Information-theoretic treatment of

tripartite systems and

 quantum channelsPatrick Coles
Carnegie Mellon University
Pittsburgh, PA
USA
ArXiv: 1006.4859

Research program

Approach
1.) Dynamies of prototypical systems
(Consistent histories)
2.) Information theory

How is quantum information unusual?

- More general than classical information
- Classical information: always possible to combine two logical statements to make a new logical statement "Spain won the Euro-Cup AND Spain won the World Cup."
- "The z-component of an electron spin is $+1 / 2$ AND its x-component is $-1 / 2$." NONSENSE x and z are incompatible types of information
- Challenge: finding relations between incompatible types of information
- Strong tradeoff in transmitting incompatible (i.e. quantum) information - through a channel and its complementary channel
- to distinct parties of a multipartite state

Types and location of information

Type of information
Technically: Decomposition of the identity

$$
I_{a}=\sum_{j} P_{a j}
$$

where $\left\{P_{a j}\right\}$ is set of orthogonal projectors we also consider more general decompositions (POVMS)

Information of some type about a can be located inside b (in that some property of b is correlated to this property of a)

Are the conditional density operators on b, associated with the P_{a} information, distinguishable?

$$
p_{j} \rho_{b j}=\operatorname{Tr}_{a}\left(P_{a j} \rho_{a b}\right) \quad p_{j}:=\operatorname{Pr}\left(P_{a j}\right)
$$

.... we aim to quantify this

Quantum Channel Problem

Input

complementary channels

- D word
- Cryptography

Introduce reference system

$|\Phi\rangle$ is maximally entangled

$$
|\Omega\rangle=\left(I_{a} \otimes V\right)|\Phi\rangle
$$

$$
\rho_{a}=\operatorname{Tr}_{b c}(|\Omega\rangle\langle\Omega|)=I_{a} / d_{a}
$$

Or start from the tripartite pure state, use map-state duality to construct isometry

$$
\sqrt{d_{a}}|\Omega\rangle=\sum_{j}\left|a_{j}\right\rangle \otimes\left|s_{j}\right\rangle \quad V=\sum_{j}\left|s_{j}\right\rangle\left\langle a_{j}\right|
$$

Three-party problem

Tripartite problem

Quantum channel

 problem$$
\begin{gathered}
\mathcal{H}_{a b c}=\mathcal{H}_{a} \otimes \mathcal{H}_{b} \otimes \mathcal{H}_{c} \\
d_{a}, d_{b}, d_{c}
\end{gathered}
$$

$$
I_{a}=\sum_{j} P_{a j}, \quad I_{b}=\sum_{k} Q_{b k}, \quad I_{c}=\sum_{l} R_{c l}
$$

What can we say about the probability

$$
\operatorname{Pr}\left(P_{a j}, Q_{b k}, R_{c l}\right)=\operatorname{Tr}\left(P_{a j} Q_{b k} R_{c l} \rho_{a b c}\right)
$$ distribution?

All-or-nothing theorems
e.g. all information about a in b, then none in c

Goal: generalize all-or-nothing results to case of partial information

Information measures

General form

$$
\begin{aligned}
\chi_{K}\left(\left\{p_{j}, \rho_{j}\right\}\right) & =S_{K}\left(\sum_{j} p_{j} \rho_{j}\right)-\sum_{j} p_{j} S_{K}\left(\rho_{j}\right) \\
\chi_{K}\left(P_{a}, b\right) & :=S_{K}\left(\rho_{b}\right)-\sum_{j} p_{j} S_{K}\left(\rho_{b j}\right)
\end{aligned}
$$

Particular entropy functions

$$
\begin{aligned}
& S_{V}(\rho)=-\operatorname{Tr}(\rho \log \rho), \\
& S_{R}(\rho)=\frac{1}{1-q} \log \operatorname{Tr}\left(\rho^{q}\right), \quad 0<q \leqslant 1, \\
& S_{T}(\rho)=\frac{1}{1-q}\left[\operatorname{Tr}\left(\rho^{q}\right)-1\right], \quad 0<q \leqslant \infty \\
& S_{Q}(\rho)=1-\operatorname{Tr}\left(\rho^{2}\right) .
\end{aligned}
$$

