
Information-theoretic treatment of 

tripartite systems and

quantum channels

Patrick Coles
Carnegie Mellon University

Pittsburgh, PA
USA

Co-authors

Li Yu

Vlad Gheorghiu

Robert Griffiths

ArXiv: 1006.4859

a b

c



Research program

Quantum 

laws

Everyday 

world

“d” word

Approach

1.) Dynamics of prototypical systems

(Consistent histories)

2.) Information theory



How is quantum information unusual?

• More general than classical information 

• “The z-component of an electron spin is +1/2 AND its x-component is -1/2.”
NONSENSE

“Spain won the Euro-Cup AND Spain won the World Cup.”

• Classical information: always possible to combine two logical

statements to make a new logical statement

x and z are incompatible types of information

• Challenge: finding relations between incompatible types of information

• Strong tradeoff in transmitting incompatible (i.e. quantum) information

- through a channel and its complementary channel

- to distinct parties of a multipartite state



Types and location of information

Technically: Decomposition of the identity

where {Paj} is set of orthogonal projectors

a b
Information of some type about a can be 

located inside b (in that some property of b is 

correlated to this property of a)

Are the conditional density operators on b, associated 

with the Pa information, distinguishable?

…. we aim to quantify this

Type of information

we also consider more general 

decompositions (POVMS)



• D word

• Cryptography

Quantum Channel Problem
Introduce reference system

is maximally entangled

Or start from the tripartite pure state,

use map-state duality to construct isometry

complementary channels



Three-party problem

a b

c
Quantum channel

problem

Tripartite problem

What can we say 

about the probability 

distribution?

All-or-nothing theorems

e.g. all information about a in b, then none in c

Goal: generalize all-or-nothing results to case of partial information



Information measures

General form

Particular entropy functions



Basis invariance 

of information difference

a b

c
Definitions

Entropy bias

Information bias

Consider orthonormal bases u and w for system a

Theorem

(pure state)



Basis invariance 

of information difference

a b

c

Difference between 

Bob’s and Charlie’s 
scores is the same 

every game!



Example

a b

c
Suppose Bob has perfect classical 

information about Alice 
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So classical information 

always gets copied

Then it follows that:
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Shannon and von Neumann measures

Classical entropy:

Classical mutual information:

is a positive quantity

“missing information”

A relation between classical and quantum entropies:

iff all rj are 

orthogonal



Uncertainty Principle

Robertson. Phys. Rev. (1929)

Right-hand-side

depends on the state.

Can be zero,

e.g. A=Z, B=X,

|y> = z-eigenstate.

Mutually unbiased bases (MUBs)

 

r 1/ d

 

H(x)H(z)  log d

Maassen, Uffink. PRL (1988)

Entropy: alternative measure of spread



aPresence of        information in b

EXCLUDES        information from c

The main result

X

Theorem

Very general, Very strong

uncertainty relation

“missing information”

ArXiv: 1006.4859



Appreciating this result

Orthonormal bases

Mutually unbiased bases (MUBs)

Both an entropic uncertainty relation AND information exclusion relation

Suppose q(u,b)=0…. then H(w)=log da AND V(w,c)=0

Equivalent to “strong 
complementary information 

tradeoff” conjectured by Renes, 

Boileau (PRL 2009), proven by 

Berta et al. (Nature Physics 2010)



Corollaries

Maassen, Uffink (1988)

Corollary of our result

Corollary of our result

Strengthened uncertainty relations for mixed states

Sanchez-Ruiz (1995)

For qubits, x, y, and z form a complete set of MUBs



The dynamic uncertainty principle

• Feed in w basis states

• Input probabilities {pj }

Output density operators

Quantify distinguishability at the output 



The dynamic uncertainty principle
Quantify distinguishability at the output 

Corollary of our result

Arbitrary bases u and w,

“Thanks for the z+ 

state!”  -Bob

“Which x state was 

that??”  -Chuck

Alice

z states

x states

Can’t build a machine that can send z-info to Bob and x-info to Charlie



No copying or No splitting or Monogamy

a
b

c
X

Monogamy of entanglement 

a
b

c

Gradual approach to monogamy

But do we really have to know that Bob has every type w of 

information about Alice to ensure Charlie has none?

