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The present work reports on the dynamical measures of order, disorder and complexity for the
interacting bosons in optical lattice. We report results both for the relaxed state as well as quench
dynamics. Our key observations are: (1) Lattice depth can be taken as order-disorder parameter.
(2) The superfluid to Mott insulator transition can be treated as ‘order-disorder’ transition. Our
main motivation is to find how the system organize by itself during quench and how it optimizes the
complexity. We find dynamical measures of order and disorder are more sensitive tool than entropy
measures. We specifically calculate the time scale of entry and exit of different phases during time
evolution. Initially the system exhibits collapse revival trend, however gradually looses its ability
to turn back to superfluid phase and finally Settle to Mott insulator phase.

I. INTRODUCTION

In the recent years, different measures of complexity
have been proposed in several scientific disciplines [1–8].
Out of these, information theoretical measures and en-
tropic uncertainty relations in quantum mechanical sys-
tems become the trademark [9–13]. In this context, the
concept of complexity has also attracted considerable in-
terest [14–21]. Complexity means how a physical or bi-
ological system will organize themselves in response to
some change in the external parameters. It is usually be-
lieved that with increase in number of particles N , the
complexity would also increase. Although there are sev-
eral definitions of complexity in the literature [22–25],
the usual definition of complexity Γαβ was introduced
by Shiner, Davison and Landsberg [26] known as SDL
complexity. The other statistical measures of complexity
C̄ was defined by López- Ruiz [27] and known as LMC
measure. In the context of measuring Shannon informa-
tion entropy, complexity is taken as the most efficient
measure of order and disorder exist in a system [28–34].
The most common case is the ‘convex’ type complexity
where it is minimum both for completely ordered and
disordered system. Some system also exhibit complex-
ity which are either increasing or decreasing function of
disorder [26]. The concept of statistical complexity was
first successfully applied in atomic system by the group
of Panos [35]. Both SDL and LMC were studied as a
function of atomic number Z and main interest was to
explore the connection of the periodicity of shell struc-
ture with the complexity measures.
In the present work, we are interested in the SDL com-
plexity measures for interacting bosons in the optical lat-
tice. The realization of fully controlled quantum many-
body system is an outstanding challenge since past years.
Interacting bosons in an external trap at ultracold tem-
perature allow an unprecedented experimental control.
Interacting bosons in optical lattice feature a variety of
quantum phases— superfluid phase (SF), Mott insulator
phase (MI), fragmented Mott insulator (FMI) [36]. In the

pioneering experiment of Greiner et. al. [37], a quantum
phase transition is observed in a Bose Einstein conden-
sate (BEC) kept in an optical lattice potential with repul-
sive inter atomic interaction. It is observed that weakly
interacting bosons in shallow optical lattice exhibits a su-
perfluid phase. In the SF phase, the atoms exhibit long
range phase coherence across the lattice. Increasing the
depth of the lattice, SF phase makes a transition to Mott
insulator phase. In MI phase, atoms are localized in the
individual lattice sites and phase coherence across the
lattice is lost. The quantum phases are studied by Bose-
Hubbard model [38, 39], ab-inito many-body technique—
multiconfigurational time dependent Hartree for bosons
(MCTDHB) [36, 40–42]. The many-body features are
characterised by distinct measures of many-body cor-
relation, collapse and revival dynamics in lattice depth
quench [43]. The collapse-revival dynamics in the mea-
sure of correlation shows the exact behaviour of Fig.2 of
ref [44].
Our present work is focused to characterize the quan-
tum phases of the interacting bosons in optical lattice
through the measures of order, disorder and complex-
ity. Although the measure of complexity uses the de-
fined notations of order and disorder, but it exhibits con-
siderable degree of flexibility. In the SF to MI transi-
tion, the lattice depth is experimentally controlled and
theoretically corresponding dynamics is recently stud-
ied [36, 40, 41, 43]. Our present calculation exhibits how
the system optimizes the complexity. Of course we need
to resolve whether the lattice depth parameter can be
taken as a parameter of disorder. If so, it leads another
open question whether SF to MI transition can be consid-
ered as an order-disorder transition. The relevant issue
is to study how the system becomes self organized during
the sudden quench.
We consider a system of N = 3 bosons interacting with a

contact interactionW (xi−xj) = λ
∑N

i<j δ(xi−xj) in one
dimensional three well optical lattice, λ is the strength
of interaction and the bosons are trapped in a lattice
of form VOL(x) = V0sin