Basis invariance of information difference

Definitions

Entropy bias $\quad \Delta S_{K}^{b c}:=S_{K}\left(\rho_{b}\right)-S_{K}\left(\rho_{c}\right)$
Information bias $\Delta_{K}^{b c}\left(P_{a}\right):=\chi_{K}\left(P_{a}, b\right)-\chi_{K}\left(P_{a}, c\right)$

Theorem
Consider orthonormal bases u and w for system a
$\rho_{a b c}=|\Omega\rangle\langle\Omega| \quad$ (pure state)

$$
\begin{aligned}
\Delta_{K}^{b c}(w)= & \chi_{K}(w, b)-\chi_{K}(w, c) \\
& =S_{K}\left(\rho_{b}\right)-S_{K}\left(\rho_{c}\right)=\Delta S_{K}^{b c}
\end{aligned}
$$

Basis invariance

of information difference

Difference between Bob's and Charlie's scores is the same every game!

Example

$\chi_{V}(z, b)-\chi_{V}(z, c)=\chi_{V}(x, b)-\chi_{V}(x, c)$
$\chi_{V}(z, b)-\chi_{V}(x, b)=\chi_{V}(z, c)-\chi_{V}(x, c)$

Suppose Bob has perfect classical information about Alice

$$
\rho_{a b c}=|\Omega\rangle\langle\Omega|
$$

$$
\begin{aligned}
& \chi_{V}(z, b)=\log d_{a} \\
& \chi_{V}(x, b)=0
\end{aligned}
$$

Then it follows that:

$$
\begin{aligned}
& \chi_{V}(z, c)=\log d_{a} \\
& \chi_{V}(x, c)=0
\end{aligned}
$$

So classical information always gets copied

Shannon and von Neumann measures

Classical entropy:

$$
H(P)=H\left(\left\{p_{j}\right\}\right)=-\sum_{j} p_{j} \log p_{j}
$$

Classical mutual information: $\quad H(P: Q)=H(P)+H(Q)-H(P, Q)$

A relation between classical and quantum entropies:

$$
\chi_{V}\left(\left\{p_{j}, \rho_{j}\right\}\right)=S_{V}\left(\sum_{j} p_{j} \rho_{j}\right)-\sum_{j} p_{j} S_{V}\left(\rho_{j}\right) \leqslant H\left(\left\{p_{j}\right\}\right)
$$

$$
\chi_{V}\left(\left\{p_{j}, \rho_{j}\right\}\right)=H\left(\left\{p_{j}\right\}\right) \quad \begin{aligned}
& \text { iff all } \rho_{\mathrm{j}} \text { are } \\
& \text { orthogonal }
\end{aligned}
$$

$\theta\left(P_{a}, b\right):=H\left(P_{a}\right)-\chi_{V}\left(P_{a}, b\right) \quad$ is a positive quantity "missing information"

Uncertainty Principle

Robertson. Phys. Rev. (1929)
$\left.\Delta A \Delta B \geqslant \frac{1}{2}|\langle\psi|[A, B]| \psi\right\rangle \mid$
Right-hand-side depends on the state.

Can be zero,
e.g. $A=Z, B=X$,
$|\psi\rangle=$ z-eigenstate.
Entropy: alternative measure of spread

Maassen, Uffink. PRL (1988) $H(u)+H(w) \geqslant-\log \left(r^{2}\right)$

$$
r=\max _{j, k}\left|\left\langle u_{j} \mid w_{k}\right\rangle\right|
$$

Mutually unbiased bases (MUBs)

$$
r=1 / \sqrt{d} \quad H(x)+H(z) \geq \log d
$$

The main result

ArXiv: 1006.4859

Theorem

POVMs on \mathcal{H}_{a}
$P_{a}=\left\{P_{a j}\right\}$
$\bar{P}_{a}=\left\{\bar{P}_{a k}\right\}$

$$
\theta\left(P_{a}, b\right):=H\left(P_{a}\right)-\chi_{V}\left(P_{a}, b\right)
$$ "missing information"

$$
\theta\left(P_{a}, b\right)+\theta\left(\bar{P}_{a}, c\right) \geqslant-\log \max _{j, k} \operatorname{Tr}\left[P_{a j} \bar{P}_{a k}\right]
$$

