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Abstract— For Gaussian regression, we develop and analyse
methods for combining estimators from various models. For
squared-error loss, an unbiased estimator of the risk of the
mixture of general estimators is developed. Special attention is
given to the case that the component estimators are least-squares
projections into arbitrary linear subspaces, such as thosespanned
by subsets of explanatory variables in a given design. We relate
the unbiased estimate of the risk of the mixture estimator to
estimates of the risks achieved by the components. This results
in simple and accurate bounds on the risk and its estimate,
in the form of sharp and exact oracle inequalities. That is,
without advance knowledge of which model is best, the resulting
performance is comparable to or perhaps even superior to what is
achieved by the best of the individual models. Furthermore,in the
case that the unknown parameter has a sparse representation, our
mixture estimator adapts to the underlying sparsity. Simulations
show that the performance of these mixture estimators is better
than that of a related model-selection estimator which picks a
model with the highest weight. Also, the connection betweenour
mixtures with Bayes procedures is discussed.

Index Terms— combining least-squares regressions, model
adaptation, model selection target, oracle inequalities,unbiased
risk estimate, Bayes mixtures, complexity, resolvability, sparsity

I. I NTRODUCTION

Regression problems in statistics concern estimating some
functional relation between a response variable and explana-
tory variables. Often there are multiple models describing
such a relation. It is common to employ a two-stage practice
which first examines the data and picks a best model based on
some model assessment criterion, and then uses an appropriate
regression estimator for that model. This is useful when a
parsimonious model for explaining the response is desired.
However, model selection procedures can be unstable, as small
changes in the data often lead to a significant change in model
choice. Moreover, the inference done with the estimator forthe
chosen model can be overly optimistic as model uncertainty
from the selection procedure is often neglected.

Combining estimators from different models is an alter-
native to model selection-based estimation. We may take
each component model to be a linear subspace of the full
model space and the corresponding estimator to be the least-
squares projection of the observations into that subspace.
The combined estimator consists of a convex mixture of
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the component estimators with weights that may depend on
the data. In this paper we study properties of the statistical
risk (mean-squared error) of the combined estimator. An
information-theoretic characterization of an unbiased estimate
of its risk is provided. Furthermore, the risk of the resulting
mixture is not much more than an idealized target defined
by the minimum of risks achieved by the various estimators
(one for each model considered). This is what Yang [1]
calls combining for adaptationand the risk target is termed
the model selection targetby Tsybakov [2] since it lower-
bounds the risks of all model selection-based estimators. The
general sharp risk bounds, or oracle inequalities, shown inthis
paper are obtained by choosing certain types of weights that
adapt to the data. Moreover, the resulting mixture estimator
often performs better in simulations than a related model-
selection estimator, which picks the estimate corresponding
to the highest-weight model.

A primary motivation behind mixing estimators is that it
often improves the risk in regression estimation, as “betting”
on multiple models provides a type of insurance against a
singly selected model being poor. Another motivation comes
from consideration of Bayes procedures which are known to
possess desirable properties in any statistical decision problem.
Indeed, Bayes procedures minimize the average case risk
with respect to the prior. With squared-error loss, a Bayes
estimator is a convex combination of estimators weighted by
the corresponding models’ posterior probability (see Hoeting
et al [3] and the references cited therein).

A key tool in our analysis is the unbiased estimate of risk
by Stein [4], [5]. We adapt it to provide risk assessment for
mixtures of general estimators and to produce risk bounds
for the mixture of least-squares estimators in linear models.
Mixtures of shrinkage estimators, which are non-linear, are
analysed in the thesis [6].

A. Overview

In regression and function estimation problems with fixed
design, one has observationsYi of response valuesµi plus
independent Gaussian noise, for indicesi = 1, 2, . . . , n. These
response valuesµi may be equal to the values of an unknown
function f(xi) where the given xi are vectors of explanatory
variables. We also have functional models available for our
consideration that may or may not approximate such a true
f well. In choosing a procedure for estimating the response
valuesµi, we recognize that unobserved or hidden variables
may also contribute to the trueµi. Thus we adopt the general
setting thatY = µ + ǫ with µ in R

n and errorsǫ dis-
tributed asNormal (0, σ2I), where for simplicityσ2 is known.
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Though the trueµ is allowed to be general, our estimators
will be constructed from (usually linear) functional models
and combinations thereof. We shall use squared-error loss
∑n

i=1(µi − µ̂i)
2 and its expectation, the mean-squared error,

as the risk in assessing the performance of our estimators.
If the estimate is not constrained to live in any of the

models of interest, the simple estimatorY can be obtained
by maximizing likelihood or by least-squares, and has a
mean-squared error ofnσ2. Least-squares regression into a
lower-dimensional space has risk that can potentially be much
smaller, depending on how close the trueµ is to that space.
Here we combine least-squares regressions into various linear
subspaces, and provide accurate upper-bounds for the risksof
the mixtures which can be vastly reduced fromnσ2 due to
model adaptation. Again, our aim is to have the risk of the
combined estimator close to the minimum of the risks of the
individual estimators.

A linear regression modelm is a dm-dimensional linear
subspace ofRn in which the mean vectorµ may reside. We
consider classesM of linear modelsm. Typically, eachm in
M is spanned by subsets of columns of a design matrix of
predictors. For each modelm, there is a basis ofdm columns
denoted byXm for which the meanµ is modelled asXmθ
for some unknownθ ∈ R

dm . Let µ̂m = µ̂m(Y ) be the least-
squares projection of the observedY for each modelm. Its
risk can be decomposed into squared bias and variance via the
Pythagorean identity

rm = E ‖µ̂m − µ‖2 = ‖µm − µ‖2 + dmσ
2, (1)

where‖ · ‖ is the Euclidean norm,µm is the projection of the
true meanµ into the subspacem, and the expectation is taken
with respect to the sampling distribution ofY givenµ. Thus,
if µ is close to the subspacem with dm small compared to
n, then the projection estimator̂µm will have a small risk,
perhaps much smaller thannσ2.

We now propose a convex combination of these estimators

µ̂ =
∑

m∈M

wmµ̂
m,

where the data-determined weightswm = wm(Y ) are chosen
to give emphasis to models assessed to be better. In particular,
for each modelm, let r̂m be an unbiased estimate of the risk
of µ̂m given by

r̂m = ‖Y − µ̂m‖2 + σ2(2dm − n), (2)

in accordance with Akaike [7], [8], Mallows [9], or Stein [4],
[5], which means thatE r̂m = E ‖µ̂m−µ‖2 for eachµ in R

n.
Then we define the weights to be

wm ∝ exp
[

−β r̂m
2σ2

]

, β > 0, (3)

normalized to have unit sum overm ∈ M. The tuning
parameterβ adjusts the degree of concentration of the weights
on the models with small risk estimates. The two extremes
are β → 0, which gives the uniform distribution onM,
and β → ∞, which assigns non-zero weights to only the
models with minimal estimated risk. Typical values areβ = 1,

which gives the weighted mixture a Bayes interpretation, and
β = 1/2 , which leads to the main risk bounds.

We will show that, thew-averaged risk estimate
∑

m wmr̂m
is a crucial part of an unbiased risk estimater̂ of the mixture
µ̂. In fact, for β ≤ 1/2 , it is an upper-bound,

r̂ ≤
∑

m∈M

wmr̂m,

with equality whenβ = 1/2 . Let m̂ be a minimizer of risk
estimates satisfyinĝrm̂ = minm r̂m. We will show that the
average risk estimate admits the representation,

∑

m∈M

wmr̂m = r̂m̂ +
2σ2

β

[

H(w) + logwm̂

]

, (4)

where H(w) = −∑

m wm logwm is the entropy of the
weightsw. This identity shows how the interplay between the
positiveH(w) and the negativelogwm̂ terms characterizes
how close thew-averaged risk estimate is to the minimal risk
estimater̂m̂. In any case,H(w) is upper-bounded bylogM
whereM is the cardinality ofM. In particular, whenβ = 1/2 ,

r̂ < min
m∈M

r̂m + 4σ2 logM. (5)

Taking expectation, we show that the risk satisfies

E ‖µ̂− µ‖2 ≤ min
m∈M

E ‖µ̂m − µ‖2 + 4σ2 logM. (6)

We have used a risk target

r∗ = min
m∈M

rm = min
m∈M

E ‖µ̂m − µ‖2, (7)

which corresponds to a model with optimal bias and variance
trade-off. Thisr∗ is the main term in the bound (6) for the
risk of the combined estimator. Indeed, the first term on the
right side of (1),‖µm − µ‖2 =

∑n
i=1(µ

m
i − µi)

2 is a sum of
n terms, so typicallyr∗ is much larger than thelogM term
in (6) (unless one has the surprisingly good fortune thatµ is
close to one of the subspaces considered with dimension lower
than logM ).

