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Information-theoretically secure equality-testing
protocol with dispute resolution

Go Kato, Mikio Fujiwara, and Toyohiro Tsurumaru

Abstract—There are often situations where two remote users
each have data, and wish to (i) verify the equality of their data,
and (ii) whenever a discrepancy is found afterwards, determine
which of the two modified his data. The most common example is
where they want to authenticate messages they exchange. Another
possible example is where they have a huge database and its
mirror in remote places, and whenever a discrepancy is found
between their data, they can determine which of the two users
is to blame.

Of course, if one is allowed to use computational assumptions,
this function can be realized readily, e.g., by using digital
signatures. However, if one needs information-theoretic security,
there is no known method that realizes this function efficiently,
i.e., with secret key, communication, and trusted third parties all
being sufficiently small.

In order to realize this function efficiently with information-
theoretic security, we here define the “equality-testing protocol
with dispute resolution” as a new framework. The most signifi-
cant difference between our protocol and the previous methods
with similar functions is that we allow the intervention of a
trusted third party when checking the equality of the data. In
this new framework, we also present an explicit protocol that is
information-theoretically secure and efficient.

Index Terms—Information-theoretic security, data integrity,
non-repudiation, equality-testing, quantum key distribution.

I. INTRODUTION

There are often situations where two remote users each have
data which are supposed to be the same, and they want to (i)
verify that their data are indeed the same, and (i) whenever a
discrepancy between their data is found afterwards, determine
which of the two actually modified his data. Here, we consider
“equality-testing protocols with dispute resolution” (or ET
protocols for short) for realizing this function and study its
information-theoretic security.

The most straightforward application of this protocol would
be where the two party want to authenticate messages they
exchange, and also prevent further change. Another possible
example is where the two users have a huge database and its
mirror in remote places. If this type of protocols is realized,
they will be able to confirm the equality of the data on
both sides, and moreover, whenever a discrepancy is found
afterwards, they can determine which of the two users is to
blame.

Of course, if one is allowed to use computational assump-
tions, our ET protocol can be realized readily, e.g., by using
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digital signatures. However, if one needs information-theoretic
security, there is no known method for realizing it efficiently,
i.e., with sufficiently small amounts of secret keys and com-
munication, and with at most one trusted third party (TTP). At
first glance, this function seems feasible by a straightforward
use of the A2 code [1], [2], [3], [4] or the unconditionally
secure digital signature schemes (USDS) [5], [6], but these
methods consume enormous resources (communication and
secret key) and thus not practical. More precisely, both the
communication length and the secret key length of these
methods must exceed the data length, so they become virtually
impossible when one needs to handle larger data, such as an
entire data center (see section II-C).

Here we rigorously define a framework for ET protocols
which admits information-theoretic security and efficient im-
plementation. The most significant difference between our
protocol and the previous methods with similar functions (i.e.,
A2 codes and USDSs) is that we allow the intervention of
a TTP in the equality-testing phase, which corresponds to
message authentication tag generation in the previous meth-
ods (see II-C4 section for the detail). Then in this gener-
alized framework, we also present an explicit protocol that
is information-theoretically secure and efficient. Namely, we
present a protocol achieving

lengths of communication and secret key

= O (log(1/ε) · log r) (1)

with r being the data length and ε being the security pa-
rameter (success probability of a malicious player). Note that
parameter region (1) indeed overcomes the limitations of the
aforementioned previous methods.

We note that our ET protocols are particularly useful in and
compatible with quantum key distribution networks (QKDNs)
[7], [8], for the following two reasons. First, a QKDN normally
has a key management authority, which can be used as the TTP
for our protocol. Second, our protocols need to be supplied
with a new secret key each time they are executed. The only
ways to fulfill this requirement, at least at present, are either
to use the so-called trusted courier or to use a QKDN.

