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Abstract

Information Theory, Dimension Reduction and Density Estimation

by

Sujayam Saha

Doctor of Philosophy in Statistics

University of California, Berkeley

Professor Bin Yu, Co-chair

Professor Aditya Guntuboyina, Co-chair

This thesis documents three different contributions in statistical learning theory. They
were developed with careful emphasis on addressing the demands of modern statistical anal-
ysis upon large-scale modern datasets. The contributions concern themselves with advance-
ments in information theory, dimension reduction and density estimation - three foundational
topics in statistical theory with a plethora of applications in both practical problems and
development of other aspects of statistical methodology.

In Chapter 2, I describe the development of an unifying treatment of the study of in-
equalities between f -divergences, which are a general class of divergences between probabil-
ity measures which include as special cases many commonly used divergences in probability,
mathematical statistics and information theory such as Kullback-Leibler divergence, chi-
squared divergence, squared Hellinger distance, total variation distance etc. In contrast with
previous research in this area, we study the problem of obtaining sharp inequalities between
f -divergences in full generality. In particular, our main results allow m to be an arbitrary
positive integer and all the divergences Df and Df1 , . . . , Dfm to be arbitrary f -divergences.
We show that the underlying optimization problems can be reduced to low-dimensional op-
timization problems and we outline methods for solving them. We also show that many of
the existing results on inequalities between f -divergences can be obtained as special cases of
our results and we also improve on some existing non-sharp inequalities.

In Chapter 3, I describe the development of a new dimension reduction technique specially
suited for interpretable inference in supervised learning problems involving large-dimensional
data. This new technique, Supervised Random Projections (SRP), is introduced with the
goal of ensuring that in comparison to ordinary dimension reduction, the compressed data is
more relevant to the response variable at hand in a supervised learning problem. By incor-
porating variable importances, we explicate that the compressed data should still accurately
explain the response variable; thus lending more interpretability to the dimension reduction
step. Further, variable importances ensure that even in the presence of numerous nuisance
parameters, the projected data retains at least a moderate amount of information from the
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important variables, thus allowing said important variables a fair chance at being selected
by downstream formal tests of hypotheses.

In Chapter 4, I describe the development of several adaptivity properties of the Non-
Parametric Maximum Likelihood Estimator (NPMLE) in the problem of estimating an un-
known gaussian location mixture density based on independent identically distributed ob-
servations. Further, I explore the role of the NPMLE in the problem of denoising normal
means, i.e. the problem of estimating unknown means based on observations. This problem
has been studied widely. In this problem, I prove that the Generalized Maximum Likelihood
Empirical Bayes estimator (GMLEB) approximates the Oracle Bayes estimator at adaptive
parametric rates up to additional logarithmic factors in expected squared ℓ2 norm.
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Chapter 1

Introduction

This thesis documents three projects I have had the pleasure of developing during the course
of my doctoral study. Broadly, these three projects fall under the fold of various facets of
statistical learning theory: information theory, dimension reduction and density estimation.
These three projects were, from beginning to end, motivated and fueled by a desire to develop
statistical methodology addressing the needs and convenience of the modern statistician and
modern datasets; coupled with a further urge to establish theoretical properties of such
methodology, wherever possible.

Information theory, introduced in Shannon’s seminal thesis, is at the core of numerous
fields including signal processing, computer science, statistics and mathematics. More specif-
ically and as it relates to my own contribution, the study of divergences between probability
distributions arises routinely in statistical learning theory.

Dimension reduction, in its various forms and innovations and sometimes under the guise
of data compression, is an indisposable step in most analyses of massive datasets. In many
modern domains of practice, the speed of data accumulation and subsequent storage has
outstripped the limits of memory and processing power of a standard computing unit. Di-
mension reduction is a core necessity in such datasets or streams. Often, the efficacy of
downstream analyses is heavily influenced by the particulars of data compression or dimen-
sion reduction.

Likewise, mixture modelling, and more specifically the study of Gaussian Mixture Mod-
els (GMM), is a powerful and staple technique for easily describing populations comprised
of multiple subpopulations. Modern datasets frequently exhibit clear heterogeneity which
provides a basis for interpreting such populations, be it various kinds of users in a social
network, subspecies in a ecology, or objects in an image.

Information Theory

f -divergences are a general class of divergences between probability measures which include
as special cases many commonly used divergences in probability, mathematical statistics
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and information theory such as Kullback-Leibler divergence, chi-squared divergence, squared
Hellinger distance, total variation distance etc. Inequalities between f -divergences are useful
in many areas. For example, in mathematical statistics, they are crucial in problems of
obtaining minimax bounds Yu [146], Tsybakov [135], Guntuboyina [53], and Guntuboyina
[52]. In probability, such inequalities are often used for converting limit theorems proved
under a convenient divergence into limit theorems for other divergences Barron [7], Topsøe
[133], and Harremoës [54]. They are also helpful for proving results in measure concentration
Marton [91, 89, 90]. Some applications in machine learning are described in Reid and
Williamson [112]. Further, inequalities involving f -divergences are fundamental to the field
of information theory Cover and Thomas [29] and Csiszár and Shields [33].

As such, the study of sharp inequalities between f -divergences is of foundational im-
portance informing research and understanding in the subjects mentioned above. Thus
motivated and in collaboration with Aditya Guntuboyina and Geoffrey Schiebinger, I have
studied the problem of maximizing or minimizing an f -divergence between two probability
measures subject to a finite number of constraints on other f -divergences. We show that
these infinite-dimensional optimization problems can all be reduced to optimization problems
over small finite dimensional spaces which are tractable. Our results lead to a comprehensive
and unified treatment of the problem of obtaining sharp inequalities between f -divergences.
We demonstrate that many of the existing results on inequalities between f -divergences can
be obtained as special cases of our results and we also improve on some existing non-sharp
inequalities. Complete details on this work can be found in Chapter 2.

Dimension Reduction

High-dimensional supervised learning problems are encountered in numerous popular modern-
day scientific applications, ranging from genomics, biomedical studies, astronomy and socio-
logical studies. In each of these fields, the core goal of statistical analysis requires inference
or uncertainty measures for decision making. As such, a holistic framework for statistical
inference in high-dimensional supervised learning problems serves a paramount advantage
to practitioners. Under the guidance of my docotoral advisors, I have considered super-
vised learning problems such as regression, classification and randomized experiments of
a high-dimensional nature, viz. in datasets where numerous covariables are available for
consideration, often comparable or exceeding the number of samples/observations. To this
end, we first develop a new dimension reduction technique called Supervised Random Pro-
jections (SRP) and further, develop a framework for statistical inference in high-dimensional
supervised learning problems based on SRP.

Dimension reduction is a crucial and necessary step towards meaningful and reproducible
statistical analyses on modern massive and complex datasets. Ordinarily, dimension reduc-
tion techniques such as random projections treat each dimension of the input data with equal
importance. However, in supervised learning problems, not all variables/features are equally
important. A dimension reduction scheme designed specifically for supervised problems
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should attempt to preserve important variables (ones that influence the response strongly)
at the expense of less important ones.

Further, in statistical literature, hypothesis testing is widely popular for interpretation
and refinement of statistical models in supervised learning problems, for instance identifying
statistically significant features. However, hypotheses testing procedures are often encum-
bered by heavy computational overload and the lack of a holistic approach which can be
applied to many varied problems.

Thus motivated and the advisement of my doctoral advisors, I have introduced the idea
of supervised dimension reduction, with the goal of ensuring that in comparison to ordinary
dimension reduction, the projected data is more relevant to the response variable at hand.
By incorporating variable importances, we explicate that the projected data should still
accurately explain the response variable (this is in contrast to ordinary dimension reduction,
where one only attempts to preserve the geometry between covariables); thus lending more
interpretability to the dimension reduction step. Further, variable importances ensure that
even in the presence of numerous nuisance parameters, the projected data retains at least a
moderate amount of information from the important variables, thus allowing said important
variables a fair chance at being selected by downstream formal tests of hypotheses.

Complete details on this subject can be found in Chapter 3 on this thesis.

Density Estimation

In unsupervised learning problems such as clustering, it is ubiquitous to model observed
multi-dimensional data as a mixture of random vectors distributed as Gaussian with un-
known parameters. Estimating the underlying mixture density of these observations is a
core problem leading to downstream analyses such as clustering, classification and denoising.
Usual approaches to Gaussian mixture density estimation maximize likelihood over Gaus-
sian mixtures with a fixed number of components. This approach results in a non-convex
optimization problem and also needs to know the number of components. An approach to
Gaussian mixture density estimation that aims to circumvent these issues is nonparametric
maximum likelihood estimation which goes back to [67].

In collaboration with Prof. Adityanand Guntuboyina, I have studied the Nonparametric
Maximum Likelihood Estimator (NPMLE) for fitting Gaussian mixture densities. Under the
assumption that the covariance matrix of the components is identity, the NPMLE maximizes
likelihood over the class of all Gaussian location mixture densities i.e., densities of the form
fG(x) :=

∫

φd(x − θ)dG(θ) as G varies over all probability measures on Rd (this can be
modified in the case of well-conditioned unknown covariance provided a lower bound on
the eigenvalues of all the component-covariance matrices is available). The above NPMLE
was first introduced in [67] and more recently major advancements have been made in the
efficient implementation of this estimator via convex optimization ([68]). Several book length
treatments are also available on the subject of this NPMLE (see, for example, [80, 18]). In
collaboration, I have established several adaptivity properties of the NPMLE. I have proved
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that in expected squared Hellinger accuracy, the NPMLE based on n observations estimates
the unknown mixture density composed of k components almost at the parametric rate
k/n with an additional multiplicative logarithmic factor depending on n, without a priori
knowledge of the number of components k.

Further, I have explored the role of the NPMLE in the problem of denoising normal
means, i.e. the problem of estimating unknown means based on observations. This problem
has been studied widely, leading back to [61]. [63] introduced the Generalized Maximum
Likelihood Empirical Bayes estimator (GMLEB) for this problem; which is the Bayes esti-
mator where the NPMLE is used as a plug-in estimate for the unknown mixture density. I
have proved that the GMLEB approximates the Oracle Bayes estimator at adaptive para-
metric rates up to additional logarithmic factors in expected squared ℓ2 norm. Further,
the analogous extension to compactly supported mixing density G is also rigorized. Figure
4.1 serves as a short illustration of the accuracy with which the Empirical Bayes estimate
(in red) approximates the Oracle Bayes estimate (in blue) whenever G contains some basic
structure. The most noteworthy fact here is that the Empirical Bayes estimates require no
knowledge of the underlying structure, for instance concentric circles, or triangle or a letter of
the alphabet, etc. In fairness, I should also note that the noise distribution was completely
specified in these illustrations, including the noise level. Recently, the denoising problem
stated here has also been investigated in the field of convex clustering [128, 109, 28]. To my
knowledge, no analogue of our results are available for these methods. Complete details on
this work are presented in Chapter 4.
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Chapter 2

Sharp inequalities for f-divergences

2.1 Overview

f -divergences are a general class of divergences between probability measures which include
as special cases many commonly used divergences in probability, mathematical statistics
and information theory such as Kullback-Leibler divergence, chi-squared divergence, squared
Hellinger distance, total variation distance etc. In this paper, we study the problem of max-
imizing or minimizing an f -divergence between two probability measures subject to a finite
number of constraints on other f -divergences. We show that these infinite-dimensional opti-
mization problems can all be reduced to optimization problems over small finite dimensional
spaces which are tractable. Our results lead to a comprehensive and unified treatment of the
problem of obtaining sharp inequalities between f -divergences. We demonstrate that many
of the existing results on inequalities between f -divergences can be obtained as special cases
of our results and we also improve on some existing non-sharp inequalities.

2.2 Introduction

Suppose that the Kullback-Leibler divergence between two probability measures is bounded
from above by 2. What then is the maximum possible value of the Hellinger distance between
them? Such questions naturally arise in many fields including mathematical statistics and
machine learning, information theory, probability, statistical physics etc. and the goal of this
paper is to provide a way of answering them. From the variational viewpoint, this problem
can be posed as: maximize the Hellinger distance subject to a constraint on the Kullback-
Leibler divergence over the space of all pairs of probability measures over all possible sample
spaces. We shall prove in this paper that the value of this maximization problem remains
unchanged if one restricts the sample space to be the three-element set {1, 2, 3}. In other
words, in order to find the maximum Hellinger distance subject to an upper bound on the
Kullback-Leibler divergence, one can just restrict attention to pairs of probability measures
on {1, 2, 3}. Thus, the large infinite-dimensional optimization problem is reduced to an
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optimization problem over a small finite-dimensional space (of dimension ≤ 4) which makes
it tractable.

In this paper, we prove such results in a very general setting. The Kullback-Leibler
divergence and the (square of the) Hellinger distance are special instances of a general class of
divergences between probability measures called f -divergences (also known as φ-divergences).
Let f : (0,∞) → R be a convex function satisfying f(1) = 0. By virtue of convexity, both
the limits f(0) := limx↓0 f(x) and f ′(∞) := limx↑∞ f(x)/x exist, although they may equal
+∞. For two probability measures P and Q, the f -divergence (see, for example, Ali and
Silvey [3] and Csiszar [30, 31, 32]), Df (P ||Q), is defined by

Df (P ||Q) :=
∫

q>0

f

(

p

q

)

dQ+ f ′(∞)P{q = 0}

where p and q are densities of P and Q with respect to a common measure λ. The definition
does not depend on the choice of the dominating measure λ. Special cases of f lead to,
among others, Kullback-Leibler divergence, total variation distance, square of the Hellinger
distance and chi-squared divergence.

We are now ready to introduce the general form of the optimization problem we described
at the beginning of the paper. Given divergences Df and Dfi , i = 1, . . . ,m and nonnegative
real numbers D1, . . . , Dm, let

A(D1, . . . , Dm) := sup {Df (P ||Q) : Dfi(P ||Q) ≤ Di ∀i}

and
B(D1, . . . , Dm) := inf {Df (P ||Q) : Dfi(P ||Q) ≥ Di ∀i}

where the probability measures on the right hand sides above range over all possible measur-
able spaces. The goal of this paper is to provide a method for computing these quantities.
We show that these large infinite-dimensional optimization problems can all be reduced to
optimization problems over small finite-dimensional spaces. Specifically, in Theorem 2.3.1,
we show that in order to compute these quantities, one can restrict attention to probability
measures on the set {1, . . . ,m+ 2}.

One of the main reasons for studying the quantities A(D1, . . . , Dm) and B(D1, . . . , Dm)
is that they yield sharp inequalities for the divergence Df in terms of the divergences
Df1 , . . . , Dfm . Indeed, the inequalities

Df (P ||Q) ≤ A(Df1(P ||Q), . . . , Dfm(P ||Q)) (2.1)

and
Df (P ||Q) ≥ B(Df1(P ||Q), . . . , Dfm(P ||Q)) (2.2)

hold for every pair of probability measures P and Q. Further, the functions A and B satisfy
the natural monotonicity inequalities

A(D1, . . . , Dm) ≤ A(D′
1, . . . , D

′
m) (2.3)
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and
B(D1, . . . , Dm) ≤ B(D′

1, . . . , D
′
m) (2.4)

for every (D1, . . . , Dm) and (D′
1, . . . , D

′
m) such that Di ≤ D′

i for all i.
The inequalities (2.1) and (2.2) are sharp in the sense that A is the smallest function

satisfying (2.3) for which (2.1) holds for all probability measures P and Q. Likewise, B is
the largest function satisfying (2.4) for which (2.2) holds for all probability measures P and
Q.

Inequalities between f -divergences are useful in many areas. For example, in mathemat-
ical statistics, they are crucial in problems of obtaining minimax bounds Yu [146], Tsybakov
[135], Guntuboyina [53], and Guntuboyina [52]. In probability, such inequalities are often
used for converting limit theorems proved under a convenient divergence into limit theorems
for other divergences Barron [7], Topsøe [133], and Harremoës [54]. They are also helpful
for proving results in measure concentration Marton [91, 89, 90]. Some applications in ma-
chine learning are described in Reid and Williamson [112]. Further, inequalities involving
f -divergences are fundamental to the field of information theory Cover and Thomas [29] and
Csiszár and Shields [33].

Because of their widespread use, many papers deal with inequalities between f -divergences
(some references being Pinsker [108], Csiszar [30], Kullback [69], Kemperman [66], Vajda
[137], Gibbs and Su [50], Fedotov, Harremoës, and Topsoe [44], Topsøe [134], Gilardoni
[51], Reid and Williamson [113], and Guntuboyina [52]). However, many of the inequali-
ties presented in previous treatments are not sharp. The few papers which provide sharp
inequalities Vajda [137], Fedotov, Harremoës, and Topsoe [44], Gilardoni [51], and Reid and
Williamson [113] only deal with certain special f -divergences as opposed to working in full
generality. A popular such special case is m = 1 and Df1 corresponding to the total vari-
ation distance. In this case, sharp inequalities have been derived in Fedotov, Harremoës,
and Topsoe [44] for the case when Df is the Kullback-Leibler divergence and in Gilardoni
[51] for the case of general Df . The case m > 1 is comparatively less studied although
this has potential applications in the statistical problem of obtaining lower bounds for the
minimax risk (see Section 2.7.1 for details). The only paper which deals with sharp inequal-
ities for m > 1 is Reid and Williamson [113] but there the authors only study the case
when Df1 , . . . , Dfm are all primitive divergences (see Remark 2.4.2 below for the definition
of primitive divergences).

In contrast with all previous papers in the area, we study the problem of obtaining sharp
inequalities between f -divergences in full generality. In particular, our main results allow
m to be an arbitrary positive integer and all the divergences Df and Df1 , . . . , Dfm to be
arbitrary f -divergences. We show that the underlying optimization problems can all be
reduced to low-dimensional optimization problems and we outline methods for solving them.
We also show that many of the existing results on inequalities between f -divergences can
be obtained as special cases of our results and we also improve on some existing non-sharp
inequalities.
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The rest of this paper is structured as follows. Our main result is stated in Theorem 2.3.1.
Its three-part proof is given in Section 2.4. The first part is based on a recent representa-
tion theorem for f -divergences which implies that the optimization problems for computing
A(D1, . . . , Dm) and B(D1, . . . , Dm) can be thought of as maximizing or minimizing an inte-
gral functional over a certain class of concave functions satisfying a finite number of integral
constraints. In the second part of the proof, we use Choquet’s theorem to restrict attention
only to the extreme points of the constraint set. Finally, in the third part, we characterize
these extreme points and show that they correspond to probability measures over small finite
sets.

One possible approach to compute A(D1, . . . , Dm) and B(D1, . . . , Dm) is via joint ranges
of f -divergences. Specifically, for m ≥ 1 and divegences Df1 , . . . , Dfm , their joint range, de-
noted byR(f1, . . . , fm) is defined as the set of all vectors in Rm that equal (Df1(P ||Q), . . . , Dfm(P ||Q))
for some pair of probability measures P and Q. If the joint range R(f, f1, . . . , fm) can be
determined, then one can easily calculate the values A(D1, . . . , Dm) and B(D1, . . . , Dm) for
every D1, . . . , Dm. The problem of determining the joint range R(f1, . . . , fm) was solved for
the case m = 2 in Harremoes and Vajda [55]. We extend their result to general m ≥ 2
in Section 2.5.2 by a very simple proof which was communicated to us by an anonymous
referee. Unfortunately, it turns out that this approach based on the joint range does not
quite prove Theorem 2.3.1. It gives a slightly weaker result. We discuss this in Section 2.5.2.