It is sometimes useful to incorporate a deterministic factor
πm in the model weightwm to account for model complexity
or model preference, in a manner that facilitates desirable
risk properties. Suppose such factorsπm are assigned, where
expressing them in the formπm = exp(−Cm) and requiring
that they sum to at most one endows modelm with an
interpretation of having descriptive complexityCm. Thus, low-
complexity models are favoured. The new weights become

wm ∝ πm exp
[

−β r̂m
2σ2

]

, (3′)

where these combined weightsw are again normalized to
have unit sum. As before, the choiceβ = 1 has a Bayes
interpretation, andβ = 1/2 leads to the main risk bounds.

As in the case withoutπ, thew-averaged risk estimate is an
upper-bound for the unbiased risk estimater̂ of this mixture
µ̂, formed with the new weights (3′), when β ≤ 1/2 , with
equality atβ = 1/2 .
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Information theory also elucidates the risk analysis of
mixing with this more general form of weights. The average
risk estimate admits the following analogous representation

∑

m∈M

wmr̂m = r̂m̂ +
2σ2

β

[

Cm̂ −D(w‖π) + logwm̂

]

, (4′)

where now

m̂ = argmin
m∈M

{

r̂m +
2σ2

β
Cm

}

is the model with the highest weight, andD(w‖π) =
∑

m wm log(wm/πm) is the information divergence between
the weightsw and π. The logwm̂ − D(w‖π) terms in (4′)
gauge how close the average risk estimate is to the minimum
risk estimate plus complexitŷrm̂ +2σ2Cm̂/β. Whenβ = 1/2 ,

r̂ < min
m∈M

{

r̂m + 4σ2Cm

}

. (5′)

Moreover, the following risk bound is shown to hold:

E ‖µ̂− µ‖2 ≤ min
m∈M

{

E ‖µ̂m − µ‖2 + 4σ2Cm

}

. (6′)

The right side, expressed via (1) as

min
m∈M

{

‖µm − µ‖2 + dmσ
2 + 4σ2Cm

}

is an index of resolvability ofµ by the model classM
which calibrates the mixture estimator by the best trade-off
in approximation, dimension, and complexity (corresponding
to the three terms respectively) among the models inM.

Note that thelogM terms in (5) and (6) (excess beyond the
minimum) are now subsumed under theCm terms in (5′) and
(6′). Not surprisingly, the latter recovers the former when the
uniform model weightsπm = 1/M are used, but in this case,
we will show tighter bounds in Section IV due to a technical
refinement.

B. Background

Essential to the concept of Bayes mixtures are Bayesian
interpretations of individual least-squares regressions, which
date back to ideas of Bayes, Laplace, and Gauss. In particular,
the linear least-squares projections in Gaussian models arise
as the Bayes estimators with (improper) uniform prior on the
coefficients of linear combinations. Each associated posterior
weight for such a model is proportional toexp

{

−‖Y −
µ̂m‖2/(2σ2)

}

, times a function of the model dimension
dm. The heights of the uniform priors (with infinite total
mass) are arbitrary. These heights do not affect the individual
Bayes estimators, but they do lead to ambiguous posterior
weights. To resolve this ambiguity, Hartigan [10] assigns
these prior weights based on hypothesis testing interpretations
and arranged the posterior weights to beexp[−r̂m/(2σ2)]
(normalized to have unit sum), favouring the models with
lower risk assessment̂rm. See also Buckland et al [11] for
numerical evaluations with these weights.

Demonstration of detailed risk properties of weighted
regressions has been challenging. Analogous information-
theoretic bounds for Bayes predictive density estimation (or
Cesaro averages thereof) have been developed by Barron [12],

[13], Catoni [14], and Yang [15], [16]. We call attention
to section 2.6 of Yang [1] where he gives an exponential
form of weights (with arbitraryβ), which when his the-
ory is specialized to Gaussian errors, produces the weights
exp[−βr̂m/(2σ2)] we use here. Catoni [17] and Yang [1] give
oracle inequalities similar to ours for prediction mean-squared
error via mixing arbitrary bounded regression functions. How-
ever, their logM terms have coefficients depending on the
assumptions of the problems, and are larger than ours even in
the simplest Gaussian setting. In most of the work by Yang and
Catoni, they also split the data into two sets, one for setting
the weights, and the other for forming the estimatesµ̂m. In
contrast, the analysis technique employed in this paper allows
use of all the data, and all at once in constructing both the
weights and the estimates.

To achieve such bounds, we give an unbiased risk
assessment of the combined estimator with weights
exp[−βr̂m/(2σ2)] for arbitrary β > 0. The choiceβ = 1
produces Bayes procedures. The best bounds via our technique
occur withβ = 1/2 .

George [18], [19] also studied mixing estimators, with
emphasis on Stein’s shrinkage estimators, which are non-
linear, and provided an expression for the risk estimate of the
mixture using Stein’s result [5]. The form we give here has
an explicit interpretability that leads to risk bounds for the
applications to mixing least-squares estimators. Mixtures of
shrinkage estimators using similar techniques are also analysed
in [6].

II. U NBIASED RISK ASSESSMENT

As above, we haveY ∼ Normal (µ, σ2I) in R
n and for

each modelm ∈ M, we have an estimator̂µm = µ̂m(Y ). Typ-
ically, each estimator is tied to various explanatory variables
given in a design matrix via a functional model. In section A,
we give expressions for the risk estimates of general mixture
estimators composed of arbitrary estimators (not necessarily
linear). We propose a special form of weights that simplify the
expression for the mixture risk estimate in section B. Finally,
we will apply the general risk estimate results to the case of
linear models and least-squares in section C.

An important realization is that, unlike AIC [8] which gives
an unbiased risk estimate only for each model separately,
Stein’s identity [4], [5] can be applied more generally to pro-
vide an unbiased estimator of the risk of a mixture estimator.

We shall use
σ2 = 1

for sections II to VI for notational simplicity.

A. Risk Assessment for General Mixture

We use the notationa � b =
∑n

i=1 aibi for the inner product
of vectorsa andb and∇ for the gradient where∇i = ∂/∂Yi.

Suppose for eachm, the estimatorµ̂m is almost differ-
entiable in Y (that is, its coordinates can be represented
by well-defined integrals of its almost-everywhere derivatives
∇iµ̂

m
i , which is implied by continuity together with piecewise

differentiability) and that∇iµ̂
m
i have finite first moments.
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Then Stein [4], [5] gives an unbiased estimater̂m for the risk
rm = E ‖µ̂m − µ‖2, i.e. E r̂m = rm for eachµ.

Our goal is to give an unbiased risk estimate for the mixture

µ̂ =
∑

m∈M

wmµ̂
m

where the weightswm(Y ) are non-negative, sum to one, and
almost differentiable. We further assume thatE |(∇iwm)µ̂m

i |
are finite. We also supposeM is finite (though under mild
conditions, the conclusions can be extended for infiniteM).
The following theorem relates the unbiased assessment of the
risk of µ̂ to unbiased assessments of the risks of the individual
estimatorŝµm.

Theorem 1:With the above assumptions, an unbiased es-
timate of the riskr = E ‖µ̂ − µ‖2 of the mixture µ̂ =
∑

m wmµ̂
m is given by

r̂ =
∑

m∈M

wm

[

r̂m−‖µ̂m−µ̂‖2+2(∇ logwm)�(µ̂m−µ̂)
]

. (8)

In addition, if

wm(Y ) =
exp(−ρm)πm

∑

m′ exp(−ρm′)πm′

(9)

for almost differentiableρm = ρm(Y ) and arbitrary constants
πm, then

r̂ =
∑

m∈M

wm

[

r̂m −‖µ̂m − µ̂‖2 +2(∇ρm) � (µ̂− µ̂m)
]

. (10)

This unbiased estimate of risk (8) has three terms. The
principal term

∑

mwmr̂m is the weighted average of the
individual risk estimates. This average is a crude risk assess-
ment, possibly biased. However, with suitable design of the
weights, we will show that it becomes an upper-bound for the
unbiased risk assessmentr̂ for the mixture of least-squares
regressions. Also, an information-theoretic representation of
this term yields the conclusion that it is not much larger than
minm r̂m.

The second term−∑

m wm‖µ̂ − µ̂m‖2 wonderfully illus-
trates an advantage of mixing estimators. If the estimatesµ̂m

vary with m, then combining them reduces the unbiased risk
assessment by the weighted average of the squared distances
of the µ̂m from their centroidµ̂. The unbiased risk estimate
for the mixture (8) intuitively reveals this reduction based on
variability of estimates among a model class (asm varies
for a given sample), rather than based on the variance of the
estimators (as the sample varies for a fixed modelm), which
is a motivation for resampling-type estimators.