Note that this implies that our protocols greatly enhance the
functionality of QKDNs. It is often thought that QKDNs can
only be used for limited purposes, namely, one-to-one secret
communication and authentication. Our protocols, however,
indeed provide more versatile cryptographic functionalities,
such as the message authentication with non-repudiation, or
the mirroring of huge databases with modification prevention,
mentioned at the beginning of this section.
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Finally we note that our ET method can also be seen as
an improvement of the method proposed and implemented in
Ref. [9] which realizes ITS message authentication function
using QKDN, secret sharing, and TTPs. In this method, tamper
resistance and dispute resolution functions are implemented
using two types of TTPs: a shared calculator and a verifier.
Our method here realizes a similar function with a reduced
number of TTPs, i.e., with only one TTP, and benefits in terms
of cost savings and scalability.

II. DEFINITION OF EQUALITY-TESTING PROTOCOL WITH
DISPUTE RESOLUTION

A. Setting and the definition of the protocol

Suppose that a trusted third party (TTP) and two players,
Alice and Bob, are connected to each other by unauthenticated
public channels1. Also suppose that Alice and Bob each holds
data mA,mB ∈ {0, 1}r, which are supposed to be equal. Our
goal here is to (i) verify the equality of mA and mB , and (ii)
whenever a discrepancy is found afterwards, determine with
certainty which of the two actually modified his data. To this
goal we define the following type of protocols.

Definition 1 (Equality-testing protocol with dispute resolution
(ET protocol, for short), Fig. 1). A equality-testing protocol
with dispute resolution is where Alice and Bob check the
equality of their data with the help of the TTP, and consists
of the following three phases.

1) Key-distribution phase: The TTP distributes secret keys
to Alice and Bob 2.

2) Equality-testing phase: The TTP communicates with
Alice and Bob, and verifies the equality of their data
(whether mA = mB or not). If the equality is confirmed,
the TTP announces “success”; otherwise, it announces
“failure”.

3) Dispute-resolution phase: After a successful comple-
tion of the equality-testing phase, if there is a dispute
between Alice and Bob about the equality of their data,
the TTP arbitrates as follows:
The TTP receives data mA∗,mB∗ from Alice and Bob
respectively, which they claim to be correct. Then he
compares them with the communication content of the
equality-testing phase, and announces one of the fol-
lowing: “both are correct”, “mA∗ is correct”, “mB∗ is
correct” or “undecidable”.

Throughout the paper, whenever the TTP “announces”
something, it means that he sends the same message to both
Alice and Bob simultaneously.

The “dispute” that triggers the dispute-resolution phase
can occur, e.g., when an outsider (other than Alice, Bob, or
the TTP) retrieves the same part of Alice’s and Bob’s data
respectively, which should equal, but finds a discrepancy.

1Channels where messages are neither encrypted nor authenticated.
2They share secret keys by using some method other than the public

channels.
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Fig. 1. Conceptual diagram of our ET protocol.

B. Security criteria

The basic concept behind our security is that “honest
players lose nothing.” The situations can be classified into the
following three cases.

• If both Alice and Bob are honest, their claims are always
accepted (soundness).

• If only one of Alice or Bob is honest, then the honest one
will lose with a negligible probability (ε-unmodifiable).

• If both Alice and Bob are malicious (i.e., not honest),
they gain nothing; i.e., our protocols are not responsible
for this case.

Of these three cases, the first two needs to be addressed. We
define these cases rigorously as follows.

Definition 2 (Security criteria of our ET protocols). We say
that an ET protocol is ε-secure if it satisfies the following two
conditions.

• Soundness: If both Alice and Bob are honest and their
data are the same (mA = mB), then the equality-testing
phase always succeeds.

• ε-unmodifiability: Suppose that Alice is honest and the
TTP announces “success” in the equality-testing phase.
Then in the subsequent dispute-resolution phase, the TTP
announces an outcome unfavorable to Alice (namely,
“mB∗ is correct” or “undecidable”) with a probability
≤ ε.
In addition, the same condition also holds with the roles
of Alice and Bob being exchanged.

