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ABSTRACT

Motivation: Despite advances in the gene annotation process, the

functions of a large portion of gene products remain insufficiently

characterized. In addition, the in silico prediction of novel Gene

Ontology (GO) annotations for partially characterized gene functions

or processes is highly dependent on reverse genetic or functional

genomic approaches. To our knowledge, no prediction method has

been demonstrated to be highly accurate for sparsely annotated GO

terms (those associated to fewer than 10 genes).

Results: We propose a novel approach, information theory-based

semantic similarity (ITSS), to automatically predict molecular func-

tions of genes based on existing GO annotations. Using a 10-fold

cross-validation, we demonstrate that the ITSS algorithm obtains

prediction accuracies (precision 97%, recall 77%) comparable to

other machine learning algorithms when compared in similar

conditions over densely annotated portions of the GO datasets.

This method is able to generate highly accurate predictions in

sparsely annotated portions of GO, where previous algorithms have

failed. As a result, our technique generates an order of magnitude

more functional predictions than previous methods. A 10-fold cross

validation demonstrated a precision of 90% at a recall of 36% for the

algorithm over sparsely annotated networks of the recent GO

annotations (about 1400 GO terms and 11000 genes in Homo

sapiens). To our knowledge, this article presents the first historical

rollback validation for the predicted GO annotations, which may

represent more realistic conditions than more widely used cross-

validation approaches. By manually assessing a random sample of

100 predictions conducted in a historical rollback evaluation, we

estimate that a minimum precision of 51% (95% confidence interval:

43–58%) can be achieved for the human GO Annotation file dated

2003.

Availability: The program is available on request. The 97 732

positive predictions of novel gene annotations from the 2005 GO

Annotation dataset and other supplementary information is available

at http://phenos.bsd.uchicago.edu/ITSS/

Contact: Lussier@uchicago.edu

Supplementary information: Supplementary data are available at

Bioinformatics online.

1 INTRODUCTION

In the postgenomic era, annotating gene functions using

standardized vocabularies, such as the Gene Ontology (GO),

has become a critical task for biologists due to the massive

numbers of genes identified though sequencing. GO is

organized as a hierarchical structure containing ontological

knowledge of biology, which has been manually developed by

human experts (Ashburner et al., 2000). Despite advances in the

gene annotation process, many gene products are still left

poorly characterized. For example, though the number of GO

annotations for Homo sapiens genes increased 66% from 2003

to 2005, the GO Consortium currently only provides annota-

tions for about 16 000 of the �25 000 known human genes,

indicating that a large number of genes remain to be

functionally characterized.
Methods for predicting annotations of gene products fall into

the rough categories of experimentally based and knowledge-

based approaches. In general, experimentally based approaches

depend on direct experimental information about genes, while

knowledge-based approaches rely on existing knowledge (e.g.

results from previous experiments, biomedical literature, GO

Annotation datasets, etc.). Experimentally based methods

generally focus on a single scale of biology such as protein

conformation (Laskowski et al., 2005) or gene sequence (Jones

et al., 2005; Khan et al., 2003). In contrast, knowledge-based

approaches, such as those employing the literature or GO,

provide opportunities for prediction using knowledge from

multiple scales of biology. Literature-based methods, including

indexing (Perez et al., 2004), natural language processing

(Chiang et al., 2006), computational reasoning (Bada et al.,

2004) and statistical analysis (Andrade and Valencia, 1998),

have generally achieved below 70% precision at predicting gene

function. While hybrid approaches exist, most focus on a

specific experimental data type (Chen and Xu, 2004; Kemmeren

et al., 2005) or are difficult to interpret (Shahbaba and Neal,

2006).
In contrast, GO-based methods have been shown to achieve

higher accuracies when used on a small number of GO terms in

densely annotated regions of the ontology. The GO

Annotations provide standardized and integrated gene function

annotations, incorporating relevant literature and experimen-

tally based measurements from multiple scales of biology, many

of which have been manually curated. It is therefore a unique

data source for inferring such annotations based on multiple

physical properties.
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King et al. (2003) proposed the first accurate method for
doing so using only existing GO annotation patterns by using
machine learning algorithms. Using known GO annotations as

a gold standard, King et al. obtained a precision of 97.7% using
decision trees, and a precision of 93.7% and recall of 50% using
Bayesian networks (BN) using data from the Saccharomyces

Genome Database (SGD) (Cherry et al., 1998). Using FlyBase
(Mitchell et al., 2003) data, they obtained a similar results with
a precision of 87.5% using decision trees, and a precision of

78.7% and recall of 50% with BNs. However, these levels of
precision and recall were only achieved though strict filtering of
the datasets, most significantly requiring each candidate GO

term be associated to at least 10 genes. This cut the number of
candidate GO terms by over an order of magnitude to 170 for
SGD and 218 in FlyBase.
To our knowledge, no prediction method has been demon-

strated to be accurate for GO terms associated to fewer than
10 genes, an important consideration as the vast majority
of GO terms utilized in the annotations fit in this category

