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Abstract—We propose an information-theoretic planning ap-
proach that enables mobile robots to autonomously construct
dense 3D maps in a computationally efficient manner. Inspired
by prior work, we accomplish this task by formulating an
information-theoretic objective function based on the Cauchy-
Schwarz quadratic mutual information (CSQMI) that guides
robots to obtain measurements in uncertain regions of the map.
We propose a two stage planning approach. First, we generate
a candidate set of trajectories using a combination of global
planning and generation of local motion primitives. From this set,
we choose a trajectory that maximizes the information-theoretic
objective. Second, we employ a gradient-based trajectory opti-
mization technique to locally refine the chosen trajectory such
that the CSQMI objective is maximized while satisfying the
robot’s motion constraints. We evaluated our approach through
a series of simulations and experiments on a ground robot and
an aerial robot mapping unknown 3D environments. Real-world
experiments suggest our approach reduces the time to explore an
environment by 70% compared to a closest frontier exploration
strategy and 57% compared to an information-based strategy
that uses global planning, while simulations demonstrate the
approach extends to aerial robots with higher-dimensional state.

I. INTRODUCTION

Autonomous construction of dense 3D maps of environ-

ments using mobile robots has the potential to benefit a number

of industries such as mining, construction, and agriculture,

and to plan rescue efforts in disaster response operations. It

is also an important prerequisite for autonomous robots like

self-driving cars that operate in unstructured environments. In

this work, we focus on the problem of enabling robots to

autonomously construct such maps as efficiently and quickly

as possible.

Mapping a 3D environment with a mobile robot is a

challenging problem. As the robot knows nothing about the

environment initially, it must be able to effectively predict

how future measurements will reduce the map’s uncertainty.

However, due to cost or payload constraints, the robot may

only be equipped with noisy sensors that suffer from short

maximum ranges and limited fields of view, necessitating

planning over multiple time steps. Generating these plans

can be substantially complicated by the robot’s own mobility

limitations, which preclude it from obtaining measurements at

arbitrary positions throughout the environment. Many robots

– in particular aerial vehicles – also have limited battery life.

Consequently, if a robot is incapable of quickly determining

how it should move, it will run out of power before it has

obtained a complete and low uncertainty map. Finally, robots

constantly face an exploitation-exploration trade-off during the

(a) Mapping an indoor environment with a ground robot

(b) Mapping a stairwell environment with an aerial robot

Fig. 1: The goal of this work is to efficiently construct dense 3D maps using
mobile robots equipped with sensors with a maximum sensing range and
limited field of view. (a) Mapping an indoor environment with a ground robot
equipped with a RGB-D sensor. (b) Mapping a stairwell environment with an
aerial robot equipped with a RGB-D sensor. We accomplish this by using a two
stage planning approach: 1) using a global planner to choose trajectories that
maximize an information-theoretic objective based on the Cauchy-Schwarz
quadratic mutual information (CSQMI), and 2) locally optimizing portions of
the trajectory to maximize the CSQMI objective.

mapping process of whether to improve the map in their local

vicinity, or try to explore other parts of the environment.

There is extensive prior work on devising information-

theoretic objectives that guide a mobile robot to obtain mea-

surements in uncertain regions of the map. However, there

are a variety of different strategies for generating control

actions for the robot which include local exploration strategies

involving greedy gradient ascent [1, 21, 41] or local motion

primitives [2, 4, 12]; and global strategies that use a variant of

the frontier method to maximize the chosen objective [5, 39].

Local strategies are useful when the robot is close to uncertain

portions of the map (Fig. 2a) but are susceptible to local

minima [44]. Global strategies are useful when the robot is

far from uncertain portions of the map (Fig. 2b) and can

help escape local minima but are computationally expensive

to compute and the generated plans are coarse and may result

in jagged robot motion [42].

In this work, we follow the approach of Charrow et

al. [5] and use an information-theoretic objective based on the

Cauchy-Schwarz quadratic mutual information (CSQMI) [38],
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Fig. 2: (a) Local motion primitives are useful when a robot is close to uncertain portions of the map (gray blobs). (b) Global plans are useful when the robot is
far from uncertain portions of the map. This helps the robot escape local minima in the information-theoretic objective function. (c) Trajectory optimization has
the potential to improve the informativeness of both local motion primitives and global plans by generating dynamically feasible and informative trajectories.

but differ in that we propose a two stage planning approach

to generate control actions. First, we generate a candidate set

of trajectories using a combination of—1) global plans that

span the entire environment and are generated by a frontier

method [5], and 2) local, dynamically feasible primitives that

are generated by control sampling. This combines the benefits

of both approaches. From this set, we choose a trajectory

that maximizes the objective. Second, we use gradient-based

trajectory optimization to locally refine the trajectory such

that the CSQMI objective is maximized while satisfying the

robot’s motion constraints. This has the potential to improve

the informativeness of both local motion primitives and global

plans, as shown in Fig. 2c. This improvement is particularly

important for mapping 3D environments using robots that have

high-dimensional state spaces and a non-trivial motion model.