This definition does not prohibit malicious players from
intentionally disabling the equality-testing phase. However,
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this does not mean that the security is compromised. Indeed,
there is no protocol from which one can expect more, as can
be seen as follows: Suppose, for example, that Alice is honest
and Bob is malicious, and Bob performs the equality-testing
phase correctly as specified, though by using a wrong data
mB∗( 6= mA). From the perspective of the TTP, this situation
cannot be distinguished from the one in which the “honest”
Bob has the “correct” data mB∗, and the “malicious” Alice
tries to claim a “wrong” data mA. In such situation, and if
the equality-testing phase cannot fail and thus Bob can trigger
the dispute-resolution, Alice will be judged malicious with
a significant probability of 1/2, even though she is actually
honest.

C. Background to the definition above

Next, we explain the background that led to the above
settings and security criteria.

1) We want to be able to handle huge data: Even when
the data is huge (e.g., genome data (r ≥ 109) or the entire
data center (r ≥ 1015)), the resource comsumption (namely,
communication volume, and secret key length) should be
sufficiently smaller than r, so that the protocol can be executed
efficienly in practice.

2) Dispute-resolution phase as a deterrent: It is natural that
Alice and Bob disclose their data m∗A,m

∗
B themselves in the

dispute-resolution phase. However, if this happens frequently,
the average communication length per protocol execution will
be enormous, contradicting the requirements of the preceding
paragraph.

Therefore, we here assume that the actual frequency of
dispute-resolution is sufficiently low, and thus the communi-
cation length for the dispute-resolution can be ignored when
evaluating the performance of the protocol. (On the other
hand, the consumption of secret keys will always be taken
into account). Note that this evaluation criterion is the same
as that of conventional non-repudiation MACs (e.g., [5]), so
it is by no means a weakness specific to our method.

In order to justify this evaluation criterion, we will focus on
situations where “though the dispute-resolution is not frequent,
once it actually happens and the fraud is discovered, the
damage will be enormous.” In other words, we assume that
dispute-resolution is a deterrent and that it will not be executed
frequently. For example, if the data is an official document
or a will, any modification to it would immediately mean an
illegal act, and if discovered, would inevitably result in legal
punishment3.

3) Straightforward use of MAC does not work: Next, we
will make comparisons with the existing methods.

For the sake of simplicity, we first ignore resources. If
Alice and Bob only needs to check the equality of their
data, it suffices for them to exchange message authentication
code (MAC) tags (Fig.2(a))4. In addition if they also wish to
determine which of the two, Alice or Bob, actually modified

3Conversely, our protocols are not suitable for situations where a malicious
player can easily escape before an dispute resolution occurs.

4Bob consider mB in our scheme to be the message received from Alice,
and verify its MAC. Alice also does the same.

the data (i.e., if they want ε-unmodifiability), they can do so
by using a MAC scheme equipped with a non-repudiation
function (hereafter referred to as non-repudiation MACs).

However, non-repudiation MACs are either limited in usage
or consume too much resource to be practical. Indeed, as we
require information theoretic security (ITS) here, we cannot
use those schemes based on computational assumptions, such
as the widely used digital signature schemes (see, e.g., Ref.
[10], Chapter 13). There are also non-repudiation MACs
achieving ITS, such as A2 code [1], [2], [3], [4] and uncondi-
tionally secure digital signature (USDS) [5], [6], but they are
subject to the following restrictions,

(communication of the equality testing phase ≥)

MAC tag length > data length r, (2)
MAC key length > data length r, (3)

again contradicting the requirements of Section II-C1.
Inequality (2) can readily be proved for non-repudiation

MACs in general. On the other hand, Inequality (3) is an
empirical relation which seems to hold for all the practical
non-repudiation MAC schemes that we are aware of (see Refs.
[1], [2], [3], [4], [5], [6] and references therin).

𝜎 𝑘𝐴, 𝑚𝐴

𝜎 𝑘𝐵, 𝑚𝐵

2. Equality-testing
phase′

holds 𝑚𝐵holds 𝑚𝐴

TTP

Alice Bob

(a)

holds 𝑚𝐵holds 𝑚𝐴

TTP

Alice Bob

(b)
2. Equality-testing

phase′′

Fig. 2. (a) The situation where Alice and Bob exchange MAC tags
σ(kA,mA), σ(kB ,mB) to realize the equality-testing phase, without the
help of TTP. (b) More general situation where the TTP does not intervene in
the equality-testing phase.