Very general, Very strong uncertainty relation

Presence of P_{a} information in b
EXCLUDES \bar{P}_{a} information from c

Appreciating this result

Orthonormal bases

$$
\begin{aligned}
u & =\left\{\left|u_{j}\right\rangle\left\langle u_{j}\right|\right\} \\
w & =\left\{\left|w_{k}\right\rangle\left\langle w_{k}\right|\right\}
\end{aligned}
$$

$$
\begin{gathered}
\theta(u, b)+\theta(w, c) \geqslant-\log r^{2} \\
r=\max _{j, k}\left|\left\langle u_{j} \mid w_{k}\right\rangle\right|
\end{gathered}
$$

Mutually unbiased bases (MUBs)

$$
\theta(u, b)+\theta(w, c) \geqslant \log d_{a}
$$

Both an entropic uncertainty relation AND information exclusion relation

$$
H(u)+H(w) \geqslant \chi_{V}(u, b)+\chi_{V}(w, c)+\log d_{a}
$$ Suppose $\theta(u, b)=0 \ldots$ then $H(w)=\log d_{a}$ AND $\chi_{V}(w, c)=0$

$$
\begin{aligned}
\theta\left(u_{a}, b\right) & =S_{V}\left(u_{a} \mid b\right) \\
S_{V}\left(u_{a} \mid b\right) & :=S_{V}\left[\mathcal{U}_{a}\left(\rho_{a b}\right)\right]-S_{V}\left(\rho_{b}\right) \\
\mathcal{U}_{a}\left(\rho_{a b}\right) & =\sum_{j} P_{a j} \rho_{a b} P_{a j}
\end{aligned}
$$

Equivalent to "strong
complementary information tradeoff" conjectured by Renes, Boileau (PRL 2009), proven by Berta et al. (Nature Physics 2010)

Corollaries

Strengthened uncertainty relations for mixed states

Maassen, Uffink (1988)

$$
\begin{gathered}
H(u)+H(w) \geqslant-\log \left(r^{2}\right) \\
H(u)+H(w) \geqslant-\log r^{2}+S_{V}\left(\rho_{a}\right)
\end{gathered}
$$

$d_{a}=2$ For qubits, x, y, and z form a complete set of MUBs
Sanchez-Ruiz (1995)

$$
H(x)+H(y)+H(z) \geqslant 2 \log 2
$$

Corollary of our result

$$
H(x)+H(y)+H(z) \geqslant 2 \log 2+S_{V}\left(\rho_{a}\right)
$$

The dynamic uncertainty principle

Input
Output

Output density operators

- Feed in w basis states
- Input probabilities $\left\{p_{j}\right\}$

$$
\begin{aligned}
\rho_{b j} & =\mathcal{E}\left(\left|w_{j}\right\rangle\left\langle w_{j}\right|\right) \\
& =\operatorname{Tr}_{c}\left(V\left|w_{j}\right\rangle\left\langle w_{j}\right| V^{\dagger}\right)
\end{aligned}
$$

Quantify distinguishability at the output

$$
\chi_{K}\left(\left\{p_{j}\right\}, w, \mathcal{E}\right)=S_{K}\left(\sum p_{j} \rho_{b j}\right)-\sum p_{j} S_{K}\left(\rho_{b j}\right)
$$

The dynamic uncertainty principle

Quantify distinguishability at the output

$$
\chi_{K}\left(\left\{p_{j}\right\}, w, \mathcal{E}\right)=S_{K}\left(\sum p_{j} \rho_{b j}\right)-\sum p_{j} S_{K}\left(\rho_{b j}\right)
$$

Corollary of our result

Arbitrary bases u and $w, \quad r=\max _{j, k}\left|\left\langle u_{j} \mid w_{k}\right\rangle\right|$
complementary quantum channels \mathcal{E} and \mathcal{F}

$$
\chi_{V}\left(\left\{1 / d_{a}\right\}, u, \mathcal{E}\right)+\chi_{V}\left(\left\{1 / d_{a}\right\}, w, \mathcal{F}\right) \leqslant 2 \log \left(d_{a} r\right)
$$

Can't build a machine that can send z-info to Bob and x-info to Charlie

No copying or No splitting or Monogamy

Monogamy of entanglement

Gradual approach to monogamy

If $\quad \theta(w, b) \leqslant \alpha \quad$ every orthonormal basis w of \mathcal{H}_{a} then $\chi_{V}(w, c) \leqslant \alpha$ every orthonormal basis w of \mathcal{H}_{a}

Proof: Every basis has at least one MUB

But do we really have to know that Bob has every type w of information about Alice to ensure Charlie has none?

