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Information Theory and Thermodynamics 

 
By Oded KAFRIa† 

 
Abstract. A communication theory for a transmitter broadcasting to many receivers 
presented.  In this case, energetic considerations cannot neglected as in Shannon theory.  It 
is shown that, when energy is assigned to the information bit, information theory complies 
with classical thermodynamic and is part of it. To provide a thermodynamic theory of 
communication it is necessary to define equilibrium for informatics systems that are not in 
thermal equilibrium and to calculate temperature, heat, and entropy with accordance to 
Clausius inequality.  It shown that for a binary file, the temperature is proportional to the bit 
energy and that information is thermodynamic entropy.  Equilibrium exists in random files 
that cannot compressed. Thermodynamic bounds on the computing power of a physical 
device, and the maximum information that an antenna can broadcast are calculated.  
Keywords. Information theory, Thermodynamics, Entropy. 
JEL. C62. 

 

1. Introduction 
hannon information and Boltzmann entropy have the same mathematical 
expression. However, information conceived as an opposite of entropy. 
Brillouin in his book suggested that information is negative entropy 

(Brillouin, 1962). Many view information as a logical sequence of bits of some 
meaning as oppose to a thermal state, which is a state of randomness. The known 
scientific knowledge does not support this mystic idea.  Shannon has shown that 
the higher the randomness of the bits in a file, the higher the amount of information 
in it (Shannon, 1949). The Landauer and Bennet school (Bennet, 2003) suggests 
that the randomness of the bits in a file related to Kolmogorov complexity (Li & 
Vitanyi, 1997). This claim may give an impression that the Shannon information is 
a meaningful subjective quantity. However, according to the Shannon theory a 
compressed file, containing meaningful information has similar amount of 
information as an identical file, with one flipped bit that cannot be decompressed 
and therefore, for us the receivers, it is just a noise.  

In this paper, a thermodynamic theory of information is proposed. It is shown 
that Shannon information theory is a part of thermodynamics, and that information 
is the Boltzmann -H function. Therefore, information has a tendency to increase the 
same way as entropy.  

The information increase observed in nature attributed to a specific mechanism 
rather than to a natural tendency. Here it is proposed that increase of information as 
increase of thermal entropy, is caused by the second law of thermodynamics. 

To support this claim it is required to calculate, for informatics systems, the 
quantities in Clausius inequality (which is the formulation of the second law), 
namely, entropy, heat, and temperature and to define equilibrium.  

In section I, the classical thermodynamics of heat transfer from a hot bath to a 
cold bath reviewed together with the basic definitions of entropy, heat, 
temperature, equilibrium, and the Clausius inequality.  
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In section II, a calculation of the entropy, heat, temperature, and the definition 
of equilibrium for the transfer of a one-dimensional two-level gas from a hot bath 
to a cold bath according to statistical mechanics provided and an analogy to 
Clausius inequality is shown.  

In section III, an analysis of the transfer of a frozen one-dimensional two-level 
gas (a binary file) from a hot bath (a broadcasting antenna) to a cold bath (the 
receiving antennas) provided. A temperature is calculated to the antenna that, 
together with the transmitted file information (entropy) and its energy (heat), is 
shown to be in accordance with classic thermodynamics and the Clausius 
inequality. Therefore, It is concluded that in the absence of thermal equilibrium 
information is entropy  

In section IV, these results used to calculate a thermodynamic bound on the 
computing power of a physical device and in section V, a thermodynamic bound on 
the maximum amount of information that an antenna can broadcast is calculated. 

