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ABSTRACT

An information-theoretic model of azimuthal localization is pre-

sented. The number of distinct source locations that can be en-

coded by a set of head-related impulse response functions (HRIR)

is predicted in terms of information transfer as a function of the

properties of the source signal and a quantization interval that is

related to the level of internal perceptual noise. The model also

predicts how source locations should be distributed in azimuth in

order to maximize the information transferred through the set of

HRIR for a given set of input conditions. The predictions are

related to design considerations for a spatial-auditory display of

beamformed sonar data in which time series associated with fixed

beams of a one-dimensional array are mapped to virtual sources

located at fixed radius from the listener in the horizontal plane.

1. INTRODUCTION

A recent review by Arrabito et al. cites, “the ability to present

sonar beams in a three-dimensional auditory display where the

spatial position of each sonar beam corresponds to the actual po-

sition of the source in the ocean,” as a key research area for en-

hancing the role of the auditory modality in processing of sonar

data [1]. While such an auditory equivalent of a low-level geo-

graphic situation (GEOSIT) display is ultimately limited by the

beamforming algorithm and the physical receiver array, the num-

ber and spacing of the virtual-source locations to which beams are

mapped should be governed by the spatial resolution of human

hearing. Here, a model is developed that predicts and bounds hu-

man azimuthal localization performance based on the amount of

spatial information encoded in a set of head-related impulse re-

sponses (HRIR). A well-defined signal-processing algorithm is de-

scribed which determines the information content of the HRIR as

a function of several variables, including internal perceptual noise

and external source-signal spectrum.

Though direct methods for binaural presentation of sonar sig-

nals have been used since the earliest days of sonar [2, 3], spatial

auditory display of sonar beam data in which beams are mapped

to virtual sources was first mentioned in the open literature much

more recently by McFadden and Taylor [4] and has been a topic of

ongoing interest [5, 6, 7, 1] .

A simple and obvious approach for presentation of sonar

beams from a one-dimensional array via a spatial-auditory dis-

play is mapping of the time-series associated with each beam to
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a virtual source located at a particular azimuth on a circle in the

horizontal plane. Such a scheme raises two primary technical con-

cerns. First, it must be known how many independent (virtual)

source locations can be identified, which determines the number

of beams that can be mapped. Second, it must be known how the

virtual sources associated with the beams should be distributed in

azimuth in order to realize the desired level of performance. Two

theoretical questions underlie these technical concerns: How much

azimuthal information about source location can a set of HRIR en-

code and how much of this information can a listener extract? Fur-

ther, how is the information density of a set of HRIR allocated in

azimuth?

To address these questions, spatial hearing in the horizontal

plane is here recast as a communication problem in which scat-

tering from the head and torso, described by the set of HRIR, en-

codes source location. This representation of the problem provides

an information-theoretic framework for the analysis of localization

performance. By postulating coding and decoding in terms of the

coefficients of a particular orthogonal decomposition of the set of

HRIR, the amount of information transferred and, consequently,

localization performance is mathematically determined as a func-

tion of the particular set of HRIR, the source-signal, and, through a

resulting quantization interval, the perceptual signal-to-noise ratio

(SNR). For each set of input parameters the model yields a map

of information density as a function of azimuth, which indicates

the locations of virtual sources required to realize the maximum

information transfer possible for a given set of conditions.

2. INFORMATION-THEORETIC MODEL

The task of identifying the direction of a sound source from the

received binaural signal is similar to the problem of localizing a

radiator in a sound channel from measurements of the sound field

in the channel (i.e., matched-field processing, see, e.g., [8]). In

both cases spatially dependent variations in the impulse response

(of the channel or the scattering from the head and torso) encode

information about source position and one estimates the location

of the source from measurements of the sound field at the re-

ceiver. By recasting this problem as a gridded search in which

the task is identifying which cell of the grid contains the source,

Buck et al. [9, 10, 11] formulated source localization as an uncon-

ventional communication problem and developed an information-

theoretic framework for characterizing localization performance.

Though Buck et al. investigated the standard matched-field prob-

lem of a single-frequency continuous source with the measurement

of the sound field being the vector of complex pressures received

on a vertical array of hydrophones, Gaumond later used a con-
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structive approach within this information-theoretic framework to

characterize localization performance for a band-limited impulsive

source with the measurement of the sound field being the pressure

time series received on a single hydrophone [12]. It is this latter

approach that is followed here.