Also in Section 2.5, we collect some remarks and extensions of our main theorem and, in
particular, we show that the theorem is tight in general. In Section 2.6, we consider various
special cases and show that many well-known results in the literature can be obtained as
simple instances of our main theorem. In Section 2.7, we describe numerical methods for
solving the low-dimensional optimization problems that come out of our main theorem. We
solve an important subclass of these problems by convex optimization and we also describe
heuristic methods for the general case.

2.3 Main Result

For each n ≥ 1, let Pn denote the space of all probability measures defined on the finite set
{1, . . . , n}. Let us define An(D1, . . . , Dm) to be

sup {Df (P ||Q) : P,Q ∈ Pn and Dfi(P ||Q) ≤ Di ∀i}

and, analogously, Bn(D1, . . . , Dm) to be

inf {Df (P ||Q) : P,Q ∈ Pn and Dfi(P ||Q) ≥ Di ∀i} .

Our main theorem is given below. The second part of the theorem requires that Df1 , . . . , Dfm

are finite divergences. We say that a divergence Df is finite if supP,QDf (P ||Q) < ∞. The
supremum here is taken over all probability measures over all possible measurable spaces.
See Remark 2.4.3 for a detailed explanation of finite divergences.
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Theorem 2.3.1. For every D1, . . . , Dm ≥ 0, we have

A(D1, . . . , Dm) = Am+2(D1, . . . , Dm). (2.5)

Further if Df1 , . . . , Dfm are all finite, then

B(D1, . . . , Dm) = Bm+2(D1, . . . , Dm). (2.6)

The conclusions of the above theorem may be better appreciated in the following opti-
mization form. Theorem 2.3.1 states that the quantity A(D1, . . . , Dm) equals the optimal
value of the following finite-dimensional optimization problem:

maximize
p,q∈[0,1]m+2

∑

j:qj>0

qjf

(

pj
qj

)

+ f ′(∞)
∑

j:qj=0

pj

subject to pj ≥ 0, qj ≥ 0 for all j = 1, . . . ,m+ 2
∑

pj =
∑

qj = 1

∑

j:qj>0

qjfi

(

pj
qj

)

+ f ′
i(∞)

∑

j:qj=0

pj ≤ Di

(2.7)

for i = 1, . . . ,m. Similarly, when Df1 , . . . , Dfm are all finite, B(D1, . . . , Dm) equals the
optimal value of

minimize
p,q∈[0,1]m+2

∑

j:qj>0

qjf

(

pj
qj

)

+ f ′(∞)
∑

j:qj=0

pj

subject to pj ≥ 0, qj ≥ 0 for all j = 1, . . . ,m+ 2
∑

pj =
∑

qj = 1

∑

j:qj>0

qjfi

(

pj
qj

)

+ f ′
i(∞)

∑

j:qj=0

pj ≥ Di

(2.8)

for i = 1, . . . ,m. The proof of Theorem 2.3.1 is provided in the next section. In Section 2.5,
we argue that Theorem 2.3.1 is tight in general and also comment on the assumption of
finiteness of Df1 , . . . , Dfm for the validity of identity (2.6). We also describe an attempt to
prove this theorem via joint ranges but this only yields a weaker result.

2.4 Proof of the Main Result

2.4.1 Testing Representation

For two probability measures P and Q, let us define the function ψP,Q : [0,∞)→ [0, 1] by

ψP,Q(s) :=

∫

min(p, qs)dλ for s ∈ [0,∞)
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where p and q denote the densities of P and Q with respect to a common measure λ (which
can, for example, be taken to be P + Q). This function ψP,Q is nonnegative, concave, non-
decreasing and satisfies the inequality 0 ≤ ψP,Q(s) ≤ min(1, s) for all s ≥ 0. In other words,
ψ ∈ C where C denotes the class of all functions ψ on [0,∞) that are nonnegative, concave,
non-decreasing and satisfy the inequality ψ(s) ≤ min(1, s) for all s ≥ 0. Moreover, it is true
(see, for example, Reid and Williamson [113, Corollary 5]) that every function ψ ∈ C equals
ψP,Q for some pair of probability measures P and Q.

For each divergence Df , let us associate the measure νf on (0,∞) defined by

νf (a, b] := ∂rf(b)− ∂rf(a) for 0 < a < b <∞

where ∂r denotes the right derivative operator (note that by convexity ∂rf(x) exists for every
x ∈ (0,∞)). We also associate the functional If : C → [0,∞] by

If (ψ) :=

∫ ∞

0

(min(1, s)− ψ(s)) dνf (s). (2.9)

There is a precise connection between Df and If that is given below:

Lemma 2.4.1. For every pair of probability measures P and Q, we have

Df (P ||Q) = If (ψP,Q). (2.10)

Lemma 2.4.1 is not new although the form in which it is stated above is non-standard.
The more standard version simply involves writing the integral in (2.9) over the interval
(0, 1) by the change of variable t = s/(1 + s). In this modified form, Lemma 2.4.1 has been
proved in Osterreicher and Vajda [103] in the case when f is twice differentiable and in Liese
and Vajda [78] in the general case. A short proof is available in Liese [77, Theorem 2.3].

Remark 2.4.2 (Primitive f -divergences). For each s > 0, let us(t) := min(1, s)−min(t, s)
for t ∈ (0,∞). Clearly, us is a convex function on (0,∞) such that us(1) = 0. Moreover, it
is a very simple convex function in the sense that it is piecewise linear with just two linear
parts. It is straightforward to check that the divergence corresponding to us is given by:

Dus(P ||Q) = min(1, s)− ψP,Q(s).

Lemma 2.4.1 therefore asserts that any arbitrary f -divergence can be written as an integral
of the primitive divergences Dus with respect to the measure νf on (0,∞). The most well-
known of these primitive divergences is the total variation distance which corresponds to
s = 1. Indeed,

Du1(P ||Q) = 1−
∫

min(p, q)dλ =
1

2

∫

|p− q|dλ =: V (P,Q)

Every primitive divergence Dus(P ||Q) is closely related to the smallest weighted average error
(Bayes risk) in the problem of statistical testing between the hypotheses P against Q based
on an observation X (see, for example, Reid and Williamson [113, Lemma 3]).
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Remark 2.4.3 (Finiteness of a divergence). Lemma 2.4.1 imples that

sup
P,Q

Df (P ||Q) =
∫ ∞

0

min(1, s)dνf (s) = f(0) + f ′(∞). (2.11)

The supremum above is taken over all probability measures P and Q defined on all possible
measurable spaces. To see (2.11), just note that, by Lemma 2.4.1, we have

sup
P,Q

Df (P ||Q) = sup
P,Q

If (ψP,Q) = sup
ψ∈C

If (ψ) = If (0).

Intuitively, ψP,Q(s) = 0 for all s implies that P and Q are maximally separated (mutually
singular) and thus the maximum value of If (ψ) is achieved when ψ is the identically zero
function. The definition of If gives that

If (0) =

∫ ∞

0

min(1, s)dνf (s)

Moreover, for the probability measures P ∗ = (1, 0) and Q∗ = (0, 1) in P2, the function ψP,Q
equals 0. Therefore,

If (0) = Df (P
∗||Q∗) = f(0) + f ′(∞),

which proves (2.11).
Recall that an f -divergence is finite if supP,QDf (P ||Q) <∞. By (2.11), an f -divergence

is finite if and only if
∫ ∞

0

min(1, s)dνf (s) = f(0) + f ′(∞) <∞. (2.12)

Well known examples of finite divergences are the primitive divergences, the square of the
Hellinger distance and the capacitory discrimination (which corresponds to the convex func-
tion (2.53)).

For each f and D ≥ 0, let us define

C1(f,D) := {ψ ∈ C : If (ψ) ≤ D}

and
C2(f,D) := {ψ ∈ C : If (ψ) ≥ D}

As a consequence of Lemma 2.4.1, we obtain that

A(D1, . . . , Dm) = sup {If (ψ) : ψ ∈ ∩mi=1C1(fi, Di)} (2.13)

and
B(D1, . . . , Dm) = inf {If (ψ) : ψ ∈ ∩mi=1C2(fi, Di)} . (2.14)

The following lemma on the derivatives of the function ψP,Q (the left and right derivative
operators are denoted by ∂l and ∂r respectively) will be useful in the sequel.
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Lemma 2.4.4. For every function ψ = ψP,Q in C, we have

∂lψ(s) = Q {p ≥ sq} for s > 0 (2.15)

and
∂rψ(s) = Q {p > sq} for s ≥ 0. (2.16)

Proof. For every s > 0,

∂lψ(s) = lim
ǫ↓0

ψ(s)− ψ(s− ǫ)
ǫ

and
ψ(s)− ψ(s− ǫ)

ǫ
=

∫

min(p, qs)−min(p, q(s− ǫ))
ǫ

dλ

It is easy to check that the integrand above is bounded in absolute value by q and converges
as ǫ ↓ 0 to q {p ≥ qs}. The identity (2.15) therefore follows by the dominated convergence
theorem. The proof of (2.16) is similar.

2.4.2 Reduction to Extreme Points

Let us first recall the definition of extreme points. Let S be a subset of a vector space V . A
point a ∈ S is called an extreme point of S if a = (b+c)/2 for b, c ∈ S implies that a = b = c.
In other words, a cannot be the mid-point of a non-trivial line segment whose end points lie
in S. We denote the set of all extreme points of S by ext(S).

An important result about extreme points in infinite dimensional topological vector spaces
is Choquet’s theorem (see, for example, Phelps [106, Chapter 3]). We shall use the following
version of Choquet’s theorem in this section:

Theorem 2.4.5 (Choquet). Let K be a metrizable, compact convex subset of a locally convex
space V and let x0 be an element of K. Then there exists a Borel probability measure µ0 on K
which is concentrated on the extreme points of K and which satisfies L(x0) =

∫

K
L(x)dµ0(x)

for every continuous linear functional L on V .

The goal of this section is to prove the following:

Lemma 2.4.6. For every D1, . . . , Dm ≥ 0, we have

A(D1, . . . , Dm) = sup {If (ψ) : ψ ∈ ext (∩mi=1C1(fi, Di))}

and further, if Df1 , . . . , Dfm are all finite, we have

B(D1, . . . , Dm) = inf {If (ψ) : ψ ∈ ext (∩mi=1C2(fi, Di))}
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Proof. The proof is based on Theorem 2.4.5. Let C[0,∞) denote the space of all continuous
functions on [0,∞) equipped with the topology given by the metric:

ρ(f, g) :=
∑

k≥1

2−kmin

(

sup
0≤x≤k

|f(x)− g(x)|, 1
)

. (2.17)

It is a fact (see, for example, Rudin [120, Chapter 1]) that C[0,∞) is a locally convex
vector space under this topology. We shall apply Choquet’s theorem to V = C[0,∞) and
K = ∩mi=1C1(fi, Di) for the first identity and K = ∩mi=1C2(fi, Di) for the second identity. It
is obvious that C is a subset of C[0,∞).

Clearly both the sets ∩iC1(fi, Di) and ∩iC2(fi, Di) are convex. Also, by Fatou’s lemma,
∩iC1(fi, Di) is closed under pointwise convergence i.e., if ψn ∈ ∩iC1(fi, Di) and ψn → ψ
pointwise, then ψ ∈ ∩iC1(fi, Di). To see this, observe that by Fatou’s lemma, for each
i = 1, . . . ,m,

Ifi(ψ) =

∫ ∞

0

(min(1, s)− ψ(s)) dνfi(s)

=

∫ ∞

0

lim inf
n→∞

(min(1, s)− ψn(s)) dνfi(s)

≤ lim inf
n→∞

∫ ∞

0

(min(1, s)− ψn(s)) dνfi(s) ≤ Di.

On the other hand, if each Dfi is a finite divergence, then by the dominated convergence
theorem, ∩iC2(fi, Di) is also closed under pointwise convergence. Indeed, if ψn → ψ pointwise
and Dfi is a finite divergence, then by the dominated convergence (since 0 ≤ min(1, s) −
ψn(s) ≤ min(1, s)), we have Ifi(ψn)→ Ifi(ψ).

In Lemma 2.4.7 below, we show that C is a compact subset of C[0,∞) under the topology
given by the metric ρ. Moreover, it is easy to see that convergence in the metric ρ implies
pointwise convergence. It follows hence that ∩iC1(fi, Di) is a compact, convex subset of
C[0,∞) and if each Dfi is a finite divergence, then ∩iC2(fi, Di) is also a compact, convex
subset of C[0,∞).

For each ǫ > 0, let us define the functional Λǫ on C[0,∞) by

Λǫ(ψ) =

∫

(min(1, s)− ψ(s)) {ǫ ≤ s ≤ 1/ǫ} dνf (s)

When restricted to the interval [ǫ, 1/ǫ], the measure νf is a finite measure. Hence, Λǫ is a
continuous, linear functional on C[0,∞). Thus, by Theorem 2.4.5, we get that for every
ψ0 ∈ ∩iC1(fi, Di), there exists a Borel probability measure τ0 that is concentrated on the set
of extreme points, ext(∩iC1(fi, Di)), of ∩iC1(fi, Di) such that

Λǫ(ψ0) =

∫

Λǫ(ψ)dτ0(ψ),
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for every ǫ > 0. Now, by the monotone convergence theorem,

Λǫ(ψ) ↑ If (ψ) as ǫ ↓ 0
for every ψ ∈ C. As a result, we can use the monotone convergence theorem again to assert
that

∫

Λǫ(ψ)dτ0(ψ) ↑
∫

If (ψ)dτ0(ψ) as ǫ ↓ 0.

We therefore obtain

If (ψ0) =

∫

If (ψ)dτ0(ψ). (2.18)

Since this is true for all functions ψ0 in ∩iC1(fi, Di), we obtain

sup
ψ∈∩iC1(fi,Di)

If (ψ) = sup
ψ∈ext(∩iC1(fi,Di))

If (ψ)

The proof of the first assertion of Lemma 2.4.6 is now complete by (2.13). Similarly, when
each divergence Dfi is finite, we can prove that

inf
ψ∈∩iC2(fi,Di)

If (ψ) = inf
ψ∈ext(∩iC2(fi,Di))

If (ψ)

and this, together with (2.14), completes the proof of Lemma 2.4.6.

In the above proof, we used the fact that C is compact in C[0,∞), the space of all
continuous functions on [0,∞). We prove this fact below.

Lemma 2.4.7. The class C is compact in C[0,∞) equipped with the topology given by the
metric (2.17).

Proof. We show that C is sequentially compact. Consider a sequence {ψn} in C. For every
fixed s0 ∈ [0,∞), the sequence {ψn(s0)} is a sequence of real numbers in [0, 1] and hence has a
convergent subsequence. By a standard diagonalization argument, we assert the existence of
a subsequence {φk} of {ψn} that converges pointwise over the set of all nonnegative rational
numbers (denoted by Q+).

Let us now fix ǫ > 0 and a real number s0 ∈ [0,∞). Choose r1, r2 ∈ Q+ such that
r1 ≤ s0 ≤ r2 and such that r2 − r1 < ǫ/4. Also, let N ≥ 1 be large enough so that

|φk(ri)− φl(ri)| < ǫ/4 for k, l ≥ N

and for i = 1, 2. Using properties of functions in C, we get that

|φk(s0)− φl(s0)| < |φk(r1)− φl(r2)|+ |φk(r2)− φl(r1)|
< 2|φk(r1)− φl(r1)|+ 2|r1 − r2| < ǫ.

In the last inequality above, we have used the fact that functions in C are Lipschitz with
constant 1 (this can be proved for instance using the derviatives given by Lemma 2.4.4). It
therefore follows that the sequence {φk} converges pointwise on [0,∞). The proof is now
complete by the observation that convergence in the metric ρ is equivalent to pointwise
convergence on [0,∞).
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2.4.3 Characterization of Extreme Points

Lemma 2.4.6 asserts that for the purposes of finding the supremum or infimum of If subject
to constraints on Ifi , it is enough to focus on the extreme points of the constraint set. In
the next theorem, we provide a necessary condition for a function in the constraint set to be
an extreme point of the constraint set.

Theorem 2.4.8. Let ψ be a function in ∩iC1(fi, Di) and let k be the number of indices i for
which Ifi(ψ) = Di. Then a necessary condition for ψ to be extreme in ∩iC1(fi, Di) is that
ψ equals ψP,Q for two probability measures P,Q ∈ Pk+2. The same conclusion also holds
for extreme functions in ∩iC2(fi, Di) provided all the involved divergences Df1 , . . . , Dfm are
finite.

Remark 2.4.9. When m = k = 0, the sets ∩iC1(fi, Di) and ∩iC2(fi, Di) can both be taken
to be equal to C. As will be clear from the proof, the above theorem will also be true in this
case where it states that a necessary condition for a function ψ to be extreme in C is that ψ
equals ψP,Q for two probability measures P,Q ∈ P2.

The proof of Theorem 2.4.8 relies on the following lemma whose proof is provided after
the proof of Theorem 2.4.8.

Lemma 2.4.10. Let P and Q be two probability measures on a space X having densities
p and q with respect to λ. Let l ≥ 1 be fixed. Suppose that for every decreasing sequence
s1 > · · · > sl of positive real numbers, the following condition holds:

min
1≤j≤l+1

(P (Bj) +Q(Bj)) = 0

where B1 = {p ≥ qs1}, Bi = {qsi ≤ p < qsi−1} for i = 2, . . . , l and Bl+1 = {p < qsl}. Then
ψP,Q can be written as ψP ′,Q′ for two probability measures P ′, Q′ ∈ Pl.

Proof of Theorem 2.4.8. Let ψ be a function in ext(∩iC1(fi, Di)). Since ψ ∈ C, we can write
ψ(s) = ψP,Q(s) =

∫

min(p, sq)dλ for some probability measures P and Q on a measurable
space X having densities p and q with respect to a common sigma finite measure λ. Without
loss of generality, we assume that

Ifi(ψ) = Dfi(P ||Q) = Di for i = 1, . . . , k (2.19)

and
Ifi(ψ) = Dfi(P ||Q) < Di for i = k + 1, . . . ,m. (2.20)

Let α : X → (−1, 1) be a function satisfying

∫

αpdλ =

∫

αqdλ = 0. (2.21)
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Note that (1+α)p, (1−α)p, (1+α)q and (1−α)q are all probability densities with respect to λ.
Let P+, P−, Q+, Q− be probability measures having densities p+ := (1+α)p, p− := (1−α)p,
q+ := (1 + α)q, q− := (1− α)q respectively with respect to λ. Also, let

ψ+(s) := ψP+,Q+(s) =

∫

(1 + α)min(p, sq)dλ

and

ψ−(s) := ψP−,Q−(s) =

∫

(1− α)min(p, sq)dλ

so that ψ = (ψ+ + ψ−)/2. For every i = 1, . . . ,m, we observe that

Ifi(ψ+) = Dfi(P+||Q+)

=

∫

q+fi

(

p+
q+

)

dλ+ f ′
i(∞)P+ {q+ = 0} .

Writing (1 +α)p and (1 +α)q for p+ and q+ respectively and noting that 1 +α > 0 because
α takes values in (−1, 1), we obtain

Ifi(ψ+) = Ifi(ψ) +

∫

αridλ (2.22)

where

ri := qfi

(

p

q

)

+ f ′
i(∞)p {q = 0} .