If

then

Proof: Every basis has at least one MUB



Two-type presence

Alice & Bob

Date #1

Alice & Bob

Date #2

Alice & Bob

Charlie (no Alice)

(provided dates are sufficiently different)

More general form, for 

arbitrary bases, on ArXiv
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I(a :c) q(x,b)q(z,b)

 

I(a :b)  2logd
a
2[q(x,b)q(z,b)]

Quantum mutual information



One-type presence/absence

Alice & Bob

Date #1: 

Drinks

Alice & Charlie

Date #1: 

Drinks

Charlie (no Alice)

Charlie completely decoupled from Alice!



One-type presence/absence

 

I(a :c)  
V
(z,c)q(z,b)

Quantitative version

Then a and c are completely uncorrelated: 

All-or-nothing theorem not previously known?

Suppose the z type of information about a is perfectly 

present in b:

 

q(z,b)  0

… and absent from c:

 


V
(z,c)  0



Results for Tripartite states

• Basis invariance of information bias

• Uncertainty principle

•Monogamy (No copying)

• Two type presence

• One type presence / absence

• All-or-nothing theorems

• Theorems for MUBs

• Partial information theorems

•More general types of information

All of these results apply to complementary quantum channels!

Patrick Coles

Carnegie Mellon

Postdoc in Quantum 

Information & Foundations

 

I(a :c)  
V
(z,c)q(z,b)

 

I(a :c) q(x,b)q(z,b)

 

I(a :b)  2logd
a
2[q(x,b)q(z,b)]

 


K
(w) S

K

 

q(x,b)q(z,c)  logd
a

One would have never stumbled upon our 

results using a global measure of entanglement, 

it is crucial to look at individual types of 

information to study these phenomena



Equations for complementary channels

Quadratic measure

Normalized such that:

=1 iff all states are orth. at output

Average over all types

Generalizes Somewhere Theorem

AND No Splitting Theorem in single 

equation!



Take-home messages

All-or-nothing theorems are just limiting cases of partial-

information relations.

Quantum information comes in different types

One would have never stumbled upon our results using a 

global measure of entanglement, it is crucial to look at 

individual types of information to study these phenomena

Quantum channels can be studied within the framework of 

tripartite states

Patrick Coles

Carnegie Mellon University



Future directions?
Location of quantum information in 4-party (or n-party) systems

Find more equations, not just inequalities, for the 

location of quantum information.

Other measures besides von Neumann.

Apply these rules to physical systems of interest (e.g. quantum 

optics, spins)

Apply these rules to cryptography protocols or other Q.I. tasks



The main result
Lemma
[proven using an EUR of Krishna, Parthasarathy. Ind. J. of Stat. (2002)]

Theorem
[proven by invoking the HSW theorem for the achievable information transmission]

Very general, Very strong

uncertainty relation



All or nothing theorems

• All info about A in B, then none in C

• All info about A in BC, and none in C, then all 

in B (Pure state ABC)

• All z info about A in B, no x info about A in C

• z and x info about A in B, then all info about A 

in B



Equations for complementary channels

Quadratic measure

Normalized such that:

Average over complete set

Consider complete set of MUBs

e.g. prime d:

=1 iff all states are orth. at output



Average over all types

Average over complete set of MUBs

equal to average over all types

Prime-power d :

Equations for complementary channels

Generalizes Somewhere Theorem

AND No Splitting Theorem in single 

equation!

Complete MUB set captures behavior of whole Hilbert space



Quadratic Measure,

complementary channels



Quantum mutual information

Bipartite

Absence

Coherent Information


