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Abstract
In this paper, we propose a unified information theoretic framework for learning-motivated methods aimed at odometry
estimation, a crucial component of many robotics and vision tasks such as navigation and virtual reality where relative camera
poses are required in real time. We formulate this problem as optimizing a variational information bottleneck objective
function, which eliminates pose-irrelevant information from the latent representation. The proposed framework provides an
elegant tool for performance evaluation and understanding in information-theoretic language. Specifically, we bound the
generalization errors of the deep information bottleneck framework and the predictability of the latent representation. These
provide not only a performance guarantee but also practical guidance formodel design, sample collection, and sensor selection.
Furthermore, the stochastic latent representation provides a natural uncertainty measure without the needs for extra structures
or computations. Experiments on two well-known odometry datasets demonstrate the effectiveness of our method.

Keywords Odometry learning · Simultaneous localization and mapping · Information bottleneck · Generalization bound

1 Introduction

Odometry aims to predict six degrees of freedom (6-DOF)
relative camera poses frommotion sensors. It is a fundamen-
tal component of a wide variety of robotics and vision tasks,
including simultaneous localization and mapping (SLAM),
automatic navigation, and virtual reality (Durrant-Whyte &
Bailey, 2006; Fuentes-Pacheco et al., 2015; Taketomi et al.,
2017; Zhang & Tao, 2020). In particular, visual and visual-
inertial odometry have attracted a lot of attention over recent
years due to the low cost and easy setup of cameras and iner-
tial measurement unit (IMU) sensors. The relative camera
pose is recovered using geometric clues and motion models.
Classic geometric methods usually formulate the odome-
try problem as an optimization problem by incorporating
well-established geometric and motion constraints as the
objective functions. Nevertheless, due to the complexity and
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diversity of real-world environments, the explicitly modeled
constraints can hardly explain all aspects of the sensor data.
Though successful in some real-world scenarios, geomet-
ric systems fail to work when the underlying assumptions
behind the optimization objectives, such as static environ-
ments, discriminative visual features, noiseless observations
and brightness constancy, are violated in the real world.
Furthermore, since odometry is essentially a time-series pre-
diction problem, how to properly handle time dependency
and environment dynamics presents further challenges. Clas-
sic geometric methods use filtering or bundle adjustments to
take the temporal information into account, while the implic-
itly implied error distributions might not hold in practice.

Recently end-to-end deep learning methods provide an
alternative solution for the odometry problem,which relieves
the above-mentioned intrinsic problems in geometric meth-
ods. Learning-based methods tackle this problem from
another perspective that does not explicitly model the
constraints for optimization but learns the mapping from
sensor data to camera pose implicitly from large-scale
datasets (Wang et al., 2017; Clark et al., 2017; Xue et al.,
2019). It has been shown that well-trained deep networks are
able to effectively capture the inherent complexity and diver-
sity of the training data and establish the mapping between
visual/sequential inputs to desired targets in many computer
vision tasks (He et al., 2016; Xu et al., 2021; Zhang et
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al., 2022a), thus holding promise for addressing the limi-
tations of geometric approaches. In addition, learning-based
frameworks can implicitly learn calibrated representations
and require no explicit calibration procedures. For monocu-
lar visual odometry, the absolute scale can also be recovered
from training data, which instead is a non-trivial challenge
for geometric methods.

Although existing deep odometry learning methods have
performed competitively against their geometric counter-
parts, they still fail to satisfy some basic requirements. First
of all, due to the broad range of scenarios where odome-
try is required, odometry systems are expected to be easily
compatible with various configurations and settings, such
as multiple sensors and dynamic environments. In addition,
the common existence of data degeneration, such as from
hardware malfunctions and unexpected occlusions, requires
a safe and robust system in which a proper uncertainty mea-
sure is desirable for self-awareness of the potential anomalies
and system bias. Moreover, theoretical analyses of current
black box deep odometry models, such as generalizability
on unseen test data and extendibility to extra sensors, are
still obscure but essential for understanding and assessing
the model performance.

Here we devise a unified odometry learning frame-
work from an information-theoretic perspective, which well
addresses the above issues. Our work is motivated by the
recent successes of deep variational inference and learning
theory based on mutual information (MI). Specifically, we
translate the odometry problem to optimizing an information
bottleneck (IB) objective function where the latent represen-
tation is formulated as a bottleneck between the observations
and relative camera poses. In doing so, we eliminate the
pose-irrelevant information from the latent representation to
achieve better generalizability. Modeling by MI constraints
provides a flexible way to account for different aspects of
the problem and quantify their effectiveness in information-
theoretic language. This framework is also attractive in that
the operations are performed on the probabilistic distribu-
tion of the latent representation, which naturally provides an
uncertainty measure for interrogating the data quality and
system bias.

More importantly, the information-theoretic formulation
allows us to leverage information theory to investigate the
theoretical properties of the proposed method. Our the-
oretical findings not only benefit the evaluation of the
model performance but also provide insights for subsequent
research. We obtain a theoretical guarantee of the proposed
framework by deriving an upper bound of the expected gen-
eralization error w.r.t. the IB objective function under mild
network and loss function conditions. We show that the
latent space dimensionality also bounds the expected gen-
eralization error, providing a theoretical explanation for the
complexity-overfitting trade-off in the latent representation

space. When the test data is biased, our result shows that the
growing rate of d should not exceed that of n/ log(n), where
d is the latent space dimensionality, and n is the sample size.
We further quantify the usefulness of a latent representation
for relative camera pose prediction using the MI between the
representation andposes. In doing so,weprove a lower bound
for this MI given extra sensors, which reveals the conditions
required for a sensor to theoretically guarantee a performance
gain. It is noteworthy that our theoretical results hold not
only for the odometry problem but also for a wider variety
of problems that share the same Markov chain assumption
and the IB objective function. A connection between our
information-theoretic framework and geometric methods is
further established for deeper insights.

The main contributions of this paper are:

1. We propose information-theoretic odometry learning by
leveraging the IB objective function to eliminate pose-
irrelevant information from the latent representation;

2. We develop the theoretical performance guarantee of the
proposed framework by deriving upper bounds on the
generalization error w.r.t. IB and the latent space dimen-
sionality as well as a lower bound on the MI between the
latent representation and poses;

3. We empirically verify the effectiveness of our method
on the well-known KITTI and EuRoC datasets and show
how the intrinsic uncertainty benefits failure detection and
inference refinement.

2 RelatedWork

Deep representation for odometry learning Leveraging deep
neural networks to learn compact feature representation from
high-dimension sensor data has been proven effective for
odometry. Kendall et al. (2015) proposed PoseNet by using
neural networks for camera relocalization, based upon which
Wang et al. (2017) introduced a recurrent module to model
the temporal correlation of features for visual odometry. Sub-
sequently, Xue et al. (2019) further considered amemory and
refinement module to address the prediction drift caused by
error accumulation. Recently, deep learning-based odome-
try has also been extended to the multi-sensor configuration.
Clark et al. (2017) extended theDeepVO framework to incor-
porate IMU data by leveraging an extra recurrent network
for learning better feature representation. A recent study by
Chen et al. (2019) investigated more effective and robust
sensor fusion via soft and hard attention for visual-inertial
odometry. Apart from end-to-end learning, there are also
trends in unsupervised learning (Zhou et al., 2017; Yin&Shi,
2018; Ranjan et al., 2019; Bian et al., 2019) and the combi-
nation of learned features with geometric methods (Zhan et
al., 2020; Yang et al., 2020; Zhang et al., 2022c, b). We refer
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readers to Chen et al. (2020) for a more detailed discussion
of current methods. These deep odometry learning methods
have achieved promising performance. However, theoretical
understandings remain obscure: (1) how to learn a compact
representation with a theoretically guaranteed generalizabil-
ity when test data is biased and (2) in what conditions extra
sensors can benefit the pose prediction problem.