(e.g. 82.5% of GO terms in H.sapiens annotations are
associated with less than 10 genes). In addition, current
predictions using GO do not use the ontological similarity

between otherwise distinct genes annotations.
The semantic similarity between two concepts, or groups of

concepts, has been used extensively in the domain of computer

science for information retrieval and natural language proces-
sing tasks (Jiang and Conrath 1999; Lee et al., 1993) as well as
for k-nearest neighbor (KNN) machine learning tasks (Yuseop

et al., 2001). Recently, semantic similarity has also been utilized
within the biological domain for predicting protein–protein
interaction networks (Wu et al., 2006) as well as investigating

the relationships between GO annotations and gene sequences
[Lord et al., 2003a, b] and microarray expression profiles
(Wang et al., 2005). Semantic similarity has also been used in

clustering genes functionally, a different task from predicting
novel gene functions (Chen et al., 2007; Wang et al., 2005).
Previous studies have integrated semantic similarity and KNN

methodologies to improve missing value estimations in micro-
array data (Tuikkala et al., 2006), and analyze gene expression
data in coordination with an ontology-driven clustering method

(Wang et al., 2005). However, to our knowledge, the proposed
method is the first use of an information theory-based semantic
similarity (ITSS) approach for assigning novel gene functions

to known genes directly from the geometry of the network of
the GO annotations and the overarching GO alone. We use
knowledge from the GO hierarchies to derive predictions with

the hopes that by maximizing the number of utilized GO
concepts, these predictions will be based upon as much
information as possible. The accuracy of the ITSS method

has been established for a significantly broader number of GO
annotations than previous methods (King et al., 2003), which
were evaluated over a small number of GO terms with more

constraints.
In this article, we describe a novel technique, named ITSS,

for predicting new gene annotations based exclusively on

existing GO annotations, and present the results of an
evaluation, which show a higher recall than previously reported
methods. Given that methods for predicting gene annotations

using homology of physical properties such as sequence and

expression profile have been proven successful in the past, it is

reasonable to speculate that we may also be able to employ the

semantic similarity of gene annotations. In this research, we

hypothesize that semantic similarity measurements between

groups of concepts based on information theory can be used to

predict new annotations associated with a gene. The basis of the

ITSS approach we propose is a KNN algorithm using an ITSS

measure as the metric for assigning new relationship edges to

concept nodes in the network. The predictions described in this

article rely on two semantic similarity scores: (1) between two

genes’ concepts in the GO annotations, and (2) between two

groups of GO concepts within the ontology. Through the use of

this technique, we are able to more fully exploit the ontological

knowledge contained in the structure of GO and its annotations

using semantic similarity scores to calculate predictions of

novel gene annotations, and provide more interpretable

predictions over a broader number of GO terms and genes

than previously evaluated prediction methods.

2 SYSTEM AND COMPUTATIONAL METHODS

We have developed the ITSS algorithm to assign unknown annotations

to a gene based on the similarity of its known annotations and those of

other genes. In this section, we will first introduce the algorithm used

for calculating semantic similarity between any two concepts. Next,

we will describe the algorithm for calculating the semantic similarity

between any two groups of concepts, and last, we will explain how

semantic similarity can be used as a metric in the KNN algorithm for

predicting new GO annotations for a gene.

2.1 Semantic similarity between any two concepts within

an ontology

The first algorithm is for calculating the semantic similarity between

‘any two concepts’ in an ontology. For example, the simplified ontology

seen in Figure 1a consists of nine different concepts. ‘Any two concepts’

means that the algorithm can be used to calculate the semantic

similarity between any two concepts, including identical concepts.

2: cellular process

1: biological_process

7: cell
adhesion

 

4: cell commu-
nication

9: acid
secretion

3: localization

8 

5: cell differentiation
8: hormone secretion

6: secretion5 

1

II III

9

3

87

4 6

2

5 

I

(a) (b)

Fig. 1. Semantic similarity between concepts. The semantic similarity

between any two concepts, or any two groups of classified concepts is

illustrated. (a) Semantic similarity can be calculated between any two of

the nine concepts. (b) Semantic similarity can also be calculated

between any two arbitrarily defined groups of concepts. Group I

contains concepts 1 and 3, Group II is comprised of concepts 4, 5, 7 and

8, and Group III contains concepts 5, 6, 8 and 9. Concepts can be

shared between concepts (e.g. concepts 5 and 8 are members of both

Group II and Group III).
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The GO is comprised of three subontologies, ‘molecular functions’,

‘cellular components’ and ‘biological processes’. Because these three

subontologies contain orthogonal types of entities, they are considered

to be different ontologies in our methods. Therefore, the algorithms

described in this section will calculate the semantic similarity between

any two concepts from the same subontology in GO. If the two

concepts are in different subontologies of GO, then semantic similarity

is equal to be zero. For example, the semantic similarity can be

calculated between the two concepts ‘oxidoreductase activity’ and

‘peptidase activity’, which are both from the same subontology of GO,

‘molecular function’.

There are generally three main algorithms, based on information

theory, for calculating the semantic similarity between two concepts in

an ontology, which were respectively proposed by (Jiang and Conrath,

1997), Lin (1998) and Resnik (1995). In our study, we used Lin’s

algorithm because it returns a normalized value between 0 and 1, and

outperformed other methods in our dataset (Supplementary Fig. S1).

Lin’s algorithm for calculating the semantic similarity between concepts

a and b is defined as:

simða,bÞ ¼ 2� icðmsða,bÞÞ=½icðaÞ þ icðbÞ� ð1Þ

where

� ic (c), the information content of c, is defined as �log (p(c)), where

p (c) is the probability of the occurrence of c. In this study, the

occurrence probability of a concept c is defined in Equation (2)

(Lord et al., 2003a)

pðcÞ ¼
ð1þ number of all descendants of cÞ

total number of concepts in an ontology
ð2Þ

� ms (a,b), the minimum ‘subsumer’ of concepts a and b, is defined as

the common ancestor that has the minimum probability of

occurrence.

