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Abstract— For Gaussian regression, we develop and analysethe component estimators with weights that may depend on

methods for combining estimators from various models. For
squared-error loss, an unbiased estimator of the risk of the
mixture of general estimators is developed. Special atteiun is
given to the case that the component estimators are leastisares
projections into arbitrary linear subspaces, such as thosepanned
by subsets of explanatory variables in a given design. We rate
the unbiased estimate of the risk of the mixture estimator to
estimates of the risks achieved by the components. This rdssi
in simple and accurate bounds on the risk and its estimate,
in the form of sharp and exact oracle inequalities. That is,
without advance knowledge of which model is best, the restiitg
performance is comparable to or perhaps even superior to whds
achieved by the best of the individual models. Furthermorein the
case that the unknown parameter has a sparse representatipaur
mixture estimator adapts to the underlying sparsity. Simuhtions
show that the performance of these mixture estimators is bétr
than that of a related model-selection estimator which pick a
model with the highest weight. Also, the connection betweeour
mixtures with Bayes procedures is discussed.

Index Terms—combining least-squares regressions, model

adaptation, model selection target, oracle inequalitiesynbiased
risk estimate, Bayes mixtures, complexity, resolvability sparsity

I. INTRODUCTION

the data. In this paper we study properties of the statlstica
risk (mean-squared error) of the combined estimator. An
information-theoretic characterization of an unbiasadrege
of its risk is provided. Furthermore, the risk of the resti
mixture is not much more than an idealized target defined
by the minimum of risks achieved by the various estimators
(one for each model considered). This is what Yang [1]
calls combining for adaptatiorand the risk target is termed
the model selection targeby Tsybakov [2] since it lower-
bounds the risks of all model selection-based estimatdrs. T
general sharp risk bounds, or oracle inequalities, shovhisn
paper are obtained by choosing certain types of weights that
adapt to the data. Moreover, the resulting mixture estimato
often performs better in simulations than a related model-
selection estimator, which picks the estimate correspandi
to the highest-weight model.

A primary motivation behind mixing estimators is that it
often improves the risk in regression estimation, as “bgtti
on multiple models provides a type of insurance against a
singly selected model being poor. Another motivation comes
from consideration of Bayes procedures which are known to
possess desirable properties in any statistical decisisigm.

Regression problems in statistics concern estimating someeed, Bayes procedures minimize the average case risk
functional relation between a response variable and eaplawith respect to the prior. With squared-error loss, a Bayes
tory variables. Often there are multiple models describingstimator is a convex combination of estimators weighted by
such a relation. It is common to employ a two-stage practiéiee corresponding models’ posterior probability (see khget
which first examines the data and picks a best model basedearal [3] and the references cited therein).
some model assessment criterion, and then uses an appeopriaA key tool in our analysis is the unbiased estimate of risk
regression estimator for that model. This is useful whentg Stein [4], [5]. We adapt it to provide risk assessment for
parsimonious model for explaining the response is desiradixtures of general estimators and to produce risk bounds
However, model selection procedures can be unstable, dk sifsa the mixture of least-squares estimators in linear madel
changes in the data often lead to a significant change in mottiktures of shrinkage estimators, which are non-lineag ar
choice. Moreover, the inference done with the estimatottfer analysed in the thesis [6].
chosen model can be overly optimistic as model uncertainty
from the selection procedure is often neglected. A. Overview

Combining estimators from different models is an alter- In regression and function estimation problems with fixed
native to model selection-based estimation. We may talesign, one has observatiol$ of response valueg; plus
each component model to be a linear subspace of the fillependent Gaussian noise, for indices 1,2, ..., n. These
model space and the corresponding estimator to be the leastponse valueg; may be equal to the values of an unknown
squares projection of the observations into that subspafienction f(x;) where the given xare vectors of explanatory
The combined estimator consists of a convex mixture @hriables. We also have functional models available for our

. N — . consideration that may or may not approximate such a true
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Though the trueu is allowed to be general, our estimatorsvhich gives the weighted mixture a Bayes interpretatiom, an
will be constructed from (usually linear) functional moslel 3 = '/, which leads to the main risk bounds.
and combinations thereof. We shall use squared-error lossNe will show that, thev-averaged risk estimafe’,, w7,
S (i — f1)* and its expectation, the mean-squared erras a crucial part of an unbiased risk estimatef the mixture
as the risk in assessing the performance of our estimators. In fact, for 3 < /5, it is an upper-bound,
If the estimate is not constrained to live in any of the
models of interest, the simple estimaftr can be obtained 7 < Zwmfm,
by maximizing likelihood or by least-squares, and has a meM

mean-squared error ofc?. Least-squares regression into a . . 1 . s .
. ) : : with equality wheng = /5. Let 1 be a minimizer of risk

lower-dimensional space has risk that can potentially belmu . P A .
estimates satisfying; = min,, 7,,. We will show that the

smaller, depending on how close the trueés to that space. . d . :
} . . . . average risk estimate admits the representation,
Here we combine least-squares regressions into varioearlin

subspaces, and provide accurate upper-bounds for theafisks . R 252

the mixtures which can be vastly reduced frem? due to Zwmrm =Tm + N [H (w) + log wy ], (4)
model adaptation. Again, our aim is to have the risk of the meM

combined estimator close to the minimum of the risks of thgnhere H(w) = -3, wnlogw, is the entropy of the

individual estimators. _ _ _ _ weightsw. This identity shows how the interplay between the
A linear regression model: is a d,,-dimensional linear positive H(w) and the negativ@og w,;, terms characterizes

subspace oR™ in which the mean vector may reside. We pow close thes-averaged risk estimate is to the minimal risk

consider classes1 of linear modelsn. Typically, eachn in  estimater,;,. In any case H (w) is upper-bounded biog M

M is spanned by subsets of columns of a design matrix @here)s is the cardinality ofM. In particular, whers = Y5,
predictors. For each modset, there is a basis af,, columns

denoted byX,, for which the meary is modelled asX,,6 7 < min 7, + 40% log M. (5)
for some unknowrd € R, Let i™ = 4™ (Y) be the least- meM

squares projection of the observ&dfor each modeln. Its  Taking expectation, we show that the risk satisfies

risk can be decomposed into squared bias and variance via the

Pythagorean identity Ela—pl? < min B[4 — pl|* +40%log M. (6)

T =B = pl® = |p™ = pl® + dmo?, (1) We have used a risk target

where| - || is the Euclidean normy™ is the projection of the
true meary into the subspace:, and the expectation is taken

with respect to the sampling distribution f given ».. Thus, \hich corresponds to a model with optimal bias and variance

if 4 is close to the subspace with d,,, small compared 0 a4e off. Thisr, is the main term in the bound (6) for the

n, then the projection est|m2atqrm will have a small risk, s\ of the combined estimator. Indeed, the first term on the

perhaps much smaller tharw=. o _ right side of (1),[|u™ — ul|? = S0, (1" — w;)? is a sum of
We now propose a convex combination of these estimatq[Serms, so typicallyr, is much larger than thing M term

o . o . Am 2
re = min rp, = min B[2™ - u% (7

o Z W ™ in (6) (unless one has the surprisingly good fortune fhad
H e mbs close to one of the subspaces considered with dimension lowe
thanlog M).

where the data-determined weighis, = w,,,(Y) are chosen |t js sometimes useful to incorporate a deterministic fcto
to give emphasis to models assessed to be better. In particut,,, in the model weightv,, to account for model complexity
for each modetn, let 7,,, be an unbiased estimate of the rislor model preference, in a manner that facilitates desirable
of 4™ given by risk properties. Suppose such factars are assigned, where
L 2 9 expressing them in the form,,, = exp(—C,,) and requiring
P = ||V = ™" + 07 (2d, — n), @) that they sum to at most one endows model with an

in accordance with Akaike [7], [8], Mallows [9], or Stein [4] interpretation of having descriptive complexiy,. Thus, low-
[5], which means thak #,,, = E || 4™ — /|2 for eachy in R».  complexity models are favoured. The new weights become

Then we define the weights to be 7
: W o T exp|—B22% ] @)
P 202

Wy X exp[—ﬁ—Q], 08>0, 3) . : . .