2(kx), where V0 is the depth of
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the optical lattice and k is the periodicity of the lattice.
Lattice depth is experimentally tunable. In the present
work, lattice depth is tuned to achieve SF phase to MI
phase transition. The Bose Hubbard model is widely suc-
cessful to describe the phase transition from SF to MI
state. However the most challenging many-body physics
is expected in the regime of strongly interacting boons in
shallow optical lattice —- it is beyond the scope of Bose
Hubbard physics. We solve the many-body Schrödinger
equation at a high level of accuracy by MCTDHB method
(presented in Sec. II).
Following the definition of information entropy measures,
order(Ω), disorder(∆) as given in Sec.III, we calculate
complexity Γαβ = ∆αΩβ . We observe that lattice depth
parameter acts as a measure of order-disorder and com-
plexity shows all the three types behaviour as defined
in literature [26] depending on the choice of α and β.
We also note that SF phase is characterised with max-
imum order and MI phase exhibits maximum disorder.
The ‘SF-MI’ transition can be termed as ‘order-disorder’
transition in the language of statistical measures. For
lattice depth quench, we prepare an initial state which
is a pure SF phase. Instantaneous increase in the lattice
depth triggers the system to go to MI phase. From the
time evolution of entropy measures, we further calculate
the time dynamics of order, disorder and complexity. We
observe collapse revival dynamics in all measures in short
time dynamics as discussed in details in Sec.IV. We again
observe that maximum order is associated with SF phase
and MI phase is associated with maximum disorder. Of
course, our calculation for time dynamics reconfirm that
SF to MI phase can be termed as ‘order-disorder’ transi-
tion. However, the intriguing observation is that we are
able to focus on the time scale of entry and exit of dif-
ferent phases over several cycles. We also able to find
out the holding time of Mott phase which is exposed as
a plateau region in the time dynamics of order and dis-
order. We clearly demonstrate that long time dynamics
of order-disorder is more sensitive tool as we are able
to calculate the time scale of dynamical evolution. To
showcase how the system is able or disable to organize
the impact of the quench, we measure several different
kinds of complexity. Γ1,1 is the most fundamental which
keep equal weight in order and disorder. Γ0,4 is the same
with zero disorder and Γ1/4,0 is with zero order. The
gross observation in the time evolution of all the three
measures in complexity, is same —- collapse and revival
in the short time scale. The system of bosons can adjust
the effect of quench and is able to make a transition to MI
phase with a subsequent revival to SF phase. However in
the long time dynamics, the system gradually looses its
ability to turn back to SF phase and finally settle to MI
phase.

The paper is structured as follows. In Sec.II, we intro-
duce the setup and the necessary theory. Sec.III deals
with the basic equation to measure the different quanti-
ties. Sec.IV explains our numerical results and explana-
tions. Sec.V draws our conclusion.
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FIG. 1. Population of the first three natural orbitals as a
function of lattice depth (V0). As V0 increases, the occupation
in the first orbital starts to decrease while another two orbitals
start to contribute. At V0 = 10.0, the state becomes threefold
fragmented (n1 ≃ n2 ≃ n3 ≃

1
3
).

II. SETUP AND METHODOLOGY

In the present work, we consider N = 3 bosons con-
fined in one-dimensional optical lattice and interacting
with contact inter-particle interaction. This one dimen-
sional regime is easily achieved by tight transverse con-
finement. Quantum many-body effect is also important
in such reduced dimension as the quantum fluctuation
plays an important role. The Hamiltonian for N inter-
acting bosons in 1D optical lattice is given by

H =
N
∑

i=1

(

−1

2

∂2

∂x2
+ VOL(xi)

)

+
∑

i<j

Ŵ (xi − xj) (1)