In the information-theoretic representation, the identity of the

cell containing the source is the message that is encoded into the

sound field and one estimates the identity of the cell containing

the source based on noisy measurements of the sound field at

the receiver. Note that this formulation, though isomorphic to

more conventional communication problems, is fundamentally un-

like them in interpretation. Whereas the signal transmitted by the

source contains the encoded message in conventional communi-

cation problems, in this problem the source location itself is the

message.

To characterize azimuthal localization performance, assume

that there is a source located on a circle in the horizontal plane with

unknown azimuth Θ described by the probability density function

pΘ(✓). Following Buck, the continuous set of input conditions is

discretized according to �(✓) described by the probability mass

function p�(m) where m = 1, 2, . . . , M � 1, M .

The time series of acoustic pressure at each ear resulting from

a source located at Θ = ✓ are given by

xleft(✓; t) = s(t) ⇤ hleft(✓; t), (1a)

xright(✓; t) = s(t) ⇤ hright(✓; t), (1b)

where s(t) is the source waveform and hleft(✓; t) and hright(✓; t)
are the HRIR associated with azimuth ✓ and the left and right ears,

respectively. These can be represented as a single time series by

concatenating the responses from the left and right ears in a single

time series

x(✓; t) = [ xleft(✓, t) xright(✓, t) ]. (2)

This received signal is corrupted by internal processes that produce

perceptual and criterial noise [13, p. 458], n(t), which can be

modeled as additive white Gaussian noise (AWGN). The resulting

time series is given by

y(✓; t) = x(✓; t) + n(t). (3)

While the prior equations are expressed in terms of the continuous

azimuthal variable Θ, they are equivalent for the discretized case

when expressed in terms of the discrete azimuthal index �.

In the discrete case, the complete set of HRIR can be rep-

resented as an M -by-N matrix X, where each row of X is the

discrete-time signal of length N given by (2). As in [12] the ma-

trix is constructed so as to exclude initial time-delay because it

does not encode any information about source location. However,

it is constructed to preserve all aspects of x(�; t) that do encode in-

formation about source location—interaural time difference (ITD),

interaural level difference (ILD), spectral variation and other cues

such as those described in [14]. This is accomplished by sequen-

tially time shifting each x(m; t) in order to maximize the cross

correlation between the high-energy peaks at the ipsilateral ear

with those of the adjacent x(m � 1; t). Because each x(�; t) is

shifted as a whole, ITD is preserved.

In this signal-processing approach, the goal is estimation of

the source position as a function of the corrupted signal given by

(3)

�̂ = g(y(�, t)). (4)

In contrast to localization-performance metrics that measure the

mean-square error between the estimated and true source posi-

tion, such as the Cramer-Rao lower bound (CRLB) [8, 15], the

information-theoretic framework characterizes performance by the

probability of error Pe in assigning the source to a discrete cell

Pe = Pr{�̂ 6= �}. (5)

To characterize the information content of the set of HRIR in

terms of a set of discrete states, the time series associated with

each discrete source location given by � is expanded in a set of

empirical orthogonal functions (EOF) ⌫n(t)

x(� = m; t) = xm(t) =
N

X

n=1

↵mn⌫n(t), (6)

such that the information content of the set of HRIR is described by

the set of coefficients {↵mn}. In this representation each xm(t)
describes the mapping from one of the M discrete positions in

azimuth described by � to a position in an N -dimensional space

given by the vector of coefficients

am = [↵m1 · · ·↵mN ]. (7)

This expansion is realized by singular value decomposition of the

matrix X

X = USV
T , (8)

where the coefficients ↵mn are given by the product of the matrix

of singular vectors and the diagonal matrix of singular values

US =

2

6

4

↵11

. . .

↵M,N

3

7

5

, (9)

and the EOF ⌫n(t) are given by the matrix of singular vectors

V =

2

6

4

⌫1(t)
...

⌫N (t)

3

7

5

. (10)

As Gaumond observed [12] for underwater sound channels,

coefficient vectors am are not necessarily unique; some may be

degenerate. The same holds true for the coefficient vectors of the

HRIR. For example, a spherical model of the head yields a set of

HRIR that do not resolve source positions lying on cones of con-

fusion. However, HRIR from a realistic head-and-torso model are

able to encode substantially more information about source posi-

tion (see, e.g., [16] and [17, p. 274]) such that the primary source

of degeneracy is limited resolution of the encoding due to quan-

tization. For human localization this quantization of coefficients

serves as model for the effects of internal noise processes. Ex-

panding n(t) in the same set of EOF

n(t) =
N

X

n=1

⌘n⌫n(t), (11)

yields a set of independent identically distributed (iid) coeffi-

cients ⌘n that are zero mean with variance �2. This corresponds

to the uncertainty being uniform in each dimension of the N -

dimensional space to which the HRIR maps source position �.
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Following Gaumond [12], it is assumed that �2 defines the quan-

tization interval ⇢0 through a multiplicative constant ⇢0 = a�2.