20 where these combined weights are again normalized to
normalized to have unit sum oven € M. The tuning have unit sum. As before, the choi¢ge = 1 has a Bayes
parametep; adjusts the degree of concentration of the weightsterpretation, angt = /> leads to the main risk bounds.
on the models with small risk estimates. The two extremesAs in the case without, thew-averaged risk estimate is an
are 5 — 0, which gives the uniform distribution ooM, upper-bound for the unbiased risk estimatef this mixture
and 3 — oo, which assigns non-zero weights to only thei, formed with the new weights (8 when 3 < 1/, with
models with minimal estimated risk. Typical values gre- 1, equality at3 = /5.



Information theory also elucidates the risk analysis ¢L3], Catoni [14], and Yang [15], [16]. We call attention
mixing with this more general form of weights. The averag® section 2.6 of Yang [1] where he gives an exponential
risk estimate admits the following analogous represesriati form of weights (with arbitrary3), which when his the-

902 ory is specialized to Gaussian errors, produces the weights
Z Wi = P + —— [Ciy — D(w]|T) +logwp ], (&)  exp[—pBfn/(202)] we use here. Catoni [17] and Yang [1] give

meM A oracle inequalities similar to ours for prediction meanaed
where now error via mixing arbitrary bounded regression functionewrl
952 ever, theirlog M terms have coefficients depending on the
M = arg min {fm 4 icm} assumptions of the problems, and are larger than ours even in
meM p the simplest Gaussian setting. In most of the work by Yang and
is the model with the highest weight, an®(w|r) = Catoni, they also split the data into two sets, one for sgttin

> Wi log(wn, /7 is the information divergence betweerihe weights, and the other for forming the estimaies In
the weightsw and 7. The logw,;, — D(w|7) terms in (4) contrast, the analysis technique empl_oyed in this _papewall
gauge how close the average risk estimate is to the minimwge of all the data, and all at once in constructing both the

risk estimate plus complexity;, + 202C;, /3. Wheng = 1/,,  weights and the estimates.
To achieve such bounds, we give an unbiased risk

r< nrjgj{l/[{fm +40%Cp }. (5) assessment of the combined estimator with weights
exp[—fB7m/(202)] for arbitrary 3 > 0. The choiceg = 1
produces Bayes procedures. The best bounds via our teehniqu
Ellji— pl® < min {E||2™ - ul> + 40°C,n ). (6) occur with 3 = 1/s.

meM George [18], [19] also studied mixing estimators, with
The right side, expressed via (1) as emphasis on Stein’s shrinkage estimators, which are non-
linear, and provided an expression for the risk estimatdef t
mixture using Stein’s result [5]. The form we give here has
is an index of resolvability ofu by the model classm @0 gxplicit interpr_et_ability that leads to risk bound§ ftve t
which calibrates the mixture estimator by the best trade-&PPlications to mixing least-squares estimators. Mixiuoé
in approximation, dimension, and complexity (correspagdi ;hnnkage estimators using similar techniques are alslysath
to the three terms respectively) among the modelgn in [6].

Note that thdog M terms in (5) and (6) (excess beyond the

minimum) are now subsumed under tfig, terms in (3) and Il. UNBIASED RISK ASSESSMENT
(6"). Not surprisingly, the latter recovers the former when the As above, we havé” ~ Normal(p,o>I) in R and for
uniform model weightsr,, = '/5; are used, but in this case,each modeln € M, we have an estimatgr™ = 4™ (Y). Typ-
we W|” ShOW tlghtel’ boundS in SeCtion \Y due toa teChniC%a”y' each estimator is tied to various exp|anatory \mBa

Moreover, the following risk bound is shown to hold:

min {07 = pl|* + dmo® +407Cyn

refinement. given in a design matrix via a functional model. In section A,
we give expressions for the risk estimates of general meéxtur
B. Background estimators composed of arbitrary estimators (not nedbssar

grp]ear). We propose a special form of weights that simplify t
expression for the mixture risk estimate in section B. Hypal
L will apply the general risk estimate results to the case of

Essential to the concept of Bayes mixtures are Bayesi
interpretations of individual least-squares regressiovisch
date back to ideas of Bayes, Laplace, and Gauss. In partic ) .
the linear least-squares projections in Gaussian modisls apnear models and least-squares in section C.

as the Bayes estimators with (improper) uniform prior on the An w;port;mt_ rEallz?Uont IS th?t’ :cmhke ArI]C [B]dWIh'Ch g'VefI
coefficients of linear combinations. Each associated pioste an unbiased risk-estimate only for each model separately,

weight for such a model is proportional tacp{—HY ~_ Stein’s identity [4], [5] can be applied more generally t@pr

ﬂm||2/(20.2)}' times a function of the model dimenSionVICi/(\e/eaghl;“bzseed estimator of the risk of a mixture estimator

d.,. The heights of the uniform priors (with infinite total )

mass) are arbitrary. These heights do not affect the indalid o =1

Bayes estimators, but they do lead to ambiguous posterjgf sections Il to VI for notational simplicity.

weights. To resolve this ambiguity, Hartigan [10] assigns

these prior weights based on hypothesis testing interprata

and arranged the posterior weights to &ep[—7,,/(20?)]

(normalized to have unit sum), favouring the models with We use the notation.b = Y"""_, a;b; for the inner product

lower risk assessmerit,,. See also Buckland et al [11] forof vectorse andb andV for the gradient wher&; = 9/9Y;.

numerical evaluations with these weights. Suppose for eachn, the estimatori™ is almost differ-
Demonstration of detailed risk properties of weightedntiable inY (that is, its coordinates can be represented

regressions has been challenging. Analogous informatidmys well-defined integrals of its almost-everywhere derixest

theoretic bounds for Bayes predictive density estimation (V;/;", which is implied by continuity together with piecewise

Cesaro averages thereof) have been developed by Barran [tifferentiability) and thatV;i™ have finite first moments.

A. Risk Assessment for General Mixture



Then Stein [4], [5] gives an unbiased estimage for the risk have a positive expectation (otherwise, mixing offers aéfr
rm = E||g™ — pl/?, i.e. E#,, = r, for eachu. lunch”). However, in the corollary in the next section, welwi
Our goal is to give an unbiased risk estimate for the mixtushow how to design weights such that this third term can be
cancelled with the second.

= Zwm“ Proof of Theorem 1:According to [4], [5], an unbiased

meM estimate of the risk of any estimatgris given by
where the weightsv,,(Y") are non-negative, sum to one, and "
almost differentiable. We further assume tfaf(V;w,, ) i7" | F=lp—Y|?+ 22 Vifii — n, (11)
are finite. We also suppos#! is finite (though under mild i—1

conditions{ the conclusions can be ex_tended for infinitg. ¢ long as eacl,/i; has finite absolute expectation, but our
The following theorem relates the unbiased assessmentof H%sumptions are sufficient to ensure this. Now with a vaganc

risk of /i to unbiased assessments of the risks of the individya}|cjation using the weightsr as a distribution onM

estimatorsi™. summing over each of the coordinates, we rewrite the first
Theorem 1:With the above assumptions, an unbiased eterm above as

timate of the riskr = E|/a — pl/? of the mixture i = . 2 m 2 om a2

S i 15 given by la= Y12 = " wa |l = Y2 = 7™ = ).

meM
= Z W, [fm—|mm—ﬂ|\2+2(v log wm)_(ﬂm_ﬂ)] (8) The second term can be expanded via differentiation uneer th
meM summation sign,
In addition, if Vi > wmf" =Y wn VA + Y (Vw1
wn(Y) = eXP(—(Pm)Wr;z 9) memM meM meM
> EXD(= P )T and we recognize in these components the terms of
for almost differentiabley,,, = p,,(Y) and arbitrary constants R X ) n R
T, then P = 0" = Y|* +2) Vip" —n. (12)
=1
P= )" wn [fm —[|&™ = 2ll* +2(Vpm) - (&= ™)|. (10) such that
meM n
This unbiased estimate of risk (8) has three terms. The? = Y wm [fm = [la™ —ﬂ|\2}+22 > (Viw) i}
principal term )" w7, is the weighted average of the meM i=1 meM

individual risk estimates. This average is a crude risk sssseafter exchanging the order of summation owerand:. The
ment, possibly biased. However, with suitable design of thast term here is the same as

weights, we will show that it becomes an upper-bound for the n
unbiased risk assessmeitfor the mixture of least-squares 22 Z(Viwm)(,&;ﬂ — f;)
regressions. Also, an information-theoretic representabf i=1 meM
this term yields the conclusion that it is not much largemthanecausey" (Vwn, )i = [Vi(3,, wm)]fis = 0 (as the
. ~ m m
My T, - weights w,,, sum to a constant). The above display equals

