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Abstract

We establish lower bounds on minimax risks for distributéatistical estima-
tion under a communication budget. Such lower bounds refeEaminimum

amount of communication required by any procedure to aehibe centralized
minimax-optimal rates for statistical estimation. We stido classes of proto-
cols: one in which machines send messages independertlg, second allowing
for interactive communication. We establish lower bounatssieveral problems,
including various types of location models, as well as faapzeter estimation in
regression models.

1 Introduction

Rapid growth in the size and scale of datasets has fueleddsitig interest in statistical estimation
in distributed settings [see, e.g., 5, 23, 7, 9, 17, 2]. Modkata sets are often too large to be stored
on a single machine, so that it is natural to consider metiivaisinvolve multiple machines, each
assigned a smaller subset of the full dataset. An essemisadil parameter in such methods is the
amount of communication required between machines or cldpadwidth limitations on network
and inter-chip communication often impose significantleatcks on algorithmic efficiency.

The focus of the current paper is the communication complexd various classes of statistical
estimation problems. More formally, suppose that we arer@stted in estimating the parametier
of some unknown distributio®, based on a dataset of i.i.d. samples. In the classical setting,
one considersentralized estimatorthat have access to al samples, and for a given estimation
problem, the optimal performance over all centralized sok&can be characterized by the minimax
rate. By way of contrast, in the distributed setting, oneii®igm different machines, and each
machine is assigned a subset of samples of size LTIXJ. Each machine is allowed to perform
arbitrary operations on its own subset of data, and then aomate results of these intermediate
computations to the other processors, or to a central fusdale. In this paper, we try to answer the
following question: what is the minimal number of bits thatshbe exchanged in order to achieve
the optimal estimation error achievable by centralizedsubs?

There is a substantial literature on communication conipléx many settings, including function
computation in theoretical computer science (e.g., [21.3]), decentralized detection and estima-
tion (e.g., [18, 16, 15]) and information theory [11]. Fosiance, Luo [15] considers architectures
in which machines may send only a single bit to a centralizedgssor; for certain problems, he
shows that if each machine receives a single one-dimernssanaple, it is possible to achieve the
optimal centralized rate up to constant factors. Among rotiatributions, Balcan et al. [2] pro-
vide lower bounds for Probably Approximately Correct (PA€3rning in the distributed setting;
however, their stated lower bounds do not involve the nunabbenachines. In contrast, our work
focuses on scaling issues, both in terms of the number of imeglas well as the dimensionality of
the underlying data, and formalizes the problem in termgadfstical minimax theory.



More precisely, we study the following problem: given a betdg of the total number of bits that
may be communicated from the distributed datasets, what is the minimax risk of any ediima
based on the communicated messages? While there is a rictuie connecting information-
theoretic techniques with the risk of statistical estimsi@.g. [12, 22, 20, 19]), little of it character-
izes the effects of limiting communication. In this papee present some minimax lower bounds for
distributed statistical estimation. By comparing our loweunds with results in statistical estima-
tion, we can identify the minimal communication cost thaistributed estimator must pay to have
performance comparable to classical centralized estirmatdloreover, we show how to leverage
recent work [23] so as to achieve these fundamental limits.

2 Problem setting and notation

We begin with a formal description of the statistical estiioa problems considered here. Let
P denote a family of distributions and I6t: P — © C R? denote a function defined oA.

A canonical example throughout the paper is the problem afmestimation, in whicld(P) =
Ep[X]. Suppose that, for some fixed but unknown memBerf P, there aren sets of data stored
on individual machines, where each sub&&t) is an i.i.d. sample of size from the unknown
distribution P[> Given this distributed collection of local data sets, oualgis to estimated(P)
based on then samplesX (V)| ..., X (™) but using limited communication.

We consider a class of distributed protocdlsn which at each rounti= 1, 2, . .., machineg sends a
messagé’ ; thatis a measurable function of the local daté), and potentially of past messages. It
is convenient to model this message as being sent to a cersti@h center. Let'; = {Y; ;};¢(,,, de-
note the collection of all messages sent at rotir@iven a total off” rounds, the protocdll collects

o~

the sequenc€Y;,...,Y ), and constructs an estimatér=4(Y,...,Y ). The lengthL, ; of

messagé’; ; is the minimal number of bits required to encode it, and thal b = Zthl Z;’;l Ly

of all messages sent corresponds tottiial communication cosif the protocol. Note that the com-
munication cost is a random variable, since the length ofrteesages may depend on the data, and
the protocol may introduce auxiliary randomness.

Itis useful to distinguish two different classes, namalyependentersusinteractiveprotocols. An
independent protocdll is based on a single round’ (= 1) of communication, in which machine
i sends messag ; to the fusion center. Since there are no past messages, dsage; ; can
depend only on the local sampk(®). Given a familyP, the class of independent protocols with
budgetB > 0 is given by
m
Aina(B,P) = { independent protocod such that sup Ep {Z Li] < B}. Q)
PeP ]
(For simplicity, we usé&’; to indicate the message sent from procegsuord L; to denote its length
in the independent case.) It can be useful in some situat@have more granular control on the
amount of communication, in particular by enforcing budgmt a per-machine basis. In such cases,
we introduce the shorthan®,.,, = (B, ..., B,,) and define

Aina(B1.m, P) = {independent protocol such that sup Ep[L;] < B; fori € [m]} )
PeP

In contrast to independent protocols, the class of inteagirotocols allows for interaction at dif-
ferent stages of the message passing process. In partisufgrose that machinesends message
Y; ; to the fusion center at timg who then posts it on a “public blackboard,” where all maelsioan
readY; ;. We think of this as a global broadcast system, which may heralan settings in which
processors have limited power or upstream capacity, buteéh&alized fusion center can send mes-
sages without limit. In the interactive setting, the messgg should be viewed as a measurable
function of the local dat&X (), and the past messag¥s.;_;. The family of interactive protocols
with budgetB > 0 is given by

Ainter (B, P) = {interactive protocoldI such that sup Ep[L] < B}. )
PeP

1 Although we assume in this paper that every machine has the same avfidatd, our technique gener-
alizes easily to prove tight lower bounds for distinct data sizes on diffen@chines.



We conclude this section by defining the minimax frameword.throughout this paper. We wish to
characterize the best achievable performance of estis¥atbat are functions of only the messages
(Y1,...,Y 7). We measure the quality of a protocol and estimétby the mean-squared error

Epn [I6(F1,....¥r) - 0(P)I3]

where the expectation is taken with respect to the protbicahd them i.i.d. samplesX (V) of size
n from distribution P. Given a class of distributior®, parametep : P — O, and communication
budgetB, theminimax risk for independent protocadts

M9, P,B):=_ inf infsupE H§Y,... m) — H 4
( ) HGA;llg(B,P)I% ;16117)3’ P7H|: ( 1 n ()

Here, the infimum is taken jointly over all independent pitot®l1 that satisfy the budget constraint

B, and over all estimatoisthat are measurable functions of the messages in the ptofidue min-
imax risk should also be understood to depend on both the euafilmachinesn and the individual
sample sizen. Theminimax risk for interactive protocalslenoted bynti*ter, is defined analogously,
where the infimum is instead taken over the class of intaragirotocols. These communication-
dependent minimax risks are the central objects in thispdpey provide a sharp characterization
of the optimal rate of statistical estimation as a functibthe communication budges.

3 Mainresults

With our setup in place, we now turn to the statement of ounmesults, along with some discussion
of their consequences.

3.1 Lower bound based on metric entropy

We begin with a general but relatively naive lower bound thegiends only on the geometric struc-
ture of the parameter space, as captured by its metric gnthoparticular, given a subsét C R,
we say{6',...,0%} ared-separated if|60" — 67||, > & for i # j. We then define thpacking
entropyof © as

log Mg () := log, [max {K € N | {0;,...,0%} C © ares-separate}] . (5)
The functiond — log Mg () is left-continuous and non-increasing n so we may define the
inverse functiorlog Mg ' (B) := sup{é | log Mg (8) > B}.