Where VOL represents the external lattice potential and
Ŵ (xi − xj) is the two-body interaction. We make the
Hamiltonian dimensionless by dividing it by the factor
~
2

mL2 , wherem is the mass of the bosons and L is some ar-
bitrary length scale. The Hamiltonian is scaled in terms

of recoil energy, ER = ~
2k2

2m . Thus the time is expressed

in unit of ~

ER

and unit of distance becomes k−1. We
use natural units ,i.e., ~ = m = k = 1. We fix up the
grid at xmin = − 3π

2 to xmax = 3π
2 such that we consider

three wells. For N = 3 bosons, we choose V0 and λ such
that it allowes superfluidity in the initial state. We find
the stationary solution of the many-body Schrödinger
equation by MCTDHB implemented in the MCTDH-X
software[45–47] with periodic boundary condition. In
MCTDHB, the wave-function of the interacting bosons
is expanded over a set of permanents which are the sym-
metrized bosonic states of N bosons distributed over M
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single particle states.

|Ψ(t)〉 =
∑

n̄

Cn̄(t)|n̄; t〉, (2)

The vector ~n = (n1, n2, . . . , nM ) represent the occupation
of the orbitals and n1 + n2 + . . . nM = N preserve the
total number of particle.

|n̄; t〉 =
M
∏

i=1





(

b
†
i (t)

)ni

√
ni!



 |vac〉. (3)

b
†
k(t) creates a boson occupying the time-dependent or-
bital φk(x, t). The number of possible configuration is
(

N +M − 1
N

)

. It is important to note that both the

expansion coefficients (C~n(t)) and time dependent or-
bitals (φi(x, t)) that build the permanents |~n, t〉 are time
dependent and fully variationally optimized quantities.
Thus MCTDHB has been established as the most efficient
way to solve the time dependent many-body Schrödinger
equation [48–50]. The efficiency of MCTDHB is to make
the sampled Hilbert space dynamically follow the time
evolution of the many-body system. MCTDHB has been
widely used in different theoretical calculations [36, 51–
53] and results are very close to experimental predic-
tions [54, 55]. For M → ∞ limit, as the set of perma-
nents | ~n; t〉 span the complete Hilbert space, the expan-
sion is exact. But during computation, we limit the size
of the Hilbert space. As the permanents are now time
dependent, a given degree of accuracy is achieved with
the truncated basis as compared to time-independent ba-
sis. It is also proved that significant computational ad-
vantage is achieved over exact diagonalization [56]. To
solve the time dependent many-body Schrödinger equa-

tion Ĥ |ψ〉 = i
∂|ψ〉
∂t for the wave function |ψ〉, we calculate

the time evolution of the coefficients C~n(t) and the or-
bitals φi(x, t). We utilize variational principle [57–60]
to obtain the equation of motion of the time dependent
coefficient and orbital [48, 49, 61–63]. Finally the cou-
pled nonlinear integrodifferential equations are solved by
MCTDHB package [47]. For the calculation of the eigen-
states of the Hamiltonian, we prepare the MCTDHB
equations in imaginary time — called improved relax-
ation method. For quench dynamics, we consider the
total Hamiltonian

Ĥ(x1, x2, . . . xN ) =
N
∑

i=1

ĥ(xi) + Θ(t)
N
∑

i<j=1

Ŵ (xi − xj)

(4)

where ĥ(x) is the one-body part includes the external
trap and kinetic energy. Θ(t) is the Heaviside step func-
tion of time t which trigger the quench at t = 0.
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FIG. 2. First-order normalized correlation function
g(1)(x′

1, x1, t) as a function of lattice depth (V0). (a) V0 = 0.7
is in superfluid phase. inter-well coherence as well as intra-
well coherence is maintained throughout the lattice. (b)V0 =
2.8; It is the initiation point of MI state. Diagonal correlation
starts to build up which means the loss of inter-well coherence.
(c) V0 = 5.0; MI is the dominating phase. Intra-well coher-
ence is prominent whereas inter-well coherence faded away.
(d) V0 = 10.0 corresponds to pure MI phase where we find
absolute loss of inter-well coherence and 100% build up of
diagonal correlations.