The second term-3_, wy, ||z — 4™(|* wonderfully illus-  2(vuw,,) . (4™ — i) by exchanging the order of summation
trates an advantage of mixing estimators. If the estimates again and the first claim (8) follows.

vary with m, then combining them reduces the unbiased risk For the second claimV logw,,(Y) equals —Vp,,(Y)
assessment by the weighted average of the squared distang@sis a function (the gradient abg ", exp(—px)mx) Which
of the ™ from their centroidii. The unbiased risk estimateqoes not depend om. Now sincei — i hasw-average
for the mixture (8) intuitively reveals this reduction bdsen peing the null vecton, its inner product with a quantity not
variability of estimates among a model class (asvaries depending onn averages to 0 under the weights so that
for a given sample), rather than based on the variance of (g are left with theVp,,(Y') term. This proves (10). O
_estimato_rs (_as the sample yaries for a_fixed moadgl which Remark:One can adjusp.,(Y) by adding any function of
IS a motlyatlon for resamplmg-tAyTBe eAst|mator-s.. Y that does not depend om without changing either the
The third term2 > (Vwn,). (4™ — i) quantifies the effect | o, o of w,, or the validity of (10).

of the data-sensitivity of the weights via their gradientshw ) . . .
respect to the datl. Constant weights would make this term _Remark.The above risk estimate formulae hold coordinate-

H A — g ~m - /

zero, but would not permit means to adapt the fit to the mod ési'lTh_atld's' puttlngL _d(Y'l’I%' : ’t_Y“lt’ s Yign, - 20
that have smallef,,,. Finally, the exponential form of WeightsIn (11) yields an unbiased risk estimate faf',
(9) gives a particularly clean mixture risk estimate (10gtth Pri = (A = Y3)2 +2Via — 1,
depends on the weights via the gradient of the exponents in . e 9 .
the relative weighting only and not the normalization. EZEZ??&%@%H& i m_lxltﬁz f(ﬁ ;Chu & anzelg a:/;:bbmsed

If our weights focus on models assessed to be good, then Bi = 2 Wimbly 9 y
our intuition says that t.he third term quantlflgs the price on Z W, [fm,i — (A" — f13)? + 2(V; log wi ) (™ — f12)] -
pays for making the mixture estimator adaptive, so it should,,c3,



With weights (9), we can further simplify this to Corollary 3: For a Bayes mixture, the unbiased risk esti-

mate (13) holds withs = 1. That is,

> win s = I = ll? + 2% o) (s — )],

meMm 7= Zwm[fm—i-ﬂﬂm—ﬂHQ .

Given a collection of models anq its correspondi_ng eStir.na_Proof: For eacﬁleﬁf\;edm, the (posterior) Bayes estimator
tors, we can use Theorem 1 to design data-determined We'gsrgﬁsfies [20, Chapter 4, Theorem 3.2]
w,, that make the unbiased estimate of risk (8) for the mixture ' ' '
small. The weights (9) offer a tractable start, and we can A" =E[u|Y,m|=Y +E[p—-Y|Y,m|
furthgr simplify (10) in certain cases laid out in .sec.tion B. =Y + Viogp(Y |m). (15)
Our risk bounds developed later is one such application.

A second application of the theorem is evaluation of modkldeed, having assumed thatY [m) is finite for all Y,
classes and their respective mixture estimators, as thare @ifferentiation of it under the integration sign (14) is tjtied
be multiple model classes that meaningfully decomposef@f the Gaussian likelihood (Cf. [21, Chapter 2, Theorem 9]
common parameter space into various scientifically reasdAr & more general result about exponential families) amsl th
able models (linear and curved). Provided that we have tRermits us to rewrite the posterior expectation,of Y as
component estimators in each model class and weight th&fm(Y |m)/p(Y [m), yielding the last equality in (15). Thus
appropriately, we can evaluate how effectively each modeh(Y) = —logp(Y [m) has gradient” — ™ so that (13)
class explains the data using (8). One can go further wift9lds with 3 =1 by Corollary 2. O
this for model class design. For instance, a goal may beAlternatively, we can heuristically apply Theorem 1 to
to heristically choose a collection of models rich enough igeights emphasizing models with small risk estimatgs
cover the considered parameter space, and yet the models T eXp(— B /2)

are different enough to provide enough variability in their Wy = ~ , B>0, (16)
corresponding estimates such that the second term in the rig 2 T XP( =B /2)

side of (8) offers a large reduction in the unbiased riskwestie where the positive constants, are a mechanism for assigning
(while the third term is controlled). model preference. That is, we takg, = (7,,/2 in (9).

The parametef controls the relative importance of averaging
B. Special Forms of Weights and a Bayesian Interpretation@Cross models (smalf) and picking out the one that is

A special form of weights (9) allows further simpIificationem_pm(.:aIIy best (larges). 1_'he two eXtremes arg — 0,
; : . . . which ignores the observatiots and weights the models by
of the mixture’s unbiased risk estimate.

mm only, and 8 — oo, which uses only the model(s) with
Corollary 2: If the weight exponenp,,(Y) has gradient minimal estimated risk.

B(Y — ™) for all m € M and some fixeds > 0 , then Intuitive appeal aside, an important motivation for these
) ) o 2 weights is that, in the case of using least-squares estimato
"= Zwm [Tm = (1 =20)la™ — Al } (13) o™ for linear modelsm (explored in the next subsection),
meM

weights (16) yield further simplification of (10) via Coratly
In addition, if 3 < /5, the risk estimate can be bounded by2. In particular, linear least-squares coincide with (pdst)
. . Bayes estimators (15) when one chooses a prior uniform over
rs Z WmTm, (and restricted to) the linear subspagdor each moden. In
this case, the posterior probability takes the form of (18hw
with equality whengd = 5. 8 =1 when prior densities for. underm (with respect to the
Proof: From the stated assumption of the form/pf(Y), Lebesgue measure on) have relative heights/(v/2re)®
we see that after adding a function not dependingnon and the prior probabilities for modet are 7, .
Vpm(Y) matches a multiple ofi — 4™ so the first claim Remark:One can also think of the parametgs as a tuning
follows from (10) and the first remark in section A. Choosingoefficient for inflating the error variance® = 1. We will
B = /5 or smaller eliminates the second term. 0 show that mixing estimators witl# = 1/,, a conservative

We turn our attention to Bayes procedures (strictly spepkiPProach regarding the noise to have twice its actual vegian
posterior Bayes). Possibly improper prior measuxgsfor i, achieves the best risk bound.
in R™ are said to produce proper posterior distributions if the Remark: Mixtures composed of positive-part James-Stein
integral of the Gaussian likelihood shrinkage estimators using the heuristic weights (16) also