The vector of quantized coefficients is thus given by

cm =

»

↵m1

⇢0
· · ·

↵mN

⇢0

–T

. (12)

As in the case of am, not all cm are unique.

The information input into the channel is given by the entropy

of the probability mass function of the random variable describing

source position

Hin = H(�) = �

M
X

m=1

p�(m)log2p�(m). (13)

Assuming that all source positions are equally probable (maximum

entropy) yields

p�(m) = 1/M, (14)

so that

H(�) = log2M. (15)

This corresponds to 2H(�) discernible source positions. The joint

source-channel coding theorem requires that the mutual informa-

tion I(�; �̂) satisfy

H(�)  I(�; �̂), (16)

in order to estimate � with arbitrary small probability of error

(Pe ! 0 ). Mutual information can be expressed as

I(�; �̂) = H(�̂) � H(�̂|�), (17)

where H(�̂) is a measure of prior uncertainty about which az-

imuthal cell contains the source and the conditional probability

H(�̂|�) represents that uncertainty remaining about �̂ once the

source transmits from cell � = m. When all cm are unique,

H(�̂|�) = 0 and H(c) = H(�). Thus, it is required that

H(�̂) = H(�) for (Pe ! 0 ). As in [12] the constructive ap-

proach postulates that the decoding from HRIR to �̂ is done in

terms of the coefficients of a particular orthogonal decomposition.

This is only one possible decoding scheme, motivated more by

mathematical convenience than an underlying verisimilitude to the

actual human processes. Other decoding schemes such as those

described in [17] that are more closely related to psychophysical

localization cues are also possible. However, the decoding scheme

presented here has the significant analytical advantage of produc-

ing a set of orthogonal coefficients. Therefore it is postulated that

�̂ = g(c). The data-processing theorem [18, Thm. 2.8.1, pp.

34–35], then requires that

I(�; �̂)  I(�; c), (18)

such that for H(c) = H(�) must hold true for (Pe ! 0 ). Because

�̂ = g(c), the output information is given by the entropy of those

L vectors of discrete coefficients that are unique

Hout = H(`) = �

L
X

`=1

p(`)log2p(`) 2 [0, H(�)] , (19)

where p(`), ` = 1, 2, . . . , L � 1, L, is the sum of the probabilities

over all input states � = m that result in the `th coefficient vector

p(`) = �
X

m|c`=cm

p�(m). (20)

If only noise is present

p(cm) =

⇢

1 m = 1
0 m > 1

, (21)

such that H(c) = 0, indicating that no information is trans-

ferred. In contrast, if all c are unique, p(c) = p�(m) such that

H(c) = H(�), which is log2M for equiprobable source posi-

tions. However, if all c are not unique H(c) 6= log2L because

equipartition of probability over source positions does not corre-

spond to equipartition of probability over unique coefficient vec-

tors when some coefficient vectors are degenerate. This is made

clear by the following reformulation of the information theoretic

error metric given in (5)

Pe =
X

(m,m̂)

p�̂(m̂|m)p�(m)d(m, m̂), (22)

where p�̂(m̂|m) is the conditional probability of the source-

location estimate given the distribution of source positions and

d(m, m̂) is the Hamming distortion measure

d(m, m̂) =

⇢

0 m = m̂
1 m 6= m̂

. (23)

Because p�̂(m̂|m) 6= 0 for m̂ 6= m if all c are not unique, (22)

indicates that Pe > 0 if p(m) = 1/M .

3. NUMERICAL RESULTS

To illustrate the theory developed in Sec. 2, consider the set of

HRIR for the KEMAR dummy-head microphone [19]. The set

of HRIR were measured in the horizontal plane at a fixed ra-

dius from the center of the head in 5 deg. increments of azimuth

(M = 72). A small loudspeaker served as the source and transmit-

ted maximum-length pseudorandom binary sequences of length

16383, which were recorded at a sampling rate of 44.1 kHz, re-

sulting in a nominal SNR of 65 dB. The impulse response of the

measurement loudspeaker was removed from the HRIR measure-

ment using a inverse filter calculated from its measured impulse re-

sponse using a Mourjopoulos least-squares technique [20], yield-

ing a response that is approximately flat over the bandwidth of the

loudspeaker.