4) TTP’s intervention is necessary in the equality-testing
phase: Moreover, it can easily be shown that Inequality (2)
in fact holds for any ET protocol in which the TTP does not
intervene in the equality-testing phase (Fig.2(b)). Therefore, in
order to avoid restriction (2), we need to generalize the setting
by letting the TTP intervene in the equality-testing.

We consider this to be a natural generalization: All the
existing non-repudiation MAC schemes allow the TTP’s in-
tervention in the key-distribution and the dispute-resolution
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phases, so there is no reason to prohibit it only in the equality-
testing phase.

D. Compatibility with quantum key distribution networks

Furthermore, our ET protocols are particularly compatible
with the quantum key distribution network (QKDN) [7], [8].
The reasons are as follows.

First, the generalized setting where the TTP intervenes in
the equality-testing phase, described in the previous section,
can easily be realized in QKDNs. This is because a QKDN
normally has a key management authority, which is a TTP
that is always in operation, and thus suitable for the present
purpose.

Second, as is always the case with information-theoretic
cryptographic protocols in general, this protocol needs to be
supplied with a new secret key each time . In order to achieve
this, at least at present, one must either use the so-called trusted
courier (i.e., the TTP himself physically delivers a storage
medium containing the key) or use quantum key distribution.

E. Nontrivial part of the problem

Once one accepts that the TTP can intervene in the equality-
testing phase, the simplest construction might seem to be
the one in which both Alice and Bob send mA,mB and/or
the corresponding MAC tags to the TTP. However, such
constructions is again found impractical by a similar reasoning
as in Section II-C3: If a MAC scheme without the non-
repudiation function is used there, the protocol can indeed
detect if there was a modification at all, but cannot determine
which of the two, Alice or Bob, modified his/her data (no ε-
nonmodifiability). Hence a non-repudiation MAC scheme with
ITS is necessary, but that again makes the protocol subject
to Inequalities (2) and (3), contradicting the requirements of
Section II-C1.

Therefore, we need a construction different from the con-
ventional non-repudiation MAC schemes.

III. EFFICIENT ET PROTOCOL WITH
INFORMATION-THEORETIC SECURITY

With the above setting and security criteria, we propose a
secure and efficient protocol that is free from restrictions (2)
and (3), and achieves (1); hence it can be used in the parameter
region

communication length, key length << data length r. (4)

Our protocol is specified in Table “Protocol 1.” The function
f appearing there should satisfy the condition of the following
lemma.

Lemma 1 (Almost universal2 hash function using polynomi-
als, Ref. [11], or Ref. [10], Theorem 4.17). There exists a func-
tion f : (k,m) 7→ s with k ∈ {0, 1}l,m ∈ {0, 1}r, s ∈ {0, 1}l
satisfying the following: With variable K ∈ {0, 1}l being
uniformly distributed, and for arbitrary distinct pair of data
m 6= m′ ∈ {0, 1}r, we have

Pr [f(K,m) = f(K,m′)] ≤
⌈r
l
− 1
⌉

2−l. (5)

Protocol 1 Efficient ET protocol with information-theoretic
security

Key-distribution phase: The TTP distributes secret keys as
follows.

Step 1: Randomly select n distinct numbers out of
{1, . . . , N}, and denote them by Ω (i.e. Ω ⊂R [N ],
with [N ] := {1, 2, · · · , N}).

Step 2: Randomly select “equality-testing keys” kAet =
(kA1 , k

A
2 , · · · , kAN ), kBet = (kB1 , k

B
2 , · · · , kBN ) with kAi , k

B
j ∈

{0, 1}l, such that kAj = kBj for j ∈ Ω.
(For example: First choose all kAi ’s according to the uniform
distribution, then let kBj = kAj for j ∈ Ω, and then choose
the undecided elements of kBj ’s according to the uniform
distribution.)

Step 3: Randomly select “secure communication keys”
kAsc, k

B
sc ∈ {0, 1}lsc .