) prove to have low risks, as shown in [6].
/(27T)*n/2e*IIY*uH /2 A (12) (14)

is finite for eachY” andm. In which case, expression (14) isC- Linear Least-Squares

called the marginal density &f (also known as Bayes factor Now we specialize to the case that each madet M is a

for m) and is denoted by(Y |m); and w,,, proportional linear subspace dk™. The estimatof;™ under such a model

to p(Y |m)m,, is the posterior probability of model. is the least-squares projection of the observatibnimto the
Moreover,i = E[pu|Y] = >, w,i™ is the Bayes mixture d,,-dimensional linear space, the column space of a design
of the individual Bayes estimatofs™ = E [ | Y, m]. matrix X, of a subset of explanatory variables. This can be

meM



accomplished by Gram-Schmidt procedures, or explicity viSince @ is a norm-preserving transformation, this shows the
the projection matrixP,, = X,,(X/,X,,)"1X/, such that first claim, and yields a simple expression for the gradient

am=PpY. Vz i, of 7, with respect toZ because
In essence, combining these least-squares projections pro di, )
duces a shrinkage estimator which draws the observations d—Zk =2ZkNip>a,,y = 2(Zx — 0%),

towards the linear models in. The closerY seems to be ] ) )

to a certain modeh (as assessed by the unbiased estimat®§er® T>4,) = 1 if k > dp, and O otherwise. Since
of risks of the individual estimators), the more the shrigia 1€ €lements);, of Q are exactly the derivativedZ; /dY;,
since the weightu,, for the projectioni™ would be large, 2PPlying the multivariate chain rule gives

drawing the mixture closer toz. Vy m = QVzim = 2Q(Z — 0™) = 2(Y — p™)
Lemma 4:For each linear modein, the expression as- and the second claim follows. O

signed tor, in (2), Remark:An alternative proof is to use Stein’s identity (12),
P = ||Y — @™ + 2d,n, — n, together with the fact thatr P,, = d,, to show that?,, is
unbiased. Then write

is an unbiased risk estimate fpf*. Moreovery,,, has gradient
Y = ™[> =Y'(I = Pm) (I —Pp)Y =Y'(I —Pn)Y,

Vim =2(Y —a™). ) i
" ( i) where the last equality follows from the fact that- P, is

Proof: It is fruitful to consider an orthonormal basis forsymmetric and also a projection (onto the orthogonal space o
R™ for which the firstd,, elements of this basis spans. A m). Then the gradient of (2) i8(I — P,,,)Y = 2(Y — ™).

pointY” in R™ can be represented by a linear combination of Thys, for linear least-squares estimators, by choosipg

these basis elements, whose coefficients are obtained by ingyoportional tor,,, exp(— 3., /2) the condition for Corollary
products withY'. In other words, there exists an orthonormaj is satisfied. With these weights gt= !/, the resulting

matrix @, a function ofm, whose firstd,,, columns spann. expression in (10) is only the-average of the unbiased risk
ThenY has a representatioR Z, with coefficients obtained gstimates®,, of the individual models.

as Z = Q'Y. Moreover,Z ~ Normal(0,1), with 6 = Q')v This puts us in a setting where we can give simple

and R information-theoretic characterization of the risk assssnt
" =Q'n™m = (Z1,...,%q,,, 0,...,0) for the mixture..

is the corresponding least-squares projection in the new-co n
dinate system which simply retains the figt, elements of
Z. Similarly, the projectionu™ of p has the representation

| NFORMATION-THEORETIC CHARACTERIZATION OF
RISK ASSESSMENT

We analyse the average risk estimgte w,,7,, in this
01,...,04,,0,...,0) section. It is the primary term in the estimate for the risk of
the mixturejs; and for 3 < s, it is a tight upper-bound of
in this system. Then, since the norm is preserved by orthontite unbiased risk estimateas concluded by Corollary 2.

mal transformations, the risk gf™ is
of Remark: When the unknown mearn can be well-

approximated by multiple models, the resulting risk of the
mixture at . would not be very sensitive to the choice of

def ~
r(p) = E 27— p?

_ Am 2 .
=E[0m -0 3 around the values of interest at 1 (Bayes) afd (clean
= Z 02 + dp,. (17) bound). See Section VI for numerical results.
k>dm, Since the choice? = '/, makes this average risk estimate

unbiased for the risk ofi, we will set it so in this section
for a brisk exposition. The generalization to afily> 0 can
Z 02 =0 — 0™ = || — || be obtained by replacing 4 witk/ 3, though the average risk
ksdo, estimate will no longer be unbiased whén# !/>. This will

_ ) _ be explicitly done in the next section where a tighter bound
Thus, we have re-established the Pythagorean identityof1) fs proven for the case with weights (3).

the risk,

With 6™ as the projection of into m, the sum above equals

_ m 2 . . .
T = [[0" = pll* + dm. (18) A, Sharp Bounds on Risk Estimate of Mixture

The unbiased risk estimate, is easily computed in the The following enunciates the relationship between the av-
new coordinate system. From (17), and the unbiasednesstge risk estimatd w7 and the minimum. From now
72 — 1 for 62 for eachk, we deduce that the following is an®n, letM = 7#M be the cardinality of\.

unbiased estimate for,,: Theorem 5:(a) For eachn € M, let

=Y Z}+2dm —n=Z— 0"+ 2dm —n. _exp(=tm/4) (19)

Wy, = . ,
k>dm > €XD(—Timr /4)




then with 7 being any model achievinf}, = min,, 7,,,, the B. Risk Bound for Mixing Least-Squares Regressions

unbiased risk estimate for = 3_,, w,, 4™ satisfies Corollary 6: The riskr = E || — u|? of the mixture of
7= Z WP = v + 4| H(w) + log wm} (20) Iea_st—_squares regressiofis= > w.,, ™ with weights (19)
satisfies
meM r < min r, + 4log M,
< 7y +4log M. (21) meM

wherer,, = E||g™ — u||?, taking value (18), is the risk of

(b) More generally, for eachn, let ) 7 : . X . g
™. Mixing with weights (22) yields a risk that satisfies

Tom €xXp(—7Tm /4)
Zm’ T/ eXp(—’f’m//4) ’
wherer,, = exp(—C,,) and)_,  m, < 1. Then here, with whereC,, = log(1/m,,). Thus the risk function: = r(u) is

m being any model attainingnin,,, {#,, + 4C,,} the unbiased upper-bounded by an index of resolvability
risk estimate for satisfies

7= Z Wy T = T + 4[C’m — D(w||7) + logwm}

Wy = (22) r < min {r,, +4Cy, },
meM

res(p) = min {[|n™ = pll* + dpm +4C}. (25)

Proof: To show the second inequality, we take the expected

meM o value of each side of (23). This recovers the risky the
< nlfg}}/l{rm +4Cm }. (23) unbiasedness of on the left. Applying
Proof: Part (a) is a special case of part (b) with, = Y/x. E min {7, +4C,,} < min E[#,, + 4C,]
meM T meM

For part (b), observe that
. T . for the right side yields the second statement, from whieh th
Tm = 4[10g W log > T eXP(—Tm//‘l)} (24) resolvability bound follows from equation (1). The proof fo
- 4[0 log W . } the first statement is the same. O
=Tm m — 10g — Og Wy | - . . . . .
& Tm, & Note that the mixturei, its risk estimate’ and riskr all
Thus, the equality follows by averaging over ¢ M with change with the weights),,,, e.g. from (19) to (22). But the
weightsw. The inequality results sinc® > 0 andw,;, < 1 risks for the individual models,,, (1) (18) and hencc_e, the risk
(the logarithm of the latter is strictly negative). O targetmin,, 7, depend only oru and not the weights. So,
) . _the r,,, in the first two displays of Corollary 5 are identical,
Therefore, for the first form of weights (19), the averagé risyhereas the twa are different.
estimate (20) is unbiased for the risk of the mixtirend can  The index of resolvability (25) with which we have bounded
be expressed as the minimum of the individual risk estimatgg, risk expresses an idealized trade-off among error of ap-
plus a price for mixing, a function of the mixing weights If proximation||™ — 1|2, dimensiond,,, and complexityC,,
the weightsw are concentrated on mostly one modelthen ¢ the models considered. It provides a theoretical catina
H{(w) is close to zero and the combined risk estimate is Vegy the error the collectionV! of models provides ag varies
close to _the_mlnlmurrﬁ*. In any case, smc_H is less than the gyerR™. The approximation error term is a sum of squared
log-cardinality of M, the average risk estimate cannot exceggrors of approximation for the means, and is typically the
7. by a relatively small amountlog M. (This bound will be - jominant term among the three unless the unknpvisiin, or
improved in the next section.) Moreover, if there are ?dyer%xtraordinarily close to, one of the linear spaces consitler
say J, models ofm with nearly minimal risk estimates;., \wnich of the remaining termsl,,, and4C,,, is larger depends

then accounting for thosé values in the sum on the rightop the model that yields the best overall trade-off, which we
side of (24) shows a further reduction of abdubg J from v discuss at greater length in Section VII.

the bound (21) for the average risk estimataptly revealing

the advantage of the mixing. IV. A REFINED BOUND
For mixing with general weights including,,, the average

risk estimater is the minimum of the complexity-inflated risk

estimate plus a reduction due to mixing, a functionucdind-.