The third term2
∑

m(∇wm) �(µ̂m− µ̂) quantifies the effect
of the data-sensitivity of the weights via their gradients with
respect to the dataY . Constant weights would make this term
zero, but would not permit means to adapt the fit to the models
that have smaller̂rm. Finally, the exponential form of weights
(9) gives a particularly clean mixture risk estimate (10) that
depends on the weights via the gradient of the exponents in
the relative weighting only and not the normalization.

If our weights focus on models assessed to be good, then
our intuition says that the third term quantifies the price one
pays for making the mixture estimator adaptive, so it should

have a positive expectation (otherwise, mixing offers a “free
lunch”). However, in the corollary in the next section, we will
show how to design weights such that this third term can be
cancelled with the second.

Proof of Theorem 1:According to [4], [5], an unbiased
estimate of the risk of any estimatorµ̂ is given by

r̂ = ‖µ̂− Y ‖2 + 2

n
∑

i=1

∇iµ̂i − n, (11)

as long as each∇iµ̂i has finite absolute expectation, but our
assumptions are sufficient to ensure this. Now with a variance
calculation using the weightsw as a distribution onM,
summing over each of the coordinates, we rewrite the first
term above as

‖µ̂− Y ‖2 =
∑

m∈M

wm

[

‖µ̂m − Y ‖2 − ‖µ̂m − µ̂‖2
]

.

The second term can be expanded via differentiation under the
summation sign,

∇i

∑

m∈M

wmµ̂
m
i =

∑

m∈M

wm∇iµ̂
m
i +

∑

m∈M

(∇iwm)µ̂m
i

and we recognize in these components the terms of

r̂m = ‖µ̂m − Y ‖2 + 2

n
∑

i=1

∇iµ̂
m
i − n. (12)

such that

r̂ =
∑

m∈M

wm

[

r̂m − ‖µ̂m − µ̂‖2
]

+2

n
∑

i=1

∑

m∈M

(∇iwm)µ̂m
i

after exchanging the order of summation overm and i. The
last term here is the same as

2

n
∑

i=1

∑

m∈M

(∇iwm)(µ̂m
i − µ̂i)

because
∑

m(∇iwm)µ̂i =
[

∇i

(
∑

m wm

)]

µ̂i = 0 (as the
weightswm sum to a constant). The above display equals
2(∇wm) � (µ̂m − µ̂) by exchanging the order of summation
again and the first claim (8) follows.

For the second claim,∇ logwm(Y ) equals −∇ρm(Y )
minus a function (the gradient oflog

∑

k exp(−ρk)πk) which
does not depend onm. Now since µ̂ − µ̂m hasw-average
being the null vector0, its inner product with a quantity not
depending onm averages to 0 under the weightsw, so that
we are left with the∇ρm(Y ) term. This proves (10). �

Remark:One can adjustρm(Y ) by adding any function of
Y that does not depend onm without changing either the
value ofwm or the validity of (10).

Remark:The above risk estimate formulae hold coordinate-
wise. That is, puttinĝµ = (Y1, . . . , Yi−1, µ̂

m
i , Yi+1, . . . , Yn)′

in (11) yields an unbiased risk estimate forµ̂m
i ,

r̂m,i = (µ̂m
i − Yi)

2 + 2∇iµ̂
m
i − 1,

such thatE r̂m,i = (µ̂m
i −µi)

2 for eachµi. Then an unbiased
risk estimate for the mixturêµi =

∑

m wmµ̂
m
i is given by

∑

m∈M

wm

[

r̂m,i − (µ̂m
i − µ̂i)

2 + 2(∇i logwm)(µ̂m
i − µ̂i)

]

.
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With weights (9), we can further simplify this to
∑

m∈M

wm

[

r̂m,i − ‖µ̂m
i − µ̂i‖2 + 2(∇i ρm)(µ̂i − µ̂m

i )
]

. �

Given a collection of models and its corresponding estima-
tors, we can use Theorem 1 to design data-determined weights
wm that make the unbiased estimate of risk (8) for the mixture
small. The weights (9) offer a tractable start, and we can
further simplify (10) in certain cases laid out in section B.
Our risk bounds developed later is one such application.

A second application of the theorem is evaluation of model
classes and their respective mixture estimators, as there can
be multiple model classes that meaningfully decompose a
common parameter space into various scientifically reason-
able models (linear and curved). Provided that we have the
component estimators in each model class and weight them
appropriately, we can evaluate how effectively each model
class explains the data using (8). One can go further with
this for model class design. For instance, a goal may be
to heristically choose a collection of models rich enough to
cover the considered parameter space, and yet the models
are different enough to provide enough variability in their
corresponding estimates such that the second term in the right
side of (8) offers a large reduction in the unbiased risk estimate
(while the third term is controlled).

B. Special Forms of Weights and a Bayesian Interpretation

A special form of weights (9) allows further simplification
of the mixture’s unbiased risk estimate.

Corollary 2: If the weight exponentρm(Y ) has gradient
β(Y − µ̂m) for all m ∈ M and some fixedβ ≥ 0 , then

r̂ =
∑

m∈M

wm

[

r̂m − (1 − 2β)‖µ̂m − µ̂‖2
]

. (13)

In addition, if β ≤ 1/2 , the risk estimate can be bounded by

r̂ ≤
∑

m∈M

wmr̂m,

with equality whenβ = 1/2 .

Proof: From the stated assumption of the form ofρm(Y ),
we see that after adding a function not depending onm,
∇ρm(Y ) matches a multiple of̂µ − µ̂m so the first claim
follows from (10) and the first remark in section A. Choosing
β = 1/2 or smaller eliminates the second term. �

We turn our attention to Bayes procedures (strictly speaking
posterior Bayes). Possibly improper prior measuresλm for µ
in R

n are said to produce proper posterior distributions if the
integral of the Gaussian likelihood

∫

(2π)−n/2e−‖Y −µ‖2/2 dλm(µ) (14)

is finite for eachY andm. In which case, expression (14) is
called the marginal density ofY (also known as Bayes factor
for m) and is denoted byp(Y |m); and wm, proportional
to p(Y |m)πm, is the posterior probability of modelm.
Moreover,µ̂ = E [µ |Y ] =

∑

m wmµ̂
m is the Bayes mixture

of the individual Bayes estimatorŝµm = E [µ |Y,m].

Corollary 3: For a Bayes mixture, the unbiased risk esti-
mate (13) holds withβ = 1. That is,

r̂ =
∑

m∈M

wm

[

r̂m + ‖µ̂m − µ̂‖2
]

.

Proof: For each fixedm, the (posterior) Bayes estimator
satisfies [20, Chapter 4, Theorem 3.2]

µ̂m = E [µ |Y,m] = Y + E [µ− Y |Y,m]

= Y + ∇ log p(Y |m). (15)

Indeed, having assumed thatp(Y |m) is finite for all Y ,
differentiation of it under the integration sign (14) is justified
for the Gaussian likelihood (Cf. [21, Chapter 2, Theorem 9]
for a more general result about exponential families) and this
permits us to rewrite the posterior expectation ofµ − Y as
∇p(Y |m)/p(Y |m), yielding the last equality in (15). Thus
ρm(Y ) = − log p(Y |m) has gradientY − µ̂m so that (13)
holds withβ = 1 by Corollary 2. �

Alternatively, we can heuristically apply Theorem 1 to
weights emphasizing models with small risk estimatesr̂m.

wm =
πm exp(−βr̂m/2)

∑

m′ πm′ exp(−βr̂m′/2)
, β > 0, (16)

where the positive constantsπm are a mechanism for assigning
model preference. That is, we takeρm = βr̂m/2 in (9).
The parameterβ controls the relative importance of averaging
across models (smallβ) and picking out the one that is
empirically best (largeβ). The two extremes areβ → 0,
which ignores the observationsY and weights the models by
πm only, andβ → ∞, which uses only the model(s) with
minimal estimated risk.

Intuitive appeal aside, an important motivation for these
weights is that, in the case of using least-squares estimators
µ̂m for linear modelsm (explored in the next subsection),
weights (16) yield further simplification of (10) via Corollary
2. In particular, linear least-squares coincide with (posterior)
Bayes estimators (15) when one chooses a prior uniform over
(and restricted to) the linear subspacem for each modelm. In
this case, the posterior probability takes the form of (16) with
β = 1 when prior densities forµ underm (with respect to the
Lebesgue measure onm) have relative heights1/(

√
2πe)dm

and the prior probabilities for modelm areπm.
Remark:One can also think of the parameter1/β as a tuning

coefficient for inflating the error varianceσ2 = 1. We will
show that mixing estimators withβ = 1/2 , a conservative
approach regarding the noise to have twice its actual variance,
achieves the best risk bound.

Remark:Mixtures composed of positive-part James-Stein
shrinkage estimators using the heuristic weights (16) also
prove to have low risks, as shown in [6].