Two-type presence

Charlie (no Alice)

More general form, for

$$
I(a: c) \leq \theta(x, b)+\theta(z, b)
$$

One-type presence/absence

Charlie completely decoupled from Alice!

One-type presence/absence

Quantitative version

$$
I(a: c) \leq \chi_{V}(z, c)+\theta(z, b)
$$

Suppose the z type of information about a is perfectly present in b :

$$
\theta(z, b)=0
$$

... and absent from c :

$$
\chi_{V}(z, c)=0
$$

Then a and c are completely uncorrelated:

$$
\rho_{a c}=\rho_{a} \otimes \rho_{c}
$$

All-or-nothing theorem not previously known?

Results for Tripartite states

- All-or-nothing theorems
- Theorems for MUBs
- Partial information theorems
- More general types of information
- Basis invariance of information bias

$$
\Delta_{K}(w)=\Delta S_{K}
$$

- Uncertainty principle $\quad \theta(x, b)+\theta(z, c) \geq \log d_{a}$
- Monogamy (No copying) $\quad I(a: b) \geq 2 \log d_{a}-2[\theta(x, b)+\theta(z, b)]$
- Two type presence
- One type presence / absence

$$
I(a: c) \leq \theta(x, b)+\theta(z, b)
$$

$$
I(a: c) \leq \chi_{V}(z, c)+\theta(z, b)
$$

All of these results apply to complementary quantum channels!

One would have never stumbled upon our results using a global measure of entanglement, it is crucial to look at individual types of information to study these phenomena

Patrick Coles
Carnegie Mellon
Postdoc in Quantum
Information \& Foundations

Equations for complementary channels

Take-home messages

All-or-nothing theorems are just limiting cases of partialinformation relations.

Quantum information comes in different types

One would have never stumbled upon our results using a global measure of entanglement, it is crucial to look at individual types of information to study these phenomena

Quantum channels can be studied within the framework of tripartite states

Patrick Coles
Carnegie Mellon University

Future directions?

Location of quantum information in 4-party (or n-party) systems

Find more equations, not just inequalities, for the location of quantum information.

Other measures besides von Neumann.

Apply these rules to physical systems of interest (e.g. quantum optics, spins)

Apply these rules to cryptography protocols or other Q.I. tasks

The main result

Lemma

[proven using an EUR of Krishna, Parthasarathy. Ind. J. of Stat. (2002)]

$$
\begin{array}{cc}
\text { POVMs on } \mathcal{H}_{a} & \text { POVMs on } \mathcal{H}_{b} \text { and } \mathcal{H}_{c} \\
P_{a}=\left\{P_{a j}\right\} & Q_{b} \text { and } R_{c} \\
\bar{P}_{a}=\left\{\bar{P}_{a k}\right\} & \\
H\left(P_{a}: Q_{b}\right)+H\left(\bar{P}_{a}: R_{c}\right) \leqslant H\left(P_{a}\right)+H\left(\bar{P}_{a}\right)
\end{array}
$$

Theorem

$$
+\log \max _{j, k}\left\|\left(P_{a j}\right)^{1 / 2}\left(\bar{P}_{a k}\right)^{1 / 2}\right\|_{\infty}^{2}
$$

[proven by invoking the HSW theorem for the achievable information transmission]

$$
\begin{aligned}
\theta\left(P_{a}, b\right)+\theta\left(\bar{P}_{a}, c\right) & \geqslant-\log \max _{j, k}\left\|\left(P_{a j}\right)^{1 / 2}\left(\bar{P}_{a k}\right)^{1 / 2}\right\|_{\infty}^{2} \\
& \geqslant-\log \max _{j, k} \operatorname{Tr}\left[P_{a j} \bar{P}_{a k}\right]
\end{aligned}
$$

