 log(mn)-bit discrete values.

4. One machine outputŝθ = s + 1.

According to the protocol described above,Π∗ computes a global minima

s = min
{

X(i,k) : i = 1, . . . ,m; k = 1, . . . , n
}

to accuracy ofO(1/(mn)2) since because real numbers are encoded with2 log(mn) bits. Then clas-
sical convergence analysis [14] yields estimatorθ̂ = s + 1 achieves minimax optimal convergence
rateE[‖θ̂ − θ‖22] . 1/(mn)2.

To analyze the communication complexity of the protocolΠ∗, we study Steps 2–3. In Step 2,
machine1 sends2 log(mn) bits as messageY1. In Step 3, machinei sends2 log(mn) bits only if
a(i) < min{a(1), · · · , a(i−1)}. By inspection, this event happens with probability bounded by 1/i,
so we find that the expected length of messageYi is

E[Li] ≤
2 log(mn)

i
.

Putting all pieces together, we obtain that

E[L] =

m∑

i=1

E[Li] ≤ 2 log(mn) +

m∑

i=2

2 log(dmn)

i
≤ 2 log(mn) + 2 ln(m) log(mn).
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C D

Figure 1: Graphical model for Lemma 8

Lower bound on the minimax risk To prove the lower bound, we simply evaluate packing en-
tropies by using a volume argument [3]. SinceΘ = [−1, 1], the size of a maximal2δ-packing can
be lower bounded by

2log MΘ(2δ) ≥ Volume(Θ)

Volume({x ∈ R : ‖x‖2 ≤ 2δ}) ≥
1

2δ
. (42)

Taking logarithms and invertingB = log MΘ(δ) = log MΘ(1/(mn)) yields the lower bound.

G Total variation contraction

In this section, we prove a technical lemma that is essentialto the proof of our results.

Consider four random variablesA,B,C,D, of which we assume thatA, C, andD have discrete
distributions. We denote the conditional distribution ofA givenB by PA|B and their full joint distri-
bution byPA,B,C,D. We assume that the random variables have conditional indpendence structure
specified by the graphical model in Figure 1, that is, that we can write the joint distribution as the
product

PA,B,C,D = PAPB|APC|A,BPD|B,C . (43)
We denote the domain of a random variable by the identical calligraphic letter, soA ∈ A, B ∈ B,
and so on. We writeσ(A) for the sigma-field onA with respect to which our measures are defined.
Sometimes we writePA(· | B) for the conditional distribution ofA given B. In addition to the
conditional independence assumption (43), we assume that the conditional distribution ofC given
A,B factorizes in the following specific form. There exist functions Ψ1 : A × σ(C) → R+ and
Ψ2 : B × σ(C)→ R+ such that for any (measureable) setS in the rangeC of C, we have

PC(S | A,B) = Ψ1(A,S)Ψ2(B,S). (44)

SinceC is assumed discrete, we abuse notation and writeP (C = c | A,B) = Ψ1(A, c)Ψ2(B, c).
Lastly, we assume that for anya, a′ ∈ A, we have the following likelihood ratio bound:

sup
S∈σ(B)

PB(S | A = a)

PB(S | A = a′)
≤ exp(α). (45)

Lemma 8 Under assumptions(43), (44), and(45), the following inequality holds:

|P (A = a | C,D)− P (A = a | C)|
≤ 2

(
e2α − 1

)
min {P (A = a | C), P (A = a | C,D)} ‖PB(· | C,D)− PB(· | C)‖TV .

Proof: By assumption,A is independent ofD given{B,C}. Thus we may write

P (A = a | C,D)− P (A = a | C) =

∫
P (A = a | B = b, C) (dPB(b | C,D)− dPB(b | C))

Combining this equation with the inequality
∫

P (A = a | C) (dPB(b | C,D)− dPB(b | C)) = 0
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we find that

P (A = a | C,D)− P (A = a | C)

=

∫
(P (A = a | B = b, C)− P (A = a | C)) (dPB(b | C,D)− dPB(b | C)) .

Using the fact that|
∫

f(b)dµ(b)| ≤ supb{|f(b)|}
∫
|dµ(b)| for any signed measureµ on B, we

conclude from the previous equality that foranyversionPA(· | B,C) of the conditional probability
of A given{B,C} that since

∫
|dµ| = ‖µ‖TV,

|P (A = a | C,D)− P (A = a | C)|
≤ 2 sup

b∈B
{|P (A = a | B = b, C)− P (A = a | C)|} ‖PB(· | C,D)− PB(· | C)‖TV .

Thus, to prove the lemma, it is sufficient to show (for some version of the conditional distribution3

PA(· | B,C)) that for anyb ∈ B
|P (A = a | B = b, C)− P (A = a | C)| ≤ (e2α − 1)min{P (A = a | C), P (A = a | C,D)}.