 
2. Classical thermodynamics of heat flow 
Clausius deduced the second law of thermodynamics from Carnot's calculation 

of the maximum amount of work W that can be extracted from an amount of heat 
Q transferred from a hot bath at temperature TH to a cold bath at temperature TC 
(Kestin, 1976).  Carnot used in his machine an ideal gas as a working fluid, and the 
gas law for his calculation.  The Carnot efficiency is,  

 
η ≡ W∕Q η ≤ 1 – TC /TH.                                                 (1) 
 

Namely, the maximum efficiency η of a Carnot machine depends only on the 
temperatures. To obtain the maximum efficiency the working gas should obey the 
gas law, therefore, the machine has to work slowly and reach equilibrium at any 
time. Clausius (Kestin, 1976) assumed that Carnot efficiency is always true no 
matter what mechanism or working fluid is used. That means that there is no 
dependence on the ideal gas law. Clausius concluded that if the Carnot efficiency is 
always true, there is a quantity, entropy S, that defined in equilibrium (the equality 
sign) and can calculated according to, 

 
S ≥ Q/T                                                                       (2) 

 
When a system is not in equilibrium, Q/T is smaller than the entropy. This 

inequality reproduces the Carnot efficiency. However, it reveals more than one 
would expect.  The entropy change S is equal to Q/T only in equilibrium. Out of 
equilibrium Q/T is smaller than entropy. Therefore, if we assume that any system 
has a tendency to reach equilibrium, any system tends to increase Q/T. Clausius 
assumed that taking a system out of equilibrium requires work, which will also 
eventually reach equilibrium (namely it will thermalized) and, therefore the 
entropy of a closed system tends to increase and cannot decrease. Temperature and 
entropy defined at equilibrium and the temperature can calculated as, 

 
T = (Q / S)equilibrium                                                             (3) 

 
This definition of temperature accepted to be always true. 
Now I calculate a simple example of the entropy increase in heat flow from a 

hot thermal bath to a cold one (see Figure 1).  
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Figure 1. The entropy increase in spontaneous energy flow from a hot thermal bath to a 

cold thermal bath. 
 
When we remove an amount of energy Q from the hot bath, the entropy 

reduction at the hot bath is Q/TH . When we dump this energy to the cold bath, the 
entropy increases by Q/TC . The total entropy increase is   S = Q/TC  - Q/TH  . One 
can see that if the process is not in equilibrium S > Q/TC  - Q/TH  . In general, 
 
S ≥ Q/TC  - Q/TH                                                                                     (4) 
 

 In sections II and III I will give an analogy to this example for statistical 
physics and for information theory. 

 
3. Statistical Physics of one-dimensional two-level gas 
The entropy defined in statistical physics as klnΩ, where Ω is the number of 

microstates (combimations) of a system and k is the Boltzmann constant (Landau 
& Lifshits, 1980). We will use this definition to calculate the thermodynamic 
quantities and the Clausius inequality for a system that resembles an informatics 
system.  

We consider a thermal bath at temperature TH, which is in contact with a 
sequence of L states. p of the L states have energy ε and that called "one". L-p of 
the states have no energy and are called "zero". We analyze the thermodynamics of 
transferring this two-level gas from a hot bath at temperature TH to a colder bath TC. 
The probability of the two-level sequence is simple, because the number of 
possible combinations of p, "one" particles in L states is the binomial coefficients 
(see Figure 2), namely, there are, Ω = L!/[ p! (L-p)!] combinations. 

 

 
Figure 2. One-dimension two-level gas with L=6 and p=2. In equilibrium all possible 

combinations have equal probability (the ergodic assumption). If some of the combinations 
have higher probability than others the system is not in thermal equilibrium. 
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The entropy of the system is kln Ω, and the energy of the system is pε. The 
temperature is calculated from Eq. (3). Using Stirlings formula, we derive ∂Q/∂S to 
obtain T. The well-known result is, 
 
p/(L-p) = exp (-ε/kT)  or T = (ε/k)/ ln[(L-p)/p].                                                     (5) 
 

Namely, one parameter T represents all our knowledge on this one-dimensional 
two-level gas in equilibrium. This is a well-defined system with a well-defined 
entropy temperature and energy. The equilibrium was invoked by giving an equal 
probability to all the possible combinations of the p particles in L states (This 
assumption is called the ergodic assumption Plischke & Bergersen, (2006)). Eq. (5) 
is a famous result, but it should note that this derivation done by deriving Q (the 
heat) and not according to the internal energy of the gas as is done in most 
textbooks. The reason is that in this model, a two-level gas transferred from a hot 
bath to a cold bath, and therefore its energy is heat. If a system is not in 
equilibrium, there are certain combinations that are preferred (a biased 
distribution), and thus the actual combination span (phase space) is smaller.  
Therefore, the probability Ω of the gas not in equilibrium is smaller. Since the 
energy of the gas conserved, we obtain a higher effective "temperature".  
Boltzmann called the quantity klnΩ calculated for a biased distribution the –H 
function (Huang, 1987).     