III. MEASURES OF ORDER-DISORDER AND

COMPLEXITY

Complexity is measured in terms of order and disor-
der. Often entropy was taken as an appropriate measure
of disorder. However, with increase in the number of
available states, the disorder of the system increases, as
well as entropy increases. Later Landsberg’s definition
of the disorder parameter (∆) is well accepted which cir-
cumvent the previous problem. Disorder is defined as,

∆ =
S

Smax
, (5)

where S is the actual information entropy of the system.
Smax is the maximum entropy which is accessible to the
system. Thus, in the Landsberg definition, entropy and
disorder are decoupled. Order is defined as,

Ω = (1 −∆). (6)

Ω = 1 corresponds to perfect ordered and predictable
system. Ω = 0 corresponds to complete disorder and
randomness. Both order and disorder are size indepen-
dent and lies between 0 and 1. The measure of com-
plexity is further defined appropriately in terms of order
and disorder. In the literature, we find three categories
of complexity measure as mentioned in the Introduction.
To take into account all three categories, we utilize the
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most generic form of complexity defined as,

Γαβ = ∆αΩβ = ∆α(1−∆)β = (1− Ω)αΩβ (7)

It defines complexity of disorder strength α and order
strength β. Thus three categories are subsumed here.
With β = 0 and α > 0, complexity is an increasing func-
tion of disorder; with α = 0 and β > 0, complexity is
an increasing function of order. When α 6= 0, β 6= 0,
one finds the most common case of ‘convex’ type of com-
plexity. Complexity vanishes at zero disorder and zero
order and exhibits a maximum in between. However,
the key quantity for the calculation of order and disorder
are the entropy S. Shannon information entropy both
in coordinate space and momentum space are usually
taken as the key measure of information entropy. They
are defined as Sx(t) = −

∫

dxρ(1)(x, t)ln[ρ(1)(x, t)] and

Sk(t) = −
∫

dkρ(1)(k, t)ln[ρ(1)(k, t)]. Where ρ(1)(x, t) is

the one-body density in position space and ρ(1)(k, t) is
the same in momentum space. The reduced one-body
density in coordinate space defined as

ρ(1)(x′|x; t) = N

∫

dx2dx3...dxNψ
∗(x′, x2, . . . , xN ; t)

ψ(x, x2, . . . , xN ; t).

(8)

Its diagonal gives the one-body density ρ(x, t) defined as

ρ(x; t) = N

∫

dx2dx3...dxNψ
∗(x, x2, . . . , xN ; t)

ψ(x, x2, . . . , xN ; t).

(9)

Density distributions are normalized to unity. However,
the one-body density are insensetive to address correla-
tions present in the many-body wave function. So we
define an alternative measure of many-body information
entropy as

S = −
∑

i

n̄i(t) lnn̄i(t) (10)

This can be called as occupational information entropy
as it is defined by the eigenvalues of the reduced one-
body density matrix or occupation numbers. For the
mean-field theory as there is only one natural occupation,
occupational entropy is always zero. In our earlier cal-
culation [43], we have also discussed how time evolution
of occupational entropy can be chosen as a good mea-
sure for the description of fragmentation. It is also a key
quantity in the study of non-equilibrium quench dynam-
ics to establish whether thermalization and relaxation are
ubiquitous in nature. Thus the use of occupational en-
tropy in the measure of order, disorder and complexity
is justified. As pointed out that SF phase exhibits global
correlation across the lattice whereas Mott phase exhibits
on-site correlations. To explore the link between order-
disorder to complexity, we further make an analysis of
first order correlation function g(1)(x′1, x1, t) defined as,

g(1)(x′1, x1, t) =
ρ(1)(x′1|x1; t)

√

ρ(x, t)ρ(x′, t)
(11)
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FIG. 3. (a) Plot of Shannon information entropy (S) as a
function of lattice depth (V0). Entropy is minimum for shal-
low lattice depth. As lattice depth increases, system transit
from SF to MI phase followed by saturation in the entropy
at maximum value. (b) Order and disorder of the system of
N = 3 bosons in three well optical lattice. In superfluid to
Mott insulator transition, order gradually decreases to zero
and disorder gradually increases to one. The intersection
point refers as the initiation of SF to MI state. SF phase
is characterized as ordered and MI phase is characterized as
disordered state. (c) Plot of Complexity measures (Γαβ) as a
function of V0. Γ0,4, Γ1,1, Γ1/4,0 exhibit type I, type II and
type III complexity as discussed in the literature [26]
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FIG. 4. Time evolution of natural occupation, order and dis-
order of N = 3 bosons in optical lattice as a function of time.
(a) Plot of first three natural orbitals exhibit oscillation. At
the crossing point of the first three orbitals, system is in MI
phase with n1 ≃ n2 ≃ n3 ≃