It follows similarly that

Ifi(ψ−) = Ifi(ψ)−
∫

αridλ (2.23)

We observe that
∫

ridλ ≤ Di for each i = 1, . . . ,m which implies that

∫

|αri|dλ <∞ (2.24)

for every function α that takes values in (−1, 1) and i = 1, . . . ,m.
From (2.19), (2.22) and (2.23), it follows that the two inequalities:

Ifi(ψ+) ≤ Di and Ifi(ψ−) ≤ Di (2.25)

will be satisfied for i = 1, . . . , k if and only if
∫

αridλ = 0 for i = 1, . . . , k. (2.26)

Moreover, from (2.20), (2.22) and (2.23), it follows that if supx∈X |α(x)| is sufficiently small,
then (2.25) will be satisfied also for i = k + 1, . . . ,m. Let us say that α is a good function
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if it satisfies (2.21) and (2.26) and if supx |α(x)| is sufficiently small. We have thus proved
that if α is a good function, then both ψ+ and ψ− belong to ∩iC1(fi, Di). Because ψ is
extreme and ψ = (ψ+ + ψ−)/2, we assert that ψ = ψ+ = ψ− for every good function α. As
a result, ∂lψ(s) = ∂lψ+(s) for every s > 0 and ∂rψ(s) = ∂rψ+(s) for every s ≥ 0. Because
of Lemma 2.4.4 and the relations p+ = (1 + α)p and q+ = (1 + α)q, we get that

∫

p≥sq
αqdλ = 0 and

∫

p>sq

αqdλ = 0 (2.27)

for every s > 0. On the other hand, the equality sψ(1/s) = sψ+(1/s) for every s > 0
implies that ψQ,P (s) = ψQ+,P+(s). Reversing the role of q and p in the argument that led to
equation (2.27), we equate derivatives and use

∫

αpdλ = 0 to get

∫

p≥sq
αpdλ = 0 and

∫

p>sq

αpdλ = 0 (2.28)

for every s > 0. We have therefore shown that both (2.27) and (2.28) hold for every
s > 0 whenever α is a good function. We now show that for every decreasing sequence
s1 > · · · > sk+2 of positive real numbers, the following condition must hold

min
1≤j≤k+3

(P (Bj) +Q(Bj)) = 0 (2.29)

where B1 = {p ≥ qs1}, Bi = {qsi ≤ p < qsi−1} for i = 2, . . . , k+2, and Bk+3 = {p < qsk+2}.
The proof would then be completed by Lemma 2.4.10.

We prove (2.29) via contradiction. Suppose that the condition (2.29) does not hold for
some s1 > · · · > sk+2. Let α =

∑k+3
j=1 αjIBj

where α1, . . . , αk+3 are real numbers in (−1, 1)
and IBj

denotes the indicator function of Bj. We claim that for this α, the conditions (2.27)
and (2.28) cannot hold unless α1 = · · · = αk+3 = 0. To see this, note that (2.27) and (2.28)
for s = s1 give α1(P (B1)+Q(B1)) = 0. But since P (B1)+Q(B1) is strictly positive (we are
assuming that (2.29) does not hold), it follows that α1 = 0. We now use (2.27) and (2.28)
for s = s2 to obtain α2 = 0. Continuing this argument, we get that (2.27) and (2.28) cannot
hold unless α1 = · · · = αk+3 = 0. As a result, it follows that α =

∑k+3
j=1 αjIBj

is not a good

function for every non-zero vector (α1, . . . , αk+3) in Rk+3.
On the other hand, as can be easily seen by writing down the conditions (2.21) and (2.26),

for α =
∑k+3

j=1 αjIBj
to be a good function, maxj |αj| needs to be sufficiently small and the

following equalities need to be satisfied:

k+3
∑

j=1

αjP (Bj) = 0 =
k+3
∑

j=1

αjQ(Bj)

and
k+3
∑

j=1

αj

∫

Bj

ridλ = 0 for i = 1, . . . , k.
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If (2.29) is not satisfied, then the above represent k + 2 linear equalities for the k + 3
variables α1, . . . , αk+3. Therefore, a solution exists where α1, . . . , αk+3 are non-zero (and
where maxj |αj| is small) for which α =

∑k+3
j=1 αjIBj

becomes a good function. Since this is
a contradiction, we have established (2.29).

By Lemma 2.4.10, it follows that ψ can be written as ψP ′,Q′ for two probability measures
P ′ and Q′ on {1, . . . , k+2}. This proves the first part of the theorem. The case of ∩iC2(fi, Di)
is very similar. In the above argument, the only place where we used the fact that the
constraints in ∩iC1(fi, Di) are of the ≤ form is in asserting (2.24). In the case of ∩iC2(fi, Di),
the statement (2.24) still holds under the assumption that each divergence Dfi is finite. The
rest of the proof proceeds exactly as before.

Below, we provide the proof of Lemma 2.4.10 which was used in the above proof.

Proof of Lemma 2.4.10. Let η denote the probability measure (P +Q)/2. Suppose

N := {x ∈ (0, 1) : x = η{p ≥ qs} for some s ∈ (0,∞)} .

We claim that N is a finite set having cardinality at most l − 1. To see this, suppose,
if possible, that there exist points 0 < x1 < · · · < xl < 1 in N . Then, we can write
xi = η{p ≥ qsi} for some s1 > · · · > sl > 0. But then η(B1) = x1, η(Bi) = xi − xi−1 > 0 for
i = 2, . . . , l and η(Bl+1) = 1 − xl > 0 which contradicts the condition given in the lemma.
Let us therefore assume that the cardinality of N equals k ≤ l− 1 and let N = {x1, . . . , xk}
where 0 < x1 < · · · < xk < 1. Let

s∗i := sup {s > 0 : η{p ≥ qs} = xi}

for i = 1, . . . , k. Also let

s∗k+1 := sup {s > 0 : η{p ≥ qs} = 1}

if there exists s > 0 with η{p ≥ qs} = 1. If there exists no such s > 0, we define s∗k+1 = 0.
It is easy to see that s∗1 ∈ (0,∞] and s∗k+1 ∈ [0,∞) while s∗2, . . . , s

∗
k ∈ (0,∞). Let us first

consider the case when s∗1 < ∞ and s∗k+1 > 0. In this case, for each i = 1, . . . , k + 1,
there exists a sequence {tn(i)} with 0 < tn(i) ↑ s∗i such that η{p ≥ qtn(i)} = xi (we take
xk+1 = 1). Because the sets {p ≥ qtn(i)} decrease to {p ≥ qs∗i } as n → ∞, it follows that
η{p ≥ qs∗i } = xi for each i = 1, . . . , k + 1. Also it is easy to see that

η{p > qs∗i } = lim
s↓s∗i

η{p ≥ qs} = xi−1

for each i = 1, . . . , k+1 where we take x0 = 0. It follows therefore that η{p = qs∗i } = xi−xi−1

for 1 ≤ i ≤ k + 1. Because
∑k+1

i=1 (xi − xi−1) = xk+1 − x0 = 1, it follows that

k+1
∑

i=1

η{p = qs∗i } = 1. (2.30)
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It can be checked that the above statement is also true in the case when s∗1 = ∞ and/or
s∗k+1 = 0 provided we interpret

{p = q · ∞} = {q = 0} and {p = q · 0} = {p = 0}.

The equality (2.30) is the same as

k+1
∑

i=1

P{p = qs∗i } = 1 and
k+1
∑

i=1

Q{p = qs∗i } = 1. (2.31)

Let pi = P{p = qs∗i } and qi = Q{p = qs∗i } for i = 1, . . . , k + 1 so that P ′ = (p1, . . . , pk+1)
and Q′ = (q1, . . . , qk+1) are probability measures on {1, . . . , k+1}. For each i = 1, . . . , k+1,
we have

pi = P{p = qs∗i } =
∫

p=qs∗i

pdλ = s∗i

∫

p=qs∗i

qdλ = s∗i qi

where the above statement is to be interpreted as q1 = 0 if s∗1 = ∞ and as pk+1 = 0 if
s∗k+1 = 0. Also

∫

p=qs∗i

min(p, qs)dλ = min(s∗i , s)Q{p = qs∗i } = min(pi, qis)

for every s ≥ 0 and i = 1, 2, . . . , k + 1. Therefore,

ψP,Q(s) =

∫

min(p, qs)dλ

=
k+1
∑

i=1

∫

p=qs∗i

min(p, qs)dλ = ψP ′,Q′(s).

The proof is complete because k + 1 ≤ l.

2.4.4 Completion of the Proof

We shall prove (2.5). The proof of (2.6) is entirely analogous. Theorem 2.4.8 states that
every function in ∩iC1(fi, Di) that is extreme equals ψP,Q for some P,Q ∈ Pm+2. Therefore,
by Lemma 2.4.6, we get that A(D1, . . . , Dm) equals

sup {If (ψP,Q) : ψP,Q ∈ ∩mi=1C1(fi, Di) and P,Q ∈ Pm+2} .

Because Ifi(ψP,Q) equalsDfi(P ||Q), the constraint ψ ∈ ∩iC1(fi, Di) is equivalent toDfi(P ||Q) ≤
Di for all i = 1, . . . ,m. The proof is therefore complete.
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2.5 Remarks and Extensions

2.5.1 Stronger Version

The proof of Theorem 2.3.1 actually yields a smaller expression for A(D1, . . . , Dm) than
Am+2(D1, . . . , Dm) and a larger expression for B(D1, . . . , Dm) than Bm+2(D1, . . . , Dm). For
each subset J of {1, . . . ,m}, let AJ(D1, . . . , Dm) denote the supremum of Df (P ||Q) over all
probability measures P,Q ∈ Pk+2 (where k is the cardinality of J) for which Dfi(P ||Q) = Di

for i ∈ J and Dfi(P ||Q) < Di for i /∈ J . It is clear that

AJ(D1, . . . , Dm) ≤ Am+2(D1, . . . , Dm)

for each J ⊆ {1, . . . ,m}. The following is therefore a stronger version of Theorem 2.3.1:

A(D1, . . . , Dm) = max
J⊆{1,...,m}

AJ(D1, . . . , Dm) (2.32)

An analogous statement also holds for B(D1, . . . , Dm). Let us now show that our proof of
Theorem 2.3.1 given in Section 2.4.4 results in (2.32). By Theorem 2.4.8, every function ψ
in ∩iC1(fi, Di) that is extreme equals ψP,Q for some P,Q ∈ Pk+2 where k is the number of
indices i for which Ifi(ψ) = Dfi(P ||Q) = Di. Therefore, if J denotes these indices, then

If (ψ) = Df (P ||Q) ≤ AJ(D1, . . . , Dm)

≤ max
J⊆{1,...,m}

AJ(D1, . . . , Dm)

for every ψ ∈ ext(∩iC1(fi, Di)). The equality (2.32) therefore follows from Lemma 2.4.6.

2.5.2 Joint Ranges

Recall that the joint range of divergences Df1 , . . . , Dfm is denoted by R(f1, . . . , fm) and is
defined as the set of all vectors in Rm that equal (Df1(P ||Q), . . . , Dfm(P ||Q)) for some P
and Q. The quantities A(D1, . . . , Dm) and B(D1, . . . , Dm) can easily be calculated from
knowledge of R(f, f1, . . . , fm). It therefore makes sense to try to prove Theorem 2.3.1 by
trying to determine the joint range R(f, f1, . . . , fm). We argue here that this approach is not
good enough to prove Theorem 2.3.1; it results in the weaker identities (2.36) and (2.37).

In the following theorem, we characterize the joint rangeR(f1, . . . , fm) for every arbitrary
set of m divergences. We show that it suffices to restrict attention to pairs of probability
measures in Pm+2. For each k ≥ 1, let

Rk(f1, . . . , fm) := {(Df1(P ||Q), . . . , Dfm(P ||Q)) : P,Q ∈ Pk} .

Theorem 2.5.1. For every m ≥ 1 and divergences Df1 , . . . , Dfm, we have

R(f1, . . . , fm) = Rm+2(f1, . . . , fm).
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For the special casem = 2, this theorem has already been proved by Harremoes and Vajda
[55]. The short proof given below uses the Caratheodory theorem and was communicated to
us by an anonymous referee. In contrast, the proof given in Harremoes and Vajda [55] for
m = 2 is much more elaborate. The counterexamples in Harremoes and Vajda [55] show the
tightness of this theorem. After the proof, we describe an attempt to prove Theorem 2.3.1
via Theorem 2.5.1.

Proof. We just need to prove thatR(f1, . . . , fm) ⊆ Rm+2(f1, . . . , fm). Let u ∈ R(f1, . . . , fm).
Then u = (Df1(P ||Q), . . . , Dfm(P ||Q)) for some pair of probability measures P and Q. If p
and q denote the densities of P and Q with respect to a common measure λ, then

u =

∫

{q>0}

(

f1

(

p

q

)

, . . . , fm

(

p

q

))

dQ+ P{q = 0} (f ′
1(∞), . . . , f ′

m(∞)) . (2.33)

Let S ⊆ Rm+1 be defined by S := {(s, f1(s), . . . , fm(s)) : s ≥ 0}. Then clearly the vector

∫

{q>0}

(

p

q
, f1

(

p

q

)

, . . . , fm

(

p

q

))

dQ

lies in the convex hull of S. Because S is a connected subset of Rm+1, we can use Caratheodory’s
theorem (see, for example, Bárány and Karasev [6]) to assert that any point in its convex
hull can be written as a convex combination of at most m + 1 points in S. As a result, we
can write

∫

{q>0}

(

p

q
, f1

(

p

q

)

, . . . , fm

(

p

q

))

dQ =
m+1
∑

i=1

αi (si, f1(si), . . . , fm(si)) (2.34)

for some α1, . . . , αm+1 ≥ 0 with
∑

i αi = 1 and s1, . . . , sm+1 ≥ 0. One consequence of this
representation is that

m+1
∑

i=1

αisi =

∫

q>0

(

p

q

)

dQ = P{q > 0}. (2.35)

We now define two probability measures P ′ and Q′ in Pm+2 as follows: P ′{i+ 1} = αisi for
1 ≤ i ≤ m+1 and P ′{1} = P{q = 0}; and Q′{i+1} = αi for 1 ≤ i ≤ m+1 and Q′{1} = 0.
The fact that

∑m+2
i=1 P ′{i} = 1 follows from (2.35). The equalities (2.33) and (2.34) together

clearly imply that u = (Df1(P
′||Q′), . . . , Dfm(P

′||Q′)). Thus u ∈ Rm+2(f1, . . . , fm) and this
completes the proof.

Clearly A(D1, . . . , Dm) and B(D1, . . . , Dm) can be written as functions of the joint range
R(f, f1, . . . , fm). Theorem 2.5.1 immediately therefore implies

A(D1, . . . , Dm) = Am+3(D1, . . . , Dm) (2.36)

and
B(D1, . . . , Dm) = Bm+3(D1, . . . , Dm). (2.37)
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These results are clearly weaker than those given by Theorem 2.3.1. Strictly speaking, one
can deduce a slightly stronger conclusion than (2.36) and (2.37) from Theorem 2.5.1. A
probability measure on {1, . . . ,m + 3} is determined by m + 2 real numbers. Therefore,
a pair of probability measures in Pm+3 are determined by 2m + 4 real numbers. The in-
equalities (2.36) and (2.37) therefore reduce the optimization problems for A(D1, . . . , Dm)
and B(D1, . . . , Dm) into optimization problems over 2m + 4 variables. A closer inspection
at the proof of Theorem 2.5.1 shows that one actually gets a reduction to 2m+ 3 variables.
This is because the probability measure Q′ in the proof satisfies Q′{1} = 0. Therefore, by
an argument based solely on the joint range of Df , Df1 , . . . , Dfm , one can reduce the opti-
mization problems for A(D1, . . . , Dm) and B(D1, . . . , Dm) into optimization problems over
2m+ 3 variables. Because of the tightness of Theorem 2.5.1, this is the best reduction that
one can hope for the quantities A(D1, . . . , Dm) and B(D1, . . . , Dm) via an argument based
on the joint range alone. On the other hand, Theorem 2.3.1 achieves a reduction to 2m+ 2
variables.

2.5.3 Tightness

The conclusion of Theorem 2.3.1 is tight in the sense that, in general, one cannot reduce
the optimization problems to pairs of probability measures on spaces of cardinality strictly
smaller than m+ 2. We shall demonstrate this fact in this section by means of an example.
We also explain this fact numerically in Example 2.7.6.

Consider the problem of maximizing an f -divergence subject to a upper bound on the
total variation distance. In other words, let

A(V ) := sup{Df (P ||Q) : V (P,Q) ≤ V }

where Df is an arbitrary f -divergence. In this case, Theorem 2.3.1 asserts that A(V ) equals
A3(V ) where, as before,

Ak(V ) := sup{Df (P ||Q) : P,Q ∈ Pk, V (P,Q) ≤ V }.

We shall show below that when Df is a finite divergence and when f is strictly convex on
(0,∞), the quantity A3(V ) is strictly larger than A2(V ) for all V ∈ (0, 1).

The quantity A3(V ) = A(V ) can be determined precisely. The easiest way is to use
Lemma 2.4.1. Because

V (P,Q) = Du1(P ||Q) = 1− ψP,Q(1),
the constraint V (P,Q) ≤ V is equivalent to ψP,Q(1) ≥ 1 − V . Therefore, by Lemma 2.4.1,
we get

A(V ) = sup{If (ψ) : ψ ∈ C and ψ(1) ≥ 1− V }.
It is obvious that the supremum above is achieved for ψ(s) = (1− V )min(1, s) which equals
ψP ′,Q′ for P ′ = (1− V, V, 0) and Q′ = (1− V, 0, V ). Thus

A(V ) = Df (P
′||Q′) = V (f(0) + f ′(∞)) .
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In other words, by Remark 2.4.3, the quantity A(V ) equals V times the maximum possible
value of the divergence Df .

Let us now consider the quantity A2(V ). By compactness and the form of the constraint,
it follows that there exist two probability measures P ∗ and Q∗ in P2 with V (P ∗, Q∗) = V
and Df (P

∗||Q∗) = A2(V ). We can then, without loss of generality, parametrize P ∗ and Q∗

by P ∗ = (ρ, 1− ρ) and Q∗ = (ρ+ V, 1− ρ− V ) for some 0 ≤ ρ ≤ 1− V . Consider now the
probability measures

P̃ =
(ρ

2
,
ρ

2
, 1− ρ

)

and Q̃ =

(

ρ

2
+
V

4
,
ρ

2
+

3V

4
, 1− ρ− V

)

in P3. If V ∈ (0, 1), by strict convexity of the function f , it is easy to see that

Df (P̃ ||Q̃) > Df (P
∗||Q∗) = A2(V ).

On the other hand, it is easy to see that V (P̃ , Q̃) equals V and hence A3(V ) > Df (P̃ ||Q̃).
Therefore, A3(V ) > A2(V ). Thus, Theorem 2.3.1 is tight in general. However, in some
special cases, one can obtain stronger conclusions, see Sections 2.6.1 and 2.6.2.

2.5.4 Finiteness assumption for B(D1, . . . , Dm)

In order to prove (2.6), we required that all the divergences Df1 , . . . , Dfm are finite. The
reason is mainly technical and the finiteness assumption was crucially used in the proof of
Lemma 2.4.6. The set ∩iC2(fi, Di) will not be closed (in C[0,∞) equipped with the metric
ρ) if some of the divergences Dfi were non-finite (closedness of ∩iC2(fi, Di) was critical in
the application of Choquet’s theorem in Lemma 2.4.6). To illustrate this non-closedness, let
us consider m = 1 and the set C2(f1, D1) for some non-finite divergence Df1 and D1 > 0.
By (2.12), because Df1 is non-finite, we have

∫ ∞

0

min(1, s)dνf1(s) =∞.