Proposition 1 For any family of distributionsP and parameter se® = 6(P), the interactive
minimax risk is lower bounded as

S)J?lnter(977)aB) > (Z log Mél(QB + 2)) . (6)

Of course, the same lower bound also holdsd(¢, P, B), since any independent protocol is
a special case of an interactive protocol. Although Prdjmsil is a relatively generic statement,
not exploiting any particular structure of the problem,sitih general unimprovable by more than
constant factors, as the following example illustrates.

Example: Bounded mean estimation. Suppose that our goal is to estimate the méan 6(P)
of a class of distribution® supported on the intervdl, 1], so that® = 6(P) = [0,1]. Suppose
that a single machiner{ = 1) receivesn i.i.d. observationsX; according toP. Since the packing
entropy is lower bounded asg Mg (5) > log(1/4), the lower bound (6) implies
72
mmd(@ rP B) > gﬁmter(g P B) > T 2B'

Thus, settingB = 1 logn yields the lower boun@?i»4 (9, P([0, 1]), B) > %. This lower bound
is sharp up to the constant pre-factor, since it can be aetiéy a simple method. Given iis
observations, the single machine can compute the sampla figa= 1 L3, X;. Since the
sample mean lies in the intervill 1], it can be quantized to accuratyn usmglog( ) bits, and this

quantized versiofl can be transmitted. A straightforward calculation shoves B(6 — 0)2] < 2,
so Proposition 1 yields an order-optimal bound in this case.



3.2 Multi-machine settings

We now turn to the more interesting multi-machine setting$ 1). Let us study how théudget
B—meaning the of bits required to achieve the minimax rate—escaith the number of machines
m. We begin by considering the uniform location family = {Fy, 6 € [—1,1]}, wherePy is
the uniform distribution on the intervdd — 1, 6 + 1]. For this problem, a direct application of
Proposition 1 gives a nearly sharp result.

Corollary 1 Consider the uniform location family with n i.i.d. observations per machine:

(a) Whenever the communication budget is upper boundéti @dog(mn), there is a univer-
sal constant such that

minter(g’ U, B) Z

(mn)?
(b) Conversely, given a budget Bf= [2 +21In m] log(mn) bits, there is a universal constant
¢’ such that
/
inter 0 B) < .
MEE6.U, B) < (mn)?

If each ofm machines receives observations, we have a total sample sizenof, so the minimax
rate over all centralized procedures scales/dswn)? (for instance, see [14]). Consequently, Corol-
lary 1)(b) shows that the number of bits required to achieeectmtralized rate has onliggarithmic
dependence on the numberof machines. Part (a) shows that this logarithmic depenslenen is
unavoidable.

It is natural to wonder whether such logarithmic dependdraids more generally. The following
result shows that it does not: for some problems, the depmedenm must be (nearly) linear. In
particular, we consider estimation in a normal locationifgmmodel, where each machine receives
an i.i.d. sample of size from a normal distributiorN (¢, o) with unknown mear.

Theorem 1 For the univariate normal famil\" = {N(0,0?) | 6 € [-1,1]}, there is a universal
constant such that

2
mintel’(97/\/’7 B) >c L min{ (7)

mn  m m
mn '

02 logm’ Blogm

The centralized minimax rate for estimating a univariatenmd mean based omn observations
. 2 . .
is 2—; consequently, the lower bourid (7) shows that at Iéast Q(;-2-) bits are required for a

logm
decentralized procedure to match the centralized rateisnctse. Thié type of scaling is dramati-
cally different than the logarithmic scaling for the unifiofamily, showing that establishing sharp

communication-based lower bounds requires careful stéittyeaunderlying family of distributions.

3.3 Independent protocolsin multi-machine settings

Departing from the interactive setting, in this section weus on independent protocols, providing
somewhat more general results than those for interactiv®pols. We first provide lower bounds
for the problem of mean estimation in the parameter fdgrdimensional normal location family

Na={N(9,0%I4q) | 6 € © = [-1,1]%}, (8)
Theorem 2 For i = 1,...,m, assume that each machine has communication buBgetnd re-

ceives an i.i.d. sample of sizefrom a distribution” € A/;. There exists a universal (numerical)
constante such that

. o%d mn  m m
M0, Ny, Bim) > ¢c—— min<{ —-, , ) 9
(6 Na, Brim) = mn { o’ logm’ (Y, min{1, Z:}) 1ogm} ®)

Given centralized access to the fulln-sized sample, a reasonable procedure would be to compute
the sample mean, leading to an estimate with mean-squamdi’éfl, which is minimax optimal.

mn



Consequently, Theorém 2 shows that to achieve an ordemapthean-squared error, the total num-
ber of bits communicated must (nearly) scale with the prodfiche dimensioni and number of
machinesn, that is, asim/ log m. If we ignore logarithmic factors, this lower bound is ackible

by a simple procedure: each machine computes the sampleahigaitocal data and quantizes each
coordinate to precision? /n usingO(d log(n/o?)) bits. These quantized sample averages are com-
municated to the fusion center usiiy= O(dmlog(n/c?)) total bits. The fusion center averages
them, obtaining an estimate with mean-squared error ofr@tordero?d/(mn) as required.

We finish this section by presenting a result that is sharpupmerical constant prefactors. Itis a
minimax lower bound for mean estimation over the fanily = { P supported or—1, 1]4}.

Proposition 2 Assume that each @f machines receives a single sample= 1) from a distribution
in P4. There exists a universal (numerical) constasuch that

: d m
omind(9, P4, By.,,) > ¢ — mi , , 10
( 1im) > ¢ - mm{m ST i1, 5 } (10)

whereB; is the budget for machine

The standard minimax rate f@rdimensional mean estimation scaleg/s:. The lower bound (10)

shows that in order to achieve this scaling, we must 3ay&, min{1, Z:} > m, showing that each
machine must sen; = d bits.

Moreover, this lower bound is achievable by a simple sche@gppose that machinereceives

a d-dimensional vectorX; € [—1,1]¢. Based onX;, it generates a Bernoulli random vector
Zi =(Zi, ..., Ziq) with Z;; € {0,1} taking the valuel with probability (1 + X;;)/2, indepen-
dently across coordinates. Machinesesd bits to send the vectadt; € {0, 1} to the fusion center.
The fusion center then computes the averdge - "™ | (2Z; — 1). This average is unbiased, and
its expected squared error is boundedgyn.

4 Consequencesfor regression

In this section, we turn to identifying the minimax rates &gpair of important estimation problems:
linear regression and probit regression.

4.1 Linear regression

We consider a distributed instantiation of linear regreissiith fixed design matrices. Concretely,
suppose that each of machines has stored a fixed design matii¥ € R"*? and then observes a
response vectdr) € R¢ from the standard linear regression model

b = AWg 4 O (11)
wherec( ~ N(0,02%I,,) is a noise vector. Our goal is to estimate unknown regresgator
6 € © = [-1,1]%, shared across all machines, in a distributed manner, Te sta result, we

assume uniform upper and lower bounds on the eigenvalubeg oéscaled design matrices, namely

min A(z) max A(l)
0 < Amin < min L) and max w < Amax- (12)

i€{l,..,m} /n i€{l,...,m} vn
Corollary 2 Consider an instance of the linear regression mddd)) under condition(12).

(&) Then there is a universal positive constaisuch that

max

. o?d mn m m
mlnd G,P,B 7 Z ¢—— min T o ’ .
( 1m) mn { 07 N dogm” A2 (37 min{1, Zi}) logm }

(b) Conversely, given budgels > dlog(mn) fori =1,...,m, there is a universal constant
¢’ such that Y
. C g
om0, P, Byy) < —— —.
( P b ) B )‘?nin mn



It is a classical fact (e.g. [14]) that the minimax rate fisdimensional linear regression scales as
do?/(nm). Part (a) of Corollary 2 shows this optimal rate is attaieadnly if the budgeB; at each

machine is of the ordet/ log(m), meaning that the total budgBt= }"." | B; must grow asijgﬂm.