As in [12] the source waveform is a band-limited impulse.

Four different source spectra are considered, unfiltered, having

the full bandwidth of the measurement system, and three octave-

band-filtered impulses with center frequencies of 250Hz, 1kHz,

and 4kHz. Signal-to-noise ratio is specified indirectly in terms of

the maximum number of quantization levels q for any coefficient

in c. While this avoids specifying the explicit relation between

SNR and quantization interval ⇢0, it means that results for differ-

ent source waveforms are not directly comparable.

The analysis for each of the source waveforms is the same: X

is expanded in a set of EOF in order to define ↵mn. The vectors of

discrete coefficients are then calculated according to (12) for each

of the 72 source positions for q = 1, 2, 3, 4. In Tables 1– 4 the

number of unique coefficients, the output information given by the

entropy of the coefficients H(c), and the corresponding number

of distinct source positions that can be identified with arbitrary

small probability of error are specified for each value of q, under

the assumption of equiprobable source positions. Figures 1 – 4

display the azimuthal distribution of unique coefficients as a color
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(a) q=1 (b) q=2

(c) q=3 (d) q=4

Figure 1: Azimuthal distribution of unique coefficients for the full-

bandwidth impulse.

plot for each of the four q values. In these figures each distinct

color corresponds to a unique coefficient vector. Each value of q

corresponds to a set of discrete coefficients c
(q)
mn and a set of HRIR

given by

x̂(q)
m (t) =

N
X

n=1

c
(q)
mn⌫n(t). (24)

These data were sonified by sequentially convolving the set of

HRIR with a band-limited noise signal in order to generate a series

of auditory displays equivalent to Figs. 1 – 4. The stimulus sig-

nal was a band-limited, time-windowed noise pulse of 150 ms total

duration with 10 ms raised-cosine onset and offset transitions. The

noise was band-pass filtered to have the same four source spectra

as the band-limited impulses. For each of the four source spectra

and each of the four values of q, the stimulus signal was convolved

in sequence with the HRIR associated with each of the 72 source

positions, beginning with 0 deg. source position and ending at 355

deg. source position. A 150 ms silence was inserted between the

signals corresponding to each source position. The resulting bin-

aural sounds are provided for the full-bandwidth case with q = 1 ,

2, 3, and 4, the 250 Hz octave-band-filtered case with q = 1 , 2, 3,

and 4, the 1 kHz octave-band-filtered case with q = 1 , 2, 3, and 4,

and the 4 kHz octave-band-filtered case with q = 1 , 2, 3, and 4.

For the 250 Hz octave-band-filtered impulse, the only coeffi-

cient that carries azimuthal information is essentially a measure of

interaural time difference (ITD), as shown in Fig. 5a. Finer quan-

tization simply allows for more values of ITD to be encoded. At

higher frequencies, there are multiple coefficients that carry az-

imuthal information, some of which are symmetric about the me-

dian plane and others that are antisymmetric, as shown in Fig. 5b.

As observed in [16], 2 kHz is roughly the dividing point between

(a) q= 1 (b) q= 2

(c) q=3 (d) q=4

Figure 2: Azimuthal distribution of unique coefficients for the 250

Hz octave-band-filtered impulse.

the low-frequency region in which temporal cues dominate and

the high-frequency region in which spectral cues dominate. How-

ever, in general, the coefficients do not correspond directly to psy-

chophysical cues such as those described in [14].

Finally, it is important to note that, because a uniform quan-

tization interval is not optimal for the distribution of coefficient

values, the increase in the number of unique coefficients with de-

creasing quantization interval is not strictly monotone.