Step 4: Send kAet, k
A
sc to Alice, and kBet, k

B
sc to Bob.

† All subsequent communications must be authenticated
in an information theoretic manner; e.g., by using MAC
scheme specified by Lemma 2 and consuming part of secure
communication keys kAsc, k

B
sc.

Equality-testing phase
Step 1: Alice calculates hash values sAi := f(kAi ,m

A) (i =
1, . . . , N ) by using a hash function f specified by Lemma
1. Then she encrypts them (by using the one-time pad
consuming part of kAsc) and sends it to the TTP.
Bob also does the same.

Step 2: The TTP announces “success” if sAj = sBj for ∀j ∈ Ω
holds; otherwise she announces “failure”.

Dispute-resolution phase
Step 1: Alice (Bob) sends data mA∗ (mB∗) to the TTP.
Step 2: The TTP performs the following checks:

With gαβ :=
∣∣{j ∈ U |f(kαj ,m

β) = sαj }
∣∣ for α, β ∈

{A,B},
1) Announce “Both is correct” if mA∗ = mB∗ and finish.
2) Announce “mA∗ is correct” if gAA = N ∧ (gBA >

gAB ∨ gBB < N), and finish.
Also perform the same check with indices A,B ex-
changed.

3) Announce “undecidable.”

Also, all the communications in the equality-testing and
dispute-resolution phases should be authenticated in an infor-
mation theoretic manner; e.g., by using the following MAC
scheme and consuming part of pre-distributed keys.

Lemma 2 (Information-theoretically secure message authen-
tication code (ITS-MAC). See, e.g, Ref. [10], Theorems 4.17
and 4.25). There exists an ITS-MAC scheme satisfying the
following: The MAC tag t ∈ {0, 1}n+l is generated using
a function g : (k,m) 7→ t from a message m ∈ {0, 1}r′ with
the uniformly distributed key k ∈ {0, 1}2(n+l), and it achieves⌈
r′

n+l − 1
⌉

2−(n+l)-security (i.e., the adversary can forge the
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MAC tag t only with a probability ≤
⌈
r′

n+l − 1
⌉

2−(n+l)).

Then this protocol satisfies the following security.

Theorem 1. For the data length r ≥ 256, and for the security
parameter ε ≤ 2−4, Protocol 1 is ε-secure, if we choose its
parameters as

n = d3 log2(16/ε)e, (6)
l = dlog2 re, (7)
N = 2n, (8)
lsc = 4nl + 16(n+ l). (9)

In this case, the total length of secret keys (kAet, k
A
sc, k

B
et, k

B
sc)

is 8(nl+ 2n+ 2l) bits. The total communication length of the
equality-testing phase achieves 4(nl + 2n+ 2l + 1) bits, and
that of the dispute-resolution phase is 2(r+ 4n+ 4l+ 2) bits.

Hence it indeed satisfies condition (1), anticipated in Intro-
duction. For example, even when the data pair is 1-Pbit long
(r = 250 ≥ 1015), we can achieve 10−12-security, with the
communication length in the equality-testing phase ≤ 64kbit
and the total secret key length ≤ 32kbit.

Note that, if we let N = 2, n = 1 in Protocol 1 and
also let Ω fixed at {2}, our protocol becomes an example of
the straightforward construction mentioned at the beginning
of Section II-E. However, this example uses a MAC scheme
without the non-repudiation function, and thus cannot achieve
ε-nonmodifiability, as already discussed in the same section. In
the present method, instead of using a non-repudiation MAC,
we let N and n be sufficiently large, and choose Ω randomly.
This improves the TTP’s ability to detect malicious actions by
Alice or Bob during the equality-testing phase.

IV. PROOF OF THEOREM 1

Of the two conditions presented in Definition 2, the sound-
ness is evident, so we prove ε-unmodifiability only. We begin
by proving the following idealized case.

Lemma 3. Suppose that Alice, Bob and the TTP can use ideal
secure channels whenever necessary in the equality-testing
and the dispute-resolution phases5 (thus they do not need to
consume the secure communication keys kAsc, k

B
sc).