1
3
. See the text for further discus-

sion. (b) order and disorder plot where order shows maximum
value at SF phase and disorder shows maximum value at MI
state. The plateau region at the maximum point of the dis-
order curve tells MI phase holds at that time interval.

where ρ is the diagonal part of the one-body density ma-
trix given in Eq. 8. g(1)(x′1, x1, t) quantify how corre-
lated the particles are in the specific system. In recent
experiments, it is also possible to calculate higher order
correlations experimentally to characterize a many-body
system [64–67].

IV. RESULTS

A. Relaxed state

The present calculation is performed in the one di-
mension with N = 3 repulsively interacting bosons in
the optical lattice. The dimensionless strength parame-

ter λ of the repulsive interaction is kept fixed to λ = 0.3
and the lattice depth potential is varied. For the en-
tire manuscript, we consider commensurate filling factor
N
W = 1, i.e., three repulsively interacting bosons in three
well. However, the following results are also valid for five
repulsively interacting bosons in five wells. As pointed
out earlier, fragmentation is the hallmark of MCTDHB,
where several natural orbitals exhibit significant popu-
lation. Thus convergence is an important issue and to
capture the correct physics, we need adequate number of
orbitals. Before assessing that how much complexity the
system is developing during SF to MI transition, we first
need to evaluate the many-body information entropy for
different lattice depth potential. For the stationary state
solution, we follow the improve relaxation method —-
we propagate the MCTDHB equation in imaginary time.
For relaxation, we keepM = 6 orbitals and find that with
further increase in number of orbitals, there is no change
in the computed quantities. In Fig. 1, we plot the occu-
pation of the first, second and third natural orbitals as a
function of lattice depth potential. For very small lattice
depth, the first orbital has close to 100% occupation and
second and third orbitals have insignificant occupation.
The many-body wave function can be well approximated
by the single orbital mean-field state |N = 3, 0, 0, 0, 0, 0〉.
To identify the state, we plot the absolute value of first
order correlation function g(1)(x′1, x1, t) for V0 = 0.7 in
Fig. 2(a). We observe that coherence within and between
the sites is maintained. It confirms the state as super-
fluid. With increase in lattice depth V0, the occupation
in the first natural orbital gradually decreases and contri-
bution from second and third orbitals increase. From the
numerical data, we observe that at V0 = 10.0, the occu-
pation in first three natural orbitals saturates at 33.33%.
We call that the initial SF state is now three fold frag-
mented.
We further identify that the fragmented many-body state
with the configuration |1, 1, 1, 0, 0, 0〉 as Mott state. In
Fig. 2(d), we plot the one-body correlation for V0 = 10.0.
It exhibits three separated regimes with non-zero values
along the diagonal and zero contribution from the off-
diagonal terms. Thus the coherence within the well is
maintained and inter-well coherence is completely lost. It
is clearly a Mott phase. Thus Fig. 1 and Fig. 2 demon-
strate the transition from SF phase to MI phase with
gradual change in the lattice depth potential.
The main aim of our present work is to characterize the
superfluid to Mott transition in terms of order, disorder
and complexity. The most important question whether
the lattice depth parameter can be chosen as a measure
of disorder. In Fig. 3(a), we plot the many-body Shan-
non information entropy as a function of lattice depth.
For SF phase, entropy is minimum but not zero. With
increase in lattice depth, entropy gradually increases and
at V0 = 10.0, it saturates. With further increase in lat-
tice depth parameter, entropy remains at the saturation
value. Thus once the MI phase is reached, system retains
at that phase even with further increase in lattice depth.
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FIG. 5. Time evolution of complexity in Γαβ of N = 3 bosons
in optical lattice as a function of time. Γ1,1 shows collapse
revival dynamics between SF and MI phase. Picks in Γ0,4

signifies the time when the system is in SF phase. The height
of the picks in Γ0,4 give a qualitative idea about the strength
of the SF phase. Picks in Γ1/4,0 quantify the MI phase.