� ic (ms (a, b)), therefore, is the information content of the minimum

‘subsumer’ of concepts a and b.

� Example of the calculation. To compute the semantic similarity

between ‘protein binding’ and ‘single-stranded DNA binding’,

we note that ‘protein binding’ has 561 descendants, ‘single-stranded

DNA binding’ has 2 descendants, and the entire ‘molecular

function’ hierarchy contains 7063 concepts. Thus p (‘protein

binding’)¼ (1þ 561)/7063¼ 0.0796 and p (‘single-stranded

DNA binding’)¼ (1þ 2)/7063¼ 0.000425. Their minimum ‘sub-

sumer’ is ‘binding’, which has 961 descendants with p

(‘binding’)¼ (1þ 961)/7063¼ 0.136. Therefore, the semantic simi-

larity according to Lin’s algorithm is 2� (log0.136)/

[�log0.0796� log0.000425]¼ 0.388.

2.2 Semantic similarity between two groups of concepts

The second algorithm calculates the semantic similarity between ‘any

two groups’ of concepts within an ontology based on the similarity

between a pair of GO concepts calculated as described in the first step.

These two groups can be obtained in any way as long as they are all in

the same ontology. For example, using the ontology seen in Figure 1b,

we can arbitrarily select groups of concepts, such as Groups I, II and

III. The semantic similarities can be calculated between any two of these

arbitrarily defined groups. These groups can also share identical

concepts as shown in Figure 1.

In this particular research, we define a group of concepts as those GO

concepts that are associated with a single gene. For example, all of

the concepts within the ‘molecular function’ subontology that are

associated with the gene BRCA1 (breast cancer 1, early onset) compose

a group, which contains the concepts ‘DNA binding’, ‘protein binding’

and ‘transcription coactivator activity’. All of the concepts within the

‘molecular function’ subontology that are associated with the gene

BRCA2 (breast cancer 2, early onset) comprise another group, which

contains the concepts ‘nucleic acid binding’, ‘protein binding’ and

‘single-stranded DNA binding’. The semantic similarity between these

two groups tells how similar the genes BRCA1 and BRCA2 are in terms

of their molecular functions.

Based on these methods for determining the degree of similarity for a

pair of concepts, we used the following ‘pairwise’ method for

calculating the semantic similarity between two groups of concepts

within an ontology. The pairwise algorithm (Jiang and Conrath, 1999)

was compared to the ‘cross-join’ algorithm (Wang et al., 2004), and was

found systematically superior in three preliminary studies

(Supplementary Fig. S1). Before performing the semantic similarity

calculation, the concepts within one group are paired-up with those of

another group. This pairing process is illustrated in Figure 2. First, for

each concept in group A, the most similar concept is found in group B.

Then, for each concept in group B, the most similar concept is found in

group A. If two concepts across the groups are reciprocally found to be

most similar to one another, these two concepts are considered to be a

pair. All of the reciprocal pairs constitute a set P, which is always non-

empty because each concept will always have a ‘most similar’ partner

concept. The ‘pairwise’ formula for two groups of concepts is:

sim ðA,BÞ ¼ 2�
P

ðai ,biÞ2P,sim ðai,biÞ �t sim ðai,biÞ

ðjAj þ jBjÞ
ð3Þ

where

� A, B represent the two groups of concepts; (ai, bi) is a pair in P, the

same indices i means that ai and bi are from the same pair.

� If the similarity between ai and bi is too low, we usually do not

regard them as a pair. Therefore, to reduce noise, we use a threshold

value t to remove pairs with low similarities.

(a) (b) (c)
Sim(A,B) 

Group A Group B Group A Group B Group A Group B

Fig. 2. Determining semantic similarity between groups of concepts

using a pair-wise method. The small circles represent concepts, and the

dashed ovals indicate the groups of concepts. The geometric distances

between the circles illustrate the semantic distances between concepts;

a larger semantic distance indicates a lower semantic similarity between

concepts. (a) For each concept in Group A, the concept in Group B

with the maximum semantic similarity (i.e. shortest distance) is

determined. The arrows pointing from Group A to Group B indicate

these relations. (b) For each concept in Group B, the concept in Group

A with the maximum semantic similarity (shortest distance) is

determined. The arrows pointing from Group B to Group A indicate

these relations. (c) The bidirectional arrows illustrate the resulting

reciprocal relations that are returned as pairs of concepts with

the maximum semantic similarity. The similarity score sim(A,B) is

calculated using Equation (3).
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� |A| and |B| represent the numbers of concepts in set A

and B. The items |A| and |B| are used here to reduce the

calculated impact of groups with extra concepts beyond paired

concepts.

2.3 Prediction of new annotations for a gene using ITSS

Based on the metric of semantic similarity between two concepts or

two groups of concepts, the ITSS method employs the simple KNN

classification algorithm (Duda and Hart, 1973) to predict new

annotations for a gene. The process of KNN is illustrated in the

example in Table 1, and detailed below:

� Select a target gene and a target GO term. In the example in

Table 1, we selected a gene that is known to be highly related

to breast cancer, BRCA2. Our goal is to predict whether

BRCA2 participates in the biological process ‘DNA repair’.

In the GOAh file dated 2003, ‘DNA repair’ was not associated

with BRCA2. However, this annotation was added to the GOAr

file dated 2005.

� Calculate the semantic similarities between GO annotations of the

target gene and GO annotations of all genes in the training set

based on Equation (3). In this example, we set the threshold value

t¼ 0.7 based on a previous optimization process.