Part (b) of the corollary shows that the minimax rate is agdiée with budgets that match the lower
bound up to logarithmic factors.

Proof: The proof of part (b) follows from techniques of Zhang et aB], who show that solving
each regression problem separately and then performingradbapproximate averaging, in which
each machine usds3; = dlog(mn) bits, achieves the minimax rate up to constant prefactors.

To prove part (a), we show that solving an arbitrary Gaussi@an estimation problem can be
reduced to solving a specially constructed linear regossproblem. This reduction allows us to
apply the lower bound from Theorem 2. Givére ©, consider the Gaussian mean model

2
XD =9 +w®, wherew® ~ N (07 )\;nfdxd> .

max

Each machine has its own design matrixl(Y), and we use it to construct a response vector
b € R™. Sincenmax (AP /v/n) < Amax, the matrix2® = o21,,,, — A;’Z —AD (AT is
positive semidefinite. Consequently, we may form a respuastor via :

b = ADXD 4O 2 N (0,20) is drawn independently af (. (13)

The independence ab¥ and z(¥) guarantees thai”? ~ N(A®¥,0%I,,), so that the pair
(), A®) is faithful to the regression modél (11).

Now consider any protocdl € A;,4(B, P) that can solve any regression problem to within accu-
racy 6, so thatE[||0 — 0||3] < 62. By the previously described reduction, the protoHotan also

solve the mean estimation problem to accuragin particular via the paif A, b(?)) constructed
via expression (13). Combined with this reduction, the ttarg thus follows from Theorem|2.l

4.2 Probit regression

We now turn to the problem of binary classification, in partér considering the probit re-
gression model. As in the previous section, eachnofmachines has a fixed design matrix
AW ¢ R**d where A(“*) denotes thekth row of A(). Machinei receivesn binary responses
ZW = (z®Y . 7)) drawn from the conditional distribution

P(Z0F) =1 AGR) g) = d(AERH)  for some fixed) € © = [-1,1]%, (14)

where®(-) denotes the standard normal CDF. The log-likelihood of ttebip model [(14) is con-
cave [4, Exercise 3.54]. Under condition (12) on the desigirices, we have:

Corollary 3 Consider the probit modélL4) under condition(12). Then

(&) There is a universal constaasuch that

: d m m
M9, P, Bim) > c— min < mn, , .
P Bim) 2 coy { Nwclogm’ 22, (S0, min{L, 5 )1ogm}

(b) Conversely, given budgel > dlog(mn) fori = 1,...,m, there is a universal constant
¢ such that
M (G, P, Brm) < — 0
y 17y Plim ) = )\?nin mn'
Proof: As in the previous case with linear regression, Zhang et atudy of distributed convex
optimization [23] gives part (b): each machine solves tlel@robit regression separately, after
which each machine sends = dlog(mn) bits to average its local solution.

To prove part (a), we show that linear regression problemsessolved via estimation in a specially
constructed probit model. Consider an arbitréry ©; assume we have a regression problem of the



form (11) with noise variance? = 1. We construct the binary responses for our probit regressio
(z®Y . Z6m) py

" 1 if k) >0
ASE = 1
{O otherwise (15)

By construction, we havB(Z(F) =1 | A ) = &(A¥*)g) as desired for our model (14). By
inspection, any protocdll € A;,q(B,P) solving the probit regression problem provides an esti-
mator with the same error (risk) as the original linear regien problem via the construction (15).
Corollary[2 provides the desired lower bound. [ |

5 Proof sketches for main results

We now give an outline of the proof of each of our main resuliseorems 1 and|2), providing a
more detailed proof sketch for Proposition 2, since it digpltechniques common to our arguments.

5.1 Broad outline

Most of our lower bounds follow the same basic strategy ofiofty an estimation problem to
a testing problem. Following this reduction, we then depédlmequalities relating the probability
of error in the test to the number of bits contained in the ragssY; sent from each machine.
Establishing these links is the most technically challeggispect.

Our reduction from estimation to testing is somewhat moneegal than the classical reductions
(e.g., [22, 20]), since we do not map the original estimapooblem to a strict test, but rather a
test that allows some errors. L¥tdenote an index set of finite cardinality, wherec V indexes a
family of probability distributions{ P(- | v)},cy. For each member of this family, associate with a
parameted, := 6(P(- | v)) € ©, where© denotes the parameter space. In our proofs applicable to
d-dimensional problems, we sgt= {—1,1}¢, and we index vector, by v € V. Now, we sample

V uniformly at random from). Conditional onV = v, we then sampleX from a distribution
Px (- | V =v) satisfyingd, := 0(Px (- | v)) = ov, whered > 0 is a fixed quantity that we control.
We definedy,.m (v, V') to be the Hamming distance between’ € V. This construction gives

HQV — GV/HQ = 25\/ dham(u, V/).

Fixing ¢ € R, the following lemma reduces the problem of estimatinip finding a pointv € V
within distancet of the random variablé”. The result extends a result of Duchi and Wainwright
[8]; for completeness we provide a proof in Appendix H.

Lemmal LetV be uniformly sampled fron. For any estimato® and anyt € R, we have

sup E[||6 — 0(P)[3] = 6%(L¢] + 1) inf P (dnam(7, V) > 1) ,
PcP v
where the infimum ranges over all testing functions.

Lemmd 1 shows that minimax lower lower bound can be deriveghmwing that, for someé > 0
to be chosen, it is difficult to identify” within a radius oft. The following extension of Fano’s
inequality [8] can be used to control this type of error prioility:

Lemma2 LetV — X — V be a Markov chain, wher¥ is uniform on). For anyt € R, we have
~ I(V; X) +log2
Pdhan(7,V) > 1) = 1 - LX) Hlog2,
log WJ
whereN; := max {v' €V :dnam(v, V') <t} is the size of the largestneighborhood in.
Lemmad 2 allows flexibility in the application of the minimawinds from Lemma 1. If there is a

large set) for which it is easy to control (V; X ), whereas neighborhoods ihare relatively small
(i.e., Ny is small), then we can obtain sharp lower bounds.



In a distributed protocol, we have a Markov ch&in— X — Y, whereY denotes the messages the
different machines send. Based on the mess&gese consider an arbitrary estimatéY’). For
0<t<[d/3], wehaveN, = 3! _ (%) <2(9). Since(}) < (de/t)t, fort < d/6 we have

4 d d B 2 d

logﬁt > dlog?2 —log2 ; > dlog?2 — glog(Ge) —log2 = dlogm > 5

for d > 12 (the casel < 12 can be checked directly). Thus, combining Lemma 1 and Leirima 2
(using the Markov chaif — X — Y — 0), we find that fort = |d/6],

5 0 2 2 I(Y;V) +log2
sup B [180r) - 0(P] = 2%(Lafol + 1 (1 - D EE2)

With inequality (16) in hand, it then remains to upper boumelutual informatior (Y'; V'), which
is the main technical content of each of our results.

(16)

5.2 Proof sketch of Proposition |2

Following the general outline of the previous section,Wlebe uniform ony = {—1,1}%. Letting
0 < ¢ < 1 be a positive number, farc [m] we independently sampl& ) € R¢ according to

1446 1-6§

PXY =y |V=v)= and P(X}) = —v; |V =v) = —~. 17

Under this distribution, we can give a sharp characteratif the mutual informatiod (V;Y;). In
particular, we show in AppendixIB that under the samplingritistion (17), there exists a numerical
constant: such that

I(V;Y;) < ed*I(XD;Y5). (18)
Since the random variablg takes discrete values, we have
I(X";Y;) < min{H(XW), H(Y;)} < min{d, H(Y;)}.

Since the expected length of messagés bounded byB;, Shannon’s source coding theorem [6]
implies thatH (Y;) < B;. In particular, inequality (18) establishes a link betwéem initial distri-
bution (17) and the number of bits used to transmit infororatthat is,

I(V;Y;) < ¢6* min{d, B;}. (19)
We can now apply the quantitative data processing inequ@l®) in the bound (16). By the in-

dependence of the communication schefi&; Y1.,,) < >.", I(V;Y;), and thus inequality (16)
simplifies to

M (0, P, Bro) > 82(d/6] + 1) (1 B c6? 3" min{d, B;} +10g2> .