The function ψ0(s) = min(1, s) clearly does not belong to C2(f1, D1) because If1(ψ0) = 0.
But we shall show that ψ0 belongs to the closure of C2(f1, D1). Indeed, if

ψn(s) :=

(

1− 1

n

)

min(1, s) for s ≥ 0,

then clearly ψn converges to ψ in the metric ρ. Moreover, for each n, ψn ∈ C and

If1(ψn) =
1

n

∫ ∞

0

min(1, s)dνf1(s) =∞.

Thus ψn ∈ C2(f1, D1) for each n ≥ 1 which implies that ψ0 belongs to the closure of C2(f1, D1).
Therefore, C2(f1, D1) is not closed.
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The quantity B(D1, . . . , Dm) behaves strangely when some of the divergences Dfi are
non-finite and when Df is finite. Indeed, in this case, one can simply drop the constraints
corresponding to the non-finite divergences and reduce the problem to the case when all
divergences are finite. This is the content of the next lemma.

Lemma 2.5.2. Let Df , Df1 , . . . , Dfm be finite divergences and let Dfm+1
, . . . , Dfm+l

be non-
finite divergences. Then

B(D1, . . . , Dm+l) = B(D1, . . . , Dm)

Proof. We shall work with (2.14). Because ∩m+l
i=1 C2(fi, Di) is contained in ∩mi=1C2(fi, Di), it

follows that B(D1, . . . , Dm+l) is larger than or equal to B(D1, . . . , Dm). To prove the other
inequality, let ψ ∈ ∩mi=1C2(fi, Di). For each n ≥ 1, define

ψn(s) = min

[(

1− 1

n

)

min(1, s), ψ(s)

]

It is easy to check that ψn ∈ C. Note that for 1 ≤ i ≤ m,

Ifi(ψn) =

∫ ∞

0

(min(1, s)− ψn(s)) dνfi(s)

≥
∫ ∞

0

(min(1, s)− ψ(s)) dνfi(s) = Ifi(ψ) ≥ Di.

Moreover, for m < i ≤ m+ l, we have

Ifi(ψn) =

∫ ∞

0

(min(1, s)− ψn(s)) dνfi(s)

≥ 1

n

∫ ∞

0

min(1, s)dνfi(s) =∞ ≥ Di.

It therefore follows that ψn ∈ ∩m+l
i=1 C2(fi, Di) for every n ≥ 1. Consequently,

If (ψn) ≥ B(D1, . . . , Dm+l) for every n ≥ 1.

Observe that ψn(s) converges to ψ(s) for every s ≥ 0. Thus, becauseDf is a finite divergence,
it follows by the dominated convergence theorem that If (ψn) converges to If (ψ) which results
in

If (ψ) ≥ B(D1, . . . , Dm+l).

Finally, because ψ ∈ ∩mi=1C2(fi, Di) is arbitrary, we have proved that B(D1, . . . , Dm) is larger
than or equal to B(D1, . . . , Dm+l) which completes the proof of the lemma.

Remark 2.5.3. If Df is finite and if all the divergences Df1 , . . . , Dfm are non-finite, then
Lemma 2.5.2 gives that

B(D1, . . . , Dm) = 0 (2.38)
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for all values of D1, . . . , Dm. Here is a special instance of this result. Suppose that Df

denotes the total variation distance, m = 1 and that Df1 is the Kullback-Leibler divergence.
Then (2.38) shows that the smallest value of the total variation distance over all probability
measures with Kullback-Leibler divergence at least 5 (say) equals 0. The same conclusion
holds for multiple non-finite divergence constraints as well.

Theorem 2.3.1 gives a formula forB(D1, . . . , Dm) for arbitraryDf and for finiteDf1 , . . . , Dfm .
In Lemma 2.5.2, we showed that when Df is finite, then the case when one of more of
Df1 , . . . , Dfm are non-finite can be reduced to the case where all the constraint divergences
are finite which is handled by Theorem 2.3.1. The case that we are unable to resolve is
B(D1, . . . , Dm) when Df is non-finite and when one or more of Df1 , . . . , Dfm are non-finite.
This case is neither covered by Theorem 2.3.1 nor by Lemma 2.5.2.

2.5.5 Sufficiency of the extreme point characterization

In Theorem 2.4.8, we gave a necessary condition for functions in the classes ∩iC1(fi, Di) and
∩iC2(fi, Di) to be extreme. As we have seen, this necessary condition was enough to prove
Theorem 2.3.1. For the sake of completeness, in this section, we investigate whether the
condition in Theorem 2.4.8 is sufficient as well for extremity.

Let j ∈ {1, 2} and let ψ be a function in ∩iCj(fi, Di). Suppose ψ satisfies the condition
given in Theorem 2.4.8 i.e., let ψ = ψP,Q for two probability measures P,Q ∈ Pk+2 where k
is the number of indices where Ifi(ψ) = Di. Here, we explore the question of extremity of ψ
in ∩iCj(fi, Di).

Let l ≤ k + 2 be the size of the (finite) support set of the measure P + Q and let
P = {p1, . . . , pl} and Q = {q1, . . . , ql}, then ψ(s) =

∑l
i=1 min (pi, qis). Because the size of

the support set of P + Q is l, it follows that max(pi, qi) > 0 for every i. It is easy to check
that ψ is piecewise linear with knots at pi/qi (this ratio can equal 0 or ∞ as well).

Suppose that ψ = (ψ1 + ψ2)/2 for two functions ψ1 and ψ2 in ∩iCj(fi, Di). Because ψ1

and ψ2 are both concave, it follows that they both have to be linear in the regions where ψ
is linear. As a result, one can write

ψ1(s) =
l
∑

i=1

(1 + αi)min(pi, qis)

and

ψ2(s) =
l
∑

i=1

(1− αi)min(pi, qis)

for some α1, . . . , αn ∈ [−1, 1] satisfying
l
∑

i=1

αipi =
l
∑

i=1

αiqi = 0. (2.39)
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Now, whenever Ifi(ψ) = Di, because of the above, we must have Ifi(ψ1) = Di. This latter
equality can be written as a linear equality in α1, . . . , αl. Because Ifi(ψ) = Di for k indices
i, we obtain k linear equations for α1, . . . , αl. These, together with (2.39), give rise to k + 2
linear equations for the l ≤ k+2 variables α1, . . . , αl. Under appropriate linear independence
conditions on the measures νfi , these would imply that αi = 0 for every 1 ≤ i ≤ l which
would further imply that ψ1 = ψ = ψ2 and that ψ is extreme.

In the case when m ≤ 1 however, no such explict linear independence conditions are nec-
essary and, moreover, one can also give a geometric proof of the sufficiency characterization
of the extreme points. We do this below in two parts: Lemma 2.5.4 deals with m = 0 (i.e.,
extreme points of C) and Lemma 2.5.5 deals with the m = 1 case.

Lemma 2.5.4. For every P,Q ∈ P2, the function ψP,Q is extreme in C.
Proof. Fix two probability measures P and Q on {1, 2} and let J denote the smallest open
interval (possibly infinite) such that ψP,Q(s) = min(1, s) for s /∈ J . By explicitly writing down
the expression for ψ in terms of P{1} and Q{1}, it is easy to see that if J is non-empty,
then ψP,Q is linear on J .

Suppose now that ψP,Q equals the convex combination (ψ1 + ψ2)/2 for two functions ψ1

and ψ2 in C. If J is empty, then ψP,Q equals the function min(1, s) for all s and since all
functions in C and bounded from above by min(1, s), it follows that

ψP,Q(s) = ψ1(s) = ψ2(s) = min(1, s) (2.40)

for all s ≥ 0.
Let us therefore assume that J is non-empty. In this case, again it is obvious that (2.40)

holds for s /∈ J . Concavity of functions in C and linearity of ψ in J would then imply that
ψ1 ≥ ψP,Q and ψ2 ≥ ψP,Q. Since ψP,Q is the average of ψ1 and ψ2, this can happen only
when ψP,Q = ψ1 = ψ2. The proof is complete.

Lemma 2.5.5. Let j ∈ {1, 2} and consider the class Cj(f1, D1) for D1 > 0. For every
P,Q ∈ P3 with Df1(P ||Q) = D1, the function ψP,Q is extreme in Cj(f1, D1).

Proof. Fix two probability measures P and Q in P3 with Df1(P ||Q) = D1 so that If1(ψP,Q) =
D1. For notational convenience, let us denote ψP,Q by ψ. As in the proof of Lemma 2.5.4,
let J denote the smallest interval outside which ψ(s) equals min(1, s). If J is empty, then
ψ equals the function min(1, s) which is obviously extreme. So let us assume that J is non-
empty. In that case, because P,Q ∈ P3, it can be checked that ψ is piecewise linear with at
most two segments in J .

Suppose that ψ = (ψ1 + ψ2)/2 for two functions ψ1, ψ2 ∈ Cj(f1, D1). Because, If1(ψ) =
Df1(P ||Q) = D1, it follows that

If1(ψ1) = If1(ψ2) = If1(ψ) = Df1(P ||Q) = D1. (2.41)

If ψ has exactly one segment in J , then, by concavity, the inequalities ψ1(s) ≥ ψ(s) and
ψ2(s) ≥ ψ(s) hold for all s. Because ψ1 and ψ2 average out to ψ, we must then have
ψ = ψ1 = ψ2.



CHAPTER 2. SHARP INEQUALITIES FOR F-DIVERGENCES 27

Now suppose that ψ has exactly two segments in Jψ. Let a be the point in J such that
ψ is linear on both J ∩ [0, a] and J ∩ [a,∞). We shall show that ψ(a) = ψ1(a) = ψ2(a).
Concavity of ψ1 and ψ2 and linearity of ψ on J ∩ [0, a] and J ∩ [a,∞) can then be used to
show that ψ = ψ1 = ψ2. Suppose, if possible, that ψ1(a) > ψ(a). Using the concavity of ψ1,
it then follows that ψ1(s) > ψ(s) for all s ∈ J . Because of (2.41), it follows that

∫

J

(ψ1(s)− ψ(s)) dνf1(s) =
∫ ∞

0

(ψ1(s)− ψ(s)) dνf1(s) = 0

This implies that νf1(J) = 0. But then

D1 = If1(ψ) =

∫

J

(min(1, s)− ψ(s)) dνf1(s) = 0

which contradicts the fact that D1 > 0. We have thus obtained ψ1(a) ≤ ψ(a). Similarly,
ψ2(a) ≤ ψ(a) and since ψ(a) is an average of ψ1(a) and ψ2(a), it follows that ψ(a) = ψ1(a) =
ψ2(a). The proof is complete.

2.6 Applications and Special Cases

2.6.1 Primitive Divergences

In this section, we consider the case of the quantity B(D1, . . . , Dm) where all the divergences
Df1 , . . . , Dfm are primitive divergences (see Remark 2.4.2). In Theorem 2.6.1 below, we
show that, in this case, B(D1, . . . , Dm) actually equals Bm+1(D1, . . . , Dm) as opposed to
Bm+2(D1, . . . , Dm).

The problem of minimizing an f -divergence subject to constraints on primitive diver-
gences and the related problem of obtaining inequalities between f -divergences and primi-
tive divergences has received much attention in the literature and has a long history. Let
us briefly mention some important works in this area. The most well-known such inequal-
ity is Pinsker’s inequality which states that DKL(P ||Q) ≥ 2V 2(P,Q) where DKL is the
Kullback-Leibler divergence which corresponds to f(x) = x log x and V is the total variation
distance. Pinsker Pinsker [108] proved this inequality with the constant 2 replaced by 1.
The inequality with the constant 2 (which cannot be improved further) has been proved
independently almost at the same time by Csiszar Csiszar [30], Kemperman Kemperman
[66] and Kullback Kullback [69].

Although Pinsker’s inequality is very useful, it is not sharp in the sense that

inf {DKL(P ||Q) : V (P,Q) ≥ V } > 2V 2

for every V 6= 0. The problem of finding sharp inequalities between DKL(P ||Q) and V (P,Q)
was solved in Fedotov, Harremoës, and Topsoe [44] where an implicit expression for the
infimum in the left hand side above was provided.
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The more general problem of finding the best lower bound for an arbitrary f -divergence
given a lower bound on total variation distance was solved by Gilardoni in Gilardoni [51].
The problem of finding lower bounds for f -divergences given constraints on a finite number
of primitive divergences was studied by Reid and Williamson [113]. In Remark 2.6.2, we
explain how our theorem below gives an equivalent but simpler solution compared to the
solution of Reid and Williamson [113].

Theorem 2.6.1. Suppose that Df is an arbitrary divergence and that all divergences Df1 , . . . , Dfm

are primitive divergences. Then

B(D1, . . . , Dm) = Bm+1(D1, . . . , Dm).

Proof. Theorem 2.3.1 states that B(D1, . . . , Dm) equals Bm+2(D1, . . . , Dm). We shall show
therefore that Bm+2(D1, . . . , Dm) equals Bm+1(D1, . . . , Dm).

It is obvious that
Bm+2(D1, . . . , Dm) ≤ Bm+1(D1, . . . , Dm)

because we have a minimization problem and the constraint set is larger in the case of
Bm+2(D1, . . . , Dm). It is therefore enough to prove that

Bm+2(D1, . . . , Dm) ≥ Bm+1(D1, . . . , Dm).

Fix two probability measures P = (p1, . . . , pm+2) and Q = (q1, . . . , qm+2) in Pm+2 with
Dfi(P ||Q) ≥ Di for every i = 1, . . . ,m. We show below that

Df (P ||Q) ≥ Bm+1(D1, . . . , Dm)

which will complete the proof.
Without loss of generality, we assume that pi + qi > 0 for each i and that the likelihood

ratios ri := pi/qi ∈ [0,∞] satisfy r1 ≤ · · · ≤ rm+2. Because each divergence Dfi is assumed
to be primitive, the convex function fi is piecewise linear with exactly two linear parts. As
a result, there exists some index j ∈ {1, . . . ,m + 1} such that all the functions f1, . . . , fm
are linear in the interval [rj, rj+1].

Now consider the two probability measures P ∗ and Q∗ in Pm+1 defined by

P ∗ := (p1, . . . , pj−1, pj + pj+1, pj+2, . . . , pm+2)

and
Q∗ := (q1, . . . , qj−1, qj + qj+1, qj+2, . . . , qm+2)

Because of the linearity of f1, . . . , fm on [rj, rj+1], it is easy to check that

Dfi(P
∗||Q∗) = Dfi(P ||Q) ≥ Di for all 1 ≤ i ≤ m.

As a result, we have
Df (P

∗||Q∗) ≥ Bm+1(D1, . . . , Dm).
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On the other hand, by convexity or as a consequence of the data processing inequality for
f -divergences (see, for example, Csiszár and Shields [33, Lemma 4.1]), it follows that

Df (P ||Q) ≥ Df (P
∗||Q∗) ≥ Bm+1(D1, . . . , Dm).

The proof is complete.

Remark 2.6.2. Let 0 < s1 < · · · < sm < ∞ and let Dfi be the primitive divergence corre-
sponding to fi = usi (the functions usi are defined in Remark 2.4.2). Then the optimization
problem corresponding to Bm+1(D1, . . . , Dm) can be written as:

minimize
p,q∈[0,1]m+1

∑

j:qj>0

qjf

(

pj
qj

)

+ f ′(∞)
∑

j:qj=0

pj

subject to pj ≥ 0, qj ≥ 0 for all j = 1, . . . ,m+ 1
∑

pj =
∑

qj = 1
∑

j

min (pj, qjsi) ≤ min(1, si)−Di

(2.42)

for i = 1, . . . ,m. According to Theorem 2.6.1, the optimal value of this problem equals
B(D1, . . . , Dm). As we mentioned before, the problem of determining B(D1, . . . , Dm) when
the divergences Dfi are all primitive divergences has been studied by Reid and Williamson
[113]. Their main result Reid and Williamson [113, Theorem 6] gives a characterization of
B(D1, . . . , Dm) that is much more complicated than (2.42). However, the two forms are es-
sentially equivalent. To understand the equivalence, observe that, by Lemma 2.4.1, Df (P ||Q)
can be written as an integral functional of ψP,Q. It is possible to precisely characterize the
form of the function ψP,Q when P,Q ∈ Pm+1. As a result, the optimization problem (2.42)
can be reformulated in terms of such concave functions ψ. This, after some tedious algebra,
leads to the formula for B(D1, . . . , Dm) given in Reid and Williamson [113, Theorem 6].
Our formula (2.42) is much simpler and, moreover, is conceptually easier to understand.

The special case of m = 1 in Theorem 2.6.1 asserts that in order to determine B(D)
when Df1 is a primitive divergence, one only needs to consider probabilities on {1, 2}. This
fact is well-known at least in the case when Df1 is the total variation distance (see, for
example, Gilardoni [51, Proposition 2.1]). It is then possible to give a more direct expression
for B(D) which is the content of the following lemma, whose special case for s = 1 appears
in Gilardoni [51, Proposition 2.1].

Lemma 2.6.3. Let m = 1 and consider the quantity B(D) where Df is an arbitrary f -
divergence and Df1 is the primitive divergence corresponding to f1 = us for a fixed s > 0.
Then, for every 0 ≤ D ≤ min(1, s), the quantity B(D) equals

inf
0≤q≤H/s

[

(1− q)f
(

H − qs
1− q

)

+ qf

(

1 + qs−H
q

)]

(2.43)

where H := min(1, s)−D.
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Proof. We shall now show that B2(D) equals (2.43). Note that B2(0) = 0 and (2.43) also
equals 0 when D = 0. To see this, note that it is trivially zero (because f(1) = 0) when
s = 1 and when s 6= 1, then it is zero because the value at q = (1−min(1, s))/(1− s) equals
0. So we shall assume below that D > 0. The optimization problem corresponding to B2(D)
is:

minimize
p,q∈[0,1]2

∑

j:qj>0

qjf

(

pj
qj

)

+ f ′(∞)
∑

j:qj=0

pj

subject to pj ≥ 0, qj ≥ 0 for j = 1, 2

p1 + p2 = q1 + q2 = 1

min(p1, q1s) + min(p2, q2s) = H.

(2.44)

Note that we have equality as opposed to ≤ in the last constraint above. This is because
of the fact that for every (p1, p2) and (q1, q2) lying in the constraint set for which the last
constraint is not tight, we can get (p̃1, p̃2) and (q̃1, q̃2) still lying in the constraint set with
the last constraint satisfied with an equality sign and for which the objective function is
reduced.

We will now finish the proof by showing that the optimal value of the optimization
problem (2.44) is (2.43). Let (p1, p2) and (q1, q2) satisfy the constraint set with p1/q1 ≤ 1 ≤
p2/q2. If s /∈ [p1/q1, p2/q2], then clearly min(p1, q1s) + min(p2, q2s) = min(1, s) and such
(p1, p2) and (q1, q2) do not satisfy the constraint set because D > 0. So we assume that
s ∈ [p1/q1, p2/q2]. In this case, the final constraint gives p1 = H − q2s. We can therefore
write each of p1, p2 and q1 in terms of q2. Plugging these values in the objective function
leads to the function in (2.43) (with q replaced by q2). The fact that each of p1, p2, q1 and q2
need to lie between 0 and 1 gives the constraint 0 ≤ q2 ≤ H/s. The proof is complete.

For completeness, let us note the special case of the above lemma in the case of the total
variation distance, which corresponds to s = 1. This result is due to Gilardoni Gilardoni
[51, Proposition 2.1].