In Fig. 3(b), We plot the order and disorder for varying
lattice depth. We observe for SF state, order is maximum
and disorder is minimum. As neither the order is one nor
the disorder is zero, the SF state is not perfectly ordered
state. With increase in lattice depth, order gradually de-
creases and disorder increases. At V0 = 2.8, order and
disorder plot intersects each other which we considered
as the initiation of SF to MI state. At V0 = 10.0, order
become exactly zero and the disorder becomes exactly
1.0, which confirm that Mott phase is a random phase or
a perfectly disordered phase. Thus our numerical calcula-
tions exhibit that the ‘SF-MI’ transition can be renamed
as ‘order-disorder’ transition. The corresponding com-
plexity Γαβ is plotted in Fig. 3(c). Γ1,1 shows convex-
type, i.e., type II complexity. For SF phase, complexity
is minimum. With increase in lattice depth, complex-
ity increases, reaches a maximum and smoothly reduced
to zero for Mott phase. Whereas for Γ0,4, the complex-
ity with zero disorder exhibits type II complexity of the
literature [26]. Γ1/4,0, the complexity with zero order,
exhibits type I complexity [26]. Thus we find the exis-
tence of all three types of complexity in our calculation.
From the results based on the stationary state calcula-
tion, we can conclude that ‘lattice depth’ of the optical
lattice can be taken as a measure of disorder in the sys-
tem. In the language of statistical measure, SF phase
is an ordered state and MI phase is a disordered state.
From all the related measures in the statistical quanti-
ties, we uniquely conclude that SF to MI transition is
truly an ordered-disordered transition.

B. Lattice depth quench

In this section, we do the dynamical measures of order,
disorder and complexity. The motivation of the study is
to estimate the relative contribution of order and disor-
der to complexity during evolution. It will practically
demonstrate how the system would optimize the com-
plexity which basically will exhibit the ability or inability
of the system to self organize with the external change.
In the quench dynamics, we monitor the time evolution
of the natural orbitals and entropy production. In the
dynamical evolution, the convergence is a serious issue
and we need M = 12 orbitals for quench dynamics. We
report long-time dynamics (up to t=500) in all measured
quantities. We initially prepare the system in SF phase
with weak interaction strength λ = 0.1 in shallow lat-
tice depth of V0 = 3.0. We quench the system to MI
phase by sudden increase in lattice depth to V0 = 10.0
at t = 0. In Fig. 4(a), we plot the natural occupation
in first three orbitals as a function of time. At t = 0.0,
only the first natural orbital contributes, which corre-
sponds to SF phase. With increase in time, fragmenta-
tion occurs. We observe that at t = 30, the system is a
fully fragmented MI state, the lowest three natural or-
bitals n1, n2, n3 have close to 33% population. Between
t = 30 to t = 54, n1, n2 overlap, n3 becomes down. From
the one-body correlation plot (not shown here), between
t = 30 and t = 54, we find that the system exhibits only
the diagonal correlation, which signifies the system is in
MI phase. So, for this choice of parameter, MI state is
retained in this interval. Then at t = 81, it enters to
SF phase with maximum occupation only in the first or-
bital, at t = 113 it again enters the second MI phase and
retained the MI phase till t = 137. The above scenario
repeats with entry and exit in SF and MI phase. This
basically simulates collapse revival dynamics as observed
in Greiner’s experiment [44]. The time evolution of the
many-body information entropy exhibits the same col-
lapse revival picture in the same time scale (not shown
here).
From the time evaluation of many-body information en-
tropy, we further calculate the time dependence in order,
disorder and complexity. Qualitatively, all the measures
exhibit collapse revival scenario. However the observa-
tions based on the time scale need further explanation.
From Fig. 4 (b), initially when the many-body state is
in SF phase, only one natural orbital contributes, order
is maximum and disorder is minimum. With increase in
time, order decreases and disorder in the system builds
up. At t = 10.6, order-disorder cross each other. From
the natural occupation, we find the significance of the
point of crossing. t = 10.6 is the initiation of Mott phase
when fragmentation starts —- order-disorder exhibit the
same weights (≃ 50%). Further at t = 30, disorder be-
comes close to one and order is close to zero which signify
the pure Mott phase. Between t = 30 and t = 54, both
the order and disorder have a plateau region which sig-
nify the holding time of Mott phase. Then at t = 71,
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TABLE I. Superfluid to Mott insulator phase transition time statistics.