/6

Assumingd > 9, sol — 6log2/d > 1/2, we see that choosinf = min{1, m}
implies -
; §2(ld/6| +1) [d/6] +1 d
mmd 0 Bim) > = i 17 m .
(0P, Bim) = 4 4 mm{ 24c5 T, min{Bi,d}}

Rearranging slightly gives the statement of the propasitio
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Appendices

A Notation and proof setup

In these appendices, we provide the proofs of all our magulte. Note that we prove the theorems
out of the order in which they are presented: many of the #vesrbuild on one another, so we
present them in (rough) order of most basic to most complegfoi® proceeding to the proofs

proper, we give notation.

Notation in proofs

The distributed machines are indexeddby {1,...,m}. For machine, it receives local dataset
D;. If D; contains multiple examples, we may denote kkid example byX (#%) |f each example
has more than one coordinate, then fkté coordinate is represented D;Sé”k).

For arandom variabl&’, we let Px denote the probability measure ah so thatPx (S) = P(X €
S), and we abuse notation by writing, for the probability mass function or density &f, depend-
ing on the situation, so thaty (x) = P(X = x) in the discrete case and denotes the density of
atz whenpx is a density. For discrete random variablewe letH (X) = — > px(z) logpx (z)
denote the (Shannon) entropy, and for probability distidns P, Q on a setY’, with densitieg, ¢
with respect to a base measurewe write the KL-divergence as

p(x)
Dy (P|Q ::/px log —=du(x).
w (P|Q) X() o) ()
The mutual informatior (X; Y') between random variablé§ andY whereY has distributionPy-
is defined as

I(X;Y) = Epy [D (Py(- | X)|Py(-))] = /Dkl (Py (- | X =x)|Py()))dPx(z).

Le Cam’s method

In low-dimensional settings, it is sometimes difficult tgppour incarnation of Fano’s inequality
as outlined in Section 5.1. In these settings, we use a minloveer bound based on a two-point
family. In this setting, we leV = {—1,1}, and definegd, = 6(P,) as usual. Then Le Cam’s
inequality (e.g. [22] or [19, Theorem 2.2]) guarantees foatl’ chosen uniformly a§” = 1 or
V = —1 we have L
f P #V) > 5 = S 1P = Paallpy
As a consequence, if by constructién= v, then Lemmall implies that
~ 1 1

inf E[[|6 — 0(P)||J2] > 6% (= — = |P, — P_ . 2

e BT 0P 8 (5 - 171~ Pl (20)
We use arguments based on Le Cam’s method (20) when the domehis small.
In addition, it will be useful to have a few simple upper bosioa the distancgP, — P_1||,,. We
claim that if we have the Markov chaivi — Y, for any random variabl&”, then forlV chosen
uniformly in a setV = {v, '},

|Py(- 1V =v) = Py(-| V =) |gy < 21(Y,V). (21)
To see inequality (21), le®, be shorthand foPy (- | V = v). The triangle inequality implies that
1
HPV - PV’”TV < ”PV - (1/2)(Pv + Pv/)”TV + 5 ”PV - PV’HTV’
and similarly swapping the roles of andv, whence
1P — Porllpy < 2min{(|P, — (1/2)(Pyr + Po)lpy s 1P — (1/2)(Por + P) [l py }-
By Pinsker’s inequality, we thus have the upper bound
1P — Pv/”'zrv < 2min{ Dy (P, [(1/2)(P, + P.r)) , Dia (P [(1/2) (P, + Por))}
< Dy (P,|(1/2)(P, + P,+)) + Dy (P |(1/2)(P, + P,)) =2I(Y; V)

by the definition of mutual information.
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Tensorization of infor mation

We also require a type of tensorization inequality in eacbuwfproofs for independent protocols.
WhenY; is constructed based only (¥, we have

m

I(V; Yiam) ZIVY|YU1> ZH<1@|Y1:i,1)—H(1@|V,n;i,1>

i=1

@,
Il
—

H(Y;) - H(Y; | Mylzifl)

I

@
Il
-

I

s
Il
-

H(Y;)—HY; | V)= ZIVY (22)

where we have used that conditioning reduces entropyargiconditionally independent df;.; ¢
givenV.

B Proof of Proposition[2

The proof of this proposition follows the basic outline désed in Section 5.
We first describe the distribution of the steép— X. Givenv € V, we assume that each machine
receives al-dimensional sampl& (V) with coordinates independently sampled according to
1+ oy, 1—ov;
2 2
Letd < i. Thend, = E,[X], and moreover we have the likelihood ratio bound

PX;eS|v) 1496 17 17
< < — — < .
P(XjES|y’)_1—6_eXp 86 , and exp 45 <148

P(Xj:l/j‘l/)z andP(Xj:—l/j‘l/):

We now present a lemma that relates this ratio bound via a ¢fgpiantitative data processing
inequality. The lemma is actually somewhat more general thiaat we require, and we prove it in
Sectiont B.1. The result is similar to recent results of Dwathil. [10, Theorems 1 and 2], who show
similar strong data processing inequalities in the contéxirivacy-preserving data analysis. Our
proof, however, is different, as we have the Markov cHair- X — Y, and instead of a likelihood
ratio bound on the channé&l — Y, we place a likelihood ratio bound dn — X.

Lemma3 LetV be sampled uniformly at random frofn-1, 1}¢. For any (4, j), assume thaKJ(i)
is independent O{X;f) 2 # YUV s j # 5} givenVj. LetPx, be the probability measure of
X7 and assume in addition that

]P)X(SVZV)) < eXp(Oé).

sup
seo(x;) Px; (S |V =0

Then ‘
I(V;Y;) < 2(e®* —1)21(X 9, Y;).

Lemmd 3 provides a quantitative data processing inequadiiting the mutual information in the
channelX ) — Y; to thatinV — Y;. In particular, we find that

2 X .
I(V:Y;) <2 (e<17/4>5 - 1) (XD V) < 1286°1(XD; V).
This is the claimed strong data processing inequality (M)ch almost completes our proof. To

complete the proof, note th&(P(- | V = v)) = E[Y | v] = év. Recalling the tensorization
inequality (22), we also have

I(V; Y1) < i I(V;Y)) <12852ZI 5 X @),
=1 i=1
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The remainder of the proof we break into two cases: wiien 9 and whend < 9. For the case
d > 9, our proof sketch in Sectidn 5.2, beginning from inequa(it§) with c = 128, completes the
proof. Whend < 9, we use a slightly different argument. By a reduction to $enalimensions, we
may assume without loss of generality thlat 1, and we se¥V = {—1, 1}. In this case, Le Cam’s
method|(20) coupled with the subsequent information inkyu@1) implies that

) 1 1
M40, P, Bi.m) > 6° <2 -3 2I(V;Y1:m)) : (23)

Applying our previous bound(V; Y1.,,,) < 12852 3" | 1(Y;; X (), and noting thaf (X );Y;) <
min{ H(X®), H(Y;)} < min{1, H(Y;)} sinceX® € {—1, 1}, we obtain

M9, P, By.pn) > 62 (; — 8(52 imm{LH(m}) ) .
i=1

SinceH (Y;) < B; by Shannon’s source coding theorem [6], setting

1
6?2 =min<q 1
o { P4005°7, min{1, By} }
completes the proof.