Corollary 2.6.4 (Gilardoni). Let m = 1 and consider the quantity B(V ) where Df is an
arbitrary f -divergence and Df1(P ||Q) equals V (P,Q), the total variation distance between P
and Q. Then, for every 0 ≤ V ≤ 1,

B(V ) := inf {T (q, V ) : 0 ≤ q ≤ 1− V } (2.45)

where

T (q, V ) := (1− q)f
(

1− V − q
1− q

)

+ qf

(

q + V

q

)

.

Consequently, for every pair of probability measures P and Q, we have the inequality

Df (P ||Q) ≥ inf {T (q, V (P,Q)) : 0 ≤ q ≤ 1− V (P,Q)} (2.46)

Moreover, this represents the sharpest possible inequality between Df and total variation
distance.
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Although the expression (2.45) cannot be simplified further in general, one can get much
simpler expressions for B(V ) in certain special cases. One such special case of interest
corresponds to symmetric f -divergences. An f -divergence is said to be symmetric if the
underlying convex function f satisfies the identity: f(x) = xf(1/x) for all x ∈ (0,∞). It
is easy to check that under this condition, one has Df (P ||Q) = Df (Q||P ) for all P and Q.
Examples of symmetric divergences include the total variation distance, squared Hellinger
distance, triangular discrimination and the Jensen-Shannon divergence. The following result
is due to Gilardoni Gilardoni [51]. We include it here for completeness and also because our
proof is more direct than that in Gilardoni [51].

Corollary 2.6.5 (Gilardoni). Let m = 1 and consider the quantity B(V ) where Df is a
symmetric f -divergence and Df1(P ||Q) equals V (P,Q), the total variation distance between
P and Q. Then, for every 0 ≤ V ≤ 1,

B(V ) = (1− V )f

(

1 + V

1− V

)

. (2.47)

Consequently, for every pair of probability measures P and Q, we have

Df (P ||Q) ≥ (1− V (P,Q))f

(

1 + V (P,Q)

1− V (P,Q)

)

. (2.48)

Moreover, this represents the sharpest possible inequality between the symmetric divergence
Df and total variation distance.

Proof. We shall show that the right hand side of (2.45) equals the right hand side of (2.47)
whenDf is a symmetric divergence. Consider the quantity T (q, V ) defined in Corollary 2.6.4.
Because f(x) = xf(1/x), it can be easily checked that

T (q, V ) = T (1− q − V, V ) for all q ∈ [0, 1− V ].

In other words, the function q 7→ T (q, V ) is symmetric in the interval [0, 1 − V ] about the
mid-point (1−V )/2. Moreover, as can be checked by taking derivatives (one-sided derivatives
if f is not differentiable), q 7→ T (q, V ) is convex on [0, 1 − V ] (this fact does not require f
to be symmetric). These two facts clearly imply that

inf
0≤q≤1−V

T (q, V ) = T

(

1− V
2

, V

)

= (1− V )f

(

1 + V

1− V

)

which completes the proof.

2.6.2 Chi-squared divergence

In this section, we describe another situation where the conclusion of Theorem 2.3.1 can be
further simplified.
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Theorem 2.6.6. Let m = 1 and consider the quantity A(D) where Df is the chi-squared
divergence, χ2(P ||Q) which corresponds to f(x) := x2 − 1. Also let the function f1 be such
that the function h : (0,∞)→ (0,∞) defined by h(x) := (1+f1(x))/x is a strictly increasing,
strictly convex, twice differentiable bijective mapping. Then A(D) = h−1(D + 1)− 1, where
h−1 denotes the inverse function of h on (0,∞).

Proof. By Theorem 2.3.1, A(D) equals the optimal value of the problem:

maximize
p,q∈[0,1]3

∑

j:qj>0

p2j
qj
− 1 +∞ ·

∑

j:qj=0

pj

subject to pj ≥ 0, qj ≥ 0 for all j = 1, 2, 3
∑

pj =
∑

qj = 1

∑

j:qj>0

qjf1

(

pj
qj

)

+ f ′
1(∞)

∑

j:qj=0

pj ≤ D

By convexity of h, we have
h(x) ≥ h(a) + h′(a)(x− a) (2.49)

for every x > 0 and a > 0. One consequence of this and the fact that h is strictly increasing
is that

h(1) + h′(1)(x− 1) ≤ h(x) ≤ h(1)

for all x ∈ (0, 1). This implies that limx↓0 xh(x) = 0 and as a result

f1(0) = lim
x↓0

f1(x) = lim
x↓0

(xh(x)− 1) = −1

Further, because h is strictly increasing, we have h′(a) > 0 and thus

f ′
1(∞) = lim

x→∞
h(x) =∞

which implies that we only need to consider P and Q for which
∑

j:qj=0 pj = 0. Writing (2.49)

in terms of f1(x), we obtain

1 + f1(x) ≥ x (h(a)− ah′(a)) + x2h′(a).

for every x > 0 and also at x = 0 (because f1(0) := limx↓0 f1(x)). Applying this inequality
to x = pj/qj for qj > 0 and then multiplying by qj, we obtain

qj + qjf1(pj/qj) ≥ pj (h(a)− ah′(a)) +
p2j
qj
h′(a)

for each j = 1, 2, 3. As a result, we get

h′(a)
∑

j:qj>0

p2j
qj
≤
∑

j:qj>0

qjf1

(

pj
qj

)

+ 1− h(a) + ah′(a)
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Because P and Q satisfy the constraint, we have

∑

j:qj>0

qjf1

(

pj
qj

)

≤ D

and hence
∑

j:qj>0

p2j
qj
− 1 ≤

[

D + 1− h(a) + ah′(a)

h′(a)

]

− 1.

Because a > 0 is arbitrary, we get

A(D) ≤ inf
a>0

[

D + 1− h(a) + ah′(a)

h′(a)

]

− 1.

By elementary algebra, the above infimum is achieved at a∗ = h−1(D + 1) and we then
obtain A(D) ≤ h−1(D+1)−1. To see that A(D) is exactly equal to h−1(D+1)−1, observe
that the probabilities P = (1, 0, 0) and Q = (1/a∗, 1 − 1/a∗, 0) satisy Df1(P ||Q) = D and
χ2(P ||Q) = h−1(D + 1)− 1.

The function f1(x) = xl−1 for l > 2 clearly satisfies the conditions of the above theorem.
We therefore obtain the following result as a simple corollary.

Corollary 2.6.7. Let m = 1 and consider the quantity A(D) where Df (P ||Q) = χ2(P ||Q)
and Df1 is the power divergence, D(l)(P ||Q), corresponding to f1(x) = xl−1 for l > 2. Then
A(D) = (1 +D)1/(l−1) − 1. This yields the sharp inequality

χ2(P ||Q) + 1 ≤
(

1 +D(l)(P ||Q)
)1/(l−1)

between the chi-squared divergence and power divergence for l > 2.

2.7 Numerical Computation

In this section we explore numerical methods for solving the optimization problems (2.7)
and (2.8) in order to compute A(D1, . . . , Dm) and B(D1, . . . , Dm) respectively. In Sec-
tion 2.7.1, we consider the special case when Df is a primitive divergence. This special case
is motivated by the statistical problem of obtaining lower bounds for the minimax risk and
we show that the quantity A(D1, . . . , Dm) can be computed exactly via convex optimization
for every m ≥ 1 and every arbitrary choice of Df1 , . . . , Dfm . In Section 2.7.2, we consider
the special case m = 1 and demonstrate that (2.7) and (2.8) can be solved for practically
any pair of f -divergences by a gridded search over the low-dimensional parameter speace.
We verify several known inequalities and also improve on some existing inequalities that are
not sharp.
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2.7.1 Maximizing Primitive Divergences

In this subsection we consider maximizing a primitive divergence subject to upper bounds on
arbitrary f -divergences. While this optimization problem is not a-priori convex, we reduce
it to a collection of convex problems.

The optimization problem (2.7) where Df is a primitive divergence is, of course, closely
related to the problem of bounding from above a primitive divergence subject to upper
bounds on other f -divergences. This latter problem arises in obtaining lower bounds for the
minimax risk in nonparametric statistical estimation (see, for example, Guntuboyina [52],
Guntuboyina [53], Yu [146], and Tsybakov [135]). For example, Le Cam’s inequality, which
is a popular technique for obtaining minimax lower bounds, says that the minimax risk is
bounded from below by a multiple of the L1 affinity between two probability measures P and
Q, where the L1 affinity is defined as 1−V (P,Q). The L1 affinity also appears in Assouad’s
Lemma, another technique for obtaining minimax lower bounds. Evaluating V (P,Q) is hard
because P and Q are typically product distributions of the form P = ⊗ni=1Pi (or mixtures of
such distributions), so it is difficult to express V (P,Q) in terms of V (Pi, Qi) (which can be
easier to compute).

Application of Le Cam’s inequality in practice, therefore, requires one to obtain a good
upper bound on the total variation, V (P,Q). One typically first bounds Df (P ||Q) for an f -
divergence that decouples for product distributions such as squared Hellinger, chi-squared, or
Kullback-Leibler divergence and then translates this into a bound on V (P,Q). It is common
to use crude bounds like Pinsker’s inequality for this purpose and we believe there is room
for improvement by using tight bounds. Also, one typically uses only one f -divergence to
bound V (P,Q); but we shall argue here that one gets better bounds (Figure 2.3) when using
multiple divergences simultaneously. This is one of our motivations for studying the case
m ≥ 2 as opposed to just m = 1. The constants underlying minimax lower bounds might
be improved by the use of these better bounds addressing a common criticism of minimax
lower bound techniques.

Theorem 2.7.1 below solves the problem of maximizing a primitive divergence Dus given
constraints on m other divergences Dfi exactly via convex optimization. This leads to a fast
algorithm with well-studied convergence properties.

For each m ≥ 1, let

Sm = {σ ∈ {−1, 1}m+2 : σi ≤ σj for i ≤ j}

For each σ ∈ Sm, let us consider the following convex optimization problem and denote its
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optimal value by Vσ(D1, . . . , Dm).

maximize
p,q∈[0,1]m+2

m+2
∑

j=1

σj (pj − sqj)

subject to pj ≥ 0, qj ≥ 0 for all j = 1, . . . ,m+ 2
∑

pj =
∑

qj = 1

∑

j:qj>0

qjfi

(

pj
qj

)

+ f ′
i(∞)

∑

j:qj=0

pj ≤ Di

(2.50)

for i = 1, . . . ,m. Note that this problem is convex because the objective function is linear
and the constraint set is convex in p1, . . . , pm+2, q1, . . . , qm+2. The fact that the constraint set
is convex is a consequence of the convexity of Dfi(P ||Q) in (P,Q) (see, for example, Csiszár
and Shields [33, Lemma 4.1]). It is also clear that this is a 2m+2-dimensional optimization
problem because there are 2m+4 variables in all which satisfy two linear equality constraints.

Theorem 2.7.1. Let Df denote the primitive f -divergence corresponding to f = us for some
s > 0. Then

A(D1, . . . , Dm) = −
|s− 1|

2
+ max

σ∈Sm

Vσ(D1, . . . , Dm) (2.51)

Consequently, A(D1, . . . , Dm) can be computed by solving the |Sm| = m+3 convex optimiza-
tion problems (2.50).

Proof. Theorem 2.3.1 asserts that A(D1, . . . , Dm) equals the optimal value of the optimiza-
tion problem (2.7). Note that the constraint sets of the problems (2.7) and (2.50) are the
same. Let us denote this constraint set by Cm so that

A(D1, . . . , Dm) = max
P,Q∈Cm

Dus(P ||Q).

The objective of (2.7) can be written as

Dus(P ||Q) = min(1, s)−
m+2
∑

j=1

min(pj, sqj)

= min(1, s)− 1

2

m+2
∑

j=1

pj + sqj − |pj − sqj|

= −|s− 1|
2

+ max
σ∈{−1,1}m+2

m+2
∑

j=1

σj (pj − sqj) .

Because two maxima can always be interchanged, we have

max
P,Q∈Cm

[

max
σ∈{−1,1}m+2

m+2
∑

j=1

σj(pj − sqj)
]

= max
σ∈{−1,1}m+2

[

max
P,Q∈Cm

m+2
∑

j=1

σj(pj − sqj)
]

.
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Note that the inner maximization in the right hand side above is precisely the convex prob-
lem (2.50).

Because the optimal value of (2.50) is invariant to permuting the indices of σ, we have
the reduction

max
σ∈{−1,1}m+2

max
P,Q∈Cm

σT (P − sQ) = max
σ∈Sm

max
P,Q∈Cm

σT (P − sQ).

This shows that we can restrict attention only to those problems (2.50) for σ ∈ Sm. It is
obvious that |Sm| = m+ 3. The proof is complete.

Example 2.7.2. Consider the special case of Theorem 2.7.1 when m = 1, s = 1 and when
Df1 is the squared Hellinger distance which corresponds to f1(x) = (

√
x − 1)2/2. In other

words, we consider the problem of maximizing the total variation distance subject to an
upper bound on the Hellinger distance. The solution to this problem given by Theorem 2.7.1
is plotted in Figure 2.1(a). Each red dot shows A(H) =: ATVH (H) computed by solving the
four 4-dimensional convex optimization problems (2.50) (each corresponding to a σ ∈ S1).

Note that the quantity ATVH (H) can be obtained analytically in a closed form. Indeed,
since f1 is a symmetric divergence, the sharp inequality bounding the total variation distance
by the squared Hellinger distance is given by (2.48) with f(x) = (

√
x− 1)2 (this inequality is

usually attributed to Le Cam [72]) which implies that

ATVH (H) =
√
2H

√

1− H

2
.

We have plotted this function analytically by the solid cyan line in Figure 2.1(a). It is
clear that our numerical optimization method given by Theorem 2.7.1 agrees with the known
analytical bound.

Example 2.7.3. For another simple application of Theorem 2.7.1, consider maximizing the
total variation subject to an upper bound on the Kullback-Leibler divergence. In other words,
we take m = 1, s = 1 and f1(x) = x log x and plot the solution given by Theorem 2.7.1 in
Figure 2.1(b). Each black dot shows A(K) =: ATVKL(K) for a different value of K, computed
by solving the four 4-dimensional convex optimization problems (2.50). The solid green line
shows Pinsker’s analytic upper bound

√
2K which is not sharp for any K > 0.

Example 2.7.4. We now consider maximizing the total variation subject to constraints on
both the Hellinger distance and Kullback-Leibler divergence. In other words, we take m = 2,
s = 1, f1(x) = (

√
x − 1)2/2 and f2(x) = x log x. To the best of our knowledge, there does

not exist a closed form analytical solution to this problem. However, numerical solution is
straightforward by Theorem 2.7.1 as shown below.

According to Theorem 2.7.1, for fixed H,K ≥ 0 we can compute A(H,K) =: ATVHKL(H,K)
by solving five 6-dimensional convex programs (2.50). Figure 2.2 shows the function ATVHKL(H,K)
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Figure 2.1: Two simple applications of Theorem 2.7.1 discussed in examples 2.7.2 and 2.7.3.
Here and in all subsequent plots we set the axis limits to the maximum value of the relevant
f -divergence and to 5 in the case of the Kullback-Leibler divergence (which has no maximum
value).
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interpolated from 14884 (H,K) pairs. We used CVX in MATLAB to solve the convex pro-
grams. The height of each point in the surface shows how large the total variation can be
when the squared Hellinger distance and Kullback-Leibler divergence are bounded by H and
K respectively. As expected, the total variation is zero when either H = 0 or K = 0, and
it approaches 1 for large values of H and K. Next, observe that the surface ATVHKL(H,K)
is flat as K varies for small H, and vice-versa flat as H varies for small K. This is be-
cause only one constraint is tight in these regions. In other words, the surface ATVHKL(H,K)
is approximately the point-wise minimum of the two surfaces ATVH (H) and ATVKL(K), with a
diagonal ridge at the intersection of these two surfaces. But, as can be seen in Figure 2.3,
our bound that simultaneously leverages both single-coordinate bounds is strictly better than
the simple minimum of those two individual bounds for some (H,K). In other words, there
exist (H,K) such that

min
(

ATVH (H), ATVKL(K)
)

− ATVHKL(H,K) > 0 (2.52)

The left hand side above is positive when both single-coordinate bounds are informative, i.e.
when both constraints in the optimization problem (2.7) are active. We will explain later (see
Example 2.7.5 and Figure 2.4) that the location of this ridge is predicted by an inequality
between DH(P ||Q) and DKL(P ||Q).
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Figure 2.2: The height of each point in the surface above shows ATVHKL(H,K) for a different
(H,K) pair–the the least upper bound on total variation when squared Hellinger distance
and Kullback-Leibler divergence are bounded by H and K respectively (see example 2.7.4).
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Figure 2.3: Improvement over simple point-wise minimum of single-coordinate bounds. The
color of the pixel at (H,K) represents the magnitude of the left hand side of (2.52). The
bright region corresponds to (H,K) for which the bound displayed in Figure 2.2 is a strict
improvement over the simple pointwise minimum of the two bounds shown in Figure 2.1.

2.7.2 The General Case

Theorem 2.7.1 requires Df to be a primitive divergence. We do not know if, in general,
the optimization problems (2.7) and (2.8) can be solved by convex optimization algorithms.
However, if m is not too large, heuristic optimization techniques can be used. We demon-
strate this in this subsection for m = 1.

Example 2.7.5. Consider the optimization problem (2.7) for m = 1, f(x) = (
√
x−1)2/2 and

f1(x) = x log x. In other words, we consider the problem of maximizing the squared Hellinger
distance subject to an upper bound on the Kullback-Leibler divergence. The optimization
problem (2.7) is clearly 4-dimensional (there are six variables in all p1, p2, p3 and q1, q2, q3
but they satisfy two linear constraints as they sum to one). Because the variable space is
only 4-dimensional, there was no trouble solving this by gridding the parameter space. We
plot the solution in Figure 2.4(a) where each blue dot shows A(K) =: AHKL(K) for a different
value of K.

The quantity AHKL(K) can be used to better understand the inequality (2.52). Indeed,
when we overlay the curve (K,AHKL(K)) on Figure 2.3 (see Figure 2.4(b)), we see that the
curve (K,AHKL(K)) (plotted by the blue line) lies above the region where the inequality (2.52)
holds. Only the constraint on DKL(P ||Q) is active in the optimization problem considered
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in Example 2.7.4 when H > AHKL(K). For such (H,K), therefore, the inequality (2.52) does
not hold.

Example 2.7.6. Consider maximizing the squared Hellinger distance between P and Q with
the total variation between P and Q, V (P,Q), bounded by V . In other words, we consider
the special case of the problem (2.7) for m = 1, f(x) = (

√
x− 1)2/2 and f1(x) = |x− 1|/2.

This is a special case of the problem we considered in section 2.5.3 where we proved that
A2(V ) < A3(V ) for all V ∈ (0, 1). Here we confirm this fact numerically.

We compute both the quantities A2(V ) and A3(V ) by a gridded search over pairs of
probabilities satisfying the constraint in P2 and P3 respectively. These functions are plotted
in Figure 2.5. Each red triangle in Figure 2.5 shows A3(V ) for a different V . Each point
in the dotted blue line shows A2(V ) for a different V . It is evident that the inequality
A2(V ) < A3(V ) holds for all V ∈ (0, 1). In other words, when we restrict the constraint
set to probability measures in P2, the maximum Hellinger distance is strictly smaller for all
V ∈ (0, 1). Therefore, Theorem 2.3.1 is in general tight and cannot be improved.