Information bottleneck Information bottleneck (IB) pro-
vides an appealing tool for deep learning by learning an
informative and compact latent representation (Tishby et al.,
2000; Tishby & Zaslavsky, 2015; Shwartz-Ziv & Tishby,
2017). To address the intractability of MI calculation, Alemi
et al. (2017) proposed to optimize a variational bound of IB
for deep learning, which was successfully applied to many
tasks including dynamics learning (Hafner et al., 2020), task
transfer (Goyal et al., 2019), and network compression (Dai
et al., 2018). Partly inspired by these developments, we for
the first time propose an IB-based framework for odom-
etry learning and derive an optimizable variational bound
for this sequential prediction problem. The derivation can
be more delicate if we incorporate more constraints, poten-
tially from geometric and kinematic insights. We further
adopt the deterministic-stochastic separation as in Chung
et al. (2015); Hafner et al. (2019, 2020), while ours dif-
fers in that our derivation of the variational bound allows
modeling two transitionmodels separately, eachwith a deter-
ministic component to improve model capacity. Moreover,
though IB-based methods have shown to be effective for
learning a compact representation, the underpinning gener-
alizability theory remains unclear. The generalization error
bounds for general learning algorithms have been studied in
Xu and Raginsky (2017) in information-theoretic language.
This work was subsequently extended by Zhang et al. (2021)
to explain the generalizability of deep neural networks. How-
ever, their results are not applicable to the IB-based methods,
which will be addressed in this paper.

Uncertainty modeling for odometry learning Model-
ing uncertainty to deal with extreme cases like hardware
malfunctions and unexpected occlusions, is crucial for a
reliable and robust odometry system. It can be catego-
rized into model-intrinsic epistemic uncertainty and data-
dependent aleatoric uncertainty, which have been studied
in the Bayesian deep learning literature (MacKay, 1992;
Gal & Ghahramani, 2016; Kendall & Gal, 2017). For
odometry, Wang et al. (2018) and Yang et al. (2020) cap-
tured the aleatoric uncertainty by imposing a probabilistic
distribution on poses and used the second moment predic-
tion as an uncertainty measure. Recently, Loquercio et al.
(2020) showed that a combined epistemic-aleatoric uncer-
tainty framework (Kendall & Gal, 2017) could improve the
performance on several robotics tasks such as motion and
steering angle predictions. In contrast to them, our frame-
work provides a built-in and efficient uncertainty measure

that accounts for both uncertainty types. We empirically
demonstrate how to use this uncertainty measure to evalu-
ate data quality and system biases. Accordingly, we propose
a refined inference procedure that discards highly uncertain
results to improve pose prediction accuracy.

3 Information-Theoretic Odometry Learning

Odometry aims to predict the relative 6-DOFpose ξt between
two consecutive observations {o(m)

t−1:t }Mm=1 from M sensors
(e.g. camera, IMU and lidar), where t is the time index.
This pose prediction problem can be formulated as ξt =
g({o(m)

t−1:t }Mm=1,�), where g is the mapping function of an
odometry systemand� is the parameter set of g. Classic deep
odometry learning methods model g by neural networks and
learn � from training data. Furthermore, they usually use a
recurrent module tomodel themotion dynamics of the obser-
vation sequence. Figure 1a shows a typical procedure shared
by representative deep odometry learning methods.

In many settings, observations are of high dimension-
alities, such as images and lidar 3D points. Geometric
methods use low-dimensional features to represent observa-
tions, while learning-based methods learn a representation
from training data. However, both features may contain
pose-irrelevant information that is specific to certain sensor
domain. Retaining such information encourages the model
to overfit the training data and yield poor generalization per-
formance. Since parsimony is preferred in machine learning,
it is expected to eliminate the pose-irrelevant information.

To this end, we tackle this problem by explicitly introduc-
ing a constraint on the pose-irrelevant information. Specifi-
cally,we quantify the pose-irrelevance and the usefulness of a
latent representation for pose prediction froman information-
theoretic perspective. By assuming the latent representation
st at time t is drawn from a Gaussian distribution, the MI
I ({o(m)

1:T }Mm=1||s1:T |ξ1:T ) and theMI I (ξ1:T ||s1:T ) can provide
quantitative measures for the aforementioned two aspects.
Accordingly, given a sequence of observations {o(m)

1:T }Mm=1
and pose annotations ξ1:T from time 1 to T , our information-
theoretic odometry learning problem is:

max� J (�) = I (ξ1:T ||s1:T ) − γ Ibottleneck, (1)

Ibottleneck = I ({o(m)
1:T }Mm=1||s1:T |ξ1:T ), (2)

where the IB weight γ controls the trade-off between the two
MI terms. By Eq. (1), the latent representation s1:T essen-
tially provides an information bottleneck between poses and
observations, which eliminates pose-irrelevant information
from the observations. Due to the high dimensionality of the
observation space, it is non-trivial to calculate the two MI.
Thus we optimize a variational lower bound instead:
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(a) (b)

Fig. 1 a The classic learning-based odometry framework, where
6-DOF poses are directly predicted from deterministic latent repre-
sentations. b The proposed information bottleneck (IB) framework for
odometry learning. h and s are the deterministic and stochastic compo-
nents, respectively. Superscripts o and p represent the observation- and

pose-level transition models. Red solid arrows denote the pose regres-
sor, and red dashed arrows denote the bottleneck constraints. Output
arrows from a shaded stochastic representation represent samples from
the learned latent distribution (Color figure online)

J (�) ≥ J ′(�) = E
s1:T ,{o(m)

1:T }Mm=1,ξ1:T
[
∑T

t=1
J ′
t ], (3)

J ′
t = J pose

t − γJ bottleneck
t , (4)

J pose
t = log qθ (ξt |st ), (5)

J bottleneck
t = DKL(pφ ||qϕ)., (6)

pφ = pφ(st |{o(m)
t−1:t }Mm=1, st−1), (7)

qϕ = qϕ(st |ξt , st−1). (8)

The detailed derivation is provided in the Supplementary
Material. This lower bound consists of a variational pose
regressor qθ (ξt |st ), an observation-level transition model
pφ(st |{o(m)

t−1:t }Mm=1, st−1), and a pose-level transition model
qϕ(st |ξt , st−1), all of which are modeled by neural net-
works. For simplicity, we denote the representations from
the observation-level and pose-level transitionmodels sot and
s pt , respectively. In practice, s

o
t is used for the pose regressor.

Intuitively, minimizing the KL divergence in Eq. (6) forces
the distribution of sot to approximate that of s pt which does
not encode the observation information at time t , thus regu-
larizing sot for containing pose-irrelevant information.

Stochastic-only transition models, however, may compro-
mise model performance due to uncertainty accumulation
during the sampling process. To address this problem,we fur-
ther introduce a deterministic component according toChung
et al. (2015) and Hafner et al. (2019). In doing so, we refor-
mulate the two transition models in the KL divergence in
Eq. (6) as:

observation-level : pφ(sot |hot ), (9)

hot = f o(hot−1, {o(m)
t−1:t }Mm=1, s

o
t−1, s

p
t−1), (10)

pose-level : qϕ(s pt |h p
t ), (11)

h p
t = f p(h p

t−1, ξt , s
o
t−1, s

p
t−1). (12)

We use two deterministic functions f o and f p for
observation- and pose-level transitions, respectively, which
are both modeled by recurrent neural networks. In addition,
both sot−1 and s pt−1 are used for the two deterministic transi-
tion functions to help to reduce the KL divergence between
the distributions of sot and s pt . Ground-truth 6-DOF poses
are fed into f p during the training phase, while for testing,
we use predicted poses to provide a runtime estimate of s pt .
Fig. 1b shows the overall framework of our method.

Remark I. Since we model the latent representation in the
probabilistic space, the variance of the latent representation
naturally provides an uncertainty measure. We empirically
show how this intrinsic uncertainty reveals data quality and
system bias in Sect. 5.3. Of note is that it is straightforward
to extend the proposed information-theoretic framework to
different problem settings. We can add arbitrary linear MI
constraints into the proposed objective and derive similar
variational bounds to satisfy different requirements such as
dynamics-awareness in complex environments.