B.1 Proof of Lemmal3
LetY = Y;; we suppress the dependence on the indexd similarly letX = X ) denote a single
fixed sample). We begin with the simple observation thathieychain rule for mutual information,

d
I(V;Y) =Y I(ViY | Vi),

j=1
Using the definition of mutual information and non-negayiwf the KL-divergence, we have
I(Vi;Y | Vij1) = By, [Ey [Dia (P, (- | Y, Vi) Py, (- | Vi—1)) | Vag-1] ]
<Evi,_, [Ey [Dia (Py;(- | Y, Vi) Py (- | Viy-1))
+Di (P, (- | Vigj—) [Py, (- | Y, Vigg—1)) | Vig—a]] -

Now, we require an argument that builds off of a technicalfeamwe present in Appendix]G,
Lemmad 8. We claim that Lemma 8 implies that

|P(V; = v | Vij-1,Y) = P(V; = v | Vij—1))|
S 2(62a — 1) min {P(V] = Vj | Vl;j,17Y>,P(ij' = Vj | ‘/1;]‘,1)}

X ||Px, (- | Vij—1,Y) — Px, (- | Visja (24)

Mzy-
Indeed, making the identification
‘/jHA, Xj<—>B, Vlzj_1<—>C, Y < D

gives inequality[(24), by our independence assumptionpakding our KL divergence bound, we
have

Dy (Py, (- | Y, Vi - )| Py, (- | Viej—1))

<D (P, (v | Y, Vi 1) = Py, (v | Vi) log

Vi

Py, (vj | Y, Vij-1)
Py, (v | Vij-1)

Now, using the elementary inequality ferb > 0 that

|a — b]

‘lo E‘ < —
&yl = min{a,b}’

12



we have
Py, (vj | Y, Vi;j-1)
Py, (v | Vij1)
(Pv,(vj | Y, Vij—1) — Py, (v | Viij—1))?
~ min{Py; (v | Y, Viij1), Py, (v | Vi -1)}
<4(e** — 1)’ min { Py, (v; | Y, Viij—1), Py, (vj | Viij—1)}

% (| Px, (- | Vigo1.Y) = P, (| Vig—n) |y

(P, (v | Y, Viij—1) = Py, (v5 | Vi;j—1)) log

by inequality [(24).
Substituting this into our bound on KL-divergence, we oftali
IV Y [ Vi)
=Ev,, , [Ey [Dia (Py; (- | Y, Vi) Py, (- | V1)) | Visj—a] ]
< 4(e** —1)°Ewy,,_, [EY [HPXJ-(' | Vig—1,Y) = Px, (- | Vi) 1y | Vlzjflﬂ :
Using Pinsker’s inequality, we then find that
Eviyos [Ey ([P, ¢ Vi1, ¥) = P, (1 Vig-) [y | Vi ]

1 1
< §Ev1;]-,1 [Ey [Du (Px, (- | Y, Vi) Px, (- | Vigj=1)) | V1] = §I(Xj;Y | Vij—1).
In particular, we have

I(Vi;Y | Vigg) <2(e* — 1)2I(Xj;Y | Vij-1) (25)

Lastly, we argue thaf(X;; Y | Vi.;_1) < I(X;;Y | X1.5-1). Indeed, we have by definitidnhat
(3)

I(X5Y | Vi) = H(X;) — H(X; [ Y, Vij-1)
(i)
< HX;)-H(X; | Y, Vij-1, X15-1)
(i)

= H(Xj | X1j1) - H(X; | Y, X1j1) = I(X35Y | Xyjo1).

Here, equality(:) follows sinceX; is independent o¥;.;_,, inequality (ii) because conditioning
reduces entropy, and equalits{i) becauseX; is independent oX;.;_,. Thus

d d
I(V3Y) =Y I(ViY [ Vigoa) <2(e* =12 I(X;Y | Xpyjo1) = 2(e* = 1)°I(X 13 Y),
Jj=1 j=1
which completes the proof.

C Proof of Theorem[2

In this section, we represent thign sample by am; sample matrixX ) € R¢*": where thekth
column of X is X () and jth row of X is Xj(.”. As usual, we assume the testing Markov

chainV — X — Y;, as in the setup for our proofs. We assume that 4, since otherwise the
interactive lower bound (Proposition 1) provides a strarrgsult.

We have the following lemma, which is an analogue of Lemma 3.

Lemma4 LetV be sampled uniformly at random frofn-1, 1}¢. For any (4, j), assume thaXJ(.i)
is independent O{X;f) g # 3y u{Vy ' # 4} givenVj. Let Px, be the probability measure of
X" and assume in addition that

s Px,(S|V=v)

= <exp(a).
seo(,) Px;(S |V =v) ()

2\We assume thaX is discrete or has a density with respect to Lebesgue measure.
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Define the random variabl&; = 1 if X](.i) € B; and 0 otherwise. Then

d d
I(V;Ys) <2(e = 1)* 1(XD;v) + Y H(E) + Y P(E; =0).

j=1 j=1
For the next lemma, we assume that as usual {—1,1}¢, and the parameté, has coordinates

given by(6,); = v;6. Moreover, we assume that each machihasn; independent samples from
aN(vé§,o%1) distribution, soE, [ X] = 6,. For conciseness we define the shorthand

: a?
b; = min {12802H(Yi),d} .

Lemma5 Leta > 0 andé > 0 be chosen such tha’;@‘“S < 12564 for anyi € {1,...,m}, and
let h(p) = —plog(p) — (1 — p)log(1 — p) be binary entropy. Then

[Viy)) < O_;fm {128 QH(Yi),d} +dh (2€Xp (—W))
+ 2d exp (—(a_\/w>

202

(26)

With the bound[(26) on the mutual informatidiiY;; V'), we may now divide our proof into two
cases: whed > 9 andd < 9. Let us being withd > 9. Recalling our earlier minimax bound (16),
we have—sincé(P,) = dv—that

M (0, P, Brm) > 62(|d/6] + 1) <1 IV V) + 10g2>

d/6

If we can choose appropriateso thatl(Y7.,,,; V) < 3/10, then (sincel > 9), we will obtain that
the minimax error is lower bounded By (|d/6| + 1)/2, which will complete the proof.

Now, we consider each of the terms in the bound in Lemma 5 im firrding settings of anda so
that each is small. Specifically, recalling the assumptiatrt, > 2, we will find settings ob anda
so that the sum is bounded By10. We begin with the third term in the bound, where we note that
if
2
g

65 <
3 = 25. 16log(m) max; n;

then the condmon@ < 12864 in | emmd 5 is satisfied. In addition, we haye— \/n;d3)% >
(5 —1/20)202 logm > 2402 logm SO

and a = 50+/logm, (27a)

,/ 15 4
Z4exp ( 7:0g)° ) <dmexp (—12logm) = —7 < 1075,
m

For the first term in the bound from Lemma 5, we note that with itentical choice ofi =

50+/nlogm, by taking

do?
o < 107 b
=1 TL,

we have thafy ;" | 2b;n;67/(do*) < 1/5. Lastly, we haveh(q) < (6/5),/q for ¢ > 0. As a
consequence, we see that 8§rchosen identically to the choide (27a) far, we have

- (@ — /n;62)? 12m 24 1
oh 2exp [ — L V02" Sexp [ — -1 <
; h< eXp( 202 < 5 V2exp (T loam ) < o5

In particular, combining bounds (27a) ahd (27b), we seeithet choose

(27b)

o2 do?

62 =min{ 1
i { " 400log(m) max; n; " 1031, bin,

} and a = 50+/logm
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then

" 2b;m,;02 (a— /nid)* (a — /nid)? 3
v d0'2 +2h (QGXp <_W>> +4eXp <_M> < TO
This completes the proof for the case that 9, since

2

b; < min {128%H(Yi),d} = min {25 - 128 H(Y;) logm,d} < min {25 - 128B; logm, d}
g
by Shannon’s source coding theorem.

Whend < 9, an appeal to Le Cam’s methad (20), as in the proof of Projpnsi, and an identical
series of steps to bound the mutual information using inktyu®&6) (i.e., again applying inequali-
ties (27a)-+(27b)) completes the proof.