When the two-level gas is removed from the hot bath, the entropy is reduced by 
SH = pHε/TH =  kpHln[(L-pH) / pH] .  When we dump it to the cold bath, we generate 
entropy SC = pHε/TC =  kpHln[(L-pC) / pC]. 

The total change in the entropy is, 
 
SC  - SH = (kQ /ε)ln{( pH / pC)[(L- pC)/(L-pH)]}≥ Q/TC -Q/TH     (6) 
 

It should be noted that part of the energy, ε( pH - pC ), was transferred from the 
gas to the cold bath.  Obviously Eq. (6) is positive when TC is lower than TH , and 
we see that Eq. (6) is with accordance with Eq. (4), namely, the second law (see 
Fig 3). The inequality stands for the transmission of a one-dimensional two-level 
gas with a biased probability of the combinations of the gas. The probability in 
mechanical statistics considered sometimes as a time average on all possible 
combinations of p particles in L states. However, if we look at our one-dimensional 
two-level gas at a given short time, we will observe only one of the possible 
combinations. 
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Figure 3. The entropy increase, due to transmission of one-dimension two-level gas, from a 

hot bath to a cold bath. 
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In fact, we will see a binary file. Adopting a slightly different point of view can 
solve this paradox, namely, instead of considering the system probability as a time 
average, we consider it as the probability of finding a given combination at a 
certain time. In the ergodic case, in equilibrium, any one of the possible 
combinations can pop up at a given time without any preference. In a biased 
system, not in equilibrium, certain combinations will have higher probabilities than 
others will. This approach does not affect the mathematical analysis; however, it 
will be very useful when we consider information. 

 
4. Information theory of one-dimensional two-level sequence 
The Shannon definition of information based on a model of a transmitter and a 

receiver. In his model, a binary file transferred from a transmitter to a receiver. A 
binary file is, in fact, a frozen one-dimensional two-level gas. The binary file is not 
in thermal equilibrium as it is highly biased to one possible combination of the bits. 
As oppose to two-level gas, where the energy of the bit ε fixed, in a binary file the 
bit energy may change continuously.  

Shannon was interested in the maximum amount of information that can coded 
in a given binary file of length L. His famous result is that information has the 
same expression as entropy. However, no connection made between Shannon's 
entropy and thermodynamics. The amount p of "one" bits, in a file of length L, is 
not related to the amount of information in the file. This is in contradistinction to 
the two-level gas, in which the energy, the temperature and the entropy are 
functions of p, (see Figure 3). For example, several files having the same amount 
of "one" bits may have a small amount of information. For example if all the "one" 
bits are in the beginning of the file, and the rest of the file has zero bits or any other 
ordered combination (see Figure 4), and some other files may have a relatively 
high amount of information, if the distribution of the bits in the file is random. 

 

 
Figure 4. Three possible binary files having the same energy. The higher two files have 

higher order and therefore contain little information and can be compressed effectively. The 
lower file is random and contains maximum information and therefore it cannot 

compressed and is in equilibrium. 
 
The amount of information in a file is a function of the randomness of the bits 

in it, and there is no unique connection between the number of bits and the amount 
of information. The reason that Shannon obtained the same expression as 
Boltzmann is that in two-level gas we have no way to predict what combination 
will be at a certain time, and in a random file we have no way to predict what bit 
will be at a certain time (the unpredictable sequence of bits is the useful 
information). Since information and entropy are probability calculations, the same 
expression obtained. Nevertheless, the calculations for the two-level gas and a file 
are different as will show hereafter. 