Remark II. All variational IB-based methods origin from
Alemi et al. (2017). However, applying IB into a specific
domain is non-trivial. The challenge lies in the derivation
of proper variational bounds based on the specific proper-
ties of each problem. This derivation can be more delicate if
we incorporate more constraints, potentially from geometric
and kinematic insights. Besides, we differ from Dai et al.
(2018) and Goyal et al. (2019) in that sequential observa-
tions are modeled. From this perspective, our development
related to Hafner et al. (2019) and Hafner et al. (2020), from
which we further borrowed the motivation of the determin-
istic component, which by itself is rooted from Chung et al.
(2015) and Buesing et al. (2018). Ours differs in that we
model the two transition models [Eq. (6)] separately, each
with a deterministic component to improve model capacity
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(Fig. 1b and Eqs. (9)–(11)).Moreover, we theoretically prove
that constraining the IB objective essentially upper bounds
the expected generalization error and establish the connec-
tion between IB and geometric methods in Sect. 4, which
provides deeper insights into IB-based methods.

4 Theoretical Analysis

Formulating a problem in information-theoretic language
enables us to analyze the proposed method by exploring ele-
gant tools in information theory (Cover & Thomas, 1991)
and related results in learning theory (Xu & Raginsky,
2017; Zhang et al., 2021). In this work, we show that the
MI between the bottleneck and observations as well as the
latent space dimensionality upper bound the expected gen-
eralization error, which provides not only insights into the
generalizability of the method but also a performance guar-
antee. To our knowledge, this is the first time that such
generalization bounds have been derived for IB by using a
general loss function other than cross-entropy (Vera et al.,
2018). By replacing the general loss function with the cross-
entropy, our bound is tighter than that obtained by Vera et
al. (2018) in terms of the sample size. We further derive a
lower bound on the MI between the latent representation and
poses given extra sensors,which suggestswhat featuresmake
a sensor useful for pose prediction in information-theoretic
language. The connection between information bottleneck
and geometric methods is also established to provide further
insights.

4.1 Generalization Bound for Information
Bottleneck

Xu and Raginsky (2017) and Zhang et al. (2021) obtained
the generalization bound w.r.t. the MI between input data X
and learning parameters � for general learning algorithms
and neural networks. However, what IB regularizes is the MI
between X and the latent representation. To derive a general-
ization bound for the IB objective function, we first prove a
relationship between these twokinds ofMI inLemma1under
the Markov chain X → S → ξ , an underlying assumption
for IB.

Lemma 1 If X → S → ξ forms aMarkov chain and assume
ξ = g(X ,�) is a one-to-one function w.r.t. X and �, then
we have

I (X , S) ≥ I (X , ξ) = I (X ,�) + Eθ [H(X |θ)] (13)

≥ I (X ,�). (14)

Lemma 1 enables us to extend the generalizability results for
neural networks regarding I (X ,�) (Zhang et al., 2021) to the
IB setting, leading to the following theoretical counterpart.

Theorem 1 Assuming X → S → ξ is a Markov chain, the
loss function l(X ,�) is sub-σ -Gaussian distributed1 and the
prediction function ξ = g(X ,�) is a one-to-one function
w.r.t. the input data and network parameters �, we have the
following upper bound for the expected generalization error:

E[R(�) − RT (�)] ≤ exp(− L

2
log

1

η
)

√
2σ 2

n
I (X , S), (15)

where L, η, and n are the effective number of layers causing
information loss, a constant smaller than 1, and the sample
size, respectively. R(�) = EX∼D[l(X ,�)] is the expected
loss value given� and RT (�) = 1

n

∑n
i=1 l(Xi ,�) is a sam-

ple estimate of R(�) from the training data.

The difference between our result and previous works is
that we bound the generalization error by I (X , S) which is
minimized in Eq. (1) rather than I (X ,�) which is hard to
evaluate. By Theorem 1, we show that minimizing the MI
between the bottleneck and observations tightens the upper
bound on the expected generalization error and thus provides
a theoretical performance guarantee. It is worth noting that
our theoretical results apply not only to our odometry learn-
ing setting but also to a wider variety of tasks that use the IB
method. This bound also implies that a larger sample size and
a deeper network lead to better generalization performance,
which is consistent with the results shown in Xu and Ragin-
sky (2017) and Zhang et al. (2021). The detailed proof of
Lemma 1 and Theorem 1 can be found in the Supplementary
Material.

Remark I.The result of Zhang et al. (2021) is interesting in
that it provides an explanation for why deeper networks lead
to better performance. However, the expected generalization
errors in Zhang et al. (2021) and Xu and Raginsky (2017) are
both bounded by I (X ||�), which remains difficult to evalu-
ate in practice. Though their results give a lot of insights into
the generalizability of algorithms in information-theoretic
language, it is non-trivial to minimize I (X ||�) explicitly
to control the generalization error bound. We move one step
further by extending their results to I (X ||S), themutual infor-
mation between input data and latent representations, which
itself can be bounded by various well-established variational
bounds (Poole et al., 2019) and optimized during training.
Our result provides an explanation for the empirical general-
ization ability of the IB method, which explicitly minimizes
I (X ||S). By minimizing I (X ||S), we are actually tightening

1 Recall that a random variable l is sub-σ -Gaussian distributed if

E[eλ(l−E[l])] ≤ e
λ2σ2
2 , ∀ λ ∈ R.

123



2558 International Journal of Computer Vision (2022) 130:2553–2570

the upper bound of the generalization error, thus leading to
better generalization performance.

A relatedwork byVera et al. (2018) proved a similar result
for IB: “LetF be a class of encoders. Then, for every PXY and
every δ ∈ (0, 1), with probability at least 1−δ over the choice
of Sn ∼ Pn

XY the following inequality holds ∀QU |X ∈ F :

εgap(QU |X ,Sn) ≤ Aδ

√
I (P̂X ||QU |X )

log(n)√
n

+ Cδ√
n

+ O
(
log(n)

n

)
, (16)

where (Aδ, Bδ,Cδ) are quantities independent of the data

set Sn : Aδ :=
√
2Bδ

PX (xmin)
(1 + 1/

√|X |), Bδ := 2 +√
log

( |Y |+3
δ

)
and Cδ := 2|U |e−1 + Bδ

√|Y |log |U |
PY (ymin)

.

εgap(QU |X , Sn) is the generalization gap which is defined as
|Lemp(QU |X ,Sn)−−L(QU |X )|. L(QU |X ) and Lemp(QU |X ,

Sn) are the true risk and the empirical risks, respectively.”
We refer readers to Vera et al. (2018) for more details on their
result

Our result differs from that of Vera et al. (2018) in that: (1)
Eq. 16 only applies to the cross-entropy loss function, while
our result holds for a broader range of loss functions under
the sub-σ -Gaussian assumption; (2)we provide a tighter gen-
eralization bound compared with that of Vera et al. (2018)
w.r.t. sample rate ( 1√

n
vs. log(n)√

n
); (3) For regression problems

and for a large latent space, Aδ and Cδ in Eq. (16) could be
large due to the positive dependency on |Y | and |U |. Besides,

1
PX (xmin)

and 1
PY (ymin)

might also be large in practice, resulting
in a loose bound for the generalization error.