C.1 Proof of Lemmald

The proof is substantially similar to that of Lemra 3, but weibit some care since we must

condition on the event that (") e B;. For notational simplicity, we again suppress all depeoden
of X andY on the machine indek

We begin by noting that gived;, the variableV; is independent o¥.;_1, Xi.;-1, Vj4+1:4, @and
X,+1:4. Moreover, by the assumption in the lemma we have for&wyo(B;) that
Px.(S|V=vE;=1) Px,(S|V=v) Px(X;€B;|V=0)
J . , , < exp(20),
Px,(S|V=v,E;=1) Px,(X;€B;|V=v) Px,(X;€S|V=0)
so we have the analogue of the bound (24) that
PV =vj [ Vi,V B =1) = P(V; = v [ Vi1, By = 1)
<2(e'—1)||Px,(- | Vij—1, Y, E; = 1) — Px, (- | Visj—1, Ej = 1)HTV e (28)
min {P(V; = v; | Vi1, Y, Ej = 1), P(V; = vj [ Vi;j 1, Ej = 1)}
Thus, proceeding as in the proof of Lemima 3 (specifically tigement preceding inequality (25)),
the expression (28) implies

(VY | Vigo1, By =1) <2(e* = 1) I(X;;Y | Vi1, B; = 1). (29)

The bound (29) as stated conditionsiByn which makes it somewhat unwieldy. We turn to removing
this conditioning. By the definition of (conditional) mutuaformation, we have

P(E‘J = 1)[(‘/},}/ | Vl:jfth = 1)
=I(Vi;Y | Vi1, Bj) = 1(Vy Y | Vi1, Ej = 0)P(E; = 0)
=1(V;; B, Y | Vigj—a) = IV B | V1) = I(V3 Y | Va1, Ej = 0)P(E; = 0)
Since conditioning reduces entropy,
IV B3 Y | Vi) = H(Vj | V1) = H(V; | Ej,Y, Viyioa)
= H(V; | Vij—1) = H(V; | Y, V1) = I(V; Y | Vigia),
and noting thaf (V;; Y | Vij—1, E; =0) < H(V;) < landI(Vj; E; | Vij—1) < H(E;) gives
P(E; = D)I(Vi;Y | Vi, By = 1) 2 IV Y | Via) — H(E;) — P(E; = 0). (30)
We now combine inequalities (B0) arld (29) to complete th@fod the lemma. By the definition
of conditional mutual information,
IXGY | Vi1, By)  I(Xg5 Y [ Vi)
P(E; =1) = P(E;j=1)
Combining this with inequalities (30) and (29) yields
I(Vi3Y | Vi) < H(E)) + P(B; = 0) +2 (e = 1) I(X;;Y | Vi),

Up to the additive terms, this is equivalent to the earlieurmb (25) in the proof of Lemma 3;
proceedingnutatis mudandig/e complete the proof.

I(X5Y | Vi1, By =1) <
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C.2 Proof of Lemmal5

Inequality (26) is the consequence of two intermediate uppands, which we prove separately:

1(viv) < 8 (31)
I(V;Y;) < i 2niH(Yi)
+ dh (2 exp (—W)) + 2d exp (_(a—W) . (32)
20 202

To prove inequality/ (31), we note th&t — X () — Y; forms a Markov chain. Thus, the data-
processing inequality [6] implies that

I(V3Y;) < I(V;XW) <31V X0D) = 1 (v; X 0D)
j=1

where the last inequality comes from the independence oktié). Let P, denote the conditional
distribution of X (-7) givenV = v. Then the convexity of the KL-divergence implies

d6
(V X |2 Z Dkl P ”P 20_2 |V|2 Z || H2 .
v,v' eV v,v' eV

This establishes inequality (31).

To prove inequality (32), we apply Lemra 4. First, we note thataking a ratio of the densities of
two normals withn; independent samples, one with meaand the other with meand, both with
variances?, we have

7% ;i Y 2 5
P gz 2l 2 OP) g (2 le <ew (V2)
exp( =gz 222, (21 4 0)?) 20
whenever )", ;| < \/n;a. As a consequence, we see that by taking the sets

S nia}y

we satisfy the conditions of Lemma 4 with= \/rTi(Sa/J2. In addition, wheny < 1.2564, we have
exp(a) — 1 < 2q, so under the conditions of the lemmap(4c) — 1 = exp(4y/n;6a/c?) — 1 <

8y/nida/c?. Recalling the definition of the everit; = {Xj(.i) € B,} from Lemma 4, we obtain

Bj:{xeR”i:

2.2 d d
I(V;Y;) < 1286 CnI(XO:Y) + S H(E) + Y P(E; =0).

j=1 j=1

Comparing this inequality with inequality (32), we see that must bound the probability of the
eventE; = 0.

Bounding P(E; = 0) is not challenging, however. From standard Gaussian taihtls, we have
for Z; distributed i.i.d. according tdl(d, o2) that

P(E; =0) = P( > nm)
=1

£
P<i(zl5> > \/TTiam;) +P(§:(Z15) < \/njams)

=1 =1
(a = 0)?
202 '

< 2exp (—
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D Proof of Proposition

We prove the lower bound via a standard information-théoratgument. Fixo > 0, and let
Y = [2losMe(29)] index a maximaRs-packing of©, which we identify by{6,},cy C ©. Fix
an (arbitrary) protocoll for communication.

Following the standard reduction from (worst-case) edtiomato testing [20, 22, 19], leV be
sampled uniformly fronV. For messages = (Y, ..., Yr) sent by the protocdlI, Iet@(Y) denote
the estimator of based ort’” and defind/ = argmin,, ¢y, ||§(Y) —0,|2- Then|\§(Y) — 0,2 >0
if V # V', and we have

13351&“@( )—6, H ;P [IIG( )—%II%\V:V}
> PPV =v)P(VAV |V =v)=8PV £V). (33
vey

By Fano’s inequality [6], the testing error (33) is lower Inoled by

[(V;iY)+1 _  H(Y)+1

log Mg (26) — log Mg (25)’

since H(Y') > I(V;Y). Shannon’s source coding theorem [6, Chapter 5] guaramheskower

boundB > H(Y). Since the protocall was arbitrary, we have as an immediate consequence of
inequality (33) that

P(V£V)>1-—

B+1

intera B) > 2 1—
w0, P 20t (1 s

> foranyd > 0. (34)

Using inequality[(34), the remainder of the proof is strafigiward. Indeed, we have

B+l 1 . logMe(20)

- > 2 iff 26 > log M5'(2B + 2).
ogMo@) =3 M — g1 =2 20=zlogMe (25+2)

Settingd = 1 log Mg (2B + 2) thus gives the result of the theorem.

E Proof of Theorem/1

We follow a standard hypothesis testing setup (recall 88idil) to choose a variablé € {—1,1}
uniformly at random and then sampk® w.r.t. N(6V, o2) independently on each of the ma-
chines. However, in this situation, while the local samg@esindependent, the messages are not:
the sequence of random variab¥s= (Y7, ..., Yr) is generated such that the distributiongfis a
measurable function ¢fX (), Y1.,_,) wherei, € {1,...,m} is the index the existing sample upon
whichY; is based. We assume without loss of generality that the segyeé , io, ..., } is fixed

in advance—if the choice of inde is based or¥7., ; and X, then we simply say there exists a
default value (say; =_1) that indicates “nothing.”

Lemma6 Assume that)| = 2. Also assume that there is a $8tsuch that for any, v’ € V we
have p g

Sup{ x (5] V/)

Pxw (S ]v)

Let the random variabl€ = 1if XV ¢ B for all i and€ = 0 otherwise. Then

Seo(B), v e V} <e* (35)

I(V;Y) <2(e* = 1)’ I(X;Y) + H(E) + P(E = 0).

Consider the following scheme. Givenc {—1,1}, we assume that each machinesceivesn
sampleX “%) (k. = 1,...,n) independently sampled according to

X ~ N(0v, 0?)
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Following the low dimension case of Proposition 2, ineaydR23) implies that

. 2
if I(V;Y)< 3 then sup E[(§ — 6)?] > 6— (36)
We focus on showing the conditions for the implication](36)ch By definingB = {z € R" :
| >z < y/na} and the condition of Lemmia 6 is satisfied with= \/nda/c?. If we assume
thata < 1.2564 (which is satisfied by the assignment described below), ¢kev) — 1 < 2. and

henceexp(4a) — 1 = exp(4y/nda/c?) — 1 < 8y/nda/a?. We obtain
§?na?

ol

I(V;Y) <128 HY)+ H(E)+ P =0).