Note also that the plot A3(V ) agrees with the form A3(V ) = A(V ) = V (f(0)+f ′(∞)) = V
derived in Section 2.5.3. This gives rise to the sharp inequality H2(P,Q) ≤ V (P,Q) which
is again attributed to Le Cam [72].

Example 2.7.7. The capacitory discrimination between two probability measures P and Q
is defined by

C(P,Q) = DKL

(

P ||P +Q

2

)

+DKL

(

Q||P +Q

2

)

.

It is easy to check that C(P,Q) is an f -divergence that corresponds to the convex function:

x log x− (x+ 1) log(x+ 1) + 2 log 2. (2.53)

The triangular discrimination ∆(P,Q) is another f -divergence that corresponds to the convex
function

(x− 1)2

x+ 1
. (2.54)

Topsøe proved the following inequality between these two f -divergences Topsøe [134]:

1

2
∆(P,Q) ≤ C(P,Q) ≤ (log 2)∆(P,Q). (2.55)

Let us investigate here the sharpness of these inequalities. Let

A(D1) := sup {C(P,Q) : ∆(P,Q) ≤ D1}

and
B(D1) := inf {C(P,Q) : ∆(P,Q) ≥ D1} .

We solved the optimization problems (2.7) and (2.8) for m = 1, f(x) given by (2.53) and
f1(x) given by (2.54) by a gridded search. The resulting solutions for A(D1) and B(D1) are
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Figure 2.4: A sharp inequality between squared Hellinger distance and Kullback-Leibler
divergence bounds the support of the ridge. The upper panel displays a sharp inequality
between squared Hellinger and Kullback-Leibler divergence. The height of each blue dot
represents the optimal value AHKL(K) with a different constraint, K, on the Kullback-Leibler
divergence. The lower panel shows the same blue curve overlaid on Figure 2.3. Observe that
the region with positive improvement is bounded by the blue curve from the upper panel.
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Figure 2.5: Three point measures strictly improve on two point measures. Each red triangle
shows A3(V ) computed by a gridded search over pairs of probability measures in P3. Each
blue dot shows A2(V ) computed by a gridded search over pairs of probability measures in P2.
The simulation over three point measures is exactly a straight line with slope one–agreeing
with Le Cam’s bound H2 ≤ V . And A2(V ) < A3(V ) for all V ∈ (0, 1).

plotted in Figure 2.6, with red triangles corresponding to A(D1) and blue dots corresponding
to B(D1). We have also plotted the bounds given by (2.55) in Figure 2.6 with the green line
corresponding to (log 2)D1 and the blue line to D1/2. It is clear from the figure that the
upper bound in (2.55) is sharp while the lower bound is not sharp. The sharp lower bound is
given by B(D1). We are unaware of an analytic formula for B(D1), but we conjecture that
B2(D1) = B3(D1) because this equality holds numerically. It may be possible to use this fact
to find an analytic formula for B(D1).
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2
trace the bounds
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Chapter 3

Supervised random projections and
their role in high-dimensional
inference

3.1 Introduction

High-dimensional supervised learning problems are encountered in numerous popular modern-
day scientific applications, ranging from genomics, biomedical studies, astronomy and socio-
logical studies. In each of these fields, the core goal of statistical analysis requires inference
or uncertainty measures for decision making. As such, a holistic framework for statistical
inference in high-dimensional supervised learning problems serves a paramount advantage to
practitioners. In more precise terms, in the present article we consider supervised learning
problems such as regression, classification and randomized experiments of a high-dimensional
nature, viz. in datasets where numerous covariables are available for consideration, often
comparable or exceeding the number of samples/observations. To this end, we first develop
a new dimension reduction technique called Supervised Random Projections (SRP) and fur-
ther, develop a framework for statistical inference in high-dimensional supervised learning
problems based on SRP.

A crucial advantage of our proposal is modularity. Our method can be broken into three
easy modules: (i) estimation of variable importances, (ii) supervised dimension reduction
(iii) low-dimensional inference. Each of these steps are decoupled in their implementations;
allowing practitioners immense freedom in choosing and combining the most effective and
creative data-scientific methods and domain knowledge to reach the desired balance of speed
and accuracy. We emphasize that this modularity ensures ease of communication of concepts
and implementability of our solution.

Dimension reduction is a crucial and necessary step towards inference on large datasets
(Bingham and Mannila [13], Blum [16], and Benner, Mehrmann, and Sorensen [10]). Along-
with the immediate advantages of computational and storage economy in statistical problems
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dealing with very large datasets, dimension reduction has also been employed to remove
ambient noise (Indyk and Motwani [60] and Kambhatla and Leen [65]); thus promoting
interpretability. Random projections are one powerful dimensional reduction technique es-
pecially known for their simplicity and computational efficiency (see Vempala [138] for a
book reference) . They have been successfully applied to many supervised learning tasks in
the machine learning literature. An incomplete listing of the relevant papers here is: Fradkin
and Madigan [46], Rahimi and Recht [110], Maillard and Munos [87], Maillard and Munos
[88], Paul et al. [105], Pilanci and Wainwright [107], Heinze, McWilliams, and Meinshausen
[56], Li [76], Zhou, Wasserman, and Lafferty [151], and Zhang et al. [150, 149].

While employing dimension reduction in a supervised learning problem, not all variables
are equally important; instead the dimension reduction scheme should attempt to preserve
important variables (ones that influence the response strongly) at the expense of less impor-
tant ones.

In the context of supervised problems, we introduce the idea of using variable importance
indices in the dimension reduction/data compression step to gain higher accuracy in down-
stream inference. We demonstrate that if important variables are allowed more influence
in the compression step, the resultant projected data retains more information about the
response variable, as evidenced by the higher accuracy of downstream inference (as a first
example, consider the MSE of estimates based on supervised and unsupervised dimension re-
duction in the problem of estimating a linear loading in a high-dimensional linear regression
model as shown in Figure 3.1).

Our idea of supervised dimension reduction is exceedingly simple: given a set of covari-
ates, Random Projections constructs a smaller set of projected covariates simply by taking
random linear combinations. In a supervised problem, some covariates are more important
than others. Given an additional index of the importance of each variable, we propose to
construct projected variables by taking random linear combinations weighted by variable
importances. We call this technique Supervised Random Projections (SRP).

Supervised dimension reduction enables a new and modular approach to high-dimensional
statistical inference. An overriding difficulty in many such problems is the presence of a large
number of covariables. In contrast, if only a few covariables are considered, commonly such
problems can be solved to satisfaction by classical statistical methodology dating back years
and decades. Our proposal then becomes evident: using supervised dimension reduction we
project the inference problem at hand onto a small number of covariables (while ensuring
that the parameter of interest is preserved as much as possible); subsequently we tap into the
immense wealth of ‘low-dimensional’ inferential procedures available in statistical literature
and implemented in popular statistical programming languages.

We illustrate the efficacy of the above blueprint via applications in three popular high-
dimensional statistical inference problems which have exhibited noticeable activity in recent
years, viz. (i) identifying statistically significant variables in a (non-linear) regression model
with many covariables, (ii) with the additional assumption of linearity, (iii) quantifying
uncertainty in estimated Average Treatment Effect (ATE) in a randomized experiment with
many covariates. In each problem, we present a simple fast approximate silver bullet which
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is compared against the need to redevelop specialized inferential procedure separately for
each high-dimensional problem whose low-dimensional analog is already well understood.

Specifically, our main contributions are as follows:

(a) We introduce the idea of supervised dimension reduction, with the goal of ensuring that
in comparison to ordinary dimension reduction, the projected data is more relevant to
the response variable at hand. By incorporating variable importances, we explicate
that the projected data should still accurately explain the response variable (this is
in contrast to ordinary dimension reduction, where one only attempts to preserve the
geometry between covariables); thus lending more interpretability to the dimension
reduction step. Further, variable importances ensure that even in the presence of
numerous nuisance parameters, the projected data retains at least a moderate amount
of information from the important variables, thus allowing said important variables a
fair chance at being selected by downstream formal tests of hypotheses.

(b) We rigorize the idea of Supervised Random Projections (SRP) in Section 3.2 and
demonstrate its advantages in estimation of a linear regression coefficient. Further, we
discuss the role of specific variable importance indices used in the projection step and
a satisfactory choice of projected dimension.

(c) Through formal tests of hypotheses, we identify significant variables in a high-dimensional
non-linear regression problem by applying SRP in conjuction with Random Forests
(Breiman [20]) in Section 3.3. We demonstrate that SRP is faster and slightly better
than the non-parametric permutation based test proposed in Altmann et al. [4] when
interactions are absent; though it fails to control Type I error when interactions are
present. In Figure 3.2(c) we demonstrate that in the presence of pairwise interactions
and gaussian design, SRP finds ≈ 30% insignificant variables to be significant, even
though it was nominally calibrated to make such errors at the level of 10%; in the same
experiment, the permutation test described in Altmann et al. [4] manages to keep such
errors below 10% and maintain the same proportion of true discoveries.

(d) Under the additional assumption of linearity of regressor, we study the applicability of
SRP in conjuction with Lasso in Section 3.4. We demonstrate that SRP performs just
as well and in the same runtime as all methods except debiasing (Zhang and Zhang
[148]); which requires a much higher computational overhead. In comparison with
debiasing, SRP does well in terms of coverage but is more conservative, leading to only
approximately 60% as many discoveries as found by the significantly (10-30×) slower
debiasing method.

(e) Finally, in the problem of statistical inference on Average Treatment Effect (ATE) in
the presence of many covariates we demonstrate the applicability of SRP in Section
3.5. We demonstrate that SRP is only slightly inferior (≈ 10% higher variance) com-
pared to the Lasso-adjusted method presented in Bloniarz et al. [15]. SRP is much
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faster than the refitting based (Lasso+OLS) procedure and requires the same compu-
tational overhead as the Lasso procedure, both proposed in Bloniarz et al. [15]. The
(Lasso+OLS) procedure requires (6-8×) as much computational time as SRP or the
Lasso procedure.

3.1.1 Literature Review

Inference on covariate significance (via hypothesis testing) in the high-dimensional non-linear
model via the Random Forests framework has been discussed in Strobl et al. [126], Mentch
and Hooker [101], Altmann et al. [4] and Paul, Verleysen, Dupont, et al. [104].

Inference in the high-dimensional linear model under sparsity has been subject to intense
research in the statistics community in the past few years. Notable existing approaches
include (a) methods based on sample splitting Wasserman and Roeder [141], Meinshausen,
Meier, and Bühlmann [100], and Meinshausen and Bühlmann [99], (b) debiasing methods
Zhang and Zhang [148], Bühlmann [23], Geer et al. [47], and Javanmard and Montanari
[62], (c) post-selection inference Berk et al. [11], Lockhart et al. [86], Lee et al. [74], and
Lee and Taylor [73], (d) bootstrap Chatterjee and Lahiri [26] and Liu and Yu [85], and (e)
strict bounds Stark [124] and Meinshausen [98]. The recent survey paper Dezeure et al. [37]
discusses the merits and demerits of these methods in detail.

Inference for the ATE under the Neyman model has also received significant attention in
the literature. Let us first mention here that the Neyman model for completely randomized
experiments is also known as the Neyman-Rubin model; standard references include Splawa-
Neyman, Dabrowska, and Speed [123], Rubin [119, 118], and Holland [58]. A simple estimator
for the ATE was proposed in Splawa-Neyman, Dabrowska, and Speed [123] which does
not use any information on the covariates. In the low dimensional setting, it is known
that covariates can help in improving estimation and inference for the ATE via regression
adjustments (see, for example, Lin [79]). Inference for the ATE in the presence of high-
dimensional covariates was studied in Bloniarz et al. [15] who proposed a LASSO based
regression adjustment method for the ATE. A more recent work, Wager et al. [139], also
deals with the high-dimensional setting but they impose more assumptions on the data-
generating mechanism that are usually not part of the Neyman model.

3.2 Adaptive Random Projections

In this section, we introduce the idea of supervised random projection (SRP). The main
contribution of SRP (as applicable to supervised problems) over ordinary random projec-
tions (ORP) is in employing a flexible and more informative dimension reduction step which
incorporates additional information about which covariates have higher influence on the re-
sponse. In practice, this ensures that the projected data contains more information pertinent
to the response variable compared to ORP. In the following, we describe SRP in this general
setting:
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Let {(Yi, Xi)}ni=1 be n independent observations arising from the model

Yi = f(Xi) + ǫi, E(ǫi|Xi) = 0 (3.1)

where Yi ∈ R, Xi ∈ Rp. In many such problems, we have at our disposal standard regres-
sion methods which provide an information index for each variable Xj. As an illustration,
Random Forests (Breiman [20]) provides internal estimates of variable importance; in the
regression context this importance index measures the increase in residual variance of the
response if a certain variable is deleted. Additionally, if we were privy to the structure of
f , for instance if f is known to be linear in variables Xj, we also have at our disposal myr-
iad linear regression estimates (such as Lasso (Tibshirani [129]) and Ridge (Tihonov [131])
estimators) where we can interpret the estimated linear loading (in absolute value) of each
variable as an estimate of variable importance. This interpretation also extends to the case
of generalized linear models with a known link function.

We are now ready to describe SRP. Let v̂j denote any user-chosen estimate of variable
importance of Xj; and m the number of random projections or projected variables.

Algorithm 1 SRP-dimReduce: SRP based dimension reduction

Input Xn×p, v̂,m
Draw supervised random projections matrix Ap×m with independent entries aij ∼
N(0, v̂j/m)
Return compressed variable matrix Un×m ← XA

This simple SRP-dimReduction algorithm (Algorithm 1) provides an universal approach
to supervised data compression and is our main contribution. As can be gleaned from
Algorithm 1 the only difference from ORP is in the incorporation of variable importances
in the sizes of random projection coefficients. The algorithm above requires an additional
tuning parameter m. We shall discuss the role of m shortly.

Example 1 We now illustrate the advantages of this supervised algorithm in comparison
to ORP in the linear regression setting. For this small demonstration, let us draw n i.i.d.
observations from the linear model

Yi = X⊤
i β

∗ + ǫi, ǫi ∼ N(0, σ2). (3.2)

We will compare the MSEs of the SRP and ORP estimates of β∗
1 for various values of m.

For our SRP estimate, we consider two different choices of v̂: provided by cross-validated
Lasso and cross-validated Ridge estimates. To be precise, two possible variable importances
of Xj are |β̂(lasso)

j (λcv,lasso)| and similarly, |β̂(ridge)
j (λcv,ridge)|. We now describe the SRP

estimate of β∗
1 , and in general β∗

k for an integer k. We should clarify that we only need to
preserve the parameter of interest, in this case the scalar β∗

1 .
Description of Figure 3.1: Plots of resulting MSE for different values of m. In each

plot, the x-axis plots the fraction m/n. For this small study, we set n = 100. For the
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Algorithm 2 SRP: SRP estimate of β∗
k in high-dim linear regression

Input Yn, Xn×p, v̂,m, k
Construct supervised compressed matrix U ← SRP-dimReduce(X−k, v̂−k,m)
Perform linear regression of Y on [Xk, U ] and return estimated linear loading corresponding
to Xk
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Figure 3.1: Comparison between two different dimension reduction techniques - ORP and
SRP in a linear regression problem.
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left hand plots, we set p = n/2 = 50 and for the right hand plots we set p = n = 100.
For the top plots we set the first s = 20 entries of β∗ to be non-zero (sparse setting). For
the bottom plots we set the first s = 50 entries of β∗ to be non-zero (dense setting). The
design matrix X is constructed following the gaussian random design with equicorrelated
covariance matrix (correlation between any pair of variables is 0.2). Non-zero entries of
β∗ are drawn independently from N(0, 42). ǫ is set to be distributed as N(0, 1). 10, 000
replications are performed in each setting keeping X fixed. The lines show MSE (lower is
better) in estimating β∗

1 achieved by each of the estimators mentioned in the legend. Note
that OLS, Lasso and Ridge estimators are not tuned using m and thus describe horizontal
lines in the plots. For the right hand plots where p = n, the OLS estimate, while defined,
is ill-behaved and is replaced by OLS-support; i.e. performing linear regression on only the
relevant variables.

The resulting MSE in estimating β∗
1 for varying m is showing in Figure 3.1. From Figure

3.1, our main observation is that SRP is markedly more accurate in each of the four settings
compared to ORP and the Lasso and Ridge estimators. This validates our proposal of using
supervised dimension reduction over naive dimension reduction. Additionally, we note that
SRP-lasso is more accurate than SRP-ridge, and the Lasso and Ridge estimates. Finally,
we draw attention to choice of m. We should note that the computational complexity of SRP
directly increases with m. This reveals a tradeoff in Figure 3.1, concentrating on SRP-lasso,
accuracy demands a large value of m while computational speed demands a small value of
m. Indeed, the optimal choice for SRP-lasso seems simple and intuitive: m ≈ s; where
s is the number of non-zero entries in β∗. In practice, s is unknown; we recommend the
universal choice of setting m = n/2. In the following sections, we shall employ the idea of
sample splitting (to be explained in detail in the subsequent algorithms) in which case the
number of available observations for compressed regression is lower than n. In these cases,
we recommend choosing m to be half the number of observations available in the current
split.

3.3 Inference in non-linear regression problems

In this section, we propose a new method for statistical inference in non-linear models by
drawing upon the respective advantages of non linear regression via Random Forests and
dimension reduction via Supervised Random Projections. We consider a standard non-linear
regression setting as described in (3.1). In this model, we address the problem of identifying
statistically significant variables (via formal tests of hypotheses). In the context of Random
Forests, this problem has been addressed by Paul, Verleysen, Dupont, et al. [104], Mentch
and Hooker [101] and Altmann et al. [4]. We build our SRP based significance test upon the
R package ranger (Wright and Ziegler [144]). ranger ships with an implementation of the
non-parametric permutation based test proposed in Altmann et al. [4] (PIMP), which we use
as our main comparison in this section.

In the regression context, we define the support S of a function f(x1, . . . , xp) : Rp 7→ R
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as the minimal set of indices so that for any vector zS of appropriate length, f
∣

∣

xS=zS
is a

constant function (its range is a singleton). The support S then precisely determines the set
of significant variables, intuitively, the set of variables that appear explicitly in the definition
of f . In the case of random design, the support is well-defined whenever no two variables
are perfectly collinear. Since, in this extreme case we can not identify the ‘truly’ significant
variable from the insignificant one based only on the data, we exclude this possibility from
the rest of our discussions.

SRP targets the linear projection of the non-linear model described in (3.1). Denote by
S, the support of f . Define,

β∗
S = argmin

β
EXS

[XSβ − f(XS)]
2, β∗

j = 0 for any j /∈ S.

Definition: Linearly Important Variable (LIV) Xj is called a linearly important
variable (LIV) if β∗

j 6= 0.
Consequently, we choose to answer the statistical test of the linear significance of Xj by

querying whether the confidence interval of β∗
j based on data (Y,X) contains 0 or not. Note

that due to the above implication this modification can only err on the side of caution; at
the population level some significant variables may be deemed insignificant due ot loss of
information in the linear projection of (3.1), but an insignificant variable can not become
significant due to the linear projection. Using the notion of sample splitting, we propose
Algorithm 3 for constructing SRP confidence intervals.