Remark II.We now give more discussions on the assump-
tions of Theorem 1: (1) a Markov chain X → S → ξ is
implicitly implied in neural networks with encoder-decoder
structures since the decoder only takes the encoder output
as its input and thus does not depend on X given S. In this
case, we have P(ξ |S) = P(ξ |S, X). It is worth noting that
in more general settings where more flexible network struc-
tures that allow additional connections between X and ξ are
used, this Markov chain assumption may not hold. How-
ever, for the IB methods, since an IB model is essentially
encoder-decoder structured by constraining the information
flow between the encoder and the decoder, the Markov chain
assumption on X → S → ξ holds under this setting. (2) As
discussed in Xu and Raginsky (2017), the sub-σ -Gaussian
assumption actually implies a broad range of loss functions.
For instance, as long as a loss function l is bounded, i.e.,
l(·, ·) ∈ [a, b], then it is guaranteed to be sub-σ -Gaussian
distributed with σ = b−a

2 (Xu & Raginsky, 2017). The net-
work loss landscape consists of multiple local minima, flat
or sharp, and most deep learning methods assume a local
Gaussian distribution by using L2 loss (Chaudhari et al.,

2017). Sub-σ -Gaussian is more general and provides several
superiorities over the commonly used Gaussian assumption.
Chaudhari et al. (2017) claimed that a flat local minimum
is preferred for deep learning optimization algorithms due
to the robustness towards parameter perturbations. Sub-σ -
Gaussian can well represent such flat local regions, e.g. the
almost-flat bounded uniform distribution is sub-σ -Gaussian
distributed. It is alsoworth noting that considering the density
of local minima (Chaudhari et al., 2017), σ is not necessarily
large for local regions, which can be a concern for the tight-
ness of the generalization bound. Another appealing property
is that the sum of sub-σ -Gaussian is still sub-σ -Gaussian, i.e.
it can fit a larger region with multiple local minima. (3) The
one-to-one function assumption can be conservative due to
the complexity of real-world data. For many applications, we
may use pretrained models to extract high-level features and
use these features as input data. For example, a pretrained
FlowNet (Dosovitskiy et al., 2015; Ilg et al., 2017) is usually
used in deep odometry learning methods. The input data part
of this assumption could arguably hold under such circum-
stances. Considering the prediction part of this assumption,
the cardinality of the space of ξ could be sufficiently large for
regression problems and for classification problems, the car-
dinality of the prediction space could also be large since we
usually predict the probabilities of each category. Extending
the results to a looser assumption on the network function
remains an interesting direction for future research.

4.2 Generalization Bound for Latent Dimensionality

We further investigate the generalizability w.r.t. model com-
plexity in terms of the cardinality and dimensionality of the
latent representation space under the IB framework.

Corollary 1 Given the same assumptions in Theorem 1 and
let |S| be the cardinality of the latent representation space,
we have

E[R(�) − RT (�)] ≤ exp

(
− L

2
log

1

η

) √
2σ 2

n
log|S|. (17)

It is well recognized that a largemodel complexity can impair
the generalizability of the model. We reveal this complexity-
overfitting trade-off in Corollary 1, where the expected
generalization error is upper bounded by the cardinality of
the latent representation space. In addition, considering the
model design and sample collection, Corollary 1 indicates
that the growing rate of log|S| should not exceed that of n to
avoid an exploded generalization error bound.

Corollary 2 Given the same assumptions in Theorem 1 and
assume S lies in a d-dimensional subspace of the latent rep-
resentation space, supsi∈Si ||si || ≤ M,∀i ∈ [1, d] and S can
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be approximated by a densely quantized space, the following
generalization bound holds:

E[R(�) − RT (�)] ≤ exp

(
− L

2
log

1

η

)
σC, (18)

C =
√
dlog(d)

n
+ 2log(2M)

d

n
+ d

n/log(n)
. (19)

In practice, it is usually difficult to evaluate log|S| in
Corollary 1 numerically. Therefore, we leverage the quan-
tization trick used in Xu and Raginsky (2017) to reduce the
upper bound to a function w.r.t. the dimensionality d of the
latent representation space. The result is given in Corollary 2,
which suggests that the growing rate of d should not exceed
that of n/log(n). It is worth noting that this result holds not
only for IB but also for a broader range of encoder-decoder
models under theMarkov chain assumption on X → S → ξ .

4.3 Predictability Bound for Extra Sensors

Odometry performance is highly dependent on the sensors
deployed, yet it remains non-trivial to select informative sen-
sors that guarantee a performance gain. In this section, we
address this problem using information-theoretic language
under our proposed framework.

Theorem 2 If ({o(m)}Mm=1, o(M+1)) → S → ξ forms a
Markov chain, then we have,

I (ξ ||S) ≥ Iold + Inew − Iobs, (20)

Iold = I (ξ ||{o(m)}(M)
m=1), (21)

Inew = I (ξ ||o(M+1)|{o(m)}Mm=1), (22)

Iobs = I (o(M+1)||{o(m)}Mm=1|ξ). (23)

Theorem 2 suggests that if a new sensor o(M+1) is use-
ful for pose prediction, the MI between o(M+1) and poses
given existing sensors should be large. Meanwhile, it is pre-
ferred to have a small MI between {o(m)}(M)

m=1 and o(M+1)

given pose information. In other words, a heterogenous sen-
sor that shares little pose-irrelevant information with existing
sensors is desirable. In addition, we further observe that
the information gain between I (ξ ||o(M+1)|{o(m)}Mm=1) and
I (o(M+1)||{o(m)}Mm=1|ξ) provides a theoretical guarantee for
the performance of the learned latent representation.

4.4 Connection with Geometric Methods

More generally, an odometry system can be modeled as
h(zk, j , vk, x̌k) → (x̂k, p j ) where zk, j , vk, x̌k, x̂k and p j

are observations, noise, prior pose, posterior pose, and
latent state, respectively. At this level, the bottleneck MI
I (zk, j , vk ||p j |x̂k)=H [h(zk, j , vk, x̌k)|x̂k]−H [h(zk, j , vk, x̌k)
|x̂k, zk, j , vk] is the extra entropy (H ) introduced by
(zk, j , vk), which differs for different h. Factor graph based
methods use optimization over L2 costs as h, where p j is
inferred landmark and a Gaussian noise is assumed. H in
this case is implied in the noise variance which corresponds
to the pre-specified weight of each cost function. Learning-
based methods learn h from data where p j is the latent
feature. Minimizing H means reducing the uncertainty
from noise and inexact learned function forms. The same
analysis applies to kinematic function for x̌k . In addition,
filter-based methods can also be included in by following the
same logic. Take the kinematics part of Kalman filter (linear
Gaussian system) as an example: x̌k = Ak ˆxk−1 + uk + wk ,
where the prior x̌k is the latent state and the variance of ˆxk−1

and wk are ˆ�k−1 and R, respectively. Then I (uk, wk ||x̌k) =
1
2 ln(|Ak ˆ�k−1AT

k + R|/|Ak ˆ�k−1AT
k |), suggesting that a

smaller bottleneck MI corresponds to a relatively smaller
noise variance.

5 Experiments

We tested our method on the well-known KITTI (Geiger et
al., 2013) and EuRoC (Burri et al., 2016) datasets. Since
most existing supervised methods are not open source, we
re-implemented the representative state-of-the-art methods,
including DeepVO (Wang et al., 2017), VINet (Clark et
al., 2017), and two attention-based visual-inertial methods
recently proposed by Chen et al. (2019), namely, SoftFu-
sion and HardFusion, as our baselines. All models shared the
same network architecture for a fair comparison. We further
examine the ability of generalization to more challenging
scenarios such as extreme weather and lighting conditions
by testing DeepVO and InfoVO on vKITTI2 (Cabon et al.,
2020). In addition, we empirically study the pose-irrelevant
information contained in DeepVO and InfoVO to examine
the underlying hypothesis of the problem that we target. We
also conducted extensive ablation studies on the determin-
istic component, the weight of the IB objective, the sample
size, extra sensors, the intrinsic uncertainty measure, and the
growing rate relationship between the latent dimension and
n/log(n).