4. DISCUSSION

Head-related impulse responses encode a substantial amount of

information about azimuthal source location but, in general, the

information density is not uniformly distributed in azimuth. Both

the amount of information and the azimuthal distribution vary as

a function of source signal and quantization interval. At low fre-

quencies HRIR contain primarily ITD cues while, at higher fre-

quencies, HRIR contain additional ILD and spectral cues. How-

ever, given a sufficiently small quantization interval, the azimuthal

capacity of the HRIR exceeds that of the measured set of discrete

HRIR in X, even for the 250Hz octave band considered.

levels unique coefficients entropy (bits) source positions

1 21 3.6767 12.788

2 60 5.7810 54.988

3 66 5.9823 63.219

4 72 6.1699 72

Table 1: Performance metrics for the full-bandwidth impulse
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(a) q=1 (b) q=2

(c) q= 3 (d) q=4

Figure 3: Azimuthal distribution of unique coefficients for the 1

kHz octave-band-filtered impulse.

In those cases for which performance is noise (i.e.,

quantization-interval) limited, the number of unique coefficients

is less than the number of source positions. Because the azimuthal

distribution of those unique coefficients does not correspond to the

distribution of source positions, the spatial information transmit-

ted through the channel is less than its capacity. There are two

possible methods for realizing the capacity of the set of HRIR to

encode azimuthal information (i.e., maximize I(�̂; �)). A new

partition of azimuth �0(✓) can be defined such that there are L dis-

crete sources located at ✓`. Alternately, the probability distribution

p�(m) can be modified to be nonuniform so that p(`) correspond-

ing to the azimuths with unique coefficient vectors c` are uniform

with probability p(`) = 1/L 8`. The first of these two options is

related to the design of a virtual-source array for spatial-auditory

display.

For example, suppose there are eight equiprobable, uniformly

distributed sources but, for a given set of conditions, two source

positions have coefficient vectors that are degenerate so that there

are only seven unique coefficient vectors. Though the output

information H(c) is necessarily less than the input information

levels unique coefficients entropy (bits) source positions

1 3 1.5256 2.8790

2 3 1.5420 2.9119

3 7 2.7983 6.9563

4 9 3.1187 8.6860

Table 2: Performance metrics for the 250 Hz octave-band-filtered

impulse

(a) q= 1 (b) q=2

(c) q=3 (d) q=4

Figure 4: Azimuthal distribution of unique coefficients for the 4

kHz octave-band-filtered impulse.

H(�) = log28 = 3, given a uniform probability distribution for

each source, H(c) = 0.25log20.25 + 6(0.125log20.125) = 2.75
is less than the maximum possible information H(c) = log27 =
2.8074 and it would not be possible to identify seven source posi-

tions with arbitrary small Pe.

As a practical example, consider the case of the full-bandwidth

impulse with q = 1. For this level of quantization there are 21

unique coefficient vectors, as indicated in Table 1. The distribution

of these coefficient vectors in azimuth, as shown in Fig. 1a, indi-

cates that coefficient degeneracy will lead to a number of ambigu-

ities in localization with multiple noncontiguous source locations

corresponding to a single coefficient vector. This is well illustrated

by the sonification of these data described previously. If, however,

the number of source locations is reduced to 21 so that each of the

L source positions corresponds to a single unique coefficient, the

ambiguity is removed and all source positions can be resolved, as

demonstrated by a sonification of the modified configuration.

Because the distribution of unique coefficients is not gener-

ally uniform in azimuth, increasing coefficient degeneracy due to

decreasing SNR does not lead to a uniform loss of azimuthal reso-

lution. Rather, information density is generally greater for frontal

levels unique coefficients entropy (bits) source positions

1 12 3.4345 10.811

2 14 3.3804 10.414

3 38 5.0441 32.994

4 40 5.1042 34.398

Table 3: Performance metrics for the 1 kHz octave-band-filtered

impulse
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source locations than for lateral source locations, as has been ob-

served in psychoacoustic experiments [21]. This also can cause

ambiguity in the encoding of azimuth, which leads to such phe-

nomena as cones of confusion or the front-back confusion shown

in Fig. 1a. In such cases maximum information transfer is achieved

by placing only one source associated with a degenerate coefficient

in one of the contiguous azimuthal sectors associated with that co-

efficient.

The information-theoretic framework on which the localiza-

tion theory is predicated requires that all predictions be made rel-

ative to quantization interval, which is here assumed to be asso-

ciated with a particular SNR. Noise in this context represents all

aspects of audition that prevent perfect recovery of the spatial in-

formation encoded in the HRIR. Consequently, it cannot be mea-

sured directly and must be inferred from localization performance.

To do so requires establishing a link between a model of human

perception and a model of human decision. This is traditionally

supplied by signal-detection theory (see, e.g., [22]).