C. Linear Least-Squares

Now we specialize to the case that each modelm ∈ M is a
linear subspace ofRn. The estimator̂µm under such a model
is the least-squares projection of the observationsY into the
dm-dimensional linear space, the column space of a design
matrix Xm of a subset of explanatory variables. This can be
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accomplished by Gram-Schmidt procedures, or explicitly via
the projection matrixPm = Xm(X ′

mXm)−1X ′
m such that

µ̂m = PmY .
In essence, combining these least-squares projections pro-

duces a shrinkage estimator which draws the observationsY
towards the linear models inM. The closerY seems to be
to a certain modelm (as assessed by the unbiased estimates
of risks of the individual estimators), the more the shrinkage,
since the weightwm for the projectionµ̂m would be large,
drawing the mixture closer tom.

Lemma 4:For each linear modelm, the expression as-
signed tor̂m in (2),

r̂m = ‖Y − µ̂m‖2 + 2dm − n,

is an unbiased risk estimate forµ̂m. Moreover,̂rm has gradient

∇r̂m = 2(Y − µ̂m).

Proof: It is fruitful to consider an orthonormal basis for
R

n for which the firstdm elements of this basis spansm. A
point Y in R

n can be represented by a linear combination of
these basis elements, whose coefficients are obtained by inner
products withY . In other words, there exists an orthonormal
matrix Q, a function ofm, whose firstdm columns spanm.
Then Y has a representationQZ, with coefficients obtained
asZ = Q′Y . Moreover,Z ∼ Normal (θ, I), with θ = Q′µ
and

θ̂m = Q′µ̂m = (Z1, . . . , Zdm
, 0, . . . , 0)′

is the corresponding least-squares projection in the new coor-
dinate system which simply retains the firstdm elements of
Z. Similarly, the projectionµm of µ has the representation

(θ1, . . . , θdm
, 0, . . . , 0)′

in this system. Then, since the norm is preserved by orthonor-
mal transformations, the risk of̂µm is

rm(µ)
def
= E ‖µ̂m − µ‖2

= E ‖θ̂m − θ‖2

=
∑

k>dm

θ2k + dm. (17)

With θm as the projection ofθ into m, the sum above equals
∑

k>dm

θ2k = ‖θ − θm‖2 = ‖µ− µm‖2.

Thus, we have re-established the Pythagorean identity (1) for
the risk,

rm = ‖µm − µ‖2 + dm. (18)

The unbiased risk estimatêrm is easily computed in the
new coordinate system. From (17), and the unbiasedness of
Z2

k − 1 for θ2k for eachk, we deduce that the following is an
unbiased estimate forrm:

r̂m =
∑

k>dm

Z2
k + 2dm − n = ‖Z − θ̂m‖2 + 2dm − n.

SinceQ is a norm-preserving transformation, this shows the
first claim, and yields a simple expression for the gradient
∇Z r̂m of r̂m with respect toZ because

dr̂m
dZk

= 2Zk1I{k>dm} = 2(Zk − θ̂m
k ),

where 1I{k>dm} = 1 if k > dm and 0 otherwise. Since
the elementsQik of Q are exactly the derivativesdZk/dYi,
applying the multivariate chain rule gives

∇Y r̂m = Q∇Z r̂m = 2Q(Z − θ̂m) = 2(Y − µ̂m)

and the second claim follows. �

Remark:An alternative proof is to use Stein’s identity (12),
together with the fact thattrPm = dm to show thatr̂m is
unbiased. Then write

‖Y − µ̂m‖2 = Y ′(I − Pm)′(I − Pm)Y = Y ′(I − Pm)Y,

where the last equality follows from the fact thatI − Pm is
symmetric and also a projection (onto the orthogonal space of
m). Then the gradient of (2) is2(I − Pm)Y = 2(Y − µ̂m).

Thus, for linear least-squares estimators, by choosingwm

proportional toπm exp(−βr̂m/2) the condition for Corollary
2 is satisfied. With these weights atβ = 1/2 , the resulting
expression in (10) is only thew-average of the unbiased risk
estimateŝrm of the individual models.

This puts us in a setting where we can give simple
information-theoretic characterization of the risk assessment
for the mixtureµ̂.

III. I NFORMATION-THEORETICCHARACTERIZATION OF

RISK ASSESSMENT

We analyse the average risk estimate
∑

m wmr̂m in this
section. It is the primary term in the estimate for the risk of
the mixtureµ̂; and forβ ≤ 1/2 , it is a tight upper-bound of
the unbiased risk estimatêr as concluded by Corollary 2.

Remark: When the unknown meanµ can be well-
approximated by multiple modelsm, the resulting risk of the
mixture at µ would not be very sensitive to the choice of
β around the values of interest at 1 (Bayes) and1/2 (clean
bound). See Section VI for numerical results.

Since the choiceβ = 1/2 makes this average risk estimate
unbiased for the risk of̂µ, we will set it so in this section
for a brisk exposition. The generalization to anyβ > 0 can
be obtained by replacing 4 with2/β, though the average risk
estimate will no longer be unbiased whenβ 6= 1/2 . This will
be explicitly done in the next section where a tighter bound
is proven for the case with weights (3).

A. Sharp Bounds on Risk Estimate of Mixture

The following enunciates the relationship between the av-
erage risk estimate

∑

mwmr̂m and the minimum. From now
on, letM = #M be the cardinality ofM.

Theorem 5:(a) For eachm ∈ M, let

wm =
exp(−r̂m/4)

∑

m′ exp(−r̂m′/4)
, (19)
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then with m̂ being any model achievinĝr∗ = minm r̂m, the
unbiased risk estimate for̂µ =

∑

m wmµ̂
m satisfies

r̂ =
∑

m∈M

wmr̂m = r̂∗ + 4
[

H(w) + logwm̂

]

(20)

< r̂∗ + 4 logM. (21)

(b) More generally, for eachm, let

wm =
πm exp(−r̂m/4)

∑

m′ πm′ exp(−r̂m′/4)
, (22)

whereπm = exp(−Cm) and
∑

m πm ≤ 1. Then here, with
m̂ being any model attainingminm {r̂m + 4Cm} the unbiased
risk estimate for̂µ satisfies

r̂ =
∑

m∈M

wmr̂m = r̂m̂ + 4
[

Cm̂ −D(w‖π) + logwm̂

]

< min
m∈M

{

r̂m + 4Cm

}

. (23)

Proof: Part (a) is a special case of part (b) withπm = 1/M .
For part (b), observe that

r̂m = 4
[

log
πm

wm
− log

∑

m′ πm′ exp(−r̂m′/4)
]

(24)

= r̂m̂ + 4
[

Cm̂ − log
wm

πm
+ logwm̂

]

.

Thus, the equality follows by averaging overm ∈ M with
weightsw. The inequality results sinceD ≥ 0 andwm̂ < 1
(the logarithm of the latter is strictly negative). �

Therefore, for the first form of weights (19), the average risk
estimate (20) is unbiased for the risk of the mixtureµ̂, and can
be expressed as the minimum of the individual risk estimates
plus a price for mixing, a function of the mixing weightsw. If
the weightsw are concentrated on mostly one modelm̂, then
H(w) is close to zero and the combined risk estimate is very
close to the minimum̂r∗. In any case, sinceH is less than the
log-cardinality ofM, the average risk estimate cannot exceed
r̂∗ by a relatively small amount4 logM . (This bound will be
improved in the next section.) Moreover, if there are several,
say J , models ofm with nearly minimal risk estimateŝrm̂,
then accounting for thoseJ values in the sum on the right
side of (24) shows a further reduction of about4 logJ from
the bound (21) for the average risk estimater̂, aptly revealing
the advantage of the mixing.

For mixing with general weights includingπm, the average
risk estimatêr is the minimum of the complexity-inflated risk
estimate plus a reduction due to mixing, a function ofw andπ.
If the data-dependent weightsw differ little from the constant
weightsπ, then the quantityCm − D(w‖π) would be close
to its upper-boundCm. Moreover, if there areJ models ofm
with nearly minimalr̂m̂ + 4Cm̂, then the bound (23) can be
further reduced by about4 log J again by examining (24).

Remark:The condition
∑

m exp(−Cm) ≤ 1 is of course
Kraft’s inequality [22] in basee and the model complexity
is connected to the length of some codeword (innats) that
describes the model. However, our theory does not require
such an interpretation.

Characterizing the average risk estimate by the minimum is
useful as it leads directly to a risk bound.