With analogy to the transmission of two-level gas, we start the thermodynamic 
analysis of a file transmission by considering a truly random sequence of L bits. In 
this case p = L/2, therefore the maximum information that a file of length L can 
contain according to Shannon is I = Lln2. In this case the ratio between the number 
of “one” bits (the energy) and the information (entropy) is unique. This is in 
contradistinction to a file with some correlations in which the number of “one” bits 
p does not determine the amount of information. So by assigning energy ε to the 
“one” bit we obtain Q = Lε/2 and S = kLln2. Using Eq. (3) we obtain, 
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T= Q/S = (ε/k)/2ln2.                                                (7) 
 
Eq. (7) should be compared with Eq. (5) namely T = (ε/k)/ln[(L-p)/p]. We can 

see that for a file, the temperature depends only on one variable, the bit energy. In a 
two-level gas, the temperature depends also on p. In two-level gas, lowering p 
reduces the temperature and increases the entropy. So according to the second law 
a two-level gas would tend to cool down.  In a file, reducing the bit energy yields a 
similar result. Therefore, according to the second law, a file has a tendency to 
lower its bit energy. We complete the analogy by considering antenna broadcasting 
a binary file to N antennas. A possible deployment of such system is a point-
radiating antenna surrounded by a sphere, whose area divided to N equal receivers. 
According to Turing model (1936), the hot antenna emits the broadcasted file. A 
receiver antenna receives the broadcasted file but with a lower bit energy. 
Therefore, it is equivalent to a cold bath. Using Eq. (4) we obtain, 
 
S ≥ Q/TC  - Q/TH  = NkI – kI.                                                       (8) 

 
Eq. (8) shows that the file temperature obtained in Eq. (7) yields correctly the 

increase in information in the broadcasting of a binary file to N receivers (which is 
NI –I). In “peer-to-peer” transmission, as in Shannon model, no information 
increase was involved; therefore, no thermodynamic considerations are necessary. 
Out of equilibrium, there is a correlation between the bits, and the amount of 
information in the file is smaller. As a result, the same energy carries less 
information, therefore T is higher and I is smaller. Using Eq. (8) we can rewrite 
Clausius inequality for informatics system as, S ≥ kI. 
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Figure 5. The analogy between heat flow from a hot bath at temperature TH to a cold bath at 

temperature TC and an antenna broadcasting a file of bit energy ε to N antennas, each 
receiving the file with bit energy ε/N. In the thermal case the entropy increase is ΔS ≥ ΔQ/ 

TC – ΔQ/TH . However, the same equation ΔS ≥ ΔQ/ TC – ΔQ/TH reproduces well the 
information balance when we use the temperature definition from Clausius inequality 

ΔQ/ΔS for a compressed binary file. The antennas deployment is drawn to emphasize the 
physics only. 

. 
 This implies that Information, like entropy, tends to increase. In a general case 

in complex systems both informatics and thermal processes occurs simultaneously. 
In these cases a transformation of thermal entropy to informatics entropy and vice 
versa may occur.  Thus, Clausius inequality can written as, 
 
S ≥ Q/T + kI                                                            (9)  
  

It is worth noting that ideally compressed files rarely exist. In order to calculate 
the amount of information in a file, we have to find an ideal compressor (Huffman, 
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1977). Unfortunately, such a compressor does exist only asymptotically. The 
amount of information in an uncompressed file, with some correlation between 
bits, is equivalent to the Boltzmann –H function, namely the "entropy" of a system 
out of equilibrium with a biased distribution. Shannon, in his famous paper 
(Shannon, 1949), mentioned that information is the Boltzmann –H function, 
nevertheless it called by many entropy. 