5.1 Datasets and Experimental Settings

The KITTI odometry dataset consists of 11 real-world car
driving videos and calibrated ground-truth 6-DOFpose anno-
tations. The EuRoC dataset was instead collected from
a MAV in two buildings, resulting in 11 sequences of
different difficulties by manually adjusted obstacles. For
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visual-inertial experiments, we manually aligned the 100 Hz
IMU records in the raw KITTI dataset to the 10 Hz image
sequences using the corresponding timestamps. The image
and IMU sequences in EuRoC were downsampled to 10
Hz and 100 Hz, respectively. We split the training and test
datasets following the recent work by Chen et al. (2019). Our
implementation was based on PyTorch (Steiner et al., 2019),
and we will release the source code package and the trained
models. We used GRU (Cho et al., 2014) to model the deter-
ministic transitions and IMU records. Pretrained FlowNet
was used to extract features from image data (Dosovitskiy et
al., 2015; Ilg et al., 2017). More advanced optical flow esti-
mation methods could also be explored such as RAFT Teed
and Deng (2020) and GMFlow Xu et al. (2022). The other
parts were modeled by MLP layers.

5.1.1 Detailed Network Architecture

The overall network can be separated into four components:
(1) observation encoders: for image observation, we first
extract the output from the out_conv6_1 layer of a pretrained
FlowNet2S (Ilg et al., 2017) model as an intermediate high-
level feature, which is then flattened and fed into three MLP
layers that have feature size 1024 to obtain image features.
Note that the last MLP layer does not use the non-linear acti-
vation. For IMU data, we use a two-layer GRU model that
has feature size 1024 to extract IMU features; (2) determin-
istic transition models: for the observation-level transition,
we first fuse the observation features and concatenate the
fused feature with sot−1 and s pt−1 from last time step. The
features are concatenated in VINet and InfoVIO. For Soft-
Fusion, SoftInfoVIO,HardFusion andHardInfoVIO,we also
use the same soft and hard fusion strategy proposed in Chen
et al. (2019),while theGumbel temperature linearly degrades
from 1 to 0.5 in the first 150 epochs during training and is
fixed to 0.5 for testing. We tile the 6-DOF poses eight times
to a vector of length 48 for the pose-level transition, which
is then also concatenated with sot−1 and s pt−1. Ground-truth
6-DOF poses are used during training, while the predicted
poses are used during testing. The concatenated features are
then fed into an MLP and a GRU layer to obtain hot and h p

t ,
respectively. (3) Stochastic state estimators: the determinis-
tic states are fed into two MLP layers to obtain the mean
and standard error vectors of the stochastic representation,
both with size 128. Note that the last MLP layer does not
use the non-linear activation. To avoid a trivial solution, we
set the minimum standard error to 0.1 and only predict the
residue, where the softplus function is used to guarantee a
positive residue. We further use the reparameterization trick
proposed in Kingma and Welling (2014) to sample from the
stochastic representation distributions, which enables gradi-
ent backpropagation through the stochastic representations.
(4) Pose regressor: we feed the sampled observation-level

representation sot into three MLP layers to obtain the trans-
lation and rotation prediction results. Both translation and
rotation share the first two MLP layers, while we use two
separate MLP layers without non-linear activation for trans-
lation and rotation, respectively.

All MLP layers with non-linear activation use the Relu
function and have feature sizes 256 and 512 for KITTI and
EuRoC, respectively. The state size is set to 128 and 256
for KITTI and EuRoC, respectively. For all baseline models
(DeepVO, VINet, SoftFusion, and HardFusion), we remove
the pose-level transitions and stochastic state estimators and
directly feed hot into the pose regressor for prediction.

5.1.2 Training and Evaluation Strategies

Weused the same training and test splits asChen et al. (2019).
For KITTI, we used sequences 00, 01, 02, 04, 06, 08, and 09
for training and the rest for testing. For EuRoC, we used
the sequence MH_04_difficult for testing and the rest for
training. KITTI odometry dataset does not contain synchro-
nized IMU data. Therefore, we manually aligned the 100
Hz IMU records in the raw KITTI data to the 10 Hz image
sequences using the corresponding timestamps. EuRoC pro-
vides synchronized image and IMU data, collected at 20 Hz
and 200 Hz, respectively. Following the practice of previous
work (Chen et al., 2019; Clark et al., 2017), we downsam-
pled the image and IMU data in EuRoC to 10 Hz and 100
Hz, respectively. By assuming a Gaussian distribution for
qθ (ξt |st ), we reduced the optimization of Eq. (3) to minimiz-
ing the L2-norm of the pose errors, resulting in the following
loss function:

L =
N∑

n=1

α||t − t̂ || + β||r − r̂ ||, (24)

where t and t̂ are the ground-truth and predicted translation.
r and r̂ are the ground-truth and predicted rotation. We used
Euler angles as the quantitative rotation measure. α and β

are the translation and rotation error weights, respectively,
which were set to 1 and 100 for KITTI and 100 and 20 for
EuRoC empirically. We predicted the mean and variance of
the stochastic representation st and set theminimumvariance
to be 0.01 to avoid a trivial solution. We set γ in Eq. (1) to
balance the bottleneck effect. Allmodelswere trained for 300
epochs using mini-batches of 16 clips containing five frames
each. We set an initial learning rate to 1e−4, which was
reduced to 1e−5 and 5e-6 at epoch 150 and 250 to stabilize
the training process.

We trained and evaluated the odometry model in a clip-
wise manner. For evaluation, we used a sliding window
strategy s.t. the evaluated clips are overlapped,whichmeans a
frame-pair can appear at different positions in a clip.A refine-
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ment strategy that eliminates the results from thefirst position
and averagely ensembles the rest was designed based on our
empirical observations, which will be discussed in Sect. 5.3.
Following Sturm et al. (2012) and Chen et al. (2019), the
averaged root mean squared errors (RMSEs) were used for
evaluating both translation and rotation performance.

Remark I. In odometry learning, we usually use Euler
angles or quaternions for rotation representation rather than
SO(3) as implied in SE(3) due to the redundant parameters
of the rotation matrix and the orthogonal constraint. In this
work, we adopt Euler angles in our experiments and assume
a Gaussian distribution in this vector space for simplicity
and easier implementation. Though 3D von Mises–Fisher
distribution Khatri and Mardia (1977) and 4D-Bingham dis-
tribution Gilitschenski et al. (2019) can be arguably more
appropriate to model Euler angles and quaternions, respec-
tively, it is non-trivial to evaluate and use them for training in
practice. The exploration of these more advanced represen-
tation and distribution choices remains potentially important
future research work.

Remark II. In terms of the choice of hyperparameters like
α, β, and γ , we basically followed the initial setup of prior
works such as Wang et al. (2017); Chen et al. (2019); Hafner
et al. (2020) and performed a non-intensive and small-range
grid searching. More elegant methods such as relying on the
covariance estimates (Peretroukhin & Kelly, 2017) can be
considered in future studies and applications to new datasets.

5.2 Main Results

We implemented our visual-inertial framework using three
fusion strategies proposed in Chen et al. (2019), namely
InfoVIO, SoftInfoVIO, and HardInfoVIO. We also included
two traditional visual-inertial odometry methods for com-

Table 1 Test results on KITTI and EuRoC

Model KITTI EuRoC
t(m) r(o) t(m) r(o)