� Sort, in descending order, the genes in the training set according to

the semantic similarities of their annotations to the target gene.

Table 1 shows the first 10 training genes, their semantic similarities

and categories (i.e. whether they have been annotated as ‘DNA

repair’). Their categories are ‘þ’, indicating the gene has the

annotation ‘DNA repair’, or ‘�’, indicating that the gene does not

have this annotation.

� Collect the categories of the first k-training genes based on a

predefined k value. In the example in Table 1, if we set k¼ 4, then

we will obtain the categories of BRCA1, TBPL1, APEX1 and

TRIM24.

� Apply different cutoff values, a positive integer less than k, to the

number of positive categories required to obtain the prediction

category for the target gene. If the number of positive categories

is greater than the cutoff value, then a positive category will

be returned. Otherwise, a negative category will be returned.

In the example in Table 1, if we use cutoff value of either 0 or 1,

a positive category will be returned, because the number of

positive cases is 2, which is greater than both 0 and 1. However, if

we use a cutoff value equal to 2 or 3, then we will get a negative

category because the positive number 2 is not greater than either of

the cutoff values.

2.4 ITSS parameter optimization

To obtain the best predictions, there are two parameters of the ITSS

algorithm that must be optimized: (1) the number of neighbors is KNN

(k-value), and (2) a similarity threshold [t-value in Equation (3)]. The

optimal k-value was determined by randomly selecting 100 or 500 genes

to comprise a testing set and applying different values for k. The

optimal value t was determined by using the entire datasets of genes.

The values of k and t were judged as optimal when the prediction

F values are maximal.

2.5 Statistical analysis

The performance of the different prediction algorithms was assessed

by comparing the areas under the resulting receiver operating

characteristic (ROC) curves, calculated using the ‘trapezoidal rule’.

The SE of the area under an ROC curve is calculated using the

following Equation (4):

SEðAÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Að1� AÞ þ ðna � 1ÞðQ1 � A2Þ þ ðnn � 1ÞðQ2 � A2Þ½ �

na þ nnð Þ

s
ð4Þ

where A is the area under the curve, na and nn are the number of positive

and negative results, respectively, taken from the gold standard, and Q1

and Q2 are estimated by Q1¼A/(2�A) and Q2¼ 2A2/(1þA). Equation

(5) defines the SE of the difference between two areas A1 and A2:

SEðA1 � A2Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
SE2ðA1Þ þ SE2ðA2Þ

p
ð5Þ

The z-score is equal to |A1�A2|/SE(A1�A2), indicating how far and in

which direction the observation deviates from its distribution’s mean

expressed in units of its distribution’s SD. The conservative Bonferroni-

type adjustment (Sokal and Rohlf, 1995) accounted for the multiple a

posteriori comparisons with two types of random controls.

3 RESULTS AND EVALUATION

3.1 Materials

We used a GO file that contains hierarchical relations

organized as three exclusive axes of biological concepts. The

version of GO used in this study, dated August 2005, was
downloaded from http://www.geneontology.org/GO.down

loads.shtml, containing 9633 distinct Biological Processes,

1570 distinct Cellular Components and 7063 distinct

Molecular Functions, excluding the 1000 terms annotated as

obsolete.
Two GOA files for H.sapiens, which contain annotations

relating human genes to their biological processes, molecular

functions and cellular components in GO, were used in this

study. The GOAh in this article, is dated March 2003, and was

obtained directly from NCBI. GOAh contains 51 830 distinct

gene-GO entries, including 11 221 distinct human genes and
3448 unique GO terms. The second GO Annotation file,

referred as GOAr, is dated August 2005, and was downloaded

from NCBI’s Entrez Gene at (http://www.ncbi.nlm.nih.gov/

entrez/query.fcgi?db¼gene). It contains 86 348 distinct

gene-GO entries, including 15 442 distinct human genes and

4610 distinct GO terms. A detailed comparison is summarized

in Table 2.

Table 1. An example of similarity score results from the KNN

algorithm for gene annotation predictions

Genes Similarity score

to target

gene according

to Equation (3)

DNA repair?

(GO:0006281)

Target gene BRCA2 � ?

Training genes BRCA1 0.646 þ

TBPL1 0.614 �

APEX1 0.613 þ

. . . . . . . . .
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3.2 Experiments

In order to determine the accuracy of the predictions, we

conducted two experiments and an in-depth manual evaluation:

(i) A 10-fold cross-validation was performed to compare

ITSS to published predictive algorithms on the GO

annotations databases of SGD and FlyBase.
(ii) As no such previous studies exist for H.sapiens, a 10-fold

cross-validation in conditions comparable to that of the

first experiment, and a ‘historical rollback’ validation

were conducted on the H.sapiens database. We manually

assessed 100 randomly selected positive predictions from

the H.sapiens data resulting from the use of the optimal

algorithm parameter values derived from the validation

studies.

3.3 Experiment 1. Comparison of ITSS to published

predictive algorithms for the SGD and FlyBase

datasets

To evaluate the ITSS approach in comparison to other machine

learning algorithms that do use semantic distance-based

methods, we compared the prediction results of the ITSS

algorithm to those of the Decision Tree and Bayesian Network

studies performed by King et al. (2003). To obtain fair

comparisons, we repeated the experimental methods of King

et al. (2003) as precisely as possible. As the original SGD and

FlyBase GOA files were not available, we used SGD and

FlyBase GOA files from 2005, and removed entries later than

22 January 2002 according to their PubMed IDs, to produce

datasets of relatively similar size to those utilized by King et al.