If the data-dependent weighis differ little from the constant

weights, then the quantityC,, — D(w||w) would be close

to its upper-bound’,,. Moreover, if there are/ models ofm Definition 7: Let v = (M) be a function inM > 2

with nearly minimal?,;, + 4Cy,, then the bound (23) can bedefined by the solution to

further reduced by aboutlog J again by examining (24). ¥ = log M-1_ 1. 0

Remark:The condition}, exp(—C,,) < 1 is of course v
Kraft's inequality [22] in basee and the model complexity ~Note thaty (M) is increasing inM. Also, for eachK > 0,
is connected to the length of some codeword r{aty that M—1
describes the model. However, our theory does not require ¥ < maX{Ka log /a 1}, (26)
such an interpretation.

In this section, we bring to the fore the price of mixing
estimators with weights (3) (with constanf, factors) using
an arbitrary > 0. In short, we shall tighten our risk bounds
by replacing thdog M before with a smaller quantity (M ).

by considering separately whetheér < K or not. Then we
Characterizing the average risk estimate by the minimumdan also deduce that(M) < log M by taking K = log M
useful as it leads directly to a risk bound. (treating M = 2 as a special case).



Theorem 8:Given the values,,, for a finite collectionm €
M and weights

eXP(_Bfm/m
Zm/ eXP(—ﬁfm'/Q) ’
with any g8 > 0, the weighted average satisfies
2¢(M)

5

(27)

Wm =

Z WP < min 7y, + (28)
meM
meM
where M = #M is the cardinality ofM.
Proof: First, observe that

2

which, upon averaging witlwv overm, yields

Z Wy P = Ty + %[H(w) + log wy, | (29)

meM

The function y(M)

10

Fig. 1. The termy(M) that quantifies the price of mixing/ estimators
with weights (3) without prior model preferences,{ are constant).

where /i is a model achieving the minimum risk estimate

7« = min,, 7,. Let h(p) = —plogp — (1 — p)log(1l — p).
Then as in the proof of Fano’s inequality [22], we have

Hw) = (1 —wp)H(®@) + h(wg),

where {w,, : m # m} are the weightsw renormalized on

M\{m}. Thus, (29) becomes

Z Win Py — P = 2 [(1 — wy,) H (W) + h(wy,) + log wy, |-

meM 6

Hence, the bracketed terms on the right are upper-bounded by

(1 — wy,) log(M — 1) + h(ws,) + log ws,
which is concave inv; and equals

1—wm

(1 —wm) [log(M —1)—log (30)

Wiy

Setting to zero the first derivative of (30) with respectug,
we see that the maximum of the bound occursvgt = wy
satisfying

1-— 1
log(M — 1) —log o

an wi

Substituting the result back in (30) yields the bound, tgkin

its optimal value at the oddd — wy) /w; o O+ with

1
-1

O; = log

Oy ’
which is(M). O

Thus, how much the risk estimates averaged with weights
(27) exceed the minimum risk estimate is related to the
odds ratio ofm not being the modef» achievings,, where

the odds ratio is optimized over the weight,.
The quantity (M) is computed for a range of values bf

as shown in Figure 1 and the table below. It gives a noticea
reduction in the risk bound compared to the uséogfi/ even

for moderateM . For largeM, one can approximate(M) by
log M — loglog M.

Now we are ready for the refined risk bound.

Corollary 9: If ™ are least-squares regressions with risk
estimates,, in (2), then the unbiased estimate of risfor the
mixture estimatory = >, w,, "™ using weights (27) with a
fixed 8 < !/, satisfies

7 < min 7, + 721#(#/\/1).
meM 16}

Hence, withr,,, as the risks (18) of the individual estimators,

. 2 . 2¢(#M)
Efli—pl < min ro + 5

Proof: Corollary 2 implies that the unbiased risk estimate
for i is upper-bounded by the average risk estimate for this
range of3, which in turn is bounded as in (28). This proves
the first claim. The second conclusion follows from taking th
expected value of each side of (28) and udignin,, 7, <
min,, E7,,. O

The best of these bounds again occurg at /.

We comparey (M) with log M (with the coefficient of 4
for the best risk bound) in the table below.

M=#M]2 5 10 20 40 100 1000
4log M 28 64 9.2 120 148 184 27.6
4p(M) 11 29 44 61 79 105 177

We see that the improved bound of ordgfM) is twice as
tight as that of ordetog M for M < 20.

V. COMPLEXITY

In this section, we address the choice of the factogs

In the weights (These are analogous to prior probabilities o
models when3 = 1). Our bounds assume that, ,, <1
and accordinglyC,,, = log(1/m,,) has an interpretation as
a codelength, or descriptive complexity, for moeel These

kg,i;g:torsz = exp(—C,,) arise in our risk bounds with = 1/,

via the resolvabilitymin,, {r,, + 4C, }.

In general there may be a very large number of explanatory
variables, as may arise from various product basis expasisio
such as multivariate polynomials. We will say a few words
about complexity assignments for such large dictionaries o



candidate terms in section B. In what follows, we will focushe complexity when general subsets are involved. However,

on the simpler setting of a fixed orthonormal basis of siaghen leading-term models have small enough approximate

matching the sample size for analytical simplifications of error (that the best resolvability favours them) one seas th

the complexities, of the approximation errors, and hendbef the complexity term (of ordelog(n + 1)) can be negligible

resolvabilities (as shall be discussed further in Sectidi). V compared to the dimensiod,,, and then the resulting risk
trade-off is not encumbered with multiplicativeg n factors.

A. Fixed Orthonormal Basis Implications for this remark will be discussed further next

Here we discuss specific complexity assignments in the case
of subsets of a fixed sequenceofexplanatory variables, asg | arge Dictionaries

arises in the context of an orthonormal bas$is, ..., ¢, }. ) )
The n + 1 leading term models are those spanned by It can be quite natural for a very large number of candidate
{é1,...,0x) for somek = 0,1,...,n; and the2" general basis functions to be available, potentially much larganth,

subset models are those spanned by arbitrary subsets of§fRecially in multivariate settings in which one is modwli
basis, treating all subsets of the same size equally. non-linear functions of several variables. For instanappsse

Since there are fewer leading-term models, we are cont&¢ candidate basis functions éf variables are formed as
to assign them constant complexity, vig, = 1/(n + 1) (or products based on a countable list of basic one-dimensional

any constant not depending am). This reduces the weightst”CtionS- Using the firsL of such basis functions in each of
(3) to (3), and results in bounds such as (5), (6) derived fhe variaples produchD candid:?\te produ_ct basis fqnctions.
Section 11l or Corollary 9 in Section IV, with terms of order! Nese arise directly in polynomial and trigonometric expan

log n. Numerical results with leading-term models are given i#ionS (and similarly in neural net and multivariate wavelet
the next section, but we note that flexibility in fitting leagt

models). So for each. = 1,2,..., modelsm consist of
term models to the observed response can be rather limite@Pitrary subsets of size,, = k of these L” product
The situation with general subsets is dramatically difiereasis functions, fok = 0,1,..., min{L",n}. The associated
with exponentially large number of models since mixing theglictionary of models has a combinatorially large numger)
with equal weights (3) would render the bound (6) very loos¥f such subset models for eadh and k. We may assign
with a term of ordernlog2. Instead, we advocate usingcomplexity such as

. . D
weights (3) with . Cn = 2log(k + 1) + 2log L + log ( i >7
Cp =log(n + 1) + log (d > (31)