Let E; be the random variable such tht = 1 if X(¥ ¢ B andE; = 0 otherwise. Since
E=TI", E;, we haveP(£ = 0) < >, P(E; = 0). We apply the last inequality in the proof of
Lemma 5 to upper bound3(E; = 0), which yields that

“ (a — /nd)?
=0) < e R S i I
PE=0)< ;P(EZ 0) < 2mexp ( 52
Consequently,
2, 2 _ 2 — 2
I(V:Y) <1282 S H(Y) + mh <2 exp (_(‘12;/255)» + 2mexp <_<“2o¢f5)> 7

(37)

whereh(p) = —plog(p) — (1 — p)log(1l — p) is the binary entropy function. We also used the
convexity ofh in [0,1/2], so thath(p) < mh(p/m)for0 <p < 1/2.

Given upper bound (37), we follow the proof of Theoren 2 to thext by choosing
2 2

82 =min{1,— 7 d a=50/1
mm{ » 400 1og(m)n’ 10 - 128 - 36 log(m)nH(Y) [ o0 @ = 2oV ioem,

we obtainI(V;Y) < 13—0. Thus, there is a universal constarguch that

Igg}}(E[(é\— 9)%] > cmin {1’ log(m)n’ log(m)nH(Y) } '

Applying the source coding theorem to bouAdY") < B completes the proof.

E.1 Proof of Lemmal6

Lemma7 Consider the hypothesis testing problem described in tlere paragraph of Ap-
pendix E, but assume thaf(?) is sampled from another probability measugg- | v) satisfying

Sup{m | S €o(X), V,I/GV} <e“. (38)

Then we have )
I(V;Y) <2(e* —1)" I(X;Y).

With Lemmal 7 established, the proof of Lemma 6 follows,tatis mutandisas in the proof of
Lemma 4 from Lemma 3. Thus, it only remains to prove Lerhma 7.

Proof of Lemmal7] By the chain-rule for mutual information, we have that

T
I(V;Y) =Y I(V;Yi | Yiga).
t=1

Let Py, (- | Y1.t—1) denote the (marginal) distribution &f givenYy.;._; and definePy (- | Y1.+) to
be the distribution of” conditional onY;.,. Then we have by marginalization that

PV(' \ Yl:t—l) = /PV(' | Yl:t—layt)dPYt (?Jt | Yl:t—l)
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and thus
I(V;Yy | Yig1) = Evi, [By, [Da (Py (- | Yi) [Py (- | Yiie-1)) | Yia—1]]- (39)
We now bound the above KL divergence using the assumptioheilemma.
By the nonnegativity of the KL divergence, we have
Dy (Pv (- | Yi.o)|Pv (- | Y1i:6-1))
<Dy (Pv(- | Yie) [Py (- | Yiie—1)) + Dia (Py (- | Yie—1) [ Pv (- | Y1)
v|Yig_
= 3 (o (v | Yier) — po(v | Yia)) log 22 Yim1)
= pv (v | Yiy)
wherepy denotes the p.m.f. df . We claim that Lemmial8 implies that
lpv (v | Yii—1) —pv (v | Yig)]
<2(e* — Dmin{py (v | Yie—1),pv (v | Y1)} [ Pxo (- | Yiir) = Pxcio (- | Yiie—1) |l py -
(40)
Deferring the proof of inequality (40) to the end of this $ewt we give the remainder of the proof.
First, by a first-order convexity argument, we have that fora b > 0
log & < 7|a — Yl
5y = min{a, b}’
As a consequence, we find

pv(v | Yig-1) - (pv (v | Yiee—1) — pv(v | Yia))®
pv(v | Yie) — min{pv(v | Yie—1),pv (v | Y1)}
<4 (e — 1)2min {pv( | Yiu—1),pv(v | Yie) } [ Pxco (- | Y1) = Pxao (- Yl:t—l)H”va
by using inequalityl (40). Using the fact that is a p.m.f., we thus have
Dy (Pv (- | Yi:) [Py (- | Yiie—1)) + Dia (Pv (- | Y1) [Py (- | Yiae))

no 2 .
< 4(e2 — 1) [Py (- | Vi) = Pxo (| Y1)y S min {py (v | Yie—1), pv (v | Y1)}
vey

no 2
< 4(e® —1)7||Pxao (- | Yia) = Pxiin (- | Yiiee1) |3y -

(pv (v | Yiie—1) = pv (v | Y14)) log

Using Pinsker’s inequality, we then find that
Evis [Ev, [[Pxco (- Vi) = Pxco (| Vi) | Yioa |

1 1 .
< §Eyl;t,1 [Ey, [Da (Pxao (- | Y1) | Px o (- | Yig—1)) | Yiz—1]] = §I(X(“);Yt | Yie—1).

Since conditioning reduces entropy arids discrete, we have
I(XU5Y, | Yigor) = H(Yy | Yiga) = H(Y; | X0, Vi)
SHY; [ Yig1) - HY;: | X, Y1) = I(X; Y | Yia).
This completes the proof of the lemma, sirEng:1 I(X;Y: | Yii—1) = I(X;Y) by the chain rule
for information.
Proof of inequality (40) To establish the inequality, we give a one-to-one smoadence between
the variables in Lemnja 8 and the variables in Lerhma 7. We nakéotlowing identifications:
Ved X% oB o Yiy,oC Y, <D.

For Lemma 8 to hold, we must verify conditions (43), (44), &48). For condition/(43) to holdy;
must be independent &f given {Y;.,_;, X()}. Since the distribution oPy, (- | Y1.,_1, X)) is
measurablgY;.; 1, X ()}, Condition (45) is satisfied by the assumption in the lemma.
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Finally, for condition [(44) to hold, we must be able to factoe conditional probability ot7;.;_,
given{V, X} as

P(Yio1 = Y1 | Vi X)) = 0y (Vg1 1) O (X 1), (41)
To prove this decomposition, notice that

P(Yigo1 =y | V, X)) = H P(Yi =y | Vi1, V, X U9).
k=1

Foranyk € {1,...,t — 1}, if iy = i,—that is, the messagdg; is generated based on sample
X () = x(x)—theny, isindependent o given{X ") Y1.,_1}. Thus,Py, (- | Yi.,_1, V, X (1))
is measurablg-X "), Y., _1}. If the kth indexi, # i, thenY} is independent ofX () given
{Y1.x_1,V'} by construction, which meanBy, (- | Y1.x_1,V, X)) = Py, (- | Yi.s_1,V). The

decomposition (41) thus holds, and we have verified that efitthe conditions of Lemmal/8 holds.
We thus establish inequality (40).

F Proof of Corollary/1]

We prove Corollary 1 in two parts: the upper bound (for paj} énd lower bound (for part (b)).
We prove the upper bound by exhibiting an interactive protdt* and prove the lower bound by
applying Proposition 1.

Upper bound on the minimax risk We consider the following communication protodat €
-Ainter(Bv P)
1. Machinei € {1,...,m} computes its local minimum® = min{ X% : £ =1,...,n}.
2. Machinel broadcasts:(!) using2log(mn) bits. Upon receiving the broadcast, all ma-
chines initialize global minimum variables— a(!).
3. Inthe order = 2,3, ..., m, machine performs the following operations:

(i) Checkifal® < s. If so, machine performs the update — «(?) and broadcasts,
otherwise it does nothing.

(ii) All other machines update their localafter receiving machinés update. All real
numbers in the message are rounded dowiltg (mn)-bit discrete values.

4. One machine output%: s+ 1.
According to the protocol described aboV¥, computes a global minima
s:min{X(i"'k) i=1,...,m; k= 1,...7n}

to accuracy of(1/(mn)?) since because real numbers are encoded2iitfy(mn) bits. Then clas-
sical convergence analysis [14] yields estimater s + 1 achieves minimax optimal convergence
rate (|0 — 0[[3] < 1/(mn)*.
To analyze the communication complexity of the prototisl, we study Steps 2-3. In Step 2,
machinel sends2log(mn) bits as messagg. In Step 3, machineé sends2log(mn) bits only if
a™ < min{a® .. o=V}, By inspection, this event happens with probability bouhbg 1 /1,
so we find that the expected length of messHgs
= 210g(mn).