(2003) who used a SGD file containing 6403 genes and a

FlyBase file containing 13 500 genes; we calculated datasets

containing 6099 and 11 142 genes, respectively.

We replicated the 10-fold cross-validation methods utilized

by King et al. (2003) and also followed their procedures to get

similar sets of GO terms. For this study, we used 165 GO terms

for testing in both the SGD and FlyBase datasets, drastically

reduced from the entire SGD (2261) or FlyBase (3859) datasets

due to the 10 gene association constraint. The genes in each

GOA file were randomly partitioned into 10 sets of approxi-

mately equal size. Each of these 10 sets of genes will be used as

testing set, in turn, and the aggregate of the remaining nine

sets as the training set. The task was to predict if a gene in

the testing set is associated with a certain GO term, using the

known annotations in the corresponding GOA files as a gold

standard. Knowledge of any association between the gene and

the target term is hidden from the ITSS algorithm in order to

provide an unbiased binary association prediction for the term.
If a prediction was positive, i.e. the gene was indeed assigned

to the term in the GOA file, the prediction was considered a

true positive (TP). If a prediction was positive but the gene was

not assigned to the term in the GOA file, then this prediction

was considered a false positive (FP). If a prediction was

negative but the gene was not assigned to the term in the GOA

file, then this prediction was counted as a true negative (TN). If

a prediction was negative and the gene was assigned to the term

in the GOA file, then this prediction was considered to be a

false negative (FN). The True-Positive Rate (TPR), equal to

TP/(TPþFN) and the False-Positive rate (FPR), equal to FP/

(FPþTN), were then calculated. The prediction results were

represented as ROC curves, in which the FPR is plotted on the

x-axis and the TPR on the y-axis (Metz, 1978). The cutoff

values of the ITSS algorithm were varied to generate the

different data points on the curves.
In order to demonstrate that the predictions are effective, we

employed two types of random controls. The first control,

random algorithm (RA), assigned a random decimal number to

the value of calculated semantic similarity used in the ITSS. The

second control, random data (RD), follows a permutation

resampling design where the ITSS algorithm was applied to a

fictitious GOAr annotation file constructed by randomly

shuffling the relationships between genes and their GO

annotations to purposely randomize annotation patterns

while preserving the total number of occurrences of each

annotated GO terms. RA and RD provide an estimate of the

maximum number of FP predictions which can be useful to

understand the meaning of the observed uncorroborated

predictions in the full study.

We conducted these evaluations with optimized parameters

for the ITSS algorithm (k¼ 4, t¼ 1). The comparisons of ROC

curves are shown in Figure 3. Because in biological predictions

a low FPR is usually more desirable than a high TPR, we used

the ROC area comparison method (Hanley and McNeil, 1983)

in only the areas of those ROC curves where the FPR was

below 0.001. In the SGD dataset, as shown in Figure 3a, DT

performed slightly better than ITSS algorithm, but the

difference was not statistically significant (z¼ 1.538,

P¼ 0.124), and the results of the proposed ITSS algorithm

were a little better than those associated with the BN, but again,

Table 2. Summary of the content of two GO Annotation (GOA) tables: historical GOA file (GOAh) dated March 2003, and more recent GOA file

(GOAr) dated August 2005

Distinct GO terms Distinct genes

Total Terms having

10 or more gene

annotations (%)

Terms having

3–9 gene

annotations (%)

Terms having

two or less gene

annotations (%)

Total

GOAh 3511 648 (18%) 954 (27%) 1909 (55%) 11 221

GOAr 4610 832 (18%) 1327 (29%) 2451 (53%) 15 442
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the difference was not statistically significant (z¼ 0.439,

P¼ 0.67). In the FlyBase dataset, as shown in Figure 3b, the

ITSS algorithm produced significantly better predictions

than either the DT (z¼ 2.34, P¼ 0.019) or BN (z¼ 4.9,

P¼ 8.4� 10�7) methods. As illustrated in Table 3, the ITSS

method performs as well or better than the DT and BN

methods.

To explore the performance of the method in real-world

conditions where most genes are poorly or not annotated (less

than 10 gene annotations per GO) and previous methods based

on annotation have not been demonstrated to operate, we

applied the ITSS algorithm to the entire SGD dataset

comprised of 2261 distinct GO terms and 6099 genes. We

stratified the accuracy of the calculated predictions according

to the number of genes associated with each GO term, and

found that the ITSS algorithm performed well (above 0.6

precision and 0.5 recall) for those GO terms that were

associated with three or more genes. Therefore, we performed

10-fold cross-validation evaluations incorporating all GO terms

with at least three associated genes in both the SGD and

FlyBase datasets, summarized in Table 3. The total number of

TP predictions resulting from these experiments was over three

times larger than those presented in previous studies.