4.1. Relationship to psychoacoustic metrics of localization

While there is some recent work that applies a signal-processing

method to compute performance bounds on HRIR-based local-

ization [15], localization performance is most typically character-

ized through psychoacoustic metrics based on experiments with

human subjects. In particular, azimuthal localization perfor-

mance is characterized by absolute and relative localization thresh-

olds. Absolute-localization experiments measure the accuracy and

precision of source-location estimates. In comparison, relative-

localization experiments measure acuity: the minimum audible

angle of difference that can be perceived between two successive

stimuli [22]. These two thresholds are linked in that the width of

the distribution of absolute localization judgments (i.e., precision)

is related to the relative-localization threshold [23], though in a

somewhat more complex manner than suggested by a straightfor-

ward application of signal-detection theory [22], as discussed by

[24].

The information-theoretic performance analysis described in

this paper characterizes absolute-localization. In particular it

bounds the performance of the source-identification method [25],

which formulates the absolute-localization task as source iden-

tification over a grid of equal-azimuth sectors. In contrast, the

Cramer-Rao lower bound [15] characterizes the mean-square error

of absolute localization and thus is more closely related to relative

localization. One of the primary spatial-hearing tasks that an op-

erator could perform using an azimuthal spatial auditory display

is aurally detecting and estimating the bearing of a signal associ-

ated with one of many virtual sources. For this task the relevant

measure of performance is absolute localization, particularly the

source-identification method.

levels unique coefficients entropy (bits) source positions

1 9 1.9874 3.9652

2 42 5.1175 34.7152

3 58 5.7391 53.412

4 68 6.0588 66.663

Table 4: Performance metrics for the 4 kHz octave-band-filtered

impulse

(a) 250 Hz octave-band filtered impulse

(b) 2 kHz octave-band filtered impulse

Figure 5: Coefficient ↵mn plotted as a function of azimuth (m) for

n = 1, 2, 3, 4.

4.2. Relationship to models of localization

Unlike some other models of localization, the objective of the

information-theoretic model developed here is providing insight

and upper bounds on performance rather than specific predictions

of localization performance. In Colburn and Kulkarni’s taxon-

omy [17, p. 272], the model follows a signal-processing approach

to localization, as contrasted with psychophysical and physiolog-

ical approaches. Like other signal-processing approaches such

as [22, 25], the model is not congruent with human processes.

Though the coefficients ↵mn correspond to localization cues such

as ITD in some instances, the relation between HRIR and loca-

tion estimate is not explicitly made in terms of psychoacoustic pa-

rameters, as in [14] or neurological correlates of localization [26].

Moreover, the model does not account for ”biologic constraints”

due to the auditory periphery [16] and neural processing (see, e.g.,

[26]) that limit the spectral and temporal resolution with which lo-

calization information can be extracted from HRIR [17]. While the

internal noise level and corresponding quantization interval limit

the resolution with which information is extracted from a set of

HRIR, homoskedastic noise in a multidimensional space of coeffi-
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cients may not be a good model for the limitations of human per-

ception. For these reasons the model cannot provide verisimilitude

to human localization, particularly its more subtle aspects. For ex-

ample, it does not address performance variations due to spectral

integration that arise when the spectrum of the stimulus exceeds a

critical band.

5. CONCLUSIONS

Spatial hearing and localization in the azimuthal plane can be in-

terpreted as a communication problem in which scattering from

the head and torso, as described by the HRIR, encodes information

about source location. Information theory gives bounds on the per-

formance of this communication channel as a function of source

signal and places an upper limit on the number of sources that

can be identified for a given set of conditions comprising source

signal and internal noise level. Further, it indicates how to maxi-

mize performance under those conditions. In particular, an array

of virtual sources distributed uniformly in azimuth does not max-

imize the amount of spatial information that can be encoded from

noisy observations of the set of HRIR. Instead, maximum informa-

tion transfer is realized when virtual source positions correspond

to those azimuthal locations which are uniquely encoded by the

HRIR given the quantization interval associated with a particular

set of conditions.

In future work it would be possible to extend this model to

elevation-angle localization in the medial plane or to more general

localization of source varying in range and over the full 4⇡ stera-

dian of solid angle. Because the model extracts spectral features

without the need for explicitly defining them, it may be of partic-

ular use to the study of localization in the medial plane for which

there is not consensus regarding the spectral cues used by human

listeners [16]. Similarly, the model may offer some insight into lo-

calization in the presence of multiple reflections and reverberation,

as discussed in [27].
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