Also suppose that r ≥ 28 and ε1 ≤ 2−8. Then Protocol
1 is ε1-unmodifiable with its parameters chosen as n =
d3 log2(1/ε1)e, N = 2n, l = dlog2 re.

A. Proof of Lemma 3

We will prove this lemma in two steps.

5In other words, they can use channels which are completely free of
tampering in the equality-testing and the dispute-resolution phases, and in
addition, those channels used in Step 1 of the equality-testing phase are free
of eavesdropping.

Lemma 4. Under the same setting as in Lemma 3, Protocol
1 is ε2-unmodifiable, where

ε2 := max
t∈{n,...,N}

(N − n)!t!

N !(t− n)!

N−n∑
u=t−n

(
N − n
u

)
qu(1− q)N−n−u,

(10)

q :=
⌈r
l
− 1
⌉

2−l. (11)

Proof. Since the protocol is invariant under the permutation
of the roles of Alice and Bob, it suffices to show for the case
where Alice is honest and Bob is malicious.

In this case, Alice always submits the correct hash value
sAi = f(kAi ,m

A) and the correct data mA to the TTP. On
the other hand, according to Definition 2, Bob’s goal is to
(i) submit some hash value sB∗ and succeed in the equality-
testing phase, knowing mA and kB , and then (ii) submit some
mB∗( 6= mA) in the dispute-resolution phase and let the TTP
announce “mB∗ is correct” or “undecidable.”

Note that in the equality-testing phase, Bob is informed
only of the result, “success” or “failure,” and that he needs
to submit mB∗ only when it was “success.” Thus his success
probability does not change even if he fixes mB∗ in advance
in the equality-testing phase. Therefore, we may modify Bob’s
goal as follows.

Malicious Bob’s goal: (Knowing mA, kB) choose the
values of both sB∗ and mB∗( 6= mA) in advance, then
submit them to the TTP, and let the TTP announce
“success” in the equality-testing phase, and “mB∗ is
correct” or “undecidable” in the dispute-resolution phase.

In light of the description of Protocol 1, the above goal is
equivalent to selecting sB∗ and mB∗( 6= mA) satisfying

sB∗j = f(kBj ,m
A) for j ∈ Ω, (12)

gBB = N, (13)
gAB ≥ gBA, (14)

where we used the fact that kAj = kBj for j ∈ Ω in deriving
(12). By noting that condition (13) means sB∗i = f(kBi ,m

B∗)
for all i = 1, . . . , N , we can further rewrite these conditions
as

f(kBj ,m
B∗) = f(kBj ,m

A) for ∀j ∈ Ω, (15)∣∣{ j |f(kAj ,m
A) = f(kAj ,m

B∗)
}∣∣ ≥ t, (16)

where
t :=

∣∣{ j |f(kBj ,m
A) = f(kBj ,m

B∗)
}∣∣ . (17)

Below we will evaluate the probabilities of conditions (15)
and (16).

Condition (15) says that t subscripts of (17) (which are
uniquely determined by mB∗) include Ω. Bob must select
those t subscripts (by selecting mB∗) without knowing Ω.
Hence (15) holds with a probability

pet(t) =

(
N

t

)(
t

n

)((
N

t

)(
N

n

))−1
=

(N − n)!t!

N !(t− n)!
. (18)

Condition (16) demands that f(kAj ,m
A) = f(kAj ,m

B∗)
holds for more than t − n subscripts j ∈ {1, . . . , N} \ Ω.
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However, Bob does not know keys kAj corresponding to
those indices j ∈ {1, . . . , N} \ Ω, since they are generated
independently of kBj ’s (cf. comment inside parentheses in
Protocol 1, step 1). Due to this fact and Lemma 1, condition
(16) holds only with a probability

pdr(t) ≤
N−n∑
u=t−n

(
N − n
u

)
qu(1− q)N−n−u. (19)

For a fixed value of t, Bob’s success probability is upper
bounded by pet(t)pdr(t). Thus we have the lemma.

Lemma 5. For r ≥ 28, ε1 ≤ 2−8, n = d3 log2(1/ε1)e, N =
2n, and l = dlog2 re, we have ε2 ≤ ε1.