3.4 Experiment 2. Predictions in the H.sapiens dataset

3.4.1 10-fold cross-validation For the H.sapiens dataset, we
initially conducted a 10-fold cross-validation using both the

GOAr and GOAh files. After removing those GO terms

marked as ‘obsolete’ and the three ambiguous terms ‘biological

process unknown’ ‘molecular function unknown’ and ‘cellular

component unknown’, we further limited our dataset to include

only those GO terms that had at least three associated genes. As

a result, we obtained 2072 and 1390 distinct GO terms from the

(a) (b)0.8
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BN (King)
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DT (King)
BN (King)
Control RA
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Control IND

Fig. 3. ROC Curves for comparisons of ITSS to previous machine learning approaches using 10-fold cross-validation. (a) Comparison of methods in

SGD dataset using the 10 gene association constraints to obtain comparable datasets to previously published results. (b) Comparison of methods in

Flybase dataset similarly constrained as the SDG dataset. ITSS: information theory-based semantic similarity algorithm, Control RA: random

algorithm control of ITSS, Control RD: random data control of ITSS, DT (King): decision trees by King et al., BN (King): Bayesian’s networks by

King et al., Control IND: independent control by King et al. It should be noted that the curves of controls are so close to the horizontal axis that they

can hardly be seen.

Table 3. Comparisons of ITSS algorithm to other machine learning algorithms used in previously published work

GOA dataset Prediction method Total predictions # of Genes # of GO concepts Precision (%) Recall (%)

Panel aa

SGD DT 1088 510 6 403 170 98 50

BN 1088 510 6 403 170 94 50

ITSS 1 006 335 6 088 165 95 57

FlyBase DT 2 943 000 13 500 218 87 50

BN 2943 000 13 500 218 80 50

ITSS 1 838 430 11 142 165 94 53

Panel b
b

SGD ITSS 7 172 424 6 099 1 176 48 52

FlyBase ITSS 20 946 960 11 142 1 180 52 54

aResults of the 10-fold cross-validation using decision trees (DT) and BN conducted by King et al. (2003) using GO terms associated with at least 10 genes when recall is

close to 50% and performance of ITSS in comparable conditions.
bResults of 10-fold cross-validation using ITSS algorithm with GO terms associated with at least three genes when recall is close to 50% (Conditions in which previous

algorithms were not demonstrated to operate). There is a significant 6-fold increase of GO concepts upon which the ITSS can operate in condition (panel a) as compared to

(panel b) (in italic font) in Table 3.
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GOAr and GOAh files, respectively. Because at least one

annotation is necessary as the clue for making the prediction

and one as the target GO term, we also limited the datasets used

in these validation experiments to include only those genes

with at least two associated GO terms. We obtained 13 509 and

11 076 such genes from the GOAr and GOAh files, respectively.

The GOA dataset was not filtered with respect to evidence

code (all annotations were kept). Thus, we generated 27 990

648 (2072 GO terms� 13 509 genes) predictions applying

the 10-fold cross-validation methods over the GOAr dataset,

among which 77 602 positively corresponded to the gold

standard. We also derived 15 395 640 (1390 GO

terms� 11 076 genes) predictions based on the GOAh dataset,

of which 44 020 predictions were positive according to the gold
standard.

Figure 4 shows the predictions resulting from the application

of the ITSS algorithm to the GOAr file during the 10-fold

cross-validation experiment as TP-FP curves with a variable

parameter t (threshold). The precision-recall curve of GOAr as

well as the predictions resulting from the 10-fold cross-
validation utilizing the GOAh file can be found in

Supplementary Figure S2. The ROC and precision-recall

curves results from GOAr and GOAh (Fig. 4 and

Supplementary Fig. S2) are very similar. In this evaluation,

when applying the optimization methods to the ITSS algo-

rithm, as described in Methods section, we obtained the best

predictions when k¼ 4 and t¼ 1. The impact of parameter t is

illustrated in Supplementary Figure S2. As shown in Figure 4,

the ITSS algorithm provides significantly better predictions

over the GOAr dataset than either of the two controls

(z4217, P52.2� 10�16 when compared to RA, and z4216,

P52.2� 10�16 when compared to RD, (see Methods, subsec-

tion ‘Statistical Analysis’). The maximum precision was 90% at

a recall of 36%, and the maximum recall was 74% with a

precision of 45%.

3.4.2 Historical rollback validation To further evaluate the
ITSS algorithm in situations that mirror real life, we predicted

new annotations using the older GO association file GOAh

(2003) in the H.sapiens dataset and then validated the newly

predicted annotations using the newer association file GOAr

(2005) as a second evaluation. Using similar procedures as our

cross-validation, we excluded from the GOAh file those GO

terms marked as ‘obsolete’ and the three ambiguous terms

‘biological process unknown’, ‘molecular function unknown’

and ‘cellular component unknown’. We further limited our

testing dataset to include only those GO terms that had at least

three associated genes, resulting in 9589 genes and 1377 GO

terms from the GOAh file.

To further validate the effectiveness of the ITSS method, a

blinded expert manually examined a sample of 100 random

positive predictions from GOAh that were randomly selected

from a corpus of the 2704 most plausible positive predictions

obtained by using the best parameters for the ITSS algorithm

(as determined by the optimization method described in Section

2): k¼ 4, t¼ 0.7, and a cutoff equal to 3. This set of 2704

positive predictions can be found in Supplementary Figure S3.

The expert was a senior postdoctoral molecular biology

research scientist with more than 10 years of laboratory

experience.
A summary of the manual assessment results is provided in

Table 4. Of the 100 assessed predictions, 51 were considered

correct and validated in the scientific literature according to the

expert, leaving 49 uncorroborated, but not necessarily wrong.

Of the corroborated predictions, 17 were found directly in the

GOAr file, and 19 others were found to be a parent of the GO

concept associated to the gene in the GOAr file. For example,

the gene MTERF was predicted to be associated with DNA

binding (GO:0003677), which is the direct parent of double-

stranded DNA binding (GO:0003690) in the GOAr file, and

was judged to be correct by the expert. Thus, accepting direct

parents to be correct predictions, as they are related on a high

level, improved the measurement of the precision significantly.