(46)

To prove this upper bound, we consider the joint distribution (43) and likelihood ratio bound (46).
The distributions{PB(· | A = a)}a∈A are all absolutely continuous with respect to one another by
assumption (46), so it is no loss of generality to assume thatthere exists a densitypB(· | A = a) for
which P (B ∈ S | A = a) =

∫
pB(b | A = a)dµ(b), for some fixed measureµ, and for which the

ratio pB(b | A = a)/pB(b | A = a′) ∈ [e−α, eα] for all b. By elementary conditioning we have for
anySb ∈ σ(B) andc ∈ C

P (A = a | B ∈ Sb, C = c)

=
P (A = a,B ∈ Sb, C = c)

P (B ∈ Sb, C = c)

=
P (B ∈ Sb, C = c | A = a)P (A = a)∑

a′∈A P (A = a′)P (B ∈ Sb, C = c | A = a)

=
P (A = a)

∫
Sb

P (C = c | B = b, A = a)pB(b | A = a)dµ(b)
∑

a′∈A P (A = a′)
∫

Sb
P (C = c | B = b, A = a′)pB(b | A = a′)dµ(b)

,

where for the last equality we used the conditional independence assumptions (43). But now we
recall the decomposition formula (44), and we can express the likelihood functions by

P (A = a | B ∈ Sb, C = c) =
P (A = a)

∫
Sb

Ψ1(a, c)Ψ2(b, c)pB(b | A = a)dµ(b)
∑

a′ P (A = a′)
∫

Sb
Ψ1(a′, c)Ψ2(b, c)pB(b | A = a′)dµ(b)

.

As a consequence, there is a version of the conditional distribution ofA givenB andC such that

P (A = a | B = b, C = c) =
P (A = a)Ψ1(a, c)pB(b | A = a)∑

a′ P (A = a′)Ψ1(a′, c)pB(b | A = a′)
. (47)

Define the shorthand

β =
P (A = a)Ψ1(a, c)∑

a′∈A P (A = a′)Ψ1(a′, c)
.

We claim that

e−αβ ≤ P (A = a | B = b, C = c) ≤ eαβ. (48)

Assuming the correctness of bound (48), we establish inequality (46). Indeed, sinceP (A = a |
C = c) is a weighted average ofP (A = a | B = b, C = c), we also have the same upper and lower
bound forP (A = a | C), that is

e−αβ ≤ P (A = a | C) ≤ eαβ,

3If P (A = a | C) is undefined, we simply set it to have value1 and assignP (A = a | B, C) = 1 as well.
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while the conditional independence assumption thatA is independent ofD givenB,C (recall Fig-
ure 1 and the product (43)) implies

P (A = a | C = c,D = d) =

∫

B
P (A = a | B = b, C = c,D = d)dPB(b | C = c,D = d)

=

∫

B
P (A = a | B = b, C = c)dPB(b | C = c,D = d),

and the final integrand belongs toβ[e−α, eα]. Combining the preceding three displayed expressions,
we find that

|P (A = a | B = b, C)− P(A = a | C)| ≤
(
eα − e−α

)
β

≤
(
eα − e−α

)
eα min {P (A = a | C), P (A = a | C,D)} .

This completes the proof of the upper bound (46).

It remains to prove inequality (48). We observe from expression (47) that

P (A = a | B = b, C) =
P (A = a)Ψ1(a,C)

∑
a′∈A P (A = a′)Ψ1(a′, C)pB(b|A=a′)

pB(b|A=a)

.

By the likelihood ratio bound (45), we havepB(b | A = a′)/pB(b | A = a) ∈ [e−α, eα], and
combining this inequality with the above equation yields inequality (48). �

H Proof of Lemma 1

For any∆ > 0 and any estimator̂θ, if V is a random variable uniformly chosen fromV, then we
have

max
ν∈V

E

[
‖θ̂ − θν‖22

]
≥ E

[
‖θ̂ − θV ‖22

]
≥ E

[
∆21(‖bθ−θV ‖2≥∆)

]
= ∆2

P(‖θ̂ − θV ‖2 ≥ ∆). (49)

We now lower boundP(‖θ̂ − θV ‖2 ≥ ∆) by a testing-like probability claimed in the lemma. Define
the testing function

ν̂ := argmin
ν∈V

‖θν − θ̂‖2.

The triangle inequality implies that

‖θ
bν − θV ‖2 ≤ ‖θ

bν − θ̂‖2 + ‖θ̂ − θV ‖2 ≤ 2‖θ̂ − θV ‖2 (50)

Recall thatθν = δν whereν ∈ {−1, 1}d, we have‖θ
bν − θV ‖2 = 2δ

√
dham(ν̂, V ). Combining this

equation with inequality (50) implies that

if dham(ν̂, V ) > t then ‖θ̂ − θV ‖22 ≥ δ2(⌊t⌋+ 1).

Consequently,

P
(
‖θ̂ − θV ‖22 ≥ δ2(⌊t⌋+ 1)

)
≥ P (dham(ν̂, V ) > t). (51)

Combining inequality (49) and (51) with∆2 = δ2(⌊t⌋+ 1), we have

max
ν∈V

E

[
‖θ̂ − θν‖22

]
≥ δ2(⌊t⌋+ 1)P (dham(ν̂, V ) > t).

On the righthand side of the above inequality, taking infinium over all testing functions establishes
the result.

23


	Introduction
	Problem setting and notation
	Main results
	Lower bound based on metric entropy
	Multi-machine settings
	Independent protocols in multi-machine settings

	Consequences for regression
	Linear regression
	Probit regression

	Proof sketches for main results
	Broad outline
	Proof sketch of Proposition 2

	Notation and proof setup
	Proof of Proposition 2
	Proof of Lemma 3

	Proof of Theorem 2
	Proof of Lemma 4
	Proof of Lemma 5

	Proof of Proposition 1
	Proof of Theorem 1
	Proof of Lemma 6

	Proof of Corollary 1
	Total variation contraction
	Proof of Lemma 1