Period SF to MI initiation Mott state entry Mott state exit MI phase holding time MI to SF initiation SF state

First Cycle 10.6 30.0 54.0 24.0 71.0 81.0
Second Cycle 91.0 113.0 137.0 24.0 154.0 162.0
Third Cycle 170.0 196.0 219.0 23.0 239.0 243.0

order-disorder again cross each other which is the initia-
tion of MI to SF phase. At t = 81, the system enters in
SF phase exhibiting maximum order and minimum dis-
order. Then again order decreases and disorder increases
further. At t = 113, system enters in second MI phase.
The time interval t = 113 to t = 137 is the holding time
of second MI phase. The time scale for different phases
during the time evolution is presented in Table.I for the
first three cycles. All the measured time scales are in
mutual agreement. Although the time dynamics exhibit
the collapse revival picture on an average, however close
scrutiny reveals some additional information. In the time
evolution of order, the peak which corresponds to SF
phase gradually decreases. Initially the peak value was
close to one, finally it settle down to 0.4. It exhibits that
the system initially has full ability to turn back to SF
phase, however with complex time evolution, it looses its
ability gradually. We understand that in the long-time
dynamics, many excited states contribute in a complex
manner. So it is very hard for the system to retain its
perfect order and coherence. The study of the evolution
of the natural occupation and entropy evolution was not
so sensitive tool to detect the above observation.
Fig. 5 shows the time evolution of complexity (Γ1,1, Γ0,4

and Γ1/4,0). Γ1,1 repeats the common-type (type II) be-
haviour in the dynamics and exhibits same features in
same time scale as observed in the time evolution of or-
der and disorder. We do not find any steep building in
complexity. By sudden increase in lattice depth means
we are pumping energy to the system externally and it
will be distributed through one-body term in the Hamil-
tonian. The time dynamics of Γ1,1 exhibits that the sys-
tem is able to distribute the extra energy between the
interacting bosons and thus able to self organize the ex-
ternal perturbation.
For further investigation we calculate complexity Γ0,4 of
disorder weight factor zero and order of weight factor
four to quantify the absolute contribution by order only.
Peaks in Γ0,4 tell about the strength of order present
in the system. The first peak in Γ0,4 arises at t = 81,
which is SF phase. Second and third peak positions are
at t = 162 and t = 343 respectively. All the peaks in-
dicates the formation of SF phase which is an ordered
state. In the long time dynamics, Γ0,4 dies out to zero
gradually which indicates the gradual disappearance of
SF phase. It also indicates the gradual loss of coherence
in the time evolution.
We next calculate Γ1/4,0, which defines complexity with
order factor of zero and disorder factor of small finite
quantity of 0.25. It will facilitate to quantify the contri-
bution of disorder to complexity. Initially dynamics of

Γ1/4,0 is reverse to that of dynamics in Γ0,4 qualitatively.
The peaks correspond to Mott state with maximum dis-
order. The peaks are flat as the Mott state is hold for
some time (as discussed earlier) before switching to SF
phase. In the long time dynamics it gradually settle to
one.
Thus we conclude that the above analysis nicely exhibit
how the system tends to self organize on the sudden
quench in optical lattice. Although initially all the com-
plexity measure point out the same physics, collapse and
revival dynamics, however in the long time, the system
will gradually loose its ability of revival and finally will
settle to MI phase only.