Algorithm 3 SRP confidence interval for β∗
k using variable importances computed via Ran-

dom Forests
Input Yn, Xn×p,m, α
Split available data randomly into two sets of equal size {Y (1), X(1)} and {Y (2), X(2)}
Using Random Forests on the first subsample {Y (1), X(1)}, compute variable importances
v̂j corresponding to each variable Xj

Construct supervised compressed matrix U (2) ← SRP-dimReduce(X
(2)
−k , v̂−k,m)

Perform linear regression of Y (2) on [X
(2)
k , U (2)] and return confidence interval of linear

loading corresponding to X
(2)
k

Description of Figure 3.2: Boxplots of rate of false discoveries (lower is better) and
detection (higher is better). Green horizontal line indicates that the nominal level of signif-
icance tests are set at 0.1. For this study, we set n = p = 500. For the left hand plots, X is
constructed following the gaussian random design with equicorrelated covariance matrix (cor-
relation between any pair of variables is 0.2). For the right hand plots, X is constructed as
mixture of gaussians with same covariance matrix as in the previous sentence but with means
drawn from 0.5δ2+0.5δ−2. For the top plots, f(x) =

∑20
i=1 βj1(x

j ≥ cj) where cj ∼ N(0, 0.52)
and βj ∼ |N(0, 22)|. Thus for the top plots, f contains non-linear threshold functions but no
interactions. For the bottom plots, f(x) =

∑10
i=1 βj1(x

2j−1 ≤ c2j−1, x
2j ≥ c2j), where c· and
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design

Figure 3.2: Comparison between SRP and PIMP in a non-linear regression setting.

β· are drawn as before. Thus for the bottom plots, f contains both non-linear terms and
pairwise interactions. ǫ is set to be distributed as N(0, 1). 100 replications were performed
in each setting.

As shown in Figure 3.2, SRP is either comparable or better than PIMP whenever f
does not contain interactions. When f does contain pairwise interactions, SRP seems to
exceed the nominal level. Specially in the case of gaussian design and pairwise interactions,
exceedance seems to be quite severe. We should note here, identification of interactions using
Random Forests is not yet a completely understood topic. In a very recent paper, Basu et al.
[9] provides a deeper discussion and specialized methodology on this issue.

To conclude this section, we note that in the settings described in Figure 3.2, SRP requires
on average 358 seconds to conclude while PIMP requires on average 524 seconds; implying
that supervised dimension reduction has resulted in a 30% gain in computational overhead.

3.4 Inference in linear regression problems

In this section, we discuss the problem of constructing confidence intervals for the linear
loadings of each variable (β∗

j corresponding to Xj) in the linear model (3.2). Our method-
ology here is near identical to Algorithm 3, with the variable importance being estimated
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by cross-validated Lasso instead of Random Forests. We choose to implement SRP in con-
junction with Lasso since this performs better than the Ridge analog for the closely related
problem of estimating β∗

j , as exhibited in Section 3.2. The simplicity of modifying Algorithm
3 to arrive at Algorithm 4 underlines the wide applicability and modular nature of SRP.

Algorithm 4 SRP confidence interval for β∗
k using variable importances computed via

LASSO
Input Yn, Xn×p,m, α
Split available data randomly into two sets of equal size {Y (1), X(1)} and {Y (2), X(2)}
Using cross-validated Lasso on the first subsample {Y (1), X(1)}, compute variable impor-
tances

v̂j = |β̂j(λcv)|
Construct supervised compressed matrix U (2) ← SRP-dimReduce(X

(2)
−k , v̂−k,m)

Perform linear regression of Y (2) on [X
(2)
k , U (2)] and return confidence interval of linear

loading corresponding to X
(2)
k

The problem of constructing confidence intervals (CIs) for each entry of β∗, and equiv-
alently testing for the significance of each variable Xj is a widely studied problem under
various sparsity and regularity assumptions. Dezeure et al. [37] provides a good survey and
R implementation of various popular methods in this field of study. SRP does not explicitly
make opaque assumptions on the structure of the problem beyond linearity, but performs
better whenever such regularity (such as sparsity of the vector β∗, restricted isometry of X)
are present. In the sequel, we present some simulation studies comparing SRP with popular
methods for statistical inference in high-dimensional linear models.

For the purpose of all simulation studies presented in this section, we choose to compare
ordinary random projections (ORP) and SRP based on Lasso variable importance (SRP-Lasso)
with three popular existing methods: debiasing (LDPE) as formulated in Zhang and Zhang
[148], LPR (Liu and Yu [85]) which is based on the bootstrap followed by preferential regular-
ization and finally ssLasso, which modifies the sample splitting based method proposed in
Wasserman and Roeder [141] (as published, this method splits the available sample into two
halves, uses a model selection procedure, viz. Lasso, in the first half and proceeds to com-
pute CIs via OLS on the selected model) to preclude the possibility of singleton confidence
intervals by always including the variable Xj in the selected model.

Figures 3.3, 3.4, 3.5, 3.6 and 3.7 present our findings based on a myriad of different
simulation settings within the purview of high-dimensional linear models. For the sake of
precision, we note that a CI counts towards coverage if its target is inside the CI; a CI of a
non-zero target counts towards power if it does not contain 0.

Description of Figure 3.3: Linear model with gaussian errors. Performance of methods
in a linear model with gaussian errors. Random projections methods are shown in solid lines
while other methods are shown in dashed lines. For this study we set n = 200, p = 500.
X is constructed as a gaussian random design with covariance Σ satisfying Σ−1 is sparse
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Figure 3.3: Performance in data with gaussian distributions.
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Figure 3.4: Performance in data with heavy-tailed distributions.
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Figure 3.5: Performance in data with outliers.
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Figure 3.6: Performance in data with missing covariates.
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Figure 3.7: Performance in data with heterogenous errors.

and all eigenvalues of Σ are between 1/5 and 5. 20 indices of β∗ are chosen at random and
populated with independent copies of Unif((−2,−1) ∪ (1, 2)); these constitute ‘big’ entries
of β0. 20 disjoint indices in β∗ are chosen at random and populated with independent copies
of Unif(−0.75, 0.75); these constitute ‘small’ entries of β∗. The rest of β∗ is filled with zeros.
Within the course of one experiment, all of these objects are fixed. Nominal level of all
confidence intervals are 90%. 100 replicates are performed where ǫ is drawn from N(0, 22).

The plot in Figure 3.3 is a modification of those available in Dezeure et al. [37]. Each
row of the above plot is dedicated to a different method. Subplots containing red and black
lines represents an individual coefficient of β∗. The horizontal line depicts the true value of
this coefficient and each vertical line depicts a confidence interval (CI). CIs are colored black
if they cover the true value and are otherwise colored red. Overall coverage in 100 replicates
is printed at the top of these subplots. Each row from left to right shows for the current
method, the three ‘big’ coefficients with worst coverage, coverage of all 20 ‘big’ coefficients
(in sorted order), power for all 20 ‘big’ coefficients, the three ‘small’ coefficients with worst
coverage, coverage of all 20 ‘small’ coefficients, power for all 20 ‘small’ coefficients, the three
zero coefficients with worst coverage, coverage of all 460 zero coefficients.

Description of Figure 3.4: Heavy-tailed errors. The specifics of this study are same as
in Figure 3.3 with the only exception that ǫ is now distributed as the Student’s t-distribution
with 2 degrees of freedom.

Description of Figure 3.5: Data containing outliers. The specifics of this study are
same as in Figure 3.3 with the only exception that each entry of Y can be replaced by an
independent N(0, 1) with 20% chance.

Description of Figure 3.6: Data with missing variables. In this study, the response Y
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depends on 20 further covariates which are not supplied to the methods under study. The
linear loadings corresponding to missing variables are drawn independently from Unif(−2, 2)

Description of Figure 3.7:Data with heterogenous errors. The specifics of this study
are same as in Figure 3.3 with the only exception that ǫi ∼ N(0, 4(1 + |X1

i |))

3.4.1 Discussion on the role of SRP in inference in
high-dimensional linear models

In Figures 3.3, 3.4, 3.5, 3.6 and 3.7 we have investigated the properties of ORP, SRP-Lasso,
LDPE, LPR and ssLasso in the high-dimensional linear model and some practically crucial
variants of it. Below we itemize a few important observations from this extensive study
which shed light on the worth of Random Projections based methods in this field.

To clarify somewhat further, blue subplots show overall performance of each method while
the subplots in red and black highlight worst case behavior. For the plots in blue, coverages
(plotted in dark blue) should ideally match the flat line at 0.90 while power(plotted in light
blue) should ideally be as high as possible. For the worst case plots, it is desirable to have
more black lines and less red lines, the number on top of these plots counts the number of
black lines out of 100.

(i) Both the random projections based methods, ORP and SRP-Lasso, exhibit conservative
behavior in comparison to LDPE and LPR. They enjoy valid coverage across the board
(demonstrating resilience to the various forms of misspecification, or corruption, we
have introduced in Figures 3.4 - 3.7) while their power of detection is lower than those
of LDPE and LPR. In contrast, LPR seems to be more aggressive, choosing to trade
in coverage for higher power of detection. This behavior is exhibited by the below
nominal coverage; the only exception to this rule being the coverage of zero coefficients
in Figure 3.6.

(ii) In all of the settings, except in Figure 3.3, there is little to differentiate between the
behavior of ORP and SRP-Lasso in terms of overall metrics. In Figure 3.3, SRP-Lasso
shows better power of detection for ‘big’ coefficients in comparison to ORP. At a more
subtle level, all figures show that the worst case behavior of SRP-Lasso is better than
ORP, demonstrating that SRP-Lasso is able to often produce valid confidence intervals
even in the worst case.

This leads us to conclude that SRP is reliant upon the quality of variable importances.
Figure 3.3 refers to the case of an well-behaved high-dimensional linear model with
no further bells and whistles. In this setting, we expect the cross-validated Lasso
estimates to be of high fidelity which is leveraged by SRP-Lasso to push ahead of
ORP. In contrast, in the presence of heavy-tailed errors, outliers, missing covariates
or heterogeneous errors the estimated variable importances suffer in quality; which in
turn diminishes the gap between ORP and SRP-Lasso.
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(iii) ssLasso, while a simple method, shows the weakest performance among the meth-
ods studied here. In all of the figures, we observe that in terms of overall metrics,
ssLasso exhibits lower coverage (worse) and lower power (worse) for non-zero coeffi-
cients in comparison to ORP and SRP-Lasso. We should note that ssLasso exhibits
valid coverage of zero coefficients across all settings.

(iv) We would be amiss not to comment upon the robustness demonstrated by LDPE in
this study. With the only exception of subpar worst case behavior in Figure 3.5, LDPE
achieves the right balance between reserve and aggression. It should also be noted
that LDPE is also, by a fat margin, the most expensive procedure under study here. In
comparison to LDPE, LPR provides an aggressive alternative while ORP and SRP-Lasso

provide conservative alternatives; in addition, SRP-Lasso is able to demonstrate higher
power compared to ORP if accurate variable importances are available.

3.4.2 Comparison of Computational Complexities

For practical applicability, the observations made in Section 3.4.1 need to be weighed against
the computational cost of each method. Recall that n is the number of observations, p is the
number of variables and m is the number of random projections (equivalently, the dimension
of the compressed covariable matrix). We denote by B, the number of bootstrap replicates
used by LPR. Using these notation, the theoretical computational complexity of each of the
methods discussed above is tabulated below (assuming n ≤ p) in Table 3.1: The theoretical

Method Order of Computation
LDPE p4

ORP pnm2

SRP-Lasso max{p3, pnm2}
ssLasso max{p3, pnŝ2

ssLasso
}

LPR Bp3

Table 3.1: Theoretical leading order of computation of all methods discussed in Section 3.4.
O notation is suppressed for readability.

complexities are not always accurate reflections of empirical running times, specially for
iterative algorithms. In Figure 3.10, we visualize the empirically observed running times.
Figure 3.10 clearly exhibits that LDPE is a very expensive procedure requiring ≈ 10 − 30×
runtime compared to the next most expensive method (ORP). The other four methods are
arranged as ORP, SRP-Lasso, LPR, ssLasso in order of decreasing time complexity; though
practically these four methods require approximately similar time to completion.
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3.5 Inference in randomized experiments

We now apply SRP to the problem of constructing CI for the Average Treatment Effect
(ATE) in the Neyman randomized experiments model in the presence of covariates, with
particular attention to the case where the number of variables presented is comparable
or larger than the number of experiments conducted. Following our modus operandi in
the previous sections, SRP compresses all the variables available while considering variable
importances and then computes the OLS adjusted CI for ATE (Lin [79]). This is explained in
Algorithm 5; In the following paragraph we set down some notation to describe the Neyman
model with two randomized groups (treatment and control).

n subjects indexed by i = 1, . . . , n are divided via simple random sampling into two
groups A (treatment) and B (control) of sizes nA and nB respectively (nA + nB = n). For
each subject, an outcome value Yi is observed along with p covariate values, xij, 1 ≤ j ≤ p.
As in regression, we shall denote the vector of outcome values y1, . . . , yn by Y and the matrix
of explanatory variable values by X = ((xij))n×p. Neyman model assumes that each subject
has two potential outcomes: ai (potential outcome if assigned to treatment group A) and bi

(potential outcome if assigned to control group B). The observed outcome Yi would equal
ai if the i

th subject is assigned to group A and equal bi if the i
th subject is assigned to

group B. The model also assumes that the quantities a1, . . . , an and b1, . . . , bn are fixed and
non-random and that the only randomness in the observations Y1, . . . , Yn comes from the
random sampling assignment. ATE (Average Treatment Effect) is then defined as

ATE := ā− b̄ =
1

n

n
∑

i=1

ai −
1

n

n
∑

i=1

bi. (3.3)

When covariates are present and observed, it is implied that the potential outcomes are
influenced by covariate values but no structural assumptions as to the analytical form of this
influence is made in the Neyman model.

We would like to remark here that the ATE is one of the most important estimands
of interest in randomized experiments (see, for example, Imbens and Rubin [59]). This
inference problem is also well understood in the low-dimensional setting (i.e., where p is
small compared to n, Lin [79]). Recently, Bloniarz et al. [15] presented a Lasso adjustment
based estimate of ATE in the case where p is comparable to or larger than n.

Description of Figure 3.8: In each setting, the boxplots on the left represent the bias

(ÂTE−ATE) incurred by each method and the numbers on top of each boxplot report the
standard deviations. The barplots on the right represent the power and coverage for each
method in each setting (nominal α = 0.1). The specific simulation settings are described in
full detail in Bloniarz et al. [15]. n ∈ {250, 1000} and the covariate matrix X is drawn from
gaussian random design with Toeplitz covariance with parameter ρ ∈ {0, 0.6}; thus resulting
in four configurations in total. The potential outcomes exhibit non-linear dependency on
the covariates and are influenced by 10 observed and 10 unobserved covariates.

In Figure 3.8, we compare SRP (as defined in Algorithm (5)) and the ordinary random
projections estimate (RP) with the unadjusted estimator (Unadj) which does not take covari-
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Algorithm 5 SRP confidence interval for ATE using variable importances computed via
LASSO
Input YA, XA, YB, XB,mA,mB, α.
On group A compute variable importances v̂A,j using cross-validated Lasso on (YA, XA)
On group A construct supervised compressed matrix UA ← SRP-dimReduce(XA, v̂A,mA)
On group A compute γ̂A, the linear regression coefficients of YA on UA; and σ̂2

A, the
residual sum of squares divided by residual degrees of freedom = nA −mA
On group B repeat the previous three steps
Compute

ÂTESRP :=
[

ȲA − (ŪA − Ū)⊤γ̂A
]

−
[

ȲB − (ŪB − Ū)⊤γ̂B
]

and

σ̂2
SRP :=

1

nA
σ̂2
A +

1

nB
σ̂2
B.

Return 100(1− α)% CI of ATE,

[

ÂTESRP − zα/2σ̂SRP, ÂTESRP + zα/2σ̂SRP

]
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Figure 3.8: Performance inference of Average Treatment Effect
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Figure 3.9: A simulation study modified from Bloniarz et al. [15] with higher signal-to-noise
ratio, which accentuates the characteristics of each method.
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ate information into account, and the methods Lasso and Lasso+OLS established in Bloniarz
et al. [15]. For the purposes of this study, we replicate 2500 datasets from each of the four
configurations described in detail in Bloniarz et al. [15].

Figure 3.9 show the results of a second simulation study performed in a setting with
higher signal-to-noise ratio.

3.5.1 Discussion on the role of SRP in inference in randomized
experiments

(i) From the left hand plots of Figures 3.8 and 3.9 (which show the distribution of ÂTE−
ATE for various methods), all methods are shown to be unbiased. In terms of standard
deviation, both visually from the boxplots and as noted in the readouts above them,
we realize that RP is subpar compared to Unadj. On the other hand, SRP enjoys a lower
(better) standard deviation than Unadj and is only slightly higher those of Lasso and
Lasso+OLS in Figure 3.8.

(ii) The left hand plots of Figure 3.9 make this hierarchy clearer by increasing the signal
strength. Unadj performs better than RP while the other three methods perform better
than Unadj, where Lasso and Lasso+OLS have lower variance than SRP. This allows
us to conclude that the ordinary dimension reduction procedure fails in this problem
but the supervised procedure doesn’t; thus, the only avenue to employ the advantages
of dimension reduction (such as, leaner memory and computational footprint) in this
problem is through an supervised method.

(iii) The right hand plots show coverage and power for each of the methods. We should note
the low power across the board in Figure 3.8, which motivated us to investigate the
setting in Figure 3.9. We should draw attention to the lower than nominal coverage of
SRP in the left-most setting in Figure 3.9. Other than this lone blemish, we conclude
that SRP provides a viable alternative to Lasso and Lasso+OLS in the problem of
statistical inference on ATE in the Neyman model with many covariables.

(iv) Echoing a note from our conclusions in Section 3.4.1, while the refitting based procedure
Lasso+OLS is the best performer in these studies, it is also a much slower method.

Comparison of Computational Complexities

The unadjusted method (Unadj), is clearly computationally the fastest withO(n) operations.
The ordinary random projections method, denoted as RP requires O(nm2) operations. The
other three methods, Lasso, Lasso + OLS and SRP all possess a theoretical computational
complexity of O(p3) operations. But in practice, we observe a clearly heavier computational
overhead to Lasso + OLS. This becomes clear from the empirical running times we present
in Figure 3.11. To clarify, Lasso and SRP share practically the same runtime, while the same
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Figure 3.10: Runtime. The left hand plot shows a comparison for different values of p keeping
n fixed. The right hand plot shows a comparison for different values of n keeping p fixed.
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Figure 3.11: Runtime. The left hand plot shows a comparison for different values of p keeping
n fixed. The right hand plot shows a comparison for different values of n keeping p fixed.

is true for Unadj and RP. We observe that Lasso + OLS is ≈ 6− 8× slower than Lasso and
SRP. The other four methods enjoy reasonably fast implementations.

3.6 Discussion

Dimension reduction shares the twin advantages of leaner computational footprint and in-
creased interpretability in high-dimensional inferential procedures. In this chapter, we pro-
posed an universal dimension reduction technique which leverages variable importance in-
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dices, thus improving the accuracy of the dimension reduction step while preserving the
computational economy which makes dimension reduction, equivalently compression, based
methodology vastly desirable. Our supervised framework is highly customizable and mod-
ular in nature; we allow the practitioner to employ any black-box method of computing
variable importance as he/she deems fit. Our judicial use of sample splitting further bolsters
the validity of subsequent inference.

We have shown that SRP provides a valid alternative to computationally pricey non-
parametric permutation tests for identifying significant variables in non-linear regression
using Random Forests. We have further shown that in the context of inference in high-
dimensional linear regression problems, SRP and ORP provide robust, faster and conserva-
tive alternative to the debiasing method and other existing methods. We have lastly shown
that, supervised dimension reduction is a viable if slightly inferior alternative to Lasso based
adjustments in the problem of statistical inference on Average Treatment Effect in the pres-
ence of a large number of covariates.