We evaluated our approach through a series of simulations

and experiments on a ground robot and an aerial robot map-

ping unknown 3D environments. We evaluated the benefits of

including both global plans and local motion primitives and

the benefit of trajectory optimization in simulation for dense

3D mapping. In real-world experiments using our approach,

a ground robot was able to construct a complete 3D map

3.3× faster than a strategy that always drives to the closest

frontier [52] and 2.3× faster than a state of the art information-

based strategy that only considers global plans [5].

II. RELATED WORK

There is a considerable body of prior work on autonomous

mapping and exploration [45, 48]. There are several ways of

representing a static map of the environment including, but

not limited to, topological maps, landmark-based representa-

tions, elevation grids, point clouds, meshes, and occupancy

grids [49]. In this work, we consider the problem of creating

a dense 3D map of the environment using occupancy grids.

In prior work, strategies for mapping and exploration can

be primarily grouped into two categories: (i) Frontier-based,

and (ii) Information-gain based strategies.

Frontier-based strategies [52] are primarily geometric in

nature and travel to the discrete boundary between the free and

unknown regions in the map. Extensions of this strategy have

been successfully used for building maps of unknown environ-

ments in 2D [3, 14]. Holz et al. [18] provide a comprehensive

evaluation of frontier-based strategies in 2D environments.

Direct extensions to voxel grid representations of 3D environ-

ments using frontier voids have also been proposed [10, 13].

Shade and Newman proposed a combination of a frontier-

based and a local vector-field based strategy to generate shorter

exploration trajectories [42]. Shen et al. [43] used a frontier-

based strategy with a particle-based representation of free

space for computational tractability.

Information-gain based mapping strategies optimize an

information-theoretic measure for exploration. Prior work has

investigated minimization of the map entropy which is a

measure of uncertainty associated with all grid cells [31, 51].

Several methods have been proposed that choose to maximize

mutual information (MI), which predicts how future sensor

measurements will reduce map uncertainty [1, 21, 41]. These

approaches use a greedy controller with a one-time step

look ahead to maximize MI. However, Soatto [44] suggests

planning over multiple time steps to deal with the issue of

a greedy explorer getting stuck in local minima. To address

this issue, researchers have proposed using a discrete set of

actions and executing the one that maximizes information

gain [2, 4, 12]. Charrow et al. [5] use the rate of information

gain criterion while Rocha et al. [39] use the gradient of map

entropy to select promising frontiers for exploration. These

strategies do not locally optimize the robot trajectory with

an intent to gain more information as the robot is traveling

to the next selected frontier, which might result in inefficient

mapping behavior. Kollar and Roy [24] formulated exploration

as a constrained optimization problem and used reinforcement

learning to compute good trajectories. In contrast, this work

maximizes CSQMI over the continuous control input space.

Information-theoretic objectives have also been used for

planning and control in robotics for related tasks involving

uncertainty such as target tracking [15, 30], target local-

ization [4, 16], inspection [17], extrinsic calibration of LI-

DAR sensors [28], and visual servoing [8]. Prior work has

used trajectory optimization over a finite horizon to optimize

information-theoretic criteria [6, 29, 33, 40] for continuous

motion and sensing models. In contrast, this work maximizes

CSQMI computed over the continuous robot state space and

a discrete occupancy grid representation of the environment.

In this work, we assume that the robot is capable of

localizing itself using a simultaneous localization and mapping

(SLAM) [26, 34, 49] system. Modern SLAM systems [34],

which account for uncertainty in the map and the robot’s

state, can be used to construct an occupancy grid using the

maximum likelihood estimate of the robot’s path. The grid

can typically be updated incrementally, but when estimates of

previous poses change substantially (e.g., due to loop closures)



a completely new occupancy grid can be quickly regener-

ated [47]. In cases where reliable localization is not possible,

it is important to plan trajectories that actively reduce the

uncertainty of the robot’s state and the map [2, 19, 22, 46, 50].

III. PRELIMINARIES AND PROBLEM DEFINITION

A. Occupancy Grid Mapping

We use occupancy grids [49] to represent 3D maps as

they are a dense, probabilistic, and volumetric representation

of space. A map, m, is a discretization of 3D space into

regular sized cubes or cells {c1, . . . , c|m|} each of which

corresponds to a Bernoulli random variable whose value is 1

if the corresponding region of space contains an obstacle and

0 if it is free. The standard occupancy grid mapping assumes

that cells are independent of one another so p(m) =
∏

i p(ci)
and unobserved cells have a uniform prior of being occupied.