B. Risk Bound for Mixing Least-Squares Regressions

Corollary 6: The risk r = E ‖µ̂ − µ‖2 of the mixture of
least-squares regressionsµ̂ =

∑

m wmµ̂
m with weights (19)

satisfies
r ≤ min

m∈M
rm + 4 logM,

whererm = E ‖µ̂m − µ‖2, taking value (18), is the risk of
µ̂m. Mixing with weights (22) yields a risk that satisfies

r ≤ min
m∈M

{rm + 4Cm},

whereCm = log(1/πm). Thus the risk functionr = r(µ) is
upper-bounded by an index of resolvability

res(µ) = min
m∈M

{‖µm − µ‖2 + dm + 4Cm}. (25)

Proof: To show the second inequality, we take the expected
value of each side of (23). This recovers the riskr by the
unbiasedness of̂r on the left. Applying

E min
m∈M

{r̂m + 4Cm} ≤ min
m∈M

E [ r̂m + 4Cm]

for the right side yields the second statement, from which the
resolvability bound follows from equation (1). The proof for
the first statement is the same. �

Note that the mixturêµ, its risk estimatêr and riskr all
change with the weightswm, e.g. from (19) to (22). But the
risks for the individual modelsrm(µ) (18) and hence, the risk
targetminm r̂m, depend only onµ and not the weights. So,
the rm in the first two displays of Corollary 5 are identical,
whereas the twor are different.

The index of resolvability (25) with which we have bounded
the risk expresses an idealized trade-off among error of ap-
proximation‖µm − µ‖2, dimensiondm, and complexityCm

of the models considered. It provides a theoretical calibration
of the error the collectionM of models provides asµ varies
over R

n. The approximation error term is a sum of squared
errors of approximation for then means, and is typically the
dominant term among the three unless the unknownµ is in, or
extraordinarily close to, one of the linear spaces considered.
Which of the remaining terms,dm and4Cm, is larger depends
on the model that yields the best overall trade-off, which we
will discuss at greater length in Section VII.

IV. A R EFINED BOUND

In this section, we bring to the fore the price of mixing
estimators with weights (3) (with constantπm factors) using
an arbitraryβ > 0. In short, we shall tighten our risk bounds
by replacing thelogM before with a smaller quantityψ(M).

Definition 7: Let ψ = ψ(M) be a function inM ≥ 2
defined by the solution to

ψ = log
M − 1

ψ
− 1. �

Note thatψ(M) is increasing inM . Also, for eachK > 0,

ψ ≤ max
{

K, log
M − 1

K
− 1

}

, (26)

by considering separately whetherψ ≤ K or not. Then we
can also deduce thatψ(M) < logM by takingK = logM
(treatingM = 2 as a special case).
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Theorem 8:Given the valueŝrm for a finite collectionm ∈
M and weights

wm =
exp(−βr̂m/2)

∑

m′ exp(−βr̂m′/2)
, (27)

with anyβ > 0, the weighted average satisfies
∑

m∈M

wmr̂m ≤ min
m∈M

r̂m +
2ψ(M)

β
, (28)

whereM = #M is the cardinality ofM.

Proof: First, observe that

r̂m =
2

β

[

log
1

wm
− log

∑

m′ exp(−βr̂m′/2),
]

which, upon averaging withw overm, yields
∑

m∈M

wmr̂m = r̂∗ +
2

β

[

H(w) + logwm̂

]

(29)

where m̂ is a model achieving the minimum risk estimate
r̂∗ = minm r̂m. Let h(p) = −p log p − (1 − p) log(1 − p).
Then as in the proof of Fano’s inequality [22], we have

H(w) = (1 − wm̂)H(w̃) + h(wm̂),

where {w̃m : m 6= m̂} are the weightsw renormalized on
M\{m̂}. Thus, (29) becomes
∑

m∈M

wmr̂m − r̂∗ =
2

β

[

(1 − wm̂)H(w̃) + h(wm̂) + logwm̂

]

.

Hence, the bracketed terms on the right are upper-bounded by

(1 − wm̂) log(M − 1) + h(wm̂) + logwm̂

which is concave inwm̂ and equals

(1 − wm̂)
[

log(M − 1) − log
1 − wm̂

wm̂

]

. (30)

Setting to zero the first derivative of (30) with respect towm̂,
we see that the maximum of the bound occurs atwm̂ = w†

satisfying

log(M − 1) − log
1 − w†

w†
=

1

w†
.

Substituting the result back in (30) yields the bound, taking
its optimal value at the odds(1 − w†)/w†

def
= O† with

O† = log
M − 1

O†
− 1,

which isψ(M). �

Thus, how much the risk estimates averaged with weights
(27) exceed the minimum risk estimatêr∗ is related to the
odds ratio ofm not being the model̂m achievingr̂∗, where
the odds ratio is optimized over the weightwm̂.

The quantityψ(M) is computed for a range of values ofM
as shown in Figure 1 and the table below. It gives a noticeable
reduction in the risk bound compared to the use oflogM even
for moderateM . For largeM , one can approximateψ(M) by
logM − log logM .

Now we are ready for the refined risk bound.
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logM

Fig. 1. The termψ(M) that quantifies the price of mixingM estimators
with weights (3) without prior model preferences (πm are constant).

Corollary 9: If µ̂m are least-squares regressions with risk
estimateŝrm in (2), then the unbiased estimate of riskr̂ for the
mixture estimator̂µ =

∑

m wmµ̂
m using weights (27) with a

fixed β ≤ 1/2 satisfies

r̂ ≤ min
m∈M

r̂m +
2ψ(#M)

β
.

Hence, withrm as the risks (18) of the individual estimators,

E ‖µ̂− µ‖2 ≤ min
m∈M

rm +
2ψ(#M)

β
.

Proof: Corollary 2 implies that the unbiased risk estimate
for µ̂ is upper-bounded by the average risk estimate for this
range ofβ, which in turn is bounded as in (28). This proves
the first claim. The second conclusion follows from taking the
expected value of each side of (28) and usingE minm r̂m ≤
minm E r̂m. �

The best of these bounds again occurs atβ = 1/2 .

We compareψ(M) with logM (with the coefficient of 4
for the best risk bound) in the table below.

M = #M 2 5 10 20 40 100 1000
4 logM 2.8 6.4 9.2 12.0 14.8 18.4 27.6
4ψ(M) 1.1 2.9 4.4 6.1 7.9 10.5 17.7

We see that the improved bound of orderψ(M) is twice as
tight as that of orderlogM for M ≤ 20.

V. COMPLEXITY

In this section, we address the choice of the factorsπm

in the weights (These are analogous to prior probabilities of
models whenβ = 1). Our bounds assume that

∑

m πm ≤ 1
and accordinglyCm = log(1/πm) has an interpretation as
a codelength, or descriptive complexity, for modelm. These
factorsπm = exp(−Cm) arise in our risk bounds withβ = 1/2
via the resolvabilityminm {rm + 4Cm}.

In general there may be a very large number of explanatory
variables, as may arise from various product basis expansions
such as multivariate polynomials. We will say a few words
about complexity assignments for such large dictionaries of
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candidate terms in section B. In what follows, we will focus
on the simpler setting of a fixed orthonormal basis of size
matching the sample sizen for analytical simplifications of
the complexities, of the approximation errors, and hence ofthe
resolvabilities (as shall be discussed further in Section VII).

A. Fixed Orthonormal Basis

Here we discuss specific complexity assignments in the case
of subsets of a fixed sequence ofn explanatory variables, as
arises in the context of an orthonormal basis{φ1, . . . , φn}.
The n + 1 leading term models are those spanned by
{φ1, . . . , φk} for somek = 0, 1, . . . , n; and the2n general
subset models are those spanned by arbitrary subsets of the
basis, treating all subsets of the same size equally.

Since there are fewer leading-term models, we are content
to assign them constant complexity, viaπm = 1/(n+ 1) (or
any constant not depending onm). This reduces the weights
(3′) to (3), and results in bounds such as (5), (6) derived in
Section III or Corollary 9 in Section IV, with terms of order
logn. Numerical results with leading-term models are given in
the next section, but we note that flexibility in fitting leading-
term models to the observed response can be rather limited.

The situation with general subsets is dramatically different
with exponentially large number of models since mixing these
with equal weights (3) would render the bound (6) very loose
with a term of ordern log 2. Instead, we advocate using
weights (3′) with

Cm = log(n+ 1) + log

(

n

dm

)

. (31)

This corresponds to a descriptive length oflog(n + 1) nats
for the subset sizedm = 0, . . . , n and a descriptive length of
log

(

n
dm

)

nats to distinguish among the subsets of that size.
Alternatively, the probabilistic approach is to directly employ

πm =
[

(n+ 1)

(

n

dm

)

]−1

to specify a uniform distribution on the cardinality of the
subset and a conditionally uniform distribution on the subsets
of that size. Whendm is a small fraction ofn (desirably
yielding a good trade-off inrm = ‖µ − µm‖2 + dm), this
complexity is roughlydm log(n/dm), much smaller thann.
The information-theoretic interpretation via Kraft’s inequality
[22] is that for each subset sizedm, no competing codelength
can be shorter except for a small fraction of such subsets.

Even though mixing all subset models might at first glance
seem computationally prohibitive, the appendix provides a
computation shortcut in the orthonormal basis case.