) o " for which w,,, = exp(—C,,) is summable over models:
This corresponds to a descriptive lengthlof(n + 1) nats jngexed byk and L. Because our risk bound depends on the
for thf subset sizé,,, = 0,...,n and a descriptive length of o, hinatorial term via the logarithm only, a useful risk hdu
log () nats to distinguish among the subsets of that sizg.gjts a5 long as accurate subset models are availableefor t
Alternatively, the probabilistic approach is to directijmpeloy target, withkD log L small compared to:, even though the

n \1-! number of candidate predictofs” may be much larger than
Tm = [(n +1) dm } n. However, whether there is a way to compute such provably

to specify a uniform distribution on the cardinality of theaccurate estimators in sub-exponential time is doubtful.

subset and a conditionally uniform distribution on the sibs
of that size. Whend,,, is a small fraction ofn (desirably VI. AN EXAMPLE WITH LEADING-TERM MODELS
yielding a good trade-off in,, = || — u™||*> + d,»), this

complexity is roughlyd,, log(n/d,.), much smaller tham. We will show numerical results of the risks of our mixture

The information-theoretic interpretation via Kraft's meality estlmatgrs in the fixed orthonormql basis case in this sectio
h Consider then + 1 nested leading-term models from an

[22] is that for each subset sizk,, no competing codelengt ) _ i
can be shorter except for a small fraction of such subsets. O'thonormal design. Using’ = (Z1,...,2n) as the coeffi-

Even though mixing all subset models might at first g|anégents of the basis functions obtained by taking their inner

seem computationally prohibitive, the appendix provides R{0ducts withY’, we have the canonical setting in whighis
computation shortcut in the orthonormal basis case. distributed\ormal(6, I) (as in the proof of Lemma 4). Each
leading-term modetn with dimensiond,,, posits thatd, = 0

One may also combine the benefits of both arguments Wiy . > d,,,, whered,, ranges from 0 tou. In this case, the

subsets with different structure. Thus, we may set least-squares estimators under these models are simply
c log(n + 1) + log 2 if m Ief':ldmg—term 0= 2l a2
log (d?n) +log(n+1)+1log2 otherwise

. . Ol#r discussion will proceed in this suitably transformeédcsp
to produce a risk bo_und that is nearly as good as the beSto?e, with emphasis on a moderate problem dimensica 20.
the two, paying a price of at mogtg 2 nats. Recalling that the variance? in each dimension is 1, the
The dimension term d,, in the resolvability naive maximum-likelihood estimator (for the full modeBsh

min,, {|lx — u™||*> + d,, +4C,,} is negligible compared to a risk of n. The best risk upper-bound is obtained with the
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mixture estimator using = !/», and is4+(n + 1) (~ 6.2 for Estimation with Leading-Term Models n=20

n = 20) beyond the risk target w e
_ . 2 ’( ------------- f T S S o
r.(6) = min [+ 62, @) L e

j>k
Simulations with variou® andn show that this margin from  *°
the target always seems less tHagn (= 3 for n = 20), so
there is room for improving our risk bounds.
Here we will illustrate a case where the true parametéf’r 6
0 indeed belongs to one of these leading-term models. In

KS r(0)

particular, only the first 10 elements éf are non-zero. (If 4

Fhe 0r's are Fourier-type goefficients Wh_ek;ehas a frgquency 1 Model s‘:f:;;i’fz‘lg ]
interpretation, thei, the signal to be estimated, is “ideal low- Mixture B=1 (Bayes)
pass” with a “bandwidth” of 10.) We varjj||? (total signal- od  — TR i B'jf l

. . . .. .. 40
to-noise ratio) while restricting the non-zero coefficifit to ert
have constant magnitude. (By symmetry, all risk quantities
interests depend on any coefficightvia 67 only.) Hence, the

true parameter can be described by

Fig. 2. Risks and Target with Blockwise Const;&r%toc Tir<10}

2
05, o< Typ<ioys VII. A PPROXIMATION AND RESOLVABILITY

or 02 = Y/1|0]*L,<10} to be more precise. The risk target This section exr_nblts classes of behaw_ourf_orthe truefppef
= cientsd that permit control of the approximation error arising
(33) reduces to _ o . ) .
] 9 in our resolvability bound on the risk of the mixture estiorat
r«(0) = min {||6]|%, 10}.

The point is to observe how the mixture simultaneously alapt

In confirming this target, note that i)||2 < 10, we are better to multiple such classes, and to differentiate when cettqias

off leaving out all the terms (i.ek = 0), since the bias so of mixtures are suitable. For example, leading-term masur

incurred is less than the variance 4f if we included them; are appropriate for cases with ellipsoidal controls oigin

whereas if]|0]|? > 10, then the best is seen to be. which the axis widths decay), and general subset mixtumes ar
Any mixture of these leading-term estimators (32) witiPpropriate when measures of the sparsity of the coeffiient

weightsw,, will have the formé;, = c¢;Z), where the data- ¢ are controlled (regardless of their order).

driven coefficients To facilitate discussion of approximation and risk on a
cr = Z Wi standardized scale, we shall use the average squared error
ik Iii — |2 as the loss function, wher- |2 = Y1 ()3 /n

(with division byn). The riskr,,, = E ||a™ — u||? of the least-
squares estimatgr™ for modelm is ||u™ — u||2 +d,, /n, and
erwise, the riskr = E||2 — /|2 of the combined estimator
;éis bounded by the index of resolvability

are between 0 and 1 and monotonically (strictly) decreaising
k (for w, strictly positive). We have examined both choice
of B = 5,1 in our mixture estimator, as they correspon
to the estimator with the tightest risk upper-bound and
Bayes procedure. In addition, we also examine the AIC model r < min {ry, +4Cp,/n}
selection estimator (mixture witld — oo) for comparison. meM
The performance of the mixture estimator is not very seresiti
to the choice of3 between'/;and 2. . o ) ) ]

Figure 2 says that all three estimators have risks just ovef'ding off among approximation error, dimension relatve
worse than the target at small and laigd, but the mixtures Sample size, and complexity relative to sample size.
(8 = Y, 1) even beat the target arourid||? = 10. The AIC Recall that our models are the Ilnegr subspaeespanned
model selection estimator is often worse than the mixturdd/ & subset of the orthonormal basis vect¢rs, .. ., ¢n}
In fact the advantage of mixing over selection seems unifoith [[¢x[l7, = 1 for eachk < n (e.g. these may arise from
(over the entire parameter space) in the Bayes Gasel, and evaluat!on of a function at given input vaIt_mf_ls, s xy,). For
almost uniform for the3 = !/, mixture (AIC is slightly better COnvenience, we abuse notation by identifyingwith the set
at the origind = 0). The risks of all three estimators are similaPf all indices & such thatg; is a basis vector for, i.e.
for large ||0]|2. This is expected since the trdeis in one of {%: ¢x € m}. Thus, the best approximation o= >, 0x¢x
the models considered (the one with, = 10). Indeed, when N 718 u™ =3, .. Oy, keeping only the terms im. The
the signal-to-noise ratil6||2 is large, AIC picks the correct resulting approximation error is
model with high probability, while the adaptive weights iaro ™ — pl2 = Z 03.
mixture give strong emphasis on the right model. kg¢gm

Note that the mixture with3 = 1/, outperforms the Bayes ) )
mixture for a large range df¢||? between 2.5 and 55. Thus,A- General Subsets and Adaptation to Sparsity
besides analytical convenience, usjfg- '/» indeed provides Let M consist of all subsets of¢y,...,¢,}. Here we
non-trivial risk advantage over Baygs= 1 in some cases. assign for general subset models (31) a complexjtywhich

dm n 4C’m}

min I =l + S (39

o meM
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depends on the subset only through its dimensiod,,,. Putting the ingredients together we have a result which says
When performing the minimization for each dimensign that the mixture estimator, formulated without specifizati

the smallest approximation error occurs wheris the model of the sparsity index|d||¢, estimates as well as if one knew

consisting of thed largest magnitude coefficients. Thus, wén advance which indexs produces the best trade-off in

denote by{d;} the coefficients 0, } sorted descendingly asapproximation error and dimension plus complexity.