B. Information-Theoretic Objective for Active Control

Given a map m at time t, we seek a set of control inputs

for the robot so that it gathers measurements which reduce the

uncertainty of the map as quickly as possible. To achieve this,

we formulate an optimization problem over the time interval

τ

△
= t+ 1 : t+ T to find controls uτ = [ut, . . . ,ut+T−1] that

move the robot to states xτ = [xt+1, . . . ,xt+T ] where it will

obtain measurements zτ = [zt+1, . . . , zt+T ] that reduce the

map’s uncertainty. The future states of the robot are determined

by the deterministic dynamics of the robot, xi+1 = f(xi,ui).
Our objective is to find controls that maximize the rate of

some measure of information gain between the map, m and

future measurements the robot will make, zτ :

max
xτ , uτ

I[m; zτ | xτ ]

D(uτ )

s. t.
∀t<i<t+T−1

xi+1 = f(xi,ui), (1)

xi ∈ Xfeasible,ui ∈ Ufeasible,

where I[m; zτ | xτ ] quantifies the expected reduction in the

map’s uncertainty, Ufeasible is the set of valid controls, Xfeasible

is the set states the robot can be in, and D(uτ ) is how

long it takes to execute all of the controls. Maximizing the

rate of information gain is preferable to purely maximizing

information, as it enables the robot to compare the value of

actions over different time and length scales.

There are many different choices for quantifying informa-

tion or how learning the outcome of one random variable (e.g.,

range measurements) affects another (e.g., the map) [7, 38].

Shannon’s mutual information (MI) is one widely used mea-

sure. In this work, we build on prior work by Charrow et

al. [5] that proposes the use of Cauchy-Schwarz Quadratic

Mutual Information (CSQMI) [38] as it can be computed more

efficiently. Omitting the conditioning on the robot’s poses for

brevity, CSQMI can be expressed as:

ICS[m; zτ ] = − log
(
∑∫

p(m,zτ )p(m)p(zτ ) dzτ )
2

∑∫
p2(m,zτ ) dzτ

∑∫
p2(m)p2(zτ ) dzτ

,

where the sums are over all possible maps, and the integrals

are over all possible measurements the robot can receive.
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Fig. 3: Beam based measurement model: (a) one beam, the cells it intersects
at various distances, and the resulting distribution over measurements when
zmin = 0.5 and zmax = 2. Darker cells have a higher probability of being
occupied. (b) Raycasts for multiple beams. Obtained from Charrow et al. [5].

Algorithm 1: Calculate I[m; zτ | xτ ], the information of

measurements made over multiple steps each comprised of

multiple 1D beams.

1: Zindep = ∅ // Set of nearly independent measurements

2: Info = 0 // Info from measurements in Z
3: for each future 1D beam measurement zbt do

4: Perform raycast to find cells c ⊆ m that zbt intersects

5: Use probability of cells in c being occupied or free to

determine distribution over measurements;

p(zbt | xt) =
∑

p(c)p(zbt | xt, c)
6: if isIndependent(zbt ,Zindep) then

7: Info += I[m; zbt | xt] // Add info from this beam

8: Add zbt to Zindep

Calculating information requires a probabilistic model for

measurements as a function of the map and the robot’s state:

p(z | m,x). We model a measurement at time k as a collection

of B one dimensional beams that cover the sensor’s field of

view zk = [z1k, . . . , z
B
k ]. Fig. 3b shows an example model

for a typical RGB-D sensor. Next, we assume that given

the set of cells a beam intersects, c, it returns the distance

to the first occupied one, d, perturbed by Gaussian noise:

p(z | d) = N (z−d, σ2). Marginalizing over all states cells can

be in makes p(zbk | xk) a Gaussian mixture model Fig. 3a [21].

Using this model, the information of an individual beam

I[m; zbk | xk] can be calculated efficiently [5].

Unfortunately, calculating the information of multiple

beams over multiple time steps, I[m; zτ | xτ ], is expensive,

as it involves taking expectations over the joint distribution

of all measurements and the map. To avoid this issue, many

researchers assume that measurements are independent of one

another [20, 21, 25], which might result in poor plans over

multiple time steps when there is significant overlap between

the sensor field of views. Instead, we calculate information

by summing the information from a subset of measurements

that are nearly independent (Alg. 1). We determine this subset

by bounding the probability that any two beams intersect the

same cell. This approximation is valid for any measure of

information that is additive over pairwise independent events,

and can also be implemented efficiently [5].



Fig. 4: System architecture: We generate a candidate set of trajectories
by combining global planning and local motion primitives and then select
the one that maximizes the CSQMI objective. This selection is improved
using trajectory optimization and then executed by the robot. Different system
components run asynchronously at different frequencies.

IV. APPROACH

We propose a two stage planning approach. We construct

a candidate set of trajectories by supplementing global plans

with local motion primitives generated by control sampling.

We then choose a trajectory that maximizes the objective given

by (1). In doing so, we combine the benefits of both global

planning and local exploration using primitives, as shown in

Fig. 2. In the second stage, we optimize the chosen trajectory

using gradient-based trajectory optimization over multiple time

steps to maximize the CSQMI objective while satisfying the

robot’s motion model. The controls generated by the trajectory

optimization routine are fed to the low level motion controller.