One may also combine the benefits of both arguments with
subsets with different structure. Thus, we may set

Cm =

{

log(n+ 1) + log 2 if m leading-term

log
(

n
dm

)

+ log(n+ 1) + log 2 otherwise

to produce a risk bound that is nearly as good as the best of
the two, paying a price of at mostlog 2 nats.

The dimension term dm in the resolvability
minm {‖µ− µm‖2 + dm + 4Cm} is negligible compared to

the complexity when general subsets are involved. However,
when leading-term models have small enough approximate
error (that the best resolvability favours them) one sees that
the complexity term (of orderlog(n + 1)) can be negligible
compared to the dimensiondm, and then the resulting risk
trade-off is not encumbered with multiplicativelogn factors.
Implications for this remark will be discussed further next.

B. Large Dictionaries

It can be quite natural for a very large number of candidate
basis functions to be available, potentially much larger thann,
especially in multivariate settings in which one is modelling
non-linear functions of several variables. For instance, suppose
the candidate basis functions ofD variables are formed as
products based on a countable list of basic one-dimensional
functions. Using the firstL of such basis functions in each of
the variables producesLD candidate product basis functions.
These arise directly in polynomial and trigonometric expan-
sions (and similarly in neural net and multivariate wavelet
models). So for eachL = 1, 2, . . ., modelsm consist of
arbitrary subsets of sizedm = k of these LD product
basis functions, fork = 0, 1, . . . ,min{LD, n}. The associated
dictionary of models has a combinatorially large number

(

LD

k

)

of such subset models for eachL and k. We may assign
complexity such as

Cm = 2 log(k + 1) + 2 logL+ log

(

LD

k

)

,

for which wm = exp(−Cm) is summable over modelsm
indexed byk andL. Because our risk bound depends on the
combinatorial term via the logarithm only, a useful risk bound
results as long as accurate subset models are available for the
target, withkD logL small compared ton, even though the
number of candidate predictorsLD may be much larger than
n. However, whether there is a way to compute such provably
accurate estimators in sub-exponential time is doubtful.

VI. A N EXAMPLE WITH LEADING-TERM MODELS

We will show numerical results of the risks of our mixture
estimators in the fixed orthonormal basis case in this section.

Consider then + 1 nested leading-term models from an
orthonormal design. UsingZ = (Z1, . . . , Zn) as the coeffi-
cients of the basis functions obtained by taking their inner
products withY , we have the canonical setting in whichZ is
distributedNormal (θ, I) (as in the proof of Lemma 4). Each
leading-term modelm with dimensiondm posits thatθk = 0
for k > dm, wheredm ranges from 0 ton. In this case, the
least-squares estimators under these models are simply

θ̂m
k = Zk1I{k≤dm}. (32)

Our discussion will proceed in this suitably transformed space
of θ, with emphasis on a moderate problem dimensionn = 20.

Recalling that the varianceσ2 in each dimension is 1, the
naı̈ve maximum-likelihood estimator (for the full model) has
a risk of n. The best risk upper-bound is obtained with the
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mixture estimator usingβ = 1/2 , and is4ψ(n+ 1) (≈ 6.2 for
n = 20) beyond the risk target

r∗(θ) = min
0≤k≤n

[

k +
∑

j>k

θ2j

]

. (33)

Simulations with variousθ andn show that this margin from
the target always seems less thanlogn (≈ 3 for n = 20), so
there is room for improving our risk bounds.

Here we will illustrate a case where the true parameter
θ indeed belongs to one of these leading-term models. In
particular, only the first 10 elements ofθ are non-zero. (If
the θk’s are Fourier-type coefficients wherek has a frequency
interpretation, thenθ, the signal to be estimated, is “ideal low-
pass” with a “bandwidth” of 10.) We vary‖θ‖2 (total signal-
to-noise ratio) while restricting the non-zero coefficients θk to
have constant magnitude. (By symmetry, all risk quantitiesof
interests depend on any coefficientθk via θ2k only.) Hence, the
true parameter can be described by

θ2k ∝ 1I{k≤10},

or θ2k = 1/10‖θ‖21I{k≤10} to be more precise. The risk target
(33) reduces to

r∗(θ) = min {‖θ‖2, 10}.
In confirming this target, note that if‖θ‖2 < 10, we are better
off leaving out all the terms (i.e.k = 0), since the bias so
incurred is less than the variance of10 if we included them;
whereas if‖θ‖2 > 10, then the bestk is seen to be10.

Any mixture of these leading-term estimators (32) with
weightswm will have the formθ̂k = ckZk where the data-
driven coefficients

ck =
∑

m:dm≥k

wm

are between 0 and 1 and monotonically (strictly) decreasingin
k (for wm strictly positive). We have examined both choices
of β = 1/2 , 1 in our mixture estimator, as they correspond
to the estimator with the tightest risk upper-bound and a
Bayes procedure. In addition, we also examine the AIC model
selection estimator (mixture withβ → ∞) for comparison.
The performance of the mixture estimator is not very sensitive
to the choice ofβ between1/2 and 2.

Figure 2 says that all three estimators have risks just over 2
worse than the target at small and large‖θ‖, but the mixtures
(β = 1/2 , 1) even beat the target around‖θ‖2 = 10. The AIC
model selection estimator is often worse than the mixtures.
In fact the advantage of mixing over selection seems uniform
(over the entire parameter space) in the Bayes caseβ = 1, and
almost uniform for theβ = 1/2 mixture (AIC is slightly better
at the originθ = 0). The risks of all three estimators are similar
for large‖θ‖2. This is expected since the trueθ is in one of
the models considered (the one withdm = 10). Indeed, when
the signal-to-noise ratio‖θ‖2 is large, AIC picks the correct
model with high probability, while the adaptive weights in our
mixture give strong emphasis on the right model.

Note that the mixture withβ = 1/2 outperforms the Bayes
mixture for a large range of‖θ‖2 between 2.5 and 55. Thus,
besides analytical convenience, usingβ = 1/2 indeed provides
non-trivial risk advantage over Bayesβ = 1 in some cases.
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VII. A PPROXIMATION AND RESOLVABILITY

This section exhibits classes of behaviour for the true coeffi-
cientsθ that permit control of the approximation error arising
in our resolvability bound on the risk of the mixture estimator.
The point is to observe how the mixture simultaneously adapts
to multiple such classes, and to differentiate when certaintypes
of mixtures are suitable. For example, leading-term mixtures
are appropriate for cases with ellipsoidal controls onθ (in
which the axis widths decay), and general subset mixtures are
appropriate when measures of the sparsity of the coefficients
θ are controlled (regardless of their order).

To facilitate discussion of approximation and risk on a
standardized scale, we shall use the average squared error
‖µ̂ − µ‖2

n as the loss function, where‖ · ‖2
n =

∑n
i=1(·)2i /n

(with division byn). The riskrm = E ‖µ̂m−µ‖2
n of the least-

squares estimator̂µm for modelm is ‖µm−µ‖2
n +dm/n, and

likewise, the riskr = E ‖µ̂− µ‖2
n of the combined estimator

µ̂ is bounded by the index of resolvability

r ≤ min
m∈M

{

rm + 4Cm/n
}

= min
m∈M

{

‖µm − µ‖2
n +

dm

n
+

4Cm

n

}

, (34)

trading off among approximation error, dimension relativeto
sample size, and complexity relative to sample size.

Recall that our models are the linear subspacesm spanned
by a subset of the orthonormal basis vectors{φ1, . . . , φn}
with ‖φk‖2

n = 1 for eachk ≤ n (e.g. these may arise from
evaluation of a function at given input valuesx1, . . . , xn). For
convenience, we abuse notation by identifyingm with the set
of all indices k such thatφk is a basis vector form, i.e.
{k : φk ∈ m}. Thus, the best approximation toµ =

∑

k θkφk

in m is µm =
∑

k∈m θkφk, keeping only the terms inm. The
resulting approximation error is

‖µm − µ‖2
n =

∑

k/∈m

θ2k.

A. General Subsets and Adaptation to Sparsity

Let M consist of all subsets of{φ1, . . . , φn}. Here we
assign for general subset models (31) a complexityCm which
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depends on the subsetm only through its dimensiondm.
When performing the minimization for each dimensiond,

the smallest approximation error occurs whenm is the model
consisting of thed largest magnitude coefficients. Thus, we
denote by{θ(j)} the coefficients{θk} sorted descendingly as
such,|θ(1)| ≥ |θ(2)| ≥ . . . ≥ |θ(n)|. Consequently, the index
of resolvability takes the form

resn(θ) = min
d≥0

{

∑

j>d

θ(j)
2

+
d

n
+

4Cn(d)

n

}

,

where we have rewritten (31), the complexityCm for a model
m with dimensiond = dm as

Cn(d) = log(n+ 1) + log

(

n

d

)

. (35)

The mixture estimator is constructed without knowledge of the
subsets for which the true coefficients are largest. Nevertheless,
it achieves risk

rn(θ) ≤ resn(θ) for all θ ∈ R
n.