Very general, Very strong uncertainty relation

All or nothing theorems

- All info about A in B, then none in C
- All info about A in $B C$, and none in C, then all in B (Pure state $A B C$)
- All z info about A in B, no x info about A in C
- z and x info about A in B, then all info about A in B

Equations for complementary channels

Input

Output

Quadratic measure

$$
I_{Q}(w, b)=\frac{1}{d-1} \sum_{m=1}^{d-1}\left\|\mathcal{E}_{b}\left(W^{m}\right)\right\|^{2} /\left\|\mathcal{E}_{b}(I)\right\|^{2}
$$

$\begin{aligned} & d \text { : input dimension } \\ & \mathcal{E}_{b}: \text { channel to } b\end{aligned} \quad W=\sum_{j=0}^{d-1} \omega^{j}\left|w_{j}\right\rangle\left\langle w_{j}\right|$
\mathcal{E}_{c} : channel to c

Consider complete set of MUBs

$$
\mathcal{M}=\left\{w_{j}\right\} \quad(d+1 \text { MUBs })
$$

Normalized such that:

$$
0 \leq I_{Q}(w, b) \leq 1
$$

$=1$ iff all states are orth. at output

Average over complete set

$$
\left\langle I_{Q}(w, b)\right\rangle_{\mathcal{M}}=\frac{1}{d+1} \sum_{j=1}^{d+1} I_{Q}\left(w_{j}, b\right)
$$

Equations for complementary channels

Input
Output
Average over all types

Prime-power d : Average over complete set of MUBs equal to average over all types

$$
\left\langle I_{Q}(w, b)\right\rangle=\left\langle I_{Q}(w, b)\right\rangle_{\mathcal{M}}
$$

Complete MUB set captures behavior of whole Hilbert space

$$
\begin{aligned}
& \left\langle I_{Q}(w, b)\right\rangle=\frac{1-\left\langle I_{Q}(w, c)\right\rangle}{1+\left(d^{2}-1\right)\left\langle I_{Q}(w, c)\right\rangle} \\
& \text { Generalizes Somewhere Theorem } \\
& \text { AND No Splitting Theorem in single } \\
& \text { equation! }
\end{aligned}
$$

Quadratic Measure,

complementary channels

$$
\begin{gathered}
\rho_{b j}=\mathcal{E}\left(\left|w_{j}\right\rangle\left\langle w_{j}\right|\right)=\operatorname{Tr}_{c}\left(V\left|w_{j}\right\rangle\left\langle w_{j}\right| V^{\dagger}\right) \\
\chi_{K}\left(\left\{p_{j}\right\}, w, \mathcal{E}\right)=S_{K}\left(\sum p_{j} \rho_{b j}\right)-\sum p_{j} S_{K}\left(\rho_{b j}\right) \\
d_{a}=2 \\
\chi_{Q}\left(\left\{p_{j}\right\}, u, \mathcal{E}\right)+\chi_{Q}\left(\left\{q_{j}\right\}, w, \mathcal{F}\right) \leqslant 1 / 2
\end{gathered}
$$

Absence

Bipartite $|\Psi\rangle \in \mathcal{H}_{a} \otimes \mathcal{H}_{b} \quad$ independent of the basis w

$$
\chi_{K}(w, b)=S_{K}\left(\rho_{b}\right)
$$

$$
\chi_{V}(u, b)=S_{V}\left(\rho_{a}\right)=J_{V}(a: b) / 2=\frac{\rho_{a b c}=}{H}=|\Omega\rangle\langle\Omega|
$$

Coherent Information

$$
\begin{gathered}
I_{\text {coh }}\left(\rho_{a^{\prime}}, \mathcal{E}\right)=\Delta S_{V}^{b c}(|\Omega\rangle)=\Delta_{V}^{b c}(|\Omega\rangle) \\
\text { Quantum mutual information }
\end{gathered}
$$

$$
S_{V}\left(\rho_{a b}\right)+S_{V}\left(\rho_{b c}\right) \geqslant S_{V}\left(\rho_{a b c}\right)+S_{V}\left(\rho_{b}\right)
$$