A schematic of our system architecture is shown in Fig. 4.

A. Combining Global Planning and Local Motion Primitives

Global Planning: The global planner’s task is to generate

a set of paths from the robot’s current location whose rate

of information gain is high. These paths should extend to

every portion of the known map, so that the robot can consider

the utility of traveling far away from its current location. To

generate these paths, we follow the approach of Charrow et al.

[5] and plan shortest paths to destinations where frontiers can

be observed, as illustrated in Fig. 5. For completeness, we

describe the algorithm here.

To start, we find uncertain portions of the map that can likely

be observed by the robot by identifying “frontier voxels,”

which are unknown voxels that are adjacent to voxels that are

very likely unoccupied [52]. To reduce the number of paths

we need to plan, we greedily cluster multiple nearby frontier

voxels by randomly selecting a frontier voxel and grouping it

with all other frontier voxels within a user-specified distance

(0.4 m worked well for our experiments). After removing these

voxels from consideration, we repeat this process until every

frontier voxel belongs to a cluster.

Given clusters, we create global paths by finding shortest

paths to destinations that can view a cluster. To do this, we

use Dijkstra’s algorithm to plan single source shortest paths

to every destination in the map and at each destination check

which clusters are visible. A cluster is visible from a pose,

if 1) the cluster’s center of mass (i.e., average position of all

voxels in the cluster) is within the field of view of the sensor

and 2) a raycast from the sensor is unlikely to hit an obstacle.

This algorithm requires a large number of visibility checks,

making it slow. Charrow et al. [5] describes a way to increase
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Fig. 5: Global Planning: We generate global plans by 1) clustering frontier
voxels and 2) planning paths to destinations that can view them. When a robot
can view a cluster from multiple places, we select the one that can be reached
the fastest.

its speed by precomputing sets of poses that can view clusters.

While the global planner is useful, it has the following

shortcomings: 1) generating paths throughout the environment

takes a long time; 2) the paths it generates are coarse and

may not satisfy the robot’s dynamics; and 3) even when paths

can be followed, they are frequently not smooth, resulting in

jagged robot motion [42].

Local motion primitives: The goal of local motion primi-

tives is to quickly generate short trajectories. This is primarily

useful when the robot is near an uncertain part of the map and

constantly getting new information that affects where it should

go (Fig. 2a). As it plans throughout the entire environment, in

these cases, the global planner generates paths too slowly.

We evaluated the benefits of two types of control sampling

methods: 1) lattice planners [27] that generate dynamically

feasible trajectories using a fixed library of motion primitives

that are chained together to plan over multiple timesteps;

and 2) randomized planners that generates trajectories by

randomly sampling from the robot’s control space over the

local time horizon. In both cases, if the motion model predicts

that the robot might enter an obstacle or unknown space in

the environment, the set of controls is rejected. To specify

“local,” we heuristically generate motions whose total length

is comparable to the maximum range of the sensor.

B. Trajectory Optimization for Refinement

Neither the global plans nor local motion primitives are

locally optimal with respect to the rate of information gain

as they do not consider the full control input space of the

robot. To address this issue, we use gradient-based trajectory

optimization that can refine a trajectory in the continuous

control space. Ideally, we would like to optimize all the

trajectories within the candidate set and select the one that

maximizes the objective. However, optimizing all the candi-

date trajectories would be computationally expensive due to

all the gradient computations involved. Instead, we first select

the best trajectory that maximizes the CSQMI objective (1)

and use that to initialize the optimization.

Gradient of Information: We consider gradient-based tra-

jectory optimization methods. Because our underlying occu-

pancy grid map representation (Sect. III-A) and beam model

for the RGB-D sensor (Sect. III-B) are discrete, it is not



immediately obvious that a meaningful gradient exists. Prior

work [20] showed that the gradient of information of a single

measurement can be calculated for a 2D mapping scenario if

one assumes that individual beams are independent, and the

sensor has a wide field of view. One important observation is

that the reward surface is smoother if the position of the robot

is restricted to the center of the grid cells. We extend this

work by considering the gradient of information of multiple

measurements with respect to the robot’s full state and control

inputs, even when beams are modeled as dependent.

To evaluate gradients, we view the information reward

surface as a function of discrete robot positions along the

occupancy grid and numerically evaluate gradients using finite

differences. Note that the grid cell resolution is often small

(e.g., 0.1m) and that the robot’s orientation and control inputs

are not restricted to a discrete set.

Sequential Quadratic Programming (SQP): We use

SQP [32] to locally optimize the non-convex, constrained

optimization problem to find a set of controls over a finite

horizon. Strictly speaking, SQP requires that the objective

has a Lipschitz continuous second derivative to guarantee a

quadratic convergence rate to a local optimum. We cannot

formally do this due to nature of the discrete occupancy grid

and the sensor model. However, prior work [1, 21, 41] has

shown that it is possible to perform gradient ascent on such

objectives even in the absence of theoretical guarantees.