To enunciate the relationship between sparsity and approx-
imation of θ, we define a sparsity index

‖θ‖s
s =

∑

k|θk|s, 0 < s ≤ 2,

and (by taking the limitsց 0) denote

‖θ‖0
0 = #{θk : θk 6= 0}

as the number of the non-zero elements inθ. If ‖θ‖s
s is not

large for somes ∈ [0, 2), then general subset models permit
control of the approximation error as a function of the number
of coefficientsd. For example, ifθ is such that|θ(j)| ≤ K/j2

for eachj and someK > 0, then we can control its sparsity
index for all s > 1/2 , whereas if there are few non-zero
elements inθ, then we can control its sparsity index all the
way down tos = 0.

Lemma 10:With {θ(j)} being the elements ofθ re-ordered
in descending magnitude, we have

∑

j>d

θ(j)
2 ≤ ‖θ‖2

s

(d+ 1)(2−s)/s
, 0 < s ≤ 2.

Proof: Since the|θ(j)|s sum to‖θ‖s
s and are non-increasing,

we have|θ(j)|s ≤ ‖θ‖s
s/j. Write

∑

j>d

θ(j)
2

=
∑

j>d

|θ(j)|2−s|θ(j)|s

and use the inequality|θ(j)| ≤ ‖θ‖s/(d + 1)1/s in the first
factor inside the sum to yield the bound. �

Considers = 1, for instance. This is the case that the
unknownµ, suitably scaled, is in the convex hull of{±φk}.
Then the approximation error bound is‖θ‖2

1/(d + 1). If s is
smaller, e.g.1/2 , then one has a faster decay ind for the error
bound,‖θ‖2

1/2/(d + 1)3. For s = 0, the approximation error
vanishes when the model dimension exceeds the number of
non-zero elements such that we may putd = ‖θ‖0

0, which
with

(

n
d

)

≤ d logn yields the risk bound

rn(θ) ≤ ‖θ‖0
0

1 + 4 logn

n
+

4 log(n+ 1)

n
.

Putting the ingredients together we have a result which says
that the mixture estimator, formulated without specification
of the sparsity index‖θ‖s

s, estimates as well as if one knew
in advance which indexs produces the best trade-off in
approximation error and dimension plus complexity.

Theorem 11:The risk of the mixture of all subset models
with weights (3′) and complexity (35) satisfies

rn(θ) ≤ min
d≥0

{ ‖θ‖2
s

(d+ 1)(2−s)/s
+
d

n
+

4Cn(d)

n

}

for eachs < 0 ≤ 2. Moreover,

rn(θ) ≤ min
s∈[0,2]

{

2‖θ‖s
s

(1 + 4 logn

n

)1−s/2

+
4 log(n+ 1)

n

}

Proof: The first line is by Theorem 5(b) together with the
approximation bound from the previous lemma. For the second
line, useCn(d) ≤ d log n + log(n + 1) to show that the
bracketed bound holds for eachs ∈ [0, 2], which for s = 0
is immediate from the comment above (with an inflation by a
factor of 2). Fors > 0, we optimize the right hand side of

rn(θ) ≤ min
d≥0

{ ‖θ‖2
s

(d+ 1)(2−s)/s
+
d+ 1

n
+

4Cn(d)

n

}

over d. In particular, putting

d+ 1 =
[(2 − s

s

) ‖θ‖2
s n

1 + 4 logn

]s/2

(rounded down to an integer) yields the bracketed bound. Now
the stated conclusion follows after minimization overs. �

Remark:For s = 1, the appropriate bound‖µm − µ‖2
n ≤

‖θ‖2
1/d is known to hold for whenµ =

∑

k θkφk not only
when theφk are orthonormal but in fact for any basis functions
with ‖φk‖2

n ≤ 1, as shown in [23], [24]. It follows in this case
that the risk of the mixture over all subsets satisfies

rn(θ) ≤ resn(θ) ≤ 2‖θ‖1

(1 + 4 logn

n

)1/2

+O
( logn

n

)

.

This extends the results available for the risk of selection
criteria in this convex hull setting from [2], [15], [25]–
[28] to the mixture estimator. The results in these references
are primarily cast in multivariate settings where there is an
exponentially large dictionary of candidate basis functions and
where training data tends to be sparse so that risk bounds
are perhaps better cast for random designs (new inputs are
independent from but identically distributed as training data).
The recent work [29] takes a step to develop analogous
conclusions for the more challenging case with sparsity indices
1 < s < 2 for non-orthogonal candidate basis functions.

In the case of wavelet models with wavelet coefficients
θj,l on each translatej and levell, natural conditions on the
coefficients, expressed via bounds on

∑

j |θj,l|s on each level
l, correspond to certain Besov spaces. Similar risk bounds for
model selection procedures are given in [30]. Analogous con-
clusions are possible for mixture estimators by our techniques
here. For certain problems with piecewise constant models the
logarithmic factor in the risk is necessary [30].

If instead of having the non-zero elements ofθ scattered
throughout the indices, it happens that the|θk| are bounded
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by a decreasing function ink, then mixtures of leading-
term models can avoid the logarithmic factor, as this is a
generic phenomenon of certain ellipsoidal classes of functions
(discussed next).

To summarize the story for general subsets of basis vectors
from a dictionary, we have in this case that the complexity,
essential to the risk bounds, is larger than the dimension of
the models. Small approximation error by models of moderate
dimension requires adaptation of subsets, and one achieves
these good approximations in optimal balance with complexity
by mixing estimators over these models.

B. Leading-Term Models and Adaptation to Ellipsoids

Next we consider models in which the subsets of terms arise
in prescribed forms. Those models have complexity smaller
than dimension and are also important in theory and applica-
tions. Among the simplest such models are those of leading-
term type such as polynomials (of adjustable degree) and
truncated Fourier series (of adjustable maximal frequency).
These linear models are indexed bym = {1, 2, . . . , k} with
dimensiondm = k ≤ n.

The model complexity can be set to eitherCm = log∗ dm

with log∗ d = log(d+ 1) + 2 log log(d+ 1) to slightly favour
small models, orCm = log(n + 1) which gives uniform
weights. We need not restrict the models to be nested. For
instance polynomial splines on equal spaced knots provide a
sequence of models indexed by(k, r), wherek is the number
of knots andr is the degree of the local polynomials, and we
may setCm = log∗ k + log∗ r.

In these cases, the complexity is seen to be of smaller order
than the dimension (which we allow to be large to improve
approximation error). Now when the complexity is negligibly
small compared to the dimension, the interpretation of the
resolvability simplifies to just the optimal trade-off between
squared bias and variance among the linear models. This is
preferred for cases in which a good approximation is achieved
without taking all subsets of terms.

For example, suppose(φ
k
)k≤n are orthonormal basis func-

tions and that the meanµ =
∑

k θkφk
is in an ellipsoidal

(also called Sobolev) classEa,b which is the collection of
pointsθ in R

n such that
∑

k θ
2
ka

2
k ≤ b2, where(a2

k)k≤n is an
increasing sequence. Now the leading-term model which stops
at dimensionm provides an approximationµm =

∑

k≤m θkφk
for which the approximation error‖µm −µ‖2

n =
∑

k>m θ2k is
bounded byb2/a2

m+1 uniformly for points in Ea,b. Adding
the variance termm/n and minimizing overm yields a risk
minimum r∗ = minm {b2/a2

m+1 +m/n}, which is known to
be the minimax rate over all possible estimators for each such
ellipsoid Ea,b (see e.g. [30]).

For example whena2
k = k2s (as arise in characterizing

Sobolev classes using Fourier series), we recover the rate
Csb

2s/(2s+1)n−2s/(2s+1) optimal with respect tob andn, as
laid out in Pinsker [31] (though our bound based on adaptive
mixing of least-squares projections reflects a possibly larger
constant than that with optimal Pinsker filtering). Note that
in the construction of the mixture there is no presumption of
any particular regularity sequence(ak), smoothness indexs, or

size of ballb. The mixture across model dimensions is adaptive
in that, in providing risk bounded by the risk of the best
linear model, for eachµ, it will be simultaneously minimax
rate-optimal for all ellipsoidsEa,b (all a and b). Beran and
Dümbgen [32] has another approach (see also the discussion
in [33]).