Proof. Since N = 2n, pet(t) of (18) can be bounded as

pet(t) =
n!t!

(2n)!(t− n)!

=
t

2n
· t− 1

2n− 1
· · · t− (n− 1)

2n− (n− 1)

≤
(
t

2n

)n
, (20)

where we used that fact that t−s
2n−s ≤

t
2n for 0 ≤ s ≤ t ≤ 2n.

By Theorem 11.1.4 of Ref. [12], pdr of (19) can be bounded
as

pdr(t) ≤ (2n− t+ 1)2−nD(p||q), (21)

D(p||q) = p log2

p

q
+ (1− p) log2

1− p
1− q

, (22)

p = t/n− 1. (23)

If we choose n as specified by the lemma, we have for
t ≤ 3n/2,

pet(t) ≤ ε1. (24)

On the other hand for t > 3n/2, we have p ≥ 1/2 and also
q ≤ 1/8 due to r ≥ 256. Then we have D(p||q) ≥ 1/2 and
thus

pdr(t) ≤ (n/2 + 1)2−n/2 ≤ (n/2 + 1)2−n/6 · ε1 ≤ ε1, (25)

where the last inequality follows by noting that n ≥
3 log2(1/ε1) ≥ 24.

Combining (24) and (25), we obtain the lemma.

B. Proof of Theorem 1

Unlike the ideal situation of Lemma 3, in the actual situation
described in Definition 1 one can only use unauthenticated
public channels. There Alice, Bob, and the TTP must use
information-theoretic MAC and/or one-time pad encryption
wherever necessary.

First, communications in Step 1 of the equality-testing phase
must be secret in an information-theoretic sense. This can
be realized by using the one-time pad (OTP) encryption, and
consumes 4nl bits of the secret key.

In addition, all eight communication rounds in the equality-
testing and the dispute-resolution phases must be authenticated
in an information-theoretic manner. Since the length r′ of
the content of each round satisfies r′ ≤ max{r, 2nl}, one

can authenticate each round with ε1-security by using the
MAC scheme of Lemma 2. Thus for all eight rounds in total,
one can achieve the overall authenticity with 8ε1-security by
consuming secret keys of 16(n+ l)-bits.

By combining the secrecy and authenticity thus realized
with the result of Lemma 3, and by letting ε1 = ε/16, we can
achieve the ε-nonmodifiability in the actual situation described
in Definition 1.

The breakdown of secret key consumption here is: 4nl bits
for the equality testing keys kAet, k

B
et, and 4nl+16(n+l) bits for

the secure communication keys kAsc, k
B
sc. The latter consists of

4nl bits for the OTP encryption of sAi , s
j
B , and 16(n+l) bit for

generating MAC tags for the eight rounds of communication.
All of these add up to 8(nl + 2n+ 2l) bits.

The communication length of the equality-testing phase
consists of 4nl bits for sAi , s

j
B , four bits for the TTP’s an-

nouncements, and 8(n+l) bits for the MAC tags for these four
rounds of communication. These add up to 4(nl+2n+2l+1)
bits.

Similarly, for the dispute-resolution phase there are 2r bits
of communication for mA∗ and mB∗, two bits for the TTP’s
announcements, and 8(n+ l) bits for the MAC tags for these
four rounds, all of which add up to 2(r + 4n+ 4l + 2) bits.

V. SUMMARY AND OUTLOOK

We proposed a new type of cryptographic protocols
called “equality-testing protocol with dispute resolution” (ET
protocols) and also presented an explicit protocol that is
information-theoretically secure and efficient. Our ET proto-
cols enable two remote users each having data to (i) verify the
equality of their data, and (ii) whenever a discrepancy is found
afterwards, determine which of the two modified his data. The
ET protocols are particularly useful in and compatible with
quantum key distribution networks (QKDNs), and can also
greatly enhance the functionality of QKDNs.

A possible future work is to reduce the amount of commu-
nication needed in the dispute-resolution phase. It will also be
interesting to actually implement this type of protocols in one
of real QKDNs.
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