An additional six predictions could have been determined to

be correct by extending the gold standard to include all

ancestors of the concepts in GOAr. None of the uncorrobo-

rated predictions would have been erroneously assigned a

TP value, as judged by the expert, if all ancestors of the

concepts in GOAr file were to be accepted as the gold standard.

However, by extending the gold standard to include all

descendents of GO terms found in the GOAr file, 20 uncorro-

borated and 8 additional corroborated results are generated.

There was one prediction (gene TNFSF15 associated with

1
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FPR

T
PR

t = 1

t = 0.7

t = 0

RA, t = 1

RD, t = 1

ROC Curves

Fig. 4. ROC curves of GOAr dataset in 10-fold cross-validation.

The precision–recall curve of GOAh is available in Supplement S2.

Table 4. Summary of manual validation results for 100 randomly

selected predictions obtained from GOAh

Expert curator’s opinion Number of

predictions

Examples

Gene GO term

Correct (found in GOAr and

confirmed by the expert)

17 GJA4 Cell

communication

Correct (judged by the expert

and confirmed with

journal article)

34 ZNF638 DNA binding

Uncorroborated 49 WNT2 Cell–cell

signaling

Total 100
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GO:0007267: cell-cell signaling) in which the GO term cell-cell

signaling has no hierarchical relations with any terms in the

GOAr file. This prediction was validated by the expert based on

published literature (Haridas et al., 1999). Therefore, the final

number of correct predictions, as validated by the expert,

was 51, yielding a precision of 51%. (95% confidence interval:

43–58%, n¼ 100). The confidence interval was determined

using the hypergeometric distribution. Additional details and

bibliographic references can be found in Supplementary

Figure S4. We also applied the ITSS prediction algorithm to

the GOAr file, and generated 97 732 new positive predictions

(Supplementary Fig. S5).

4 DISCUSSION

Comparison with previous studies shows that the ITSS

prediction approach is able to produce comparable or better

predictions than the best implementations of DT or BN when

applied to similar datasets. Most importantly, the ITSS

algorithm was able to make predictions in the sparsely

annotated GO terms, although precision of the resulting

predictions dropped from 90% to approximately 50% for a

constant recall of about 50%. This functionality is particularly

important because GO terms with fewer than 10 gene

annotations, which were excluded from previous prediction

studies, occupy over 80% of total number of annotated GO

terms that represent biological processes, cellular components

and molecular functions. We demonstrated that the ITSS

method is capable of generating predictions for these previously

untapped GO terms of sparsely annotated GO terms, ultimately

providing a 3-fold increase in the number of TP predictions.

Any additional valid predictions in this space are likely to yield

a higher impact than for those GO terms that are already well

annotated. Even with this reduction in precision, the ITSS

algorithm provides significantly more predictions over a

broader number of GO terms than previously evaluated

methods.

4.1 Predictions for the H.sapiens dataset

When compared to the two controls, the results of both the

10-fold cross-validation and historical validation in the

H.sapiens datasets confirm that the integration of KNN

and information theoretic semantic similarity methodologies

is a valuable technique for predicting new gene annotations. To

our knowledge, this study provides the first example of the

application of a prediction algorithm to GO annotations in

H.sapiens. As expected from the validation experiments over

yeast (SGD) and fly (FlyBase) data, the ITSS algorithm

performs significantly better than either the RA or RD

controls. In a historical rollback, which assumes that techni-

ques similar to ITSS were not applied to the dataset over the

period evaluated (Supplementary Fig. S2), the precision of the

ITSS algorithm can be estimated between 43% and 58%, lower

than the 90% estimate of the 10-fold cross validation.

Moreover, this rollback experiment over the H.sapiens dataset

illustrated that the task of predicting future gene annotations is

significantly more difficult than calculating contemporary

ones. These results suggest that the 10-fold cross-validation

overestimates the accuracy of the ITSS algorithm and that
future studies should also include evaluations with historical
rollback. The manual assessment we conducted led to a

conservative estimate of 51% precision on predictions over a
large and sparsely annotated network spanning 9589 human
genes and 1377 GO terms, many of which were annotated with

less than 10 genes. This compares favorably to previous manual
assessment of predictions conducted in more favorable condi-
tions. For example, King et al. (2003) observed 38% and 44%

precision for predictions conducted on small, densely annotated
subsets of SGD and FlyBase, respectively. It is notable that this
subset contained only GO terms with 10 and more gene

annotations, perhaps indicating poorer or equal performance of
their predictive system in comparison to the ITSS method
under optimal, densely annotated network conditions

(King et al., 2003). A comparison of the 10-fold cross-
validation results conducted on the more recent GOAr and
the older GOAh files found no obvious differences in prediction
results, indicating that the discrepancy observed in the

historical validation was not due to intrinsic structural
problems with the gold standard GOAr dataset. A reasonable
explanation for the higher accuracy observed in the 10-fold

cross-over designs is related to the high likelihood of functional
codiscovery of related genes in genomic research (Rzhetsky
et al., 2006) clustering them both functionally and temporally.