C. Asymptotic Optimality and Improved Oracle Inequalities

The adaptation ability of our mixture estimator is quite gen-
eral: a sequence of linear modelsm which are not necessarily
nested and not necessarily built from orthonormal terms. The
cleanness of the resolvability bound, with constant multiplier
of 1 for the squared bias and dimension terms, provides an
oracle inequality that exhibits already in finite samples the
type of optimality previously studied in asymptotic settings.
For example, Shibata [34], Li [35] and others have shown
that estimators based on certain model selection criteria are
risk ratio-optimal. In particular, the ratio of risk relative to
the minimum of risks over all size models converges to 1 as
n→ ∞ for fixed sequences of meansµ, provided the sequence
is such thatnr∗(µ) → ∞ asn → ∞, and provided that the
log-cardinality of models of each dimensiond is of a lower
order thand. However, that convergence is not uniform inµ.

We provide a similar result here for out mixture of estima-
tors. For sample sizen (on which all risk quantities implicitly
depend), let the risk of the least-squares estimator for model
m be rm(µ) = ‖µm − µ‖2

n + dm/n. Then our combined esti-
mator achieves riskr(µ) ≤ minm {rm(µ) + 4Cm/n}, which
is in turn less thanminm {rm(µ) + 4Cm/n : dm ≥ γCm},
where in the latter, we have restricted our attention to the
models with dimensions greater than a multipleγ > 0 of
their complexities. Thus, relative to the risk targetrγ

∗ (µ)
def
=

minm {rm(µ) : dm ≥ γCm}, our mixture achieves a risk ratio

r(µ)

rγ
∗ (µ)

≤ 1 +
4

γ
,

uniformly in µ for eachγ, such that the ratio can be arbitrarily
close to one. To see this result in a setting similar to that
of [34], [35], suppose for a fixed sequence ofµ, the models
achieving the targetr∗ = minm rm have dimensions that
grow unboundedly, yet the complexities of these models are
of a smaller order than their dimensions. Thenr∗(µ)/rγ

∗ (µ)
converges to 1 for eachγ, and hencer(µ)/r∗(µ) converges
to 1 also.

In any case, the risk of the combined estimator is never
worse than the best risk among the models for which the
complexity is negligible compared to the dimension. More
precisely, this can be quantified using a multiplicative constant
of 1 for the risk target plus a term for the complexity relative
to n as in the resolvability bound (34). For a similar spirit of
oracle inequalities but with larger multiplicative constants, see
works by Birgé, Massart, and Barron [30], [36], [37] for model
selection in least-square regressions; Donoho and Johnstone
[38]–[41] for shrinkage estimation in orthonormal basis; and
Devroye and Lugosi [42] for density estimation; Yang [1]
for prediction; Wegkamp [43] forL1 risk in regression; and
Juditsky et al [28] and Tsybakov [2] for function aggregation
in regression.
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D. Summary of Approximation Trade-offs

Whether it is better to use all subset models or complete
models of various orders in regression depends on the nature
of the unknown targetµ. If coefficients(θk) in a suitably trans-
formed representation are scattered throughout the indices,
then the target requires all subsets associated with sparseap-
proximations, achieving good risk properties when mixed with
weights that account for appropriate model complexity. On the
other hand if the magnitude of(θk) decays withk, typical of
those in ellipsoid classes, then mixtures of nested leading-term
projections can achieve the best trade-off in approximation
and dimension, with a small model complexity penalty. If one
does not know in advance which of the two settings is more
appropriate for a case at hand, then they may be combined,
adding only a(log 2)/n price to the complexity terms. The
resulting estimator achieves risk corresponding to the best
trade-off in approximation, dimension, and complexity.

APPENDIX

Given a fixed orthonormal basis of sizen with all 2n

subset models, here we examine computation for the all-subset
mixture. At first, it might seem impractical to combine so
many components as the mixture involves calculating all2n

associated least-square fits and their respective weights.But
we provide an alternative route in obtaining this mixture with
simplified computation due to a Bayesian interpretation.

Let Z1, . . . , Zn be the inner products of the data vectorY
with the orthonormal basis vectorsφ1, . . . , φn, which provide
the coefficients for the representation ofY in this full basis.
The least-squares estimator for any subset model simply zeros
out the coefficients for the variables outside the given subset.
Consequently, the coefficients in the representation of the
combined estimator are given bŷθk = ĉkZk where ĉk =
∑

m∋k wm, between 0 and 1, are weights aggregated from the
models which include termk. As in (3′), wm is proportional to
πm exp(−βr̂m/2). Here we provide, for certain naturalπm,
more direct means to compute the filter coefficientsĉk that
does not require summingwm over the exponentially many
models including termk.

Toward this end, we first note that the factorexp(−βr̂m/2)
equals a constant times the product

∏

k/∈m e−β(Z2

k
/2−1), which

we may also write as

pβ(Z |U) =

n
∏

k=1

exp[−β(Z2
k/2 − 1)(1 − Uk)]

where U = U(m) = (U1, . . . , Un) with Uk = 1I{k∈m}

as either 1 or 0 depending on whetherm includesk (and
hence,

∑

k Uk = dm). HereU in {0, 1}n provides a standard
alternative way to refer to subsetsm of {1, . . . , n}. The
notation pβ(Z |U) arises from a probabilistic interpretation
we shall come to shortly. Denotingπm = π(U) we may write

ĉk =
∑

m∋k

wm =

∑

U :Uk=1 pβ(Z |U)π(U)
∑

U ′ pβ(Z |U ′)π(U ′)
.

The point we want to make here is that ifπm = π(U) is
expressible as a mixture distribution forU over some hidden

parameterq, as in π(U) =
∫

p(U | q) p(q) dq, then in
calculating the numerator and the denominator of expression
above, we may exchange the order of the sums and the
integrals. For instance, the denominator above becomes,
∫

[

∑

U

pβ(Z |U) p(U | q)
]

p(q) dq =

∫

pβ(Z | q) p(q) dq.

This is the case with theπm we recommended for all-subset
mixtures using complexity (31),

πm = π(U) =
1

n+ 1

1
(

n
dm

) =

∫ 1

0

qdm(1 − q)n−dm dq.

The product formp(U | q) =
∏n

k=1 q
Uk(1 − q)1−Uk and

the binary nature ofUk allows us to express the shrinkage
coefficients aŝck = Ik/I, where

Ik =

∫ 1

0

ck(q)ℓn(q) dq and I =

∫ 1

0

ℓn(q) dq

ℓn(q) =

n
∏

k=1

[q + (1 − q) exp(−β(Z2
k/2 − 1))] (36)

ck(q) =
q

q + (1 − q) exp[−β(Z2
k/2 − 1)]

.

Note thatck ∈ [0, 1] is greater or less thanq according to
whether|Zk|2 exceeds 2 (an evidence that the true parameter
contains termk), andck is near 1 for large|Zk|.

We evaluate then+ 1 integralsI andIk numerically. This
can be done by summing over a fine uniform grid onq ∈ [0, 1],
with care taken to note thatℓn(q) peaks around its maximizer
q̂. In accordance with standard Laplace approximation of
integrals, the grid width should be narrower than order1/

√
n

(order1/n based onn uniformly spaced grid points suffices)
so as to ensure that we capture the peak. Also, for largen such
Laplace approximation shows that the shrinkage factorsĉk
are numerically close tock(q̂). In essence, this is an adaptive
shrinkage factor in which the magnitudes of all elements of
Z are used to adapt to levels ofq that appear to give rise to
the individualZk.

A probabilistic interpretation emerges whenβ = 1, giving
rise to a hierarchical model in which each variable, when
conditioned on its sole dependent variable, is independentof
all other.

q ∼ Uniform[0, 1]

Uk | q ∼ i.i.d. Bernoulli(q)

θk |Uk ∼ i.i.d.

{

point mass at 0 ifUk = 0

Uniform(R) densityh if Uk = 1

Zk | θk ∼ i.i.d. Normal(θk, 1).

Thus,p(Zk |Uk = 0) = ϕ(Zk) whereϕ is the standard normal
density, andp(Zk |Uk = 1) = h and

p(Uk = 1 |Zk, q) =
qh

qh+ (1 − q)ϕ(Zk)
,

leading top(Z | q) =
∏n

k=1[qh+(1−q)ϕ(Zk)]. And the Bayes
shrinkage factor̂ck = E [Uk |Z] agrees with expression (36)
with the choiceh = 1/(

√
2πe). See Hartigan [10] and the

references therein for Bayesian considerations of this model.



14

Even for β 6= 1, one can still interpret all the quantities
above probabilistically, with the distributionθk |Uk scaled by
1/β and the normalZk | θk having variance1/β instead of 1.
For example, our best bound occurs atβ = 1/2 , meaning that
by being twice as conservative about the error variance, we end
up mixing across models more indiscriminately. Occasionally,
the risk obtained this way is lower than that whenβ = 1
(Section VI).

In summary, it is equivalent to consider our estimator
either as a mixture across all subsets specified byU (with
q integrated out) or as a mixture acrossq (with U summed
out). We have found the former to be more conducive to our
risk analysis and the latter more conducive to computation.
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