1

E[L;

Putting all pieces together, we obtain that

E[L] = Z]E[Li] < 2log(mn) + > | M < 2log(mn) 4 21n(m) log(mn).

1=2
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Figure 1: Graphical model for Lemrha 8

Lower bound on the minimax risk  To prove the lower bound, we simply evaluate packing en-
tropies by using a volume argument [3]. Sirf@e= [—1, 1], the size of a maximald-packing can
be lower bounded by

glog Mo (25) . Volume(©) i
~ Volume({z e R : ||z|2 < 20}) — 20

Taking logarithms and inverting = log Mg (9) = log Mo (1/(mn)) yields the lower bound.

(42)

G Total variation contraction

In this section, we prove a technical lemma that is essetatitle proof of our results.

Consider four random variable$, B, C, D, of which we assume that, C', and D have discrete
distributions. We denote the conditional distribution/bgiven B by P4, and their full joint distri-
bution by P4 g c,p. We assume that the random variables have conditional nmbigece structure
specified by the graphical model in Figlre 1, that is, that @e write the joint distribution as the
product

Pa g.cp = PaPpaPciasPpB,c- (43)
We denote the domain of a random variable by the identicéibcaphic letter, saA € A, B € B,
and so on. We write'(A) for the sigma-field on4 with respect to which our measures are defined.
Sometimes we writd’4 (- | B) for the conditional distribution ofd given B. In addition to the
conditional independence assumption (43), we assumehtatonditional distribution of’' given
A, B factorizes in the following specific form. There exist fuiecis U, : A x ¢(C) — R, and
U, : B x 0(C) — R4 such that for any (measureable) $ein the range® of C, we have

PC(S|AaB):\I]1(Avs)\Ij2(Bvs) (44)
SinceC is assumed discrete, we abuse notation and ViR{t€ = ¢ | A, B) = U1(A4, ¢)Ty(B,¢).
Lastly, we assume that for amya’ € A, we have the following likelihood ratio bound:

PB(S | A= Cl)

sup ——— < expl(a). 45
seabe) Pa(5 ] A= w) = ) @)

Lemma 8 Under assumptiongt3), (44), and (45), the following inequality holds:
|[P(A=a|C,D)—-P(A=a]|C)|
<2(* ~ ) min{P(A=a| C),P(A=a|C,D)} || Ps(-| C.D) ~ Py(- | O)llzy -

Proof: By assumptiond is independent oD given{B, C'}. Thus we may write
P(A=a|C,D)—PA=a|C) = /P(A:a | B=0b,C)(dPg(b|C,D)—dPg(b]|C))
Combining this equation with the inequality

/P(A — 4| C)(dPy(b| C, D) — dPs(b| C)) = 0
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we find that
P(A=a|C,D)—P(A=a|C)
:/(P(A:a|B:b,C)—P(A:a|C))(dPB(b|O,D)—dPB(b|C)).

Using the fact that [ f(b)du(b)| < supy{|f(b)|} [ |du(b)| for any signed measure on B, we
conclude from the prewous equallty that EmyversionP4 (- | B, C) of the conditional probability
of A given{B, C'} that since[ |du| = || 1|1y,
|[P(A=a|C,D)—P(A=a| ()]
< 2sup{|P(4=a| B=5,0) = P(A=a| O)}|Ps(-| €, D) = P5(- | )y
(S

Thus, to prove the lemma, it is sufficient to show (for somesiger of the conditional distributich
P4(-| B,C)) that for anyb € B

IP(A=a|B=b,C)—P(A=a|C)| < (¢ — )min{P(A=a|C),P(A=a|C,D)}.
(46)

To prove this upper bound, we consider the joint distrioutfd3) and likelihood ratio bound (46).
The distributions{ P (- | A = a)}.c.4 are all absolutely continuous with respect to one another by
assumption (46), so it is no loss of generality to assumetltiese exists a densiys (- | A = a) for
whichP(Be S| A=a)= [pp(b| A= a)du(b), for some fixed measure and for which the
ratiopp(b | A=a)/pe(b| A=ad") € e, e for all b. By elementary conditioning we have for
anysS, € o(B) andec € C
P(A=a|Be€ S, C=c)
_P(A=a,Be S, C=c)
P(BeS,,C=c)
P(Be S,,C=c|A=a)P(A=aqa)
Y e aP(A=a)P(Be€ S, C=c|A=a)
B (A:a)beP(C:c|sz,A:a)pB(b|Aza)du(b)
C YweaPA=0d) [ P(C=c|B=bA=a)ppb|A=a)du(b)’
where for the last equality we used the conditional independ assumptions (43). But now we
recall the decomposition formulﬂ44) and we can expres$ikblihood functions by
=a) [g, P1(a,c)Pa(b,c)pp(b | A= a)du(b)
ZG/P =a fs (a',c)Ws(b,c)pp(b| A=a')du(b)

As a consequence, there is a version of the conditionailaligion of A given B andC' such that
P(A= a)\Ill(a, c)pp(b| A=a)

P(A=a|BeS,,C=c)=

PA=alB=bC=0= = pli = a) (o, dppb | A= o) *7)
Define the shorthand
g PA=a¥i(0)
> €AP(A:a)\I/l(a,c)'
We claim that
e “B<PA=a|B=0bC=c)<e“f. (48)

Assuming the correctness of bound (48), we establish ifitga6). Indeed, since?(A = a |
C = c¢) is aweighted average ¢t(A = a | B = b,C = ¢), we also have the same upper and lower
bound forP(A = a | C), thatis

e B<PA=a|C)<e*p,

3If P(A = a | C)is undefined, we simply set it to have valuand assigniP(A = a | B, C) = 1 as well.
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while the conditional independence assumption th& independent oD given B, C (recall Fig-
urel 1 and the produdt (43)) implies

P(A:a|C:c,D:d):/P(A:a\B:b,C:c,D:d)dPB(b|C:c,D:d)
B
:/P(A:a\B:b,C:c)dPB(b|C:c,D:d),
B
and the final integrand belongsfig:—, ¢%]. Combining the preceding three displayed expressions,
we find that
|P(A=a|B=0b,C)-P(A=a|C)| < (e*—e*)p
<(e*—e ) e*min{P(A=a|C),P(A=a|C,D)}.
This completes the proof of the upper bound] (46).
It remains to prove inequality (48). We observe from expms$47) that
P(A=a)T(a,C)

Swea PA= )@, C)2GA=D

P(A=a|B=bC)=

By the likelihood ratio bound (45), we haye;(b | A = o')/pp(b | A = a) € [e”,¢e"], and
combining this inequality with the above equation yieldsgnality [(48). [ |

H Proof of Lemmal/l

For anyA > 0 and any estimatof, if V is a random variable uniformly chosen froyh then we
have

maxE [0 — 0, 3] = E 10— 0vI3] > E [A% 54, ,5)] = A6 - by > ). (49)

We now lower boundP(||§— Oy |2 > A) by atesting-like probability claimed in the lemma. Define
the testing function

U := argmin |6, — 0.
vey
The triangle inequality implies that

165 — v |2 < |05 — Bl + 10 — v [|2 < 2110 — Oy |5 (50)

Recall that), = v wherev € {—1,1}¢, we have|0; — Ov||2 = 251/ dham (7, V). Combining this
equation with inequalityl (50) implies that

if dham (7, V) >t then |6 — 6y |2 > 62([t] + 1).

Consequently,

P (18- 0vI3 = 0*(1t] +1)) = Pldnan(7,V) > 1). (51)
Combining inequality (49) and (51) with? = §2([¢] + 1), we have

maxE [0 - 0, 3] = 0%(1t] + 1) P(dnam (@, V) > 1).

On the righthand side of the above inequality, taking infimiover all testing functions establishes
the result.
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