Therefore, the GO Annotations are more likely to be updated
in terms of functionally related gene groups during the same
time period. With this in mind, the discrepancy is likely due to

the similarity of functionally related genes in terms of
annotation, making them good predictors for each other, and
the propensity of the 10-fold cross-validation method to

randomly split sets in such a way that it is likely to choose a
gene within a specific functional group as a candidate for
prediction. Conversely, predicting new annotations using

historical data is likely to be more difficult because those
annotations that can be easily inferred may have already been
added to the GOA files during the same time period, and fewer

patterns for predicting new annotations exist once these times
periods are removed in the rollback. In addition, the bench-
marks associated with the historical validation are often

minimal or incomplete estimations. Considering the GOAh
and GOAr files only differ by only 2 years of data, some of the
FP found in historical validation may be borne out by future

studies, increasing the observed precision and recall rates over
time. As such, current precision and recall results for the
historical validation can be interpreted as conservative mini-

mum estimates. Thus a combination of cross-validation and
historical rollback methods will provide a more comprehensive
evaluation protocol for prediction algorithms in the future.

As this is the first validation of its kind over the GO
Annotations, it is still unknown if other machine learning
approaches will also experience similar variance between the

historical validation and the 10-fold cross-validation.
It is worth noting that the impact of applying semantic

similarity metrics to these two types of validations is

dichotomous. The extension of the threshold t to include
non-identical concepts (e.g. t¼ 0.7) improves the historical
validation results by up to 12.7% (see Supplementary Fig. S2).

This is not the case for cross-validation methods, where the
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optimal value in 10-fold cross-validation is t¼ 1, meaning that

implicit hierarchical knowledge contained in the ontologies are

not utilized to infer concept relations. This indicates that the

GOA files contain patterns that are sufficient for conducting

validation studies based on known annotations. However, for

validation studies based on historical data more closely

reflecting realistic conditions, the threshold t must be lowered

to include more ontological knowledge in order to relate two

different concepts. This demonstrates that superficial patterns

based only on identical concepts are insufficient for predicting

new gene annotations in a realistic setting, and the semantic

relations between ontologically structured concepts must be

used. As evaluations of other algorithms that use superficial

patterns, which are subsequently validated using historical data

have not been reported, we cannot perform an explicit

comparison between the performance of ITSS and other

algorithms in a historical validation.

The manual assessment results show that the precision of the

ITSS algorithm could be increased further since many predicted

annotations are semantically compatible to true knowledge,

and will be judged as correct. The expert judged some

predictions to be correct based on the semantic knowledge

about the predicted GO concepts. For instance, the ITSS

method predicted that the MTERF gene has the function DNA

binding (GO:0003677) but, in the more recent GOA file, the

gene was annotated with the term double-stranded DNA

binding (GO:0003690). Therefore, the expert was able to

determine the prediction to be correct based on semantic

knowledge contained within the GO, because DNA binding is

an ancestor concept of double-stranded DNA binding.
Because the ITSS method is entirely reliant on the known

curated annotations of a gene in GOA, it is dependent on the

timeliness of those annotations. However, in many cases

corroborating evidence for a particular annotation exists in

the literature for a significant amount of time before actually

being added to the corresponding GOA file. This annotation

lag is illustrated in our manual evaluation, where most of the

evidence utilized to corroborate predictions are dated prior to

the GOAh release date (2003). For example, the evidence that

the gene GP6 (glycoprotein VI) has a ‘receptor activity’ was

published in 2000 (Ezumi et al., 2000). However, the annotation

‘receptor activity’ for GP6 was not yet added to the GOA files

as of 2003 (GOAh), but appeared in the GOAr file dated 2005.

Therefore, by applying the ITSS algorithm to the GOAh file,

the association between ‘receptor activity’ and GP6 was

predicted as novel because in 2002 the fact was not annotated

in the GOAh file, though the publication was otherwise

available since 2000. While the method is not able to make

predictions for completely un-annotated genes, the results of

the manual validation indicate that the ITSS method may help

experts find annotation omissions, and keep much of the

associated ‘computer executable knowledge’ up-to-date.

4.2 Future work

The ITSS method and results were comparable to other

machine learning algorithms in 10-fold cross-over designs and

provided better future predictions than these techniques over a

broader number of genes and GO terms when comparing the

manual curations. Therefore, the possibility that in situations

closely resembling real life this approach could outperform

those based on superficial annotation patterns merits future

study.

5 CONCLUSIONS AND FUTURE WORK

In this study we demonstrate the efficacy of ITSS, a high

throughput computational approach capable of automatically

predicting GOA with equal or higher overall accuracy than

previous methods for a significantly broader range of GO

terms. The ITSS prediction approach is able to accurately

provide predictions for sparsely annotated gene functions and

processes where previous methods were not demonstrated to

work, generating an order of magnitude more predictions in

GOA as a result. In contrast to other machine learning

methods that provide a prediction giving no justification or

line of reasoning behind the predictive process, the proposed

similarity-based algorithms are readily interpretable: GOA

contributing to the ‘similarity scores’ and gene deemed similar

contributing to the ‘KNN vote’ can be straightforwardly

verified. As a result, prediction reliability can be easily judged

by investigating similar genes. To our knowledge, this is the

first study demonstrating the feasibility of using the semantic

similarity-based algorithm for the prediction of GO annota-

tions. The novel prediction method has been shown to

faithfully recapitulate known ‘future’ biological knowledge

artificially removed from the dataset through a conservative

historical rollback validation. In addition, we conducted an in-

depth evaluation demonstrating the higher level of difficulty

involved in predicting future GO annotations using a rollback

method as compared to a conventional 10-fold cross-over

validation with contemporary annotations removed. This

method holds promise in facilitating a high throughput

approach to generating hypotheses in genomic and biomedical

research and it is likely to be applicable to other networks of

annotations as well.
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