such, |0y > [02)] > ... > [0n)|. Consequently, the index

of resolvability takes the form Theorem 11:The risk of the mixture of all subset models

with weights (3) and complexity (35) satisfies

Gnldly, { oz d 1Cu(),

. 2 d 4
rosn(0) = i {3 0t 3+ 1 ®) < i
J

(d+1)2=s)/s —p n
where we have rewritten (31), the complexity, for a model for eachs < 0 < 2. Moreover,
o Vi dimension = . &s n ) < wmin Lofgpe (LT Alognyims/2  4dlog(n +1)

C(d) = log(n + 1) + log (d). (35) 7n(0) = min { I Hs(f) + f}

Proof: The first line is by Theorem 5(b) together with the

approximation bound from the previous lemma. For the second
line, useC,(d) < dlogn + log(n + 1) to show that the
bracketed bound holds for eashe [0, 2], which for s = 0
rn(0) < res,(6) for all 6 € R™. is immediate from the comment above (with an inflation by a

To enunciate the relationship between sparsity and apprcff’?‘((—:tor of 2). Fors > 0, we optimize the right hand side of

The mixture estimator is constructed without knowledgehef t
subsets for which the true coefficients are largest. Negtads,
it achieves risk

imation of §, we define a sparsity index ) 0|2 d+1 4C,(d
P ra(6) S%I&{(m”n'@s)/s n n( >}
10113 = Sil6l, 0<s<2, - _
and (by taking the limits \, 0) denote overd. In particular, pthtIng o .,
— 8 s n S
10115 = #{6 : 61 # 0} 4+ 1= |(557) T tiogn)

as the number of the non-zero elementdinf [|0]|S is not  (rounded down to an integer) yields the bracketed bound. Now

large for somes € [0,2), then general subset models permihe stated conclusion follows after minimization over [

control of the approximation error as a function of the numbe
. e ‘ o

of coefficientsd. For example, iff is such tha{6 ;)| < K/ 162/d is known to hold for whery = 3", ¢, not only

for eachj and somek > 0, then we can control its S'pars"tywhen theg;, are orthonormal but in fact for any basis functions

: I . )
index for _aII s > />, whereas if Fhere are fgw NON-2€1Qy it k|2 < 1, as shown in [23], [24]. It follows in this case
elements ing, then we can control its sparsity index all th‘?hat the risk of the mixture over all subsets satisfies

way down tos = 0.
logn)
—)-

1+ 4logny\1/2
Lemma 10:With {6} being the elements @f re-ordered 7 (6) < resn(0) < 2[[0] (Tg) + O(
in descending magnitude, we have

Remark:For s = 1, the appropriate bounflu™ — p||2 <

) This extends the results available for the risk of selection
29(3)3 ||9H257 ’ 0<s<2. criteria in th?s convex hull setting from_ [2], [15], [25]-
: (d+1)2=5)/s [28] to the mixture estimator. The results in these refeesnc

j>d
Proof: Since thelf);)|* sum tol|0||; and are non-increasing,
we havel|f;)|* < [|0]|3/4. Write

are primarily cast in multivariate settings where thererns a
exponentially large dictionary of candidate basis funtdiand
where training data tends to be sparse so that risk bounds
Zoé): Z |9(j)|2’5|9(j)|5 are perhaps better cast for random designs (new inputs are
i>d i>d independent from but identically distributed as trainirega].

The recent work [29] takes a step to develop analogous
conclusions for the more challenging case with sparsiticesl

1 < s < 2 for non-orthogonal candidate basis functions.

Considers = 1, for instance. This is the case that the |n the case of wavelet models with wavelet coefficients
unknown, suitably scaled, is in the convex hull ¢f=¢r}. ¢, on each translatg and levell, natural conditions on the
Then the approximation error bound [i8|?/(d + 1). If s is  coefficients, expressed via bounds ¥} [6,,,|° on each level
smaller, e.g:/2, then one has a faster decaydrior the error ;, correspond to certain Besov spaces. Similar risk bounds fo
bound, [|0]|7 ,/(d + 1)°. For s = 0, the approximation error model selection procedures are given in [30]. Analogous con
vanishes when the model dimension exceeds the number:Rfsions are possible for mixture estimators by our teahesq
non-zero elements such that we may put= ||0]|g, which here. For certain problems with piecewise constant modiels t

and use the inequalityy ;)| < [|6]|s/(d + 1)/* in the first
factor inside the sum to yield the bound.

with (i;) < dlogn yields the risk bound logarithmic factor in the risk is necessary [30].
ol +4logn  4log(n+1) If instead of having the non-zero elements tbfcattered
m(0) < 1161l + - - throughout the indices, it happens that {#ig| are bounded
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by a decreasing function ik, then mixtures of leading- size of ballb. The mixture across model dimensions is adaptive
term models can avoid the logarithmic factor, as this is ia that, in providing risk bounded by the risk of the best
generic phenomenon of certain ellipsoidal classes of fanst linear model, for eachu, it will be simultaneously minimax
(discussed next). rate-optimal for all ellipsoidst,, (all « andb). Beran and

To summarize the story for general subsets of basis vect(I)Drumbgen [32] has another approach (see also the discussion

from a dictionary, we have in this case that the complexit')?i%])'
essential to the risk bounds, is larger than the dimension of Asvmptotic Optimality and Improved Oracle Ineaualities
the models. Small approximation error by models of moderaté ymp P y P q

dimension requires adaptation of subsets, and one achieve&he adaptation ability of our mixture estimator is quite gen

these good approximations in optimal balance with complexieral: & sequence of linear modeiswhich are not necessarily
by mixing estimators over these models. nested and not necessarily built from orthonormal term& Th

cleanness of the resolvability bound, with constant mlidgip
B. Leading-Term Models and Adaptation to Ellipsoids of 1 for_ the squared blas.a_nd d|men3|qn tgrms, provides an
] ) _ oracle inequality that exhibits already in finite samples th
Next we consider models in which the subsets of terms arigfe of optimality previously studied in asymptotic segtn
in prespribeql forms. Those models ha\(e complexity sma_llp{)r example, Shibata [34], Li [35] and others have shown
than dimension and are also important in theory and appligaat estimators based on certain model selection critega a
tions. Among the simplest such models are those of leadingsy ratio-optimal. In particular, the ratio of risk refati to
term type such as polynomials (of adjustable degree) afgk minimum of risks over all size models converges to 1 as
truncatgd Fourier series _(of adjustable maximal freq_u)ancyL — oo for fixed sequences of meapsprovided the sequence
These linear models are indexed by = {1,2,....k} with s sych thatar, (1) — oo asn — oo, and provided that the
dimensiond,, = k < n. . . log-cardinality of models of each dimensiahis of a lower
The model complexity can be set to eitf€y, = log” dn  order thand. However, that convergence is not uniformyin
with log™ d = log(d + 1) + 2loglog(d + 1) to slightly favour e provide a similar result here for out mixture of estima-
small models, orC,, = log(n + 1) which gives uniform tors. For sample size (on which all risk quantities implicitly
weights. We need not restrict the models to be nested. Rdpend), let the risk of the least-squares estimator foreinod
instance polynomial splines on equal spaced knots provide,gpe ., (11) = || — p||2 + dyn /n. Then our combined esti-
sequence of models indexed by, ), wherek is the number mator achieves risk (1) < ming, {rm(p) + 4Cpn /n}, which
of knots andr is the degree of the local polynomials, and Wg; in turn less thanmin,, {rm (1) +4Cm /1« dm > vCm},
may setC', =log™ k +log™r. where in the latter, we have restricted our attention to the
In these cases, the complexity is seen to be of smaller orggbdels with dimensions greater than a multiple> 0 of

than the dimension (which we allow to be large to improvg, ;. complexities. Thus, relative to the risk targé{y) def

approximation error). Now when the complexity is negligibl it {7m (1) : dm > ~Chn }, OUF mixture achieves a risk r_atio

small compared to the dimension, the interpretation of the

resolvability simplifies to just the optimal trade-off bet@n r(p) <1+ 4

squared bias and variance among the linear models. This is ri(p) ~ o

preferred for cases in which a good approximation is ackievaniformly in i for eachry, such that the ratio can be arbitrarily
without taking all subsets of terms. close to one. To see this result in a setting similar to that