To optimize a trajectory, we adapt (1) to a form that can

be solved using SQP. In particular, we assume a discrete-time

robot motion model with a fixed number of time steps, making

the duration penalty a constant that can be removed from the

objective. We also encourage the robot’s states to be feasible

by rewarding being sufficiently far away from obstacles:

max
xτ , uτ

I[m; zτ | xτ ] + α
t+T
∑

i=t+1

min (dmax, dist(xi,m))

s. t.
∀t<i<t+T−1

xi+1 = f(xi,ui), (2)

xi ∈ Xfeasible,ui ∈ Ufeasible,

where dist(x,m) ≥ 0 is the minimum unsigned distance from

x to any obstacle in the map, dmax is a parameter that limits

the distance reward, and α ≥ 0 is a weighting parameter

that balances the objective. After a parameter search with

logged data, we obtained good results with α = 20 and

dmax = 0.5 m. To support constant time distance queries,

before the optimization starts, we construct the Euclidean

Distance Transform [11] for the entire 3D map. Note that the

time horizon can also be included as an optimization variable.

In our implementation, the innermost QP solver was gener-

ated by a numerical optimization code framework that gener-

ates QPs specialized for convex multistage problems such as

trajectory optimization [9]. Even though it is possible to com-

pute the entire Hessian, it is computationally very expensive

to do. We used the symmetric rank 1 (SR1) update method to

update the Hessian using the computed gradients [32].

Caching Information: Numerically calculating the objec-

tive’s gradient is computationally expensive as each evalua-

tion requires calculating the information gain resulting from

all poses. The complexity of calculating information scales

linearly in the number of poses in the trajectory, while the

complexity of calculating information from all beams in a pose

is determined by the time it takes to evaluate the information of

individual beams, tInfo, and the time it takes to find a subset

of beams that are independent tIndep [5]. With T poses per

trajectory, evaluating the gradient via central differences takes

O(T 2(tInfo + tIndep)) time.

Fortunately, we can calculate the gradient faster by caching

redundant computations. Calculating each partial derivative

of the gradient via central differences involves perturbing

an individual optimization variable. Because we include the

poses in the optimization, each perturbation of x or u only

affects a pose at a single time step. Consequently, many

of the information calculations across different perturbations

are redundant and can be cached. Although this process is

complicated by the fact that measurements are dependent –

meaning information does not decompose into a sum over

the information at each pose – we can cache the information

gain from individual beams and the cells that the beams

pass through using raycasting. This reduces the complexity

of evaluating the gradient to O(TtInfo + T 2tIndep) which is a

substantial speedup as tInfo ≫ tIndep. In experiments optimizing

over 5 time steps, produces a 4.0× speedup.

V. EXPERIMENTS

There are four primary questions that we seek to answer

with our experiments— Q1: How much information gain is

obtained by optimizing local motion primitives? Q2: Which

scenarios do local motion primitives provide the most benefit

in? Q3: How does our approach compare to previous work

and a human teleoperator with respect to speed, distance

traveled, and map completion? Q4: How well does trajectory

optimization scale to high-dimensional systems?

We designed simulation and real-world experiments with a

ground robot and simulations with an aerial robot to answer

these questions.

A. Platforms and System Details

Ground Robot: We conducted experiments using a differ-

ential drive ground robot equipped with a 2D Hokuyo UTM-

30LX laser range finder, and a 3D Asus Xtion Pro RGB-D

camera. The robot’s computer was an Intel i5 processor with

8 GB of RAM, enabling it to run our entire approach on-board.

We parameterized the robot’s state x as a 3D vector that

consists of the robot’s 2D position and orientation. The control

input u is a 2D vector of its left and right wheel speeds:

x =
[

x, y, θ
]⊺

, u =
[

vl, vr
]⊺





xi+1

yi+1

θi+1



 =





xi

yi
θi



+





1
2 (v

l
i + vri ) cos(θi)

1
2 (v

l
i + vri ) sin(θi)
(vri − vli)/ℓ



 , (3)

where ℓ is the wheel separation. For trajectory optimization,

we limited the wheel speeds to be at most 0.5 m/s and imposed

the motion model’s nonlinear equality constraints.



(a) Ground Robot (b) Aerial Robot

Fig. 6: Information gain performance on recorded data: Over 157 situations for the ground robot and 63 situations for the aerial robot, we evaluate the
optimality of the initial trajectory input into the trajectory optimization for various initializing methods (left column). We then evaluate the optimality of the
trajectory output by trajectory optimization (right column). We see dominant modes shift towards 100% optimality when incorporating trajectory optimization,
showing trajectory optimization improves overall information gain.

Aerial Robot: We conducted simulations using Gazebo [23]

with a quadrotor modeled after an AscTec Pelican that is also

equipped with a UTM-30LX laser range finder and an Asus

Xtion Pro RGB-D camera.