V. CONCLUSION

‘Statistical complexity’ is one of the most circulating
word in scientific research of Physics, biology, mathemat-
ics, computer science etc. Although there is no strictly
followed definition of ‘what is complexity’, it is defined
in many ways in the literature. From its vast applica-
tion, it is found that SDL measure of complexity is well
understood.
SDL measure has been extensively applied in different

systems including atoms and molecules. Here we consider
ultracold trapped atoms in the optical lattice which has
been proved as a most challenging platform to study the
many-body physics. Interacting bosons in optical lat-
tice exhibit different quantum phases like superfluid and
Mott insulator phase. The quantum phase transition has
been experimentally studied as well as there are numer-
ous theoretical calculation on the dynamical evolution.
Although most of the calculation are based on mean-field
level or utilizing Bose Hubbard model, the strongly inter-
acting bosons in shallow lattice deserve quantum many-
body calculation. We report our results on small ensem-
ble of few particle system utilizing MCTDHB method
which is exact by its construction and retain many-body
correlation. We obtain many-body states which are the
few-body analogy of different thermodynamic phases.
The main motivation of our work is how to consult
the various quantum phases with the measure of order-
disorder and complexity. As the lattice depth is an eas-
ily controllable parameter experimentally, our theoretical
analysis both for the relaxed state as well as dynamically
evolve state exhibit that lattice depth can act as order-
disorder parameter. SF phase is characterized as an or-
dered but not properly ordered state, whereas Mott phase
is characterized as proper disordered state. Complexity
exhibits type II features. SF to MI phase transition can
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be renamed as ‘order-disorder’ transition. In the quench
dynamics, we study the entire physics behind the SF to
MI transition in the light of dynamical measures of or-
der, disorder. We find that initially the system is able
to demonstrate the collapse to Mott phase and revival to
superfluid phase. However, the system gradually looses
its ability and finally looses global correlation across the
lattice and settles to Mott insulator phase in long-time

dynamics. We also able to present the time scale of dif-
ferent phases through several cycles.
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[27] R. López-Ruiz, H. Mancini, and X. Calbet, Physics Let-

ters A 209, 321 (1995).
[28] S. J. C. Salazar, H. G. Laguna, and R. P. Sagar, Eur.

Phys. J Plus 137, 19 (2022).
[29] C. Mart́ınez-Flores, Physics Letters A 386, 126988

(2021).
[30] S. J. C. Salazar, H. G. Laguna, and R. P. Sagar, Quantum

Reports 2, 560 (2020).
[31] S. J. C. Salazar, H. G. Laguna, and R. P. Sagar, Phys.

Rev. A 101, 042105 (2020).
[32] R. K. Kumar, B. Chakrabarti, and A. Gammal, J. Low

Temp. Phys. 194, 14 (2019).
[33] C. Moustakidis and C. Panos, Physics Letters A 382,

1563 (2018).
[34] G. Ferri, F. Pennini, and A. Plastino, Physica A: Statis-

tical Mechanics and its Applications 545, 123648 (2020).
[35] K. C. Chatzisavvasa, C. C. Moustakidisb, and C. P.

Panos, J. Chem. Phys. 123, 174111 (2005).
[36] R. Roy, A. Gammal, M. C. Tsatsos, B. Chatterjee,

B. Chakrabarti, and A. U. J. Lode, Phys. Rev. A 97,
043625 (2018).

[37] G. Markus, M. Olaf, E. Tilman, H. Theodor W., and
I. Bloch, Nature 415, 39 (2002).

[38] I. Danshita and A. Polkovnikov, Phys. Rev. A 84, 063637
(2011).

[39] M. Capello, F. Becca, M. Fabrizio, and S. Sorella, Phys.
Rev. Lett. 99, 056402 (2007).

[40] B. Chatterjee and A. U. J. Lode, Phys. Rev. A 98, 053624
(2018).

[41] B. Chatterjee, M. C. Tsatsos, and A. U. J. Lode, New
Journal of Physics 21, 033030 (2019).

[42] R. Lin, L. Papariello, P. Molignini, R. Chitra, and
A. U. J. Lode, Phys. Rev. A 100, 013611 (2019).

[43] S. Bera, R. Roy, A. Gammal, B. Chakrabarti, and
B. Chatterjee, Journal of Physics B: Atomic, Molecular
and Optical Physics 52, 215303 (2019).

[44] G. Markus, M. Olaf, H. Theodor W., and I. Bloch, Nature
419, 51 (2002).

[45] R. Lin, P. Molignini, L. Papariello, M. C. Tsatsos,
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