For example, suppos®, )x<, are orthonormal basis func-of [34], [35], suppose for a fixed sequence afthe models
tions and that the meap = }_, 0,¢ is in an ellipsoidal achieving the target. = min,,r,, have dimensions that
(also called Sobolev) class,, which is the collection of grow unboundedly, yet the complexities of these models are
points@ in R™ such that}", 6#2a? < b?, where(a?)r<, is an of a smaller order than their dimensions. Thertu)/r7 (1)
increasing sequence. Now the leading-term model whicrsstagpnverges to 1 for each, and hence-(u1)/r. (1) converges
at dimensionn provides an approximatign™ = Zkgm 0x¢, to 1 also.
for which the approximation errdfu™ — pl|2 =3, ., 07 is In any case, the risk of the combined estimator is never
bounded byb?/a2, ., uniformly for points in&, ;. Adding worse than the best risk among the models for which the
the variance termn/n and minimizing overm yields a risk complexity is negligible compared to the dimension. More
minimum r, = min,,, {b%/a?, | + m/n}, which is known to precisely, this can be quantified using a multiplicativestant
be the minimax rate over all possible estimators for each suaf 1 for the risk target plus a term for the complexity relativ
ellipsoid &, , (see e.g. [30]). to n as in the resolvability bound (34). For a similar spirit of

For example wherui = k*¢ (as arise in characterizingoracle inequalities but with larger multiplicative conss see
Sobolev classes using Fourier series), we recover the ratarks by Birgé, Massart, and Barron [30], [36], [37] for nebd
C,b%s/(2s+1)pn=2s/(25+1) gptimal with respect td andn, as selection in least-square regressions; Donoho and Jatesto
laid out in Pinsker [31] (though our bound based on adaptiy@8]-[41] for shrinkage estimation in orthonormal basiada
mixing of least-squares projections reflects a possiblgdar Devroye and Lugosi [42] for density estimation; Yang [1]
constant than that with optimal Pinsker filtering). Notetthdor prediction; Wegkamp [43] fot.; risk in regression; and
in the construction of the mixture there is no presumption duditsky et al [28] and Tsybakov [2] for function aggregatio
any particular regularity sequenge, ), smoothness index or in regression.
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parameterq, as inn(U) = [p(U]q) p(q) dg, then in

Whether it is better to use all subset models or Comp|eqélculating the numerator and the denominator of exprassio
models of various orders in regression depends on the natgP9ove, we may exchange the order of the sums and the

of the unknown target. If coefficients(d ) in a suitably trans-

formed representation are scattered throughout the isdice
then the target requires all subsets associated with sparse
proximations, achieving good risk properties when mixethwi

integrals. For instance, the denominator above becomes,

/[Zpﬂ(ZlU) p(UIq)} p(q) dg = /pﬁ(Zlq) p(q) dg.
U

weights that account for appropriate model complexity. B t This is the case with the,, we recommended for all-subset

other hand if the magnitude @0),) decays withk, typical of

mixtures using complexity (31),

those in ellipsoid classes, then mixtures of nested leatting 1 1 v .
projections can achieve the best trade-off in approximatio ™m = m(U) = n——i-lm :/ ¢ (L —q)" % dg.
and dimension, with a small model complexity penalty. If one dra 0

does not know in advance which of the two settings is mofidie product formp(U |q) = [[;_;¢"*(1 — ¢)*~Y* and

appropriate for a case at hand, then they may be combintii binary nature ol; allows us to express the shrinkage
adding only a(log2)/n price to the complexity terms. Thecoefficients ag, = I /I, where

resulting estimator achieves risk corresponding to the bes

trade-off in approximation, dimension, and complexity.

APPENDIX
Given a fixed orthonormal basis of size with all 2™

subset models, here we examine computation for the allesubs
mixture. At first, it might seem impractical to combine so

many components as the mixture involves calculating2all
associated least-square fits and their respective weights.
we provide an alternative route in obtaining this mixtureéhwi
simplified computation due to a Bayesian interpretation.
Let Zy,...,Z, be the inner products of the data vector
with the orthonormal basis vectots, . . ., ¢,,, which provide
the coefficients for the representation ¥Bfin this full basis.

1 1
I = / eu(q)ln(q) dg and 1= / ta(q) dq
0 0

() = [[la+ (1 — @) exp(—B(Z7/2 - 1))]

k=1

(36)

_ q
g+ (1—q)exp[-B(Z}/2 - 1)]
Note thatc, € [0,1] is greater or less than according to

cr(q)

whether|Z;|? exceeds 2 (an evidence that the true parameter

contains termk), andcy, is near 1 for largeZy|.

We evaluate the, + 1 integrals/ and I, numerically. This
can be done by summing over a fine uniform gridgea [0, 1],
with care taken to note thdf,(¢q) peaks around its maximizer

4. In accordance with standard Laplace approximation of

The least-squares estimator for any subset model simphszeintegrals, the grid width should be narrower than ortéyn
out the coefficients for the variables outside the given subs(order1/n based om uniformly spaced grid points suffices)
Consequently, the coefficients in the representation of the as to ensure that we capture the peak. Also, for largiech

combined estimator are given bﬂk = ¢éZ;, where ¢, =

Laplace approximation shows that the shrinkage factqrs

> sk Wm, between 0 and 1, are weights aggregated from thee numerically close toy(¢). In essence, this is an adaptive

models which include terrh. As in (3), w,, is proportional to
mm exp(—fF7., /2). Here we provide, for certain natural,,,
more direct means to compute the filter coefficiefjsthat

shrinkage factor in which the magnitudes of all elements of
7 are used to adapt to levels gfthat appear to give rise to
the individual Z,,.

does not require summing,, over the exponentially many A probabilistic interpretation emerges whgn= 1, giving

models including terni.

Toward this end, we first note that the factap(— 57, /2)
equals a constant times the prodfif,,,, e ~#(4¢/2=1), which
we may also write as

ps(2|0) = [ expl-B(Z}/2 - 1)(1 - Uy)]
k=1

where U = U(m) = (Ui,...,U,) with Uy = Tjpemy

as either 1 or 0 depending on whether includesk (and

hence,)", Uy = d,,). HereU in {0,1}" provides a standard

alternative way to refer to subsets of {1,...,n}. The

notation pg(Z |U) arises from a probabilistic interpretation

we shall come to shortly. Denoting,, = 7(U) we may write

o — Z w. — ZU:Ukzlpﬁ(ZH])W(U)
* " S pe(Z U R(UY)

m3k
The point we want to make here is thatsf, = «(U) is
expressible as a mixture distribution for over some hidden

rise to a hierarchical model in which each variable, when
conditioned on its sole dependent variable, is independent
all other.

q  ~ Uniform|0, 1]
Ui|q ~ iid. Bernoulliq)
O | U ~ iid, pomt mass at 0 . . i/, =0
Uniform(R) densityh if U, =1

Zy |0 ~ 1.i.d. Normal 8y, 1).

Thus,p(Z;, | U, = 0) = ¢(Z) wherey is the standard normal
density, and(Zy |Ux = 1) = h and
_ qh

gh+ (1 —q)p(Zy)’
leading top(Z | ¢) = [[;_;la¢h+(1—q)¢(Zk)]. And the Bayes
shrinkage facto¢, = E [Uy | Z] agrees with expression (36)
with the choiceh = 1/(v/2we). See Hartigan [10] and the
references therein for Bayesian considerations of thisahod

p(Ur = 1| Zk,q)



Even for 5 # 1, one can still interpret all the quantities[17]
above probabilistically, with the distributiaf), | U, scaled by
1/ and the normaky, | 6, having variance /3 instead of 1.
For example, our best bound occursdat '/, meaning that
by being twice as conservative about the error variance nde d191
up mixing across models more indiscriminately. Occasignal 120]
the risk obtained this way is lower than that whgn= 1
(Section VI). (21]

In summary, it is equivalent to consider our estimatqpy
either as a mixture across all subsets specified/bywith
¢ integrated out) or as a mixture acraggwith U summed [23]
out). We have found the former to be more conducive to our
risk analysis and the latter more conducive to computation[24]

(18]
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