We parameterized the quadrotor’s state x as an 8D vector

consisting of its 3D position, 3D velocity, yaw, and yaw

velocity. The control input u is a 4D vector of the linear

accelerations and yaw acceleration. We assumed the quadrotor

does not fly aggressively, and that its state evolved with a

constant acceleration model:

x =
[

x, y, z, θ, ẋ, ẏ, ż, θ̇
]⊺

u =
[

ẍ, ÿ, z̈, θ̈
]⊺

xi+1 =

[

I4 ∆t · I4
0 I4

]

xi +

[

1
2∆t2 · I4
∆t · I4

]

ui

where ∆t is a user-defined time discretization value. For

trajectory optimization, we bounded the linear acceleration

between [-0.5,0.5] m/s2, yaw acceleration between [-π/2,π/2]

rad/s2, the velocity in each dimension between [-1,1] m/s, and

the yaw between [-π/2,π/2] rad/s2. We also impose linear

constraints on the robot’s motion model.

RGB-D Sensor: Both the ground and the aerial robot were

equipped with a RGB-D sensor that was modeled after the

Asus Xtion Pro sensor. We assume it has a minimum range

of zmin = 0.5 m, maximum range of zmax = 4.0 m, and

its noise is σ = 0.03 m. To predict future measurements and

evaluate CSQMI, we discretized the 58◦ horizontal field of

view and 48◦ vertical field of view into 20 separate values

each, resulting in 400 separate beams.

Occupancy Grid: For both platforms, the 3D occupancy

grid was constructed with a resolution of 0.1 m using data from

the RGB-D sensor. In experiments, the ground robot obtained

position estimates from a 2D laser based SLAM system, while

in simulation the quadrotor obtained a noisy pose estimate

from the simulator.

B. Evaluating Trajectory Optimization

To quantify how much trajectory optimization can improve

the information gain of local motion primitives (Q1), we

looked at its performance in a variety of situations. To

create these different situations, we sampled different maps

and poses for the robots from real-world experimental data

Random 1 Random 8 Random 16 Random 32 Random 64 Random 128 Random 256 Lattice

Avg. Initial Time (s) 0.00 ± 0.0 0.04 ± 0.0 0.07 ± 0.1 0.15 ± 0.1 0.29 ± 0.3 0.58 ± 0.6 1.17 ± 1.2 0.26 ± 0.3

Avg. SQP Time (s) 0.78 ± 0.8 0.55 ± 0.6 0.43 ± 0.4 0.42 ± 0.4 0.40 ± 0.4 0.37 ± 0.4 0.34 ± 0.3 0.42 ± 0.4

Avg. Total Time (s) 0.79 ± 0.8 0.59 ± 0.6 0.51 ± 0.5 0.56 ± 0.6 0.69 ± 0.7 0.95 ± 1.0 1.51 ± 1.5 0.69 ± 0.7

(a) Ground Robot

Random 1 Random 8 Random 16 Random 32 Random 64 Random 128 Random 256

Avg. Initial Time (s) 0.00 ± 0.0 0.02 ± 0.0 0.05 ± 0.0 0.09 ± 0.1 0.18 ± 0.2 0.37 ± 0.4 0.75 ± 0.7

Avg. SQP Time (s) 0.84 ± 0.8 0.61 ± 0.6 0.62 ± 0.6 0.60 ± 0.6 0.54 ± 0.5 0.56 ± 0.6 0.62 ± 0.6

Avg. Total Time (s) 0.84 ± 0.8 0.64 ± 0.6 0.67 ± 0.7 0.69 ± 0.7 0.73 ± 0.7 0.93 ± 0.9 1.37 ± 1.4

(b) Aerial Robot

Fig. 8: Planning times on recorded data: Comparing the initialization,
trajectory optimization, and total times for different initialization methods
using the same data as in Fig. 6. The double line show when sampling controls
becomes more computationally expensive than trajectory optimization.

from Charrow et al. [5]. For each situation, we generated a

fixed number of motion primitives using a lattice planner or

random sampling (Sect. IV-A). The motion primitive with the

highest information was then optimized. Because information

gain can vary substantially across different maps and poses,

we normalize the information gain of each approach by the

maximum information gain achieved by any approach with the

same initial conditions. Results for the ground air and robot

are shown in Fig. 6a and Fig. 6b. As expected, using larger

number of motion primitives improves the performance of the

unoptimized trajectories. However, regardless of the number of

motion primitives used to find an initialization, trajectory opti-

mization consistently produces trajectories whose information

gain is close to the maximum achieved, demonstrating that

it can substantially improve upon the search based strategies.

Comparing the trajectory optimization information gain for

the ground robot (Fig. 6a) with the aerial robot (Fig. 6b), we

see the benefit of using trajectory optimization is greater in

higher-dimensional systems (Q4).