 
5. Example -The Computing power of a Physical device 
The units used in communication are the power P and the frequency f in bits/sec 

of an emitter/transmitter and not the bit energy. Therefore, the temperature of 
emitter/transmitter can written as;   
 
T = P/(k f ln2 ).                                                        (10) 
 

It also assumed that any informatics system (i.e. computer) surrounded by a 
thermal bath that emits thermal noise at a temperature Tn.  To calculate a bound on 
a computing power of a physical device Turing’s model (1936) used. In Turing 
model erasing one bit and registering it again is an example of a logical operation.  
In our case the bits rate of the file is the maximum computing power. The higher 
the bit rate, the lower the temperature of the file as the bit energy reduced. Since 
the temperature of the file must be kept above the temperature of the noise Tn, the 
frequency has an upper limit. From Eq. (10) we conclude that f ≤ P/(kln2T) where 
T should be about 10 times higher than the noise temperature. Therefore, the upper 
bound on computing power of any device is, 

 
f ≤ P/(10kln2 Tn).                                             (11) 
 

The powers applied on any computing device, and its ambient temperature 
suffices to give a limit on its computing power. C.H. Bennett, in his review on the 
“Thermodynamics of computation” (Bennet, 2003), quotes from a Von Neumann 
talk that “a computer operating at temperature T must dissipate at least k ln2T per 
elementary act of information”. Later Bennett quotes that “in nature per nucleotide 
or amino acid the ratio is 20-100 k ln2T ” with accordance to the present theory.   

 
6. Example - the maximum information that an antenna can 

broadcast 
Consider a point antenna broadcasting a compressed file. The bit energy at a 

receiving antenna having area A will be lower as the distance R between the 
transmitting antenna and the receiving antenna is higher. The temperature of the 
file at the receiver will be  
 
Tr = Tt(A/4ππR2) = PA/[k ln2f 4ππR2].                                                                    (12)   

 

The minimal size of both the transmitting and the receiving antenna is λλ=c/f , 
where λ λ is the wavelength of the carrier radiation and c is the speed of light. If we 
assume that the bit energy at the receiver should be 10 times larger than kT  (a 
conventional assumption for signal to noise requirements), we can calculate from 
Eq. (12) the maximum distance R that an antenna of power P and a frequency f can 
broadcast to a receiving antenna of area A = λλ2. As an example, consider a 50 W, 
900 MHz radio transmitter. From Eq. (5) we find that the temperature of a 
broadcasted file via an antenna at the size of a wavelength is about 5 1015 K. We 
can cool the file from signal to noise considerations to about 3000 K (ten times the 
ambient temperature). We assume that the receiver has an antenna of area A = λλ2, 
and we obtain that the thermodynamic bound for the maximum distance R ≈ 100 
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Km. This number may appear high, however, the receiving antenna is usually 
linear, and A is less than 1/100th of λλ2 and thus R ≈ 10 Km. 

Now we consider a large antenna of radius Rt >> λλ.  Because of the second 
law, it is not possible to detect a signal with a higher intensity (temperature) than 
that of the surface of the antenna.  So we can replace Tr with Tt  in Eq. (13), and 
calculate the entropy leaving the transmitting antenna. We can imagine the surface 
of the broadcasting antenna as a superposition of many small antennas of area λλ2 
and substitute A = λλ2 in Eq. (13). The limit temperature of the broadcasted file can 
also calculated from Eq. (13). The maximum information transmission of an 
antenna over a time interval ΔΔt is given by S/k and yields,  
 
ΔS ≡ PΔΔt/ Tt = k ln2 (f /λλ2) 4ππRt

 2 ΔΔt ≥ k ΔI,                                                     
(13) 
 

This is the Clausius inequality for a broadcasting antenna. This expression 
resembles the results of Bekenstein (1973) and Srednicki (1993) that a spherical 
emitter has entropy that is proportional to its area as a black hole or any imaginary 
sphere.  

 
7. Summary   
This paper deals with the energetic of a file broadcasted from one antenna to 

several antennas (a generalization of Shannon's theory). An analogy between 
information broadcasting from one antenna to several antennas to heat flow from a 
hot bath to a cold bath is drawn. We show that: 

1. The Shannon information content I of a file is equivalent to the 
Boltzmann -H function. 

2. The transmitted file energy is equivalent to heat. 
3. A compressed file is a state of equilibrium.   
4. The temperature of the antenna is proportional to the bit energy 

broadcasted from it or received by it.  
Clausius inequality for an antenna and for informatics systems in general is 

calculated. In addition, a bound on the computing power of a physical device 
derived.  The maximum information that can broadcasted from an antenna was 
calculated, and shown to be a function of its area. 
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