DeepVO 0.0658 0.0942 0.0323 0.2114

InfoVO 0.0607 0.0869 0.0310 0.2061

MSCKF/OKVIS† 0.116 0.044 0.0283 0.0402

VINet 0.0629 0.0453 0.0281 0.0729

SoftFusion 0.0629 0.0517 0.0281 0.0672

HardFusion 0.0618 0.0447 0.0285 0.0740

InfoVIO 0.0580 0.0416 0.0276 0.0744

SoftInfoVIO 0.0618 0.0438 0.0272 0.0743

HardInfoVIO 0.0559 0.0454 0.0291 0.0763

We report the averagedRMSEs for translation and rotation, respectively.
The best results for VO and VIO are shown in bold
†Results of MSCKF on KITTI and OKVIS on EuRoC are from Chen
et al. (2019)

parison, i.e., OKVIS (Leutenegger et al., 2015) for EuRoC
and MSCKF (Mourikis & Roumeliotis, 2007; Hu & Chen,
2014) for KITTI. OKVIS is not used for KITTI due to the
lack of accurate time synchronization between images and
IMU data. Following Sturm et al. (2012) and Chen et al.
(2019), we report the averaged root mean squared errors
(RMSEs) of translation and rotation. The results are given
in Table 1. Our results support the effectiveness of IB w.r.t.
the generalizability to test data. Specifically, our basic mod-
els (InfoVO/InfoVIO) outperformed all baselines w.r.t. both
metrics on KITTI and the translation error on EuRoC. Visual
odometry models performed well for translation prediction
while incorporating IMU significantly improved the rota-
tion results. Since theMAV trajectories are challenging w.r.t.
rotation, the traditional method (OKVIS) still outperformed
the other methods, although our result was competitive with
the other learning-based baselines. Our re-implementation
achieved a better result on KITTI compared with Chen et al.
(2019) but the performance on EuRoC degraded. EuRoC by
its nature is much more challenging than KITTI. The major
difficulties include (1) the diverse scenarios including an
industrial machine hall and an office room, compared with
the similar-looking street views in KITTI, (2) the varying
difficulty levels of different sequences by manually adjusted
obstacles, and (3) the grey-scale images while the FlowNet
encoder was pretrained using RGB images, which indicates
a domain gap from RGB to grey images and thus degrades
the results accordingly. Therefore, reducing the performance
gap on EuRoC may require more carefully designed training
strategies. Comparisons between the two datasets are sum-
marized in the Supplementary Material.

5.2.1 Visualization of KITTI Trajectories

We further provide per sequence result and trajectory visual-
ization forDeepVO, InfoVO,VINet and InfoVIO to illustrate
the benefit of optimizing the IB objective.

Results of the test sequences 05, 07, and10are presented in
Table 2 and Fig. 2. Though long-term accumulated drifts are
observed for all end-to-end learning-based odometry meth-

Table 2 Per sequence results on KITTI. We report the averaged trans-
lation RMSE drift trel (%) on length of 100–800m and the averaged
rotation RMSE drift rrel (o/100m) on length of 100–800m

Model 05 07 10
trel rrel trel rrel trel rrel

DeepVO 6.25 2.29 5.66 3.60 7.12 1.91

InfoVO 4.30 1.54 4.52 3.34 6.25 2.16

VINet 3.52 1.08 5.39 3.43 8.58 2.89

InfoVIO 3.33 0.91 4.69 3.00 7.43 2.44

The best results for VO and VIO are shown in bold
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Fig. 2 Predicted trajectories of DeepVO, InfoVO, VINet, and InfoVIO
on KITTI sequences 05, 07 and 10 (Color figure online)

Table 3 Results on challenging sequences on vKITTI2. W and L
denotes sequences that contain different weather conditions (rain and
fog) and lighting conditions (morning, sunset, and overcast), respec-
tively

Model Conditions t(m) r(o)

DeepVO W 1.5214 0.1676

InfoVO W 1.5011 0.1368

DeepVO L 1.4642 0.1524

InfoVO L 1.3614 0.1239

ods, InfoVO and InfoVIO that optimize the IB objective
still perform better than DeepVO and VINet, especially on
sequence 05, which is longer and more challenging due to
the increased number of turns.

5.3 Generalization to Challenging Scenarios

In addition to the results reported on the test splits of KITTI
and EuRoC, we further examine the performance of InfoVO
on vKITTI2 (Cabon et al., 2020), a simulated autonomous
driving dataset that contains various scenarios. We illus-
trate the benefit of the IB objective by training DeepVO and
InfoVO on the clean sequences in vKITTI2 and comparing
their performance on the more challenging counterparts that
have different weather conditions (rain and fog) and lighting
conditions (morning, sunset, and overcast). We used Scene
01, 02, and 06 as the training set and left Scene 18 and 20
as the test set. Of note is that only the clean sequences in the
training set are used during training.

Results under different weather and lighting conditions
are presented in Table 3. It is shown that InfoVO achieves
better generalization results in the challenging scenarios
than DeepVO w.r.t. both translation and rotation predictions.

Besides, our results suggest extreme weather conditions
present more challenging than different lighting conditions
due to the noises and texture losses in the frames, which
remains an interesting research direction towards a more
robust odometry system in those challenging scenarios.

5.4 Compactness of the Latent Space

A key hypothesis underlying the motivation to develop our
framework is that methods without specific consideration on
the compactness of the latent space will implicitly encode
pose-irrelevant information into the learnt features, which
can be eliminated by the information bottleneck objective.
We empirically demonstrated this phenomenon by compar-
ing the reconstruction accuracies using the features learnt by
DeepVO and InfoVO.

Since the optical flow features from the pretrained
FlowNet2S (Ilg et al., 2017) are used as the network inputs for
both DeepVO and InfoVO, we proposed to empirically mea-
sure the amount of pose-irrelevant information by the ability
to reconstruct those optical flow features from the latent space
of DeepVO and InfoVO, respectively. Specifically, we used
three MLP layers as the reconstruction decoder, which takes
the latent features from the DeepVO and InfoVO models
trained on the KITTI dataset as input. We varied the hid-
den size d of the decoder to examine the performance under
different reconstruction capacities. We adopted the same
training/test split as in our main experiment and trained the
decoder for 300 epochs.

The results of the averaged MSE loss l̄ for optical flow
feature reconstruction using different hidden sizes are pre-
sented in Table 4. We also reported the results by taking
white Gaussian noise as input. The input optical flow vectors
contain both pose-relevant and pose-irrelevant information,
such as occlusions and the motion of dynamic objects. Since

Table 4 Results of the reconstruction of optical flow features on KITTI

Model d l̄

DeepVO 1024 0.0387

DeepVO 512 0.0391

DeepVO 256 0.0396

DeepVO 128 0.0401

InfoVO 1024 0.0444

InfoVO 512 0.0456

InfoVO 256 0.0508

InfoVO 128 0.0530

Noise ∼ N (0, 1) 1024 0.0541

Noise ∼ N (0, 1) 512 0.0541

Noise ∼ N (0, 1) 256 0.0541

Noise ∼ N (0, 1) 128 0.0541

123



International Journal of Computer Vision (2022) 130:2553–2570 2563

InfoVO achieves a higher accuracy than DeepVO in terms of
pose prediction, which indicates that InfoVO has extracted
more pose-relevant information thanDeepVO to achieve this,
the inferiority of InfoVO to reconstruct optical flow features
indicates that InfoVO has eliminated more pose-irrelevant
information than DeepVO, while maintaining pose-relevant
information from the optical flow features for downstream
pose prediction tasks. It is worth noting that the reconstruc-
tion performance of InfoVO is close to that of random noise
using the hidden size 128, which means although a certain
degree of pose-irrelevant information may still exist in the
feature space of InfoVO, the remaining amount is small, and
it requires a relatively powerful decoder to extract this infor-
mation.

5.5 Growing Rate of the Latent Dimension

As suggested in Corollary 2, the growing rate of the latent
dimension d should not exceed that of n/ log(n) to avoid
overfitting and achieve a tighter generalization bound. To
illustrate this effect, we use different sample size ratios for
sequence 01 to train InfoVO, and test the trained models on
sequences 09 and 10 that have quite different motion patterns
(slower vehicle speed) with sequence 01. We first choose the
sample size ratio r0 = 1/4 as the starting point, and empiri-
cally determine its corresponding latent dimension d0 = 384
that leads to neither underfitting nor overfitting. Then we
study the performance of InfoVO models using different
latent dimensions under the sample size ratios r1 = 1/2 and
r2 = 1.0, whose growing rates of n/log(n) are 1.780 and
3.208, respectively. The results are presented in Fig. 3.