We also examined the average computation time over all

situations for each approach. Results are shown in Fig. 8a

for the ground robot and Fig. 8b for the aerial robot. While

evaluating a small number of motion primitives is fast, these

trajectories tend to have small gains in information. However,

using these trajectories to initialize optimization yields finds

trajectories that are higher in information, with less time than

searching over large numbers of motion primitives.

C. Mapping Experiments with a Ground Robot

We tested our approach by using a ground robot to map a

40 m × 35 m × 2 m portion of an office environment over two

trials. For the local motion primitives, we sampled 32 random

trajectories. Results and comparisons are in Fig. 7. The final



Local Motion Primitives Global Plan

Traj. Opt. Initialization

(% of times)
66% 34%

(a) Final map (2D projection), exploration path, and poses where

trajectory optimization performed best: The green triangle is the
robot’s start position. The colored path is its exploration path. The red
arrows show the 25 poses where trajectory optimization provided the
largest gain in information over the initializing trajectory.

Averages when entropy reduced to human level

Time (min) Distance (m) Speed (m/s)

Human 6:36 (24.0%) 153 (86%) 0.41 (3.2×)

Our Approach 8:15 (29.9%) 156 (88%) 0.34 (2.6×)

Global 19:19 (71.2%) 156 (88%) 0.15 (1.2×)

Closest Frontiers 27:37 (100.0%) 178 (100%) 0.13 (1×)

(b) Comparisons to previous work: Comparing our approach with 1)
Human teleoperator who knows the map apriori, 2) Information based
planner that only plans globally [5], and 3) Closest frontiers [52].

Fig. 7: Ground robot experiments: Mapping a real-world office environment. Our approach reduces the map’s uncertainty faster than previous approaches,
and only does slightly worse than a human operator with a priori knowledge of the environment.

3D map from one trial is shown in Fig. 1a.

To assess the overall performance of our system (Q3), we

compare it to three other approaches. The first is “Global”,

a strategy that evaluates information along paths to frontiers

and does not use local motion primitives or trajectory opti-

mization, while the second is a closest frontiers planner [52].

In order to obtain an approximate lower bound on achievable

performance, we also compare to a human teleoperator who

knows the entire environment a priori and manually drives the

robot to gather measurements. For comparisons with the first

two approaches, we obtained data from Charrow et al. [5],

who use a robot with the same characteristics as our own.

To measure the speed of each approach, we look at the

time it takes to obtain a low uncertainty map measured using

Shannon’s entropy. The entropy of a map with |m| cells is
∑|m|

i=1 −fi log2 fi − (1 − fi) log2(1 − fi) bits where fi is

the probability that the ith cell is free [7]. Fig. 7b shows

the map’s entropy over time for each approach. The human

operator decreased the uncertainty of the map the fastest.

However, our approach did not take substantially longer to

achieve a similarly certain map, despite the robot’s absence

of prior knowledge about the environment. Our approach was

also substantially faster than the other autonomous approaches.

Note that the strategies that use information and the human

all travel essentially the same distance. This suggests the

difference in time is primarily due to how quickly each

approach can determine an informative trajectory to follow.

It is interesting that the human operator stopped once they

believed they had obtained a low uncertainty map and that all

autonomous approaches continue reducing the map’s entropy

beyond this point, as they continue until no frontiers are left.

However, the final maps are qualitatively hard to differentiate,

suggesting a better termination condition is needed.

Fig. 7a shows a 2D projection of the final map, the path

the robot followed, and poses where trajectory optimization

provided the most improvement in information. These poses

are predominantly in open spaces, junctions, approaching

corners, and dead-ends (Q2). This agrees with intuition as

these areas are more complicated than straight narrow hallways

where finding an informative trajectory is simpler.

D. Mapping with an Aerial Robot

To further study the impact of trajectory optimization on

the information of local primitives (Q1) and study how well

our approach scales to robots with higher dimensional state

(Q4), we evaluated it by having a quadrotor map a 10 m × 5

m × 7.5 m 3-story stairwell in simulation Fig. 9a. The final

3D map from one trial is shown in Fig. 1b.

We are interested in the effect of different motion primi-

tives and whether the improvement in trajectory optimization

results in different overall performance compared to control

policies that use motion primitives and global plans. For these

simulations, we generate local plans over 5 time steps, and

again use a random or lattice planner to generate motion

primitives. The random planner repeatedly sampled from the

robot’s 4D control space to generate trajectories. The lattice

planner generated straightline constant velocity trajectories

whose directions were determined by discretizing polar and

azimuthal angles in spherical coordinates. We chose this as

even very coarse discretization of the control space for the

quad result in thousands of trajectories, resulting in slow

overall performance.

Fig. 9b shows the map’s entropy over time using different

numbers of initial trajectories averaged over 5 trials for each



(a)

(b)

(a) Stairwell with walls removed (b) Map entropy over time using random (top)
and lattice (bottom) local motions with and without trajectory optimization

Averages when entropy reduced by 90%

Time (min) Distance (m) Speed (m/s)

Random 32 2:32 (87%) 36.2 (88%) 0.21

Random 256 2:14 (77%) 30.4 (73%) 0.20

Lattice 30 2:54 (100%) 41.4 (100%) 0.18

Lattice 256 2:38 (90%) 37.5 (91%) 0.18

Random 32 + SQP 2:11 (74%) 27.0 (65%) 0.19

Random 256 + SQP 2:09 (74%) 26.9 (65%) 0.19

Lattice 30 + SQP 1:57 (67%) 26.5 (64%) 0.19

Lattice 256 + SQP 1:53 (66%) 26.4 (64%) 0.20

(c) Comparison of distance traveled and time to reduce entropy

Fig. 9: Aerial robot stairwell simulations: Trajectory optimization enables
the quadrotor to map the environment more efficiently.

approach. The lattice planner generated 30 trajectories using

6 evenly spaced polar angles, and 5 evenly spaced azimuthal

angles. To generate 256 primitives, it discretized both angles

into 16 distinct values. Overall, using trajectory optimization

resulted in the entropy of the map decreasing faster (note that

the simulator is asynchronous, so the reported difference in

time includes computation time). This difference is particularly

noticeable for the lattice planner, which had difficulty rounding

corners due the limited number of directions it could travel.

Fig. 9c contains additional statistics about distance traveled

and time to reduce entropy. We see that by using trajectory

optimization – regardless of initialization strategy – the robot

reduced most of the map’s entropy faster, while traveling a

shorter distance. This is due to the trajectory optimization’s

ability to find feasible trajectories that exploit the mobility of

the quadrotor and execute informative turning actions (see the

video submission for additional details).

VI. LIMITATIONS AND DISCUSSION

Our work has three limitations that we briefly discuss. First,

we assume that the robot is capable of localizing itself reliably

using a SLAM system. Fig. 10 illustrates this issue. Fig. 10a

shows a 2D occupancy grid which we created by artificially

lowering the maximum range of the ground robot’s UTM-

30LX to 4.0 m and manually driving it along a trajectory (solid

blue line). The most recent laser scan (red dots) is not aligned

with the map, showing accumulated position error. The robot

should follow action A and close the loop to improve its state

estimate and the map’s consistency. However, our approach

only considers the map’s uncertainty and would select action

B as the bottom of the map is more uncertain. Fig. 10b

shows a different scenario where a robot is equipped with a

B 

A 

(a)

B 

A 

(b)

Fig. 10: Limitations. In (a) and (b) executing action A is preferable over
action B as the robot’s uncertainty will be much lower. However, our approach
only considers the map’s uncertainty and selects action B in both cases.

short-range omnidirectional sensor. Our approach would select

action B, as the robot will observe more of the map. However,

during parts of this trajectory, all features will be outside

the robot’s FOV (red circle), precluding accurate localization;

consequently action A is preferable. One avenue for future

work is to extend our approach to account for robot state

uncertainty—active SLAM [2, 19, 22, 37, 46, 50].

While modeling the robot’s uncertainty in the control policy

can be important, it is not always necessary to ensure good

performance. For example, in our ground robot experiments,

the accumulated state error was small. Although ground truth

is not available, the final maps were consistent, meaning

the corrections from the SLAM system provide insight into

the robot’s accumulated error. Over 8 experiments, the mean

correction to the robot’s 2D position and orientation was

0.28 m and 1.35◦. These small corrections are due to the

robot’s accurate laser odometry [35], and demonstrate that it

is possible to build good maps even when a robot does not

explicitly take actions to reduce its own uncertainty.

Second, we do not employ a principled termination condi-

tion for when to stop the mapping process as is evident from

the long flat tails of the entropy curves (Fig. 7b and Fig. 9b).

Our experiments with the human operator provide insight into

this process. We envision that it might be possible to take

inspiration from prior work that uses reinforcement learning

(RL) for trajectory generation for mapping [24] to use RL for

determining appropriate termination conditions.

Finally, we use trajectory optimization for maximizing the

CSQMI objective over a discrete occupancy grid. Apart from

the lack of theoretical optimality guarantees, the optimization’s

performance also heavily depends on the initial trajectory [36].

VII. CONCLUSION

In this work, we present an information-theoretic planning

approach for dense 3D mapping of unknown environments

with mobile robots. In contrast to prior work that either use

only global plans or local motion primitives, our approach

combines the benefits of the two by considering a candidate

set of trajectories consisting of global plans and local motion

primitives. We select the most promising trajectory from this

candidate set and further optimize it to increase information

gain while satisfying the robot’s motion model. Through a

series of simulations and real world experiments, we study

the benefits and drawbacks of our system, and compare its

end to end performance with several other approaches. Our



results indicate that the proposed approach has the potential to

increase the efficiency of 3D mapping, particularly for robots

with limited battery life that are equipped with noisy sensors

that have short sensing ranges and limited fields of view.
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