We examine the results of latent dimensions 256, 512,
1024, 1536, and 2048. For r1 = 1/2 and r2 = 1.0, the latent
dimensions that have the same growing rates as n/log(n) are
384 ∗ 1.780 ≈ 684 and 384 ∗ 3.208 ≈ 1232, respectively.

Fig. 3 Results of varying latent dimensions (256, 512, 1024, 1536,
2048) under the sample size ratios 1/2 (red) and 1.0 (blue). The RMSE
results of the combined 6-DOF translation and rotation vector are
reported

Accordingly, our results showed that the latent dimensions
512 and 1024 achieved the best test results before overfit-
ting for r1 = 1/2 and r2 = 1.0, respectively. A small
latent dimension led to an underfittedmodel while overfitting
was observed when the growing rate of the latent dimension
exceeds that of n/log(n), which supports Corollary 2 empir-
ically.

5.6 Ablation Studies

Extensive ablation studies were conducted to examine the
effects of (1) the deterministic component, (2) the IB weight,
(3) the sample size and (4) extra sensors. Key observations
include: (1) without the deterministic component, both trans-
lation and rotation performance dropped significantly; (2)
determining the IB weight γ presents a trade-off between
the accuracy of translation and rotation prediction; (3) a
larger sample size reduces both the uncertainty and predic-
tion errors; and (4) IMU is more ‘useful’ than cameras for
rotation prediction while cameras are more crucial than IMU
for translation prediction, according to the discussions on
Theorem 2.

5.6.1 Effect of the Deterministic Component

We conducted stochastic-only ablation experiments to exam-
ine the effects of the deterministic components in Eqs. (9)
and (11) by removing the deterministic nodes in Fig. 1b.
We implemented two versions depending on whether the
observation- and pose-level latent representations (so and s p)
were both used as the recurrent network state (StochasticVO/
VIO-d), or not (StochasticVO/VIO-s). Results are summa-
rized in Table 5. Without the deterministic component, both
translation and rotation performance dropped significantly,
which supports the effectiveness of the proposed determin-
istic component.

Remark. For the stochastic-only models, we remove the
stochastic state estimators and let the GRU layer in the deter-
ministic transition models directly output the means and
standard error residues of the stochastic representation. For
state transitions, we then used sampled states as the tran-

Table 5 Results of the stochastic-only models on KITTI

Model t(m) r(o)

StochasticVO-s 0.0758 0.0931

StochasticVO-d 0.0783 0.0899

InfoVO (full) 0.0607 0.0869

StochasticVIO-s 0.0714 0.0512

StochasticVIO-d 0.0734 0.0507

InfoVIO (full) 0.0580 0.0416
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sitioned state context for the transition model at the next
time step. More details of the two implementations are given
below. StochasticVO/VIO-d is short for “stochastic VO/VIO
with double transition states”, which used (sot−1, s

p
t−1) as the

transition state from the last time step for both observation-
and pose-level transitions. StochasticVO/VIO-s is short for
“stochastic VO/VIO with single transition states”, which
used (sot−1, s

o
t−1) and (s pt−1, s

p
t−1) as the transition state from

last time step for observation- and pose-level transitions,
respectively.

5.6.2 Effect of the IB Weight

We examined the effect of the IB weight, i.e. γ in Eqs. (1)
and (4). As shown in Table 6, Although γ = 0.1 presents a
good choice for training on the EuRoC dataset, we observed
that the translation and rotation results did not change con-
sistently with different IB weights on the KITTI dataset.
While the translation accuracy degrades under a larger γ ,
the rotation result improves instead. This finding indicates
that the determination of the IB weight actually presents a
trade-off between the accuracy of translation and rotation
predictions and should be taken into account in different sce-
narios according to the requirements of specific tasks.

5.6.3 Effect of the Sample Size

We study the effect of the sample size by using different
ratios rn of training samples for training the model. Recall
that we let the minimum variance be 0.01 to avoid a trivial
solution, which sets an empirical lower bound of the uncer-
tainty. Table 7 shows that a larger sample size reduces both
the uncertainty and prediction errors. An interesting obser-
vation from our results is that though more training samples
still benefit the prediction performance, the averaged vari-
ance or the uncertainty measure does not reduce after half
of the dataset is added. We suspect that this may be due to
the fact that KITTI sequences exhibit quite similar patterns
(mostly road driving scenarios). Thus half samples are suf-
ficient for the model to be “familiar” with the dataset and

Table 6 Results of varying IB weights γ for InfoVIO

γ KITTI EuRoC
t(m) r(o) t(m) r(o)

0.0 0.0639 0.0482 0.0278 0.0814

0.01 0.0559 0.0449 0.0277 0.0794

0.05 0.0570 0.0424 0.0283 0.0785

0.1 0.0580 0.0416 0.0276 0.0744

0.5 0.0612 0.0411 0.0335 0.0765

1.0 0.0648 0.0375 0.0873 0.0948

Table 7 Results of varying sample sizes on KITTI

rn t(m) r(o) σ̄ 2

1/4 0.1977 0.1040 0.0109

1/2 0.0602 0.0644 0.0101

3/4 0.0589 0.0544 0.0102

f ull 0.0580 0.0416 0.0102

rn : the ratio of training samples. σ̄ 2: the averaged variance of the latent
representation

Table 8 Performance gain of IMUgiven images and images given IMU

Model KITTI EuRoC
t(m) r(o) t(m) r(o)

InfoIO 0.2069 0.1164 0.0667 0.0740

InfoVO 0.0607 0.0869 0.0310 0.2061

InfoVIO 0.0580 0.0416 0.0276 0.0744

reach the uncertainty margin. While if the training samples
are not sufficient enough, e.g. 1/4 of total samples, the vari-
ance increases significantly.

5.6.4 Effect of Extra Sensors

Motivated by Theorem 2 and our failure-awareness analysis,
we study the performance gain of IMU given images and
vice versa. The comparison between InfoVO and InfoVIO
provides the performance gain of IMU given images. Sim-
ilarly, to study the performance gain of images given IMU,
We trained an IMU-only model, denoted as InfoIO, which is
then compared with InfoVIO. The results are summarized in
Table 8, which implies that IMU is more ‘useful’ than cam-
eras for rotation prediction while cameras are more crucial
than IMUfor translation prediction.Moreover, IMUprovides
a larger performance gain in EuRoC than KITTI, which is
consistent with the fact that the synchronization in EuRoC
between IMU and ground-truth poses are more accurate. We
also observed that InfoIO performs poorly in KITTI. The
large performance gain of images given IMU in KITTI w.r.t.
both translation and rotation might also result from the inac-
curate alignment of IMU records from the rawKITTI dataset
to the image and ground-truth pose sequences.

5.7 What Does the Intrinsic Uncertainty Mean?

We next used the averaged variance of the stochastic latent
representation as an intrinsic uncertainty measure and empir-
ically showed how this uncertainty reveals the system
properties and data degradation. We found some interesting
relationships between the uncertainty and poses, e.g., larger
turning angles and smaller forward distances lead to higher
uncertainty. Our analysis suggests a practical data collection
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Table 9 Results on KITTI by evaluating at different positions in a clip

t(m) pos-0 pos-1 pos-2 pos-3 pos-4

DeepVO 0.0734 0.0681 0.0661 0.0658 0.0659

InfoVO 0.0689 0.0631 0.0618 0.0608 0.0604

VINet 0.0683 0.0645 0.0645 0.0632 0.0615

InfoVIO 0.0671 0.0602 0.0586 0.0580 0.0572

r(o) pos-0 pos-1 pos-2 pos-3 pos-4

DeepVO 0.0970 0.0949 0.0939 0.0940 0.0951

InfoVO 0.0904 0.0881 0.0871 0.0869 0.0872

VINet 0.0463 0.0455 0.0454 0.0454 0.0456

InfoVIO 0.0427 0.0417 0.0420 0.0420 0.0421

The best results for each method are shown in bold

guideline, i.e., augmenting the uncertain parts of the pose
distribution.

5.7.1 Uncertainty on KITTI and EuRoC

We show the uncertainty results of InfoVIO on KITTI and
EuRoC in Figs. 4 and 5, respectively. Since the translations
along x and y axes and the rotations around x and z axes
are relatively small in the KITTI dataset, their uncertainties
do not exhibit a clear pattern. While for the translation along
the forward axis-z and the rotation around the upward axis-y
(turning left/right), a clear negative and a clear positive rela-
tionship are observed for each motion. The reason for this
can be that a large forward parallax provides more distinctive
matching features for pose prediction, while a large turning
angle instead dramatically reduces the shared visible areas
and results in difficulties in achieving accurate predictions.
For the EuRoC dataset, we observed a consistent positive
relationship for all three rotations, which makes sense in that
the MAV rotations are more uniformly distributed along the
three axes. The negative relationship in the translation results
of EuRoC is more obscure than that of KITTI, partly due to
the relative difficulties in accurately predictingMAV transla-
tions since EuRoC has a much smaller translation scale than
KITTI.

Remark. There is also a line of work that attempts to
combine learning based methods with geometric pipelines
(Peretroukhin&Kelly, 2017;Yang et al., 2020),where uncer-
tainty plays an important role by serving as a quality measure
to properly weigh the learned results. The recent successful
work by Yang et al. (2020) used learned aleatoric uncer-
tainty to integrate learned results into the DVO pipeline and
achieves SOTA performance in monocular odometry. Our
workmakes contribution in that we do not explicitly learn the
variance of final prediction, but use the variance of the intrin-
sic latent state instead as the uncertainty measure, which we
empirically show that can capture the epistemic uncertainty
as well and holds the potential to provide better fusion guid-

Table 10 Results of the proposed intrinsic uncertainties under different
data degradation settings on KITTI and EuRoC

Image IMU σ̄ 2 (KITTI) σ̄ 2 (EuRoC)

Clean � � 0.0101 0.0103

Noisy N � 0.0102 0.0103

Noisy � N 0.0104 0.0119

Noisy N N 0.0104 0.0119

Missing M � 0.0101 0.0103

Missing � M 0.0106 0.0119

Missing M M 0.0107 0.0119

σ̄ 2: the averaged variance of the latent representation. �, N , and M
denote clean, noisy, and missing data, respectively

ance. It remains an interesting future research direction to
see whether our uncertainty measure can really benefit this
hybrid pipeline that combines the merits of both learning and
geometric methods.

5.7.2 Uncertainty w.r.t. the Evaluated Position in a Clip

We trained and evaluated the odometry model in a clip-wise
manner. Surprisingly, the evaluated position for a frame-pair
in consecutive clips also affected the intrinsic uncertainty,
as shown in Figs. 4 and 5. This makes sense in that when
evaluated at a latter position of a clip, the prediction model
can leverage more information accumulated from former
observations, thus leading to more confident predictions. In
Table 9, we show that, in general, a larger uncertainty results
in a higher prediction error. The result also holds for the
deterministic DeepVO and VINet baselines, implying that
this is a structural system problem in the clip-wise recurrent
models. Therefore, our findings supports that InfoVO is able
to capture this kind of epistemic uncertainty, which is caused
by the model design rather than input data. Based on this
observation, we propose a simple refinement strategy that
eliminates results from the most uncertain position (pos-0)
and averagely ensembles the results from the rest positions.
We report the refined evaluation results for all models in our
main results and ablation studies.

5.7.3 Failure-Awareness

We show that our intrinsic uncertainty measure is failure-
aware, which is crucial for a robust odometry system. We
considered two failure cases, namely, degradations with
noisy data and missing data. We add Gaussian noise with
mean 0 and standard error 0.1 to the observations in the test
dataset to create noisy data. To generate missing data, we
replace the observations with the Gaussian noise.

In Fig. 6, we report the visualization results of uncertain-
ties versus different translations and rotations on KITTI by
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Fig. 4 Uncertainty results of InfoVIO on KITTI. The top and bottom rows represent translation and rotation results. The first, second, and third
columns represent x , y, and z, respectively. x, y, z are with respect to the coordinate system in KITTI. pos-i means the result is evaluated at the
i-th position in a clip

Fig. 5 Uncertainty results of InfoVIO on EuRoC. The arrangement and notation are kept the same as Fig. 4

applying data corruption to both images and IMU.The results
of single sensor corruption under the noisy and missing data
settings are also provided in Figs. 7 and 8, respectively.
The visualization results on EuRoC is provided in the Sup-
plementary Material. We summarize the intrinsic variances
under different data degradation settings in Table 10. Our
model becomes more uncertain as the data degrades. The
uncertainty reaches the highest when the data is missing, as

expected. A more interesting observation is that the quality
of IMU data dominates the uncertainty for both KITTI and
EuRoC, implying that current image encoders are not trained
well enough, and a better image encoder is desirable to fully
utilize the visual information. Also, data degradation on IMU
records leads to higher uncertainty in EuRoC than in KITTI.
We suspect the reason is that the synchronization between
the ground-truth poses and IMU records are less accurate in
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Fig. 6 Uncertainty results of InfoVIO on both noisy and missing data
of the KITTI dataset. The arrangement and notation are kept the same
as Fig. 4. Blue, orange, and green circles denote results from normal

data, noisy data, and missing data, respectively. Both images and IMU
records were degraded (Color figure online)

Fig. 7 Uncertainty results of InfoVIO on noisy data of the KITTI dataset. The arrangement and notation are kept the same as Fig. 4. Blue, orange,
green, and red circles denote results from normal data and degraded data with images, IMU, and both images and IMU being noisy, respectively
(Color figure online)

KITTI than inEuRoC, leading to noisy IMUdata for training.
At last, themodel trained onEuRoC exhibits the same perfor-
mance on the noisy and the missing data, which implies that
EuRoC dataset may be more prone to noises. These observa-
tions support that the proposed intrinsic uncertainty measure
provides a practical tool for failure diagnoses, such as noises,

sensor malfunctions, and even mis-synchronization between
sensors.
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Fig. 8 Uncertainty results of InfoVIO on missing data of the KITTI dataset. The arrangement and notation are kept the same as Fig. 4. Blue, orange,
green, and red circles denote results from normal data and degraded data with images, IMU, and both images and IMU missing, respectively

6 Conclusion and Future Research

This paper targets odometry learning by proposing an
information-theoretic framework that leverages an IB-based
objective function to eliminate the pose-irrelevant informa-
tion. A recurrent deterministic-stochastic transition model
is introduced to facilitate the modeling of time dependency
of the observation sequences. The proposed framework can
be easily extended to different problem settings and pro-
vide not only an intrinsic uncertainty measure but also an
elegant theoretical analysis tool for evaluating the system
performance. We derive generalization error bounds for the
IB-based method and a predictability lower bound for the
latent representation given extra sensors. They provide theo-
retical performance guarantees for the proposed framework,
and more generally, information-bottleneck based methods.
Extensive experiments on KITTI and EuRoC support our
discoveries.

The proposed method falls into end-to-end supervised
learning methods. Obtaining the required ground-truth pose
labels can be challenging for large-scale data collection
and training. Two recent research trends provide promising
solutions to mitigate this problem, i.e. embodied methods
that utilize simulated environments and unsupervised learn-
ing methods that leveraged the geometric constraints and
trained the model jointly with other auxiliary tasks like
depth prediction. The difficulty in bringing embodied meth-
ods into current state-of-the-art frameworks is the domain
gap between simulation and the real world, where proper
domain adaptation techniques are desired. Integrating unsu-

pervised and supervised methods can also be challenging,
which requires more dedicated training strategies and model
design. It is worth noting that our proposed IB method
improves on the representation level and can also be applied
in these fields to obtain better latent representations.We fore-
see further developments by incorporating novel techniques
into our IB framework.

Supplementary Information The online version contains supplemen-
tary material available at https://doi.org/10.1007/s11263-022-01659-
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