To conclude, the universality of our supervised dimension reduction approach may lead to
suboptimal performance compared to specialized techniques in specific problems; but in our
experience this specialized techniques are often much slower. While in many of the problems
we have discussed here, other fast methods are available, the supervised dimension reduction
technique is able to match the performance and computational overload of such methods. In
contrast, SRP is an universal idea which is applicable in a wide variety of high-dimensional
inference problems. Thus, we propose SRP as an universal alternative which is approximate
but computationally vastly more appealing.
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Chapter 4

Nonparametric Maximum Likelihood
Estimator for Gaussian Location
Mixture Densities with Application to
Gaussian Denoising

4.1 Overview

We study the Nonparametric Maximum Likelihood Estimator (NPMLE) for estimating
Gaussian location mixture densities in d-dimensions from independent observations. Unlike
usual likelihood-based methods for fitting mixtures, NPMLEs are based on convex optimiza-
tion. We prove finite sample results on the Hellinger accuracy of every NPMLE. Our results
imply, in particular, that every NPMLE achieves near parametric risk (up to logarithmic
multiplicative factors) when the true density is a discrete Gaussian mixture without any
prior information on the number of mixture components. NPMLEs can naturally be used
to yield empirical Bayes estimates of the Oracle Bayes estimator in the Gaussian denoising
problem. We prove bounds for the accuracy of the empirical Bayes estimate as an approx-
imation to the Oracle Bayes estimator. Here our results imply that the empirical Bayes
estimator performs at nearly the optimal level (up to logarithmic multiplicative factors) for
denoising in clustering situations without any prior knowledge of the number of clusters.

4.2 Introduction

In this chapter, we study the performance of the Nonparametric Maximum Likelihood Esti-
mator (NPMLE) for estimating a Gaussian location mixture density in multiple dimensions.
We also study the performance of the empirical Bayes estimator based on the NPMLE for
estimating the Oracle Bayes estimator in the problem of Gaussian denoising.
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By a Gaussian location mixture density in Rd, d ≥ 1, we refer to a density of the form

fG(x) :=

∫

φd(x− θ)dG(θ) (4.1)

for some probability measure G on Rd where φd(z) := (2π)−d/2 exp (−‖z‖2/2) is the standard
d-dimensional normal density (‖z‖ is the usual Euclidean norm of z). Note that fG is the
density of the random vector X = θ + Z where θ and Z are independent d-dimensional
random vectors with θ having distribution G (i.e., θ ∼ G) and Z having the Gaussian
distribution with zero mean and identity covariance matrix (i.e., Z ∼ N(0, Id)). We letM
to be the class of all Gaussian location mixture densities i.e., densities of the form fG as G
varies over all probability measures on Rd.

Given n independent d-dimensional data vectors X1, . . . , Xn (throughout the chapter, we
assume that n ≥ 2) generated from an unknown Gaussian location mixture density f ∗ ∈M,
we study the problem of estimating f ∗ from X1, . . . , Xn. This problem is fundamental to
the area of estimation in mixture models to which a number of books (see, for example,
Everitt and Hand [43], Titterington, Smith, and Makov [132], Lindsay [80], Böhning [18],
McLachlan and Peel [97], and Schlattmann [121]) and papers have been devoted. We focus on
the situation where d is small or moderate, n is large and where no specific prior information
is available about the mixing measure corresponding to f ∗. Consistent estimation in the
case where d is comparable in size to n needs simplifying assumptions on f ∗ (such as that
the mixing measure is discrete with a small number of atoms and that it is concentrated on
a set of sparse vectors in Rd) which we do not make in this chapter. Let us also note here
that we focus on the problem of estimating f ∗ and not on estimating the mixing measure
corresponding to f ∗.

There are two well-known likelihood-based approaches to the estimation of Gaussian
location mixture densities: (a) the first approach involves fixing an integer k and performing
maximum likelihood estimation over the class Mk which is the collection of all densities
fG ∈M where G is discrete and has at most k atoms, and (b) the second approach involves
performing maximum likelihood estimation over the entire class M. This results in the
Nonparametric Maximum Likelihood Estimator (NPMLE) for f ∗ and is the focus of this
chapter.

The first approach (maximum likelihood estimation over Mk for a fixed k) is quite
popular. However, it suffers from the two well-known issues: choosing k is non-trivial and,
moreover, maximizing likelihood over Mk results in a non-convex optimization problem.
This non-convex algorithm is usually approximately solved by the EM algorithm (see, for
example, Dempster, Laird, and Rubin [35], McLachlan and Krishnan [96], and Watanabe and
Yamaguchi [142]). Recent progress on obtaining a theoretical understanding of the behaviour
of the non-convex EM algorithm has been made by Balakrishnan, Wainwright, Yu, et al.
[5]. For the issue of choosing k, one can adapt standard model selection methodology such
as those based on the AIC Akaike [2] or BIC Schwarz [122]. However theoretical properties
of the resulting estimator are not well understood because the usual regularity conditions
that are required for AIC or BIC to work do not hold in this mixture model setting. More
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recently, Maugis and Michel [93] (see also Maugis-Rabusseau and Michel [95]) proposed a
penalization likelihood criterion to choose k by suitably employing the general theory of non-
asymptotic model selection via penalization due to Birgé and Massart [14], Barron, Birgé,
and Massart [8] and Massart [92]. Maugis and Michel [93] also established nonasymptotic
risk properties of the resulting estimator. The computational aspects of their estimator are
quite involved however (see Maugis and Michel [94]) as their estimators are based on solving
multiple non-convex optimization problems.

The present chapter concentrates on second likelihood-based approach involving non-
parametric maximum likelihood estimation of f ∗. This method is not affected by the issues
of non-convexity and the need for choosing k. Formally, by an NPMLE, we refer to any
maximizer f̂n of

∑n
i=1 log f(Xi) as f varies overM i.e.,

f̂n ∈ argmax
f∈M

1

n

n
∑

i=1

log f(Xi). (4.2)

Note that because the maximization is done over the entire classM of all Gaussian location
mixture densities (and not on any non-convex subset such asMk), the optimization in (4.2)
is a convex optimization problem. Indeed, the objective function in (4.2) is concave in f and
the constraint setM is a convex class of densities.

The idea of using NPMLEs for estimating mixture densities has a long history (see, for
example, the classical references Kiefer and Wolfowitz [67], Lindsay [81, 82], Lindsay [80],
and Böhning [18]). The optimization problem (4.2) and its solutions have been studied by
many authors. It is known that maximizers of f 7→ ∑n

i=1 log f(Xi) exist over M which
implies that NPMLEs exist. Maximizers are non-unique however so there exist multiple
NPMLEs. Nevertheless, for every NPMLE f̂n, the values f̂(Xi) for i = 1, . . . , n are unique
(this is essentially because the objective function in the optimization (4.2) only depends on f
through the values f(X1), . . . , f(Xn)). Proofs of these basic facts can be found, for example,
in Böhning [18, Chapter 2].

There exist many algorithms in the literature for approximately solving the optimization
(4.2) (note that though (4.2) is a convex optimization problem, it is infinite-dimensional
which is probably why exact algorithms seem to be unavailable). These algorithms range
from: (a) vertex direction methods and vertex exchange methods (see the review papers:
Böhning [17], Lindsay and Lesperance [83] and the references therein), (b) EM algorithms
(see Laird [70] and Jiang and Zhang [63]), and (c) modern large-scale interior point methods
(see Koenker and Mizera [68] and Feng and Dicker [45]). Most of these methods focus on the
case d = 1 and involve maximizing the likelihood over mixture densities where the mixing
measure is supported on a fixed fine grid in the range of the data. The algorithm of Koenker
and Mizera [68] is highly scalable (relying on the commercial convex optimization library
Mosek [102]) and can obtain an approximate NPMLE efficiently even for large sample sizes
(n of the order 100, 000). See Section 4.5 for more algorithmic and implementation details
as well as some simulation results.
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Let us now describe the main objectives and contributions of the current chapter. Our
first goal is to investigate the theoretical properties of NPMLEs. In particular, we study
the accuracy of f̂n as an estimator of the density f ∗ from which the data X1, . . . , Xn are
generated. We shall use, as our loss function, the squared Hellinger distance:

H
2(f, g) :=

∫

(

√

f(x)−
√

g(x)
)2

dx, (4.3)

which is one of the most commonly used loss functions for density estimation problems. We
present a detailed analysis of the risk, EH2(f̂n, f

∗), of every NPMLE (the expectation here
is taken with respect to X1, . . . , Xn distributed independently according to f ∗). The other
common loss function used in density estimation is the total variation distance. The total
variation distance is bounded from above by a constant multiple of H so that upper bounds
for risk under the squared Hellinger distance automatically imply upper bounds for risk in
squared total variation distance.

Our results imply that, for a large class of true densities f ∗ ∈ M, the risk of every
NPMLE f̂n is parametric (i.e., n−1) up to multiplicative factors that are logarithmic in n.
In particular, our results imply that when the true f ∗ ∈Mk for some 1 ≤ k ≤ n, then every
NPMLE has risk k/n up to a logarithmic multiplicative factor in n. It is not hard to see that
the minimax risk overMk is bounded from below by k/n which implies therefore that every
NPMLE is nearly minimax over Mk (ignoring logarithmic factors in n) for every k ≥ 1.
This is interesting because NPMLEs do not use any a priori knowledge of k. The price in
squared Hellinger risk that is paid for not knowing k in advance is only logarithmic in n. Our
results are non-asymptotic and the bounds for risk over Mk hold even when k grows with
n. Our results also imply that NPMLEs have parametric risk (again up to multiplicative
logarithmic factors) when the mixing measure of f ∗ is supported on a fixed compact subset
of Rd. Note that we have assumed that the covariance matrix of every Gaussian component
of mixture densities in the classM is the identity matrix. Our results can be extended to the
case of arbitrary covariance matrices provided a lower bound on the eigenvalues is available
(see Proposition 4.3.5) (on the other hand, when no a priori information on the covariance
matrices is available, it is well-known that likelihood based approaches are infeasible). These
results are described in detail in Section 4.3.

Previous results on the Hellinger accuracy of NPMLEs were due to Ghosal and Vaart
[49] and Zhang [147] who dealt with the univariate (d = 1) case. They studied the Hellinger
accuracy under conditions on the moments of the mixing measure corresponding to f ∗. The
accuracy of NPMLEs in the interesting case when f ∗ ∈ Mk does not appear to have been
studied previously even in d = 1. We study the Hellinger risk of NPMLEs for all d ≥ 1 and
also under a much broader set of assumptions on f ∗ compared to existing papers.

We would like to mention here that numerous papers have appeared in the theoretical
computer science community establishing rigorous theoretical results for estimating densities
inMk. For example, the papers Daskalakis and Kamath [34], Suresh et al. [127], Bhaskara,
Suresh, and Zadimoghaddam [12], Chan et al. [25, 24], Acharya et al. [1], and Li and Schmidt
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[75] have results on estimating densities in Mk with rigorous bounds on the error in esti-
mation. The estimation error is mostly measured in terms of the total variation distance
which is smaller (up to constant multiplicative factors) compared to the Hellinger distance
used in the present chapter. Their sample complexity results imply rates of estimation of
k/n up to logarithmic factors in n for densities in Mk in terms of the squared total vari-
ation distance and hence these results are comparable to our results for the NPMLE. The
estimation procedures used in these papers range from (a) hypothesis selection over a set of
candidate estimators via an improved version of the Scheffé estimate (Daskalakis and Ka-
math [34] and Suresh et al. [127]; see Devroye and Lugosi [36, Chapter 6] for background
on the Scheffé estimate), (b) reduction to finding sparse solutions to a non-negative linear
systems (Bhaskara, Suresh, and Zadimoghaddam [12]), and (c) fitting piecewise polynomial
densities (Chan et al. [25, 24], Acharya et al. [1], and Li and Schmidt [75]; these papers have
the sharpest results). These methods are very interesting and, remarkably, come with precise
time complexity guarantees. They are not based on likelihood maximization however and,
in our opinion, conceptually more involved compared to the NPMLE studied in this chapter.
An additional minor difference between our work and this literature is that k is taken to be
a constant (and sometimes even known) in these papers while we allow k to grow with n
and the NPMLE does not need prior knowledge of k.

Let us now describe briefly the proof techniques underlying our risk results for the NPM-
LEs. Our technical arguments are based on standard ideas from the literature on empirical
processes for assessing the performance of maximum likelihood estimators (see Vaart and
Wellner [136], Wong and Shen [143], and Zhang [147]). These techniques involve bounding
the covering numbers of the space of Gaussian location mixture densities. For each compact
subset S ⊆ Rd, we prove covering number bounds forM under the supremum distance (L∞)
on S. Our bounds can be seen as extensions of the one-dimensional covering number results
of Zhang [147] (which are themselves enhancements of corresponding results in Ghosal and
Vaart [49]). The covering number results of Zhang [147] can be viewed as special instances
of our bounds for the case when S = [−M,M ]. The extension to arbitrary compact sets S is
crucial for dealing with rates for densities inMk. For proving the final Hellinger risk bounds
of f̂n from these L∞ covering numbers, we use appropriate modifications of tail arguments
from Zhang [147].

The second goal of the present chapter is to use NPMLEs to yield empirical Bayes esti-
mates in the Gaussian denoising problem. By Gaussian denoising, we refer to the problem of
estimating vectors θ1, . . . , θn ∈ Rd from independent d-dimensional observations X1, . . . , Xn

generated as
Xi ∼ N(θi, Id) for i = 1, . . . , n. (4.4)

The naive estimator in this denoising problem simply estimates each θi by Xi. It is well-
known that, depending on the structure of the unknown θ1, . . . , θn, it is possible to achieve
significant improvement over the naive estimator by using information from Xj, j 6= i in
addition to Xi for estimating θi. An ideal prototype for such information sharing across
observations is given by the Oracle Bayes estimator which will be denoted by θ̂∗1, . . . , θ̂

∗
n and
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is defined in the following way:

θ̂∗i := E (θ|X = Xi) where θ ∼ Ḡn and X|θ ∼ N(θ, Id)

and Ḡn is the empirical measure corresponding to the true set of parameters θ1, . . . , θn. In
other words, θ̂∗i is the posterior mean of θ given X = Xi under the model X|θ ∼ N(θ, Id)
and the prior θ ∼ Ḡn. This is an Oracle estimator that is infeasible in practice as it uses
information on the unknown parameters θ1, . . . , θn via their empirical measure Ḡn. It is
well-known (see, for example, Robbins [115], Brown [21], Stein [125], and Efron [40]) that θ̂∗i
has the following alternative expression as a consequence of Tweedie’s formula:

θ̂∗i = Xi +
∇fḠn

(Xi)

fḠn
(Xi)

(4.5)

where fḠn
is the Gaussian location mixture density with mixing measure Ḡn (defined as

in (4.1)). From the above expression, it is clear that the Oracle Bayes estimator can be
estimated from the dataX1, . . . , Xn provided one can estimate the Gaussian location mixture
density, fḠn

, from the data X1, . . . , Xn. For this purpose, as insightfully observed in Jiang

and Zhang [63], any NPMLE, f̂n, as in (4.2) can be used. Indeed, if f̂n denotes any NPMLE
based on the data X1, . . . , Xn, then Jiang and Zhang [63] argued that f̂n is a good estimator
for fḠn

under (4.4) so that θ̂∗i is estimable by

θ̂i := Xi +
∇f̂n(Xi)

f̂n(Xi)
. (4.6)

This yields a completely tuning-free solution to the Gaussian denoising problem (note how-
ever that the noise distribution is assumed to be completely known as N(0, Id)). This is
the General Maximum Likelihood empirical Bayes estimator of Jiang and Zhang [63] who
proposed it and studied its theoretical properties in detail for estimating sparse univari-
ate normal means. To the best of our knowledge, the properties of the estimator (4.6) for
multidimensional denoising problems have not been previously explored. More generally, the
empirical Bayes approach to the Gaussian denoising problem goes back to Robbins [114, 116,
117]. The effectiveness of nonparametric empirical Bayes estimators for estimating sparse
normal means has been explored by many authors including Johnstone and Silverman [64],
Brown and Greenshtein [22], Jiang and Zhang [63], Donoho and Reeves [39], and Koenker
and Mizera [68] but most work seems restricted to the univariate setting. On the other
hand, there exists prior work on parametric empirical Bayes methods in the multivariate
Gaussian denoising problem (see, for example, Efron and Morris [41, 42]) but the role of
nonparametric empirical Bayes methods in multivariate Gaussian denoising does not seem
to have been explored previously.

We perform a detailed study of the accuracy of θ̂i in (4.6) as an estimator of the Oracle
Bayes estimator θ̂∗i for i = 1, . . . , n in terms of the following squared error risk measure:

Rn(θ̂, θ̂
∗) := E

[

1

n

n
∑

i=1

‖θ̂i − θ̂∗i ‖2
]

(4.7)
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where the expectation is taken with respect to X1, . . . , Xn generated independently accord-
ing to (4.4). The risk Rn(θ̂, θ̂

∗) depends on the configuration of the unknown parameters
θ1, . . . , θn and we perform a detailed study of the risk for natural configurations of the points
θ1, . . . , θn ∈ Rd. Our results imply that, under natural assumptions on θ1, . . . , θn, the risk
Rn(θ̂, θ̂

∗) is bounded by the parametric rate 1/n up to logarithmic multiplicative factors.
For example, when the number of distinct vectors among θ1, . . . , θn equals k for some k ≤ n
(an assumption which makes sense in clustering situations), we prove that the risk Rn(θ̂, θ̂

∗)
is bounded from above by the parametric rate k/n up to logarithmic multiplicative factors
in n. This result is especially remarkable because the estimator (4.6) is tuning free and does
not have knowledge of k. We also prove that the analogous minimax risk over this class is
bounded from below by k/n implying that the empirical Bayes estimate is minimax up to
logarithmic multiplicative factors. Our result also implies that when θ1, . . . , θn take values
in a bounded region on Rd, then also the risk Rn(θ̂, θ̂

∗) is nearly parametric. Summarizing,
our results imply that, under a wide range of assumptions on θ1, . . . , θn, the empirical Bayes
estimator θ̂i performs comparably to the Oracle Bayes estimator θ̂∗i for denoising. These
results are in Section 4.4. The results and the proof techniques are inspired by the argu-
ments of Jiang and Zhang [63] who studied the univariate denoising problem under sparsity
assumptions. We generalize their arguments to multidimensions.

In addition to theoretical results, we also present simulation evidence for the effective-
ness of θ̂i in the Gaussian denoising problem in Section 4.5 (where we also present some
implementation and algorithmic details for computing approximate NPMLEs). Here, we
illustrate the performance of (4.6) for denosing when the true parameter vectors θ1, . . . , θn
take values in certain natural regions in R2. We also numerically analyze the performance
of (4.6) in clustering situations when θ1, . . . , θn take k distinct values for some small k. Here
we compare the performance of (4.6) to other natural procedures such as k-means with k
selected via the gap statistic (see Tibshirani, Walther, and Hastie [130]). We argue that
(4.6) performs very efficiently in terms of the risk measure Rn(θ̂, θ̂

∗). In terms of a purely
clustering based comparison index (such as the Adjusted Rand Index), we argue that the
performance of (4.6) is still reasonable.

The rest of the chapter is organized in the following manner. In Section 4.3, we state
our results on the Hellinger accuracy of NPMLEs for estimating Gaussian location mixture
densities. Section 4.4 has statements of our results on the risk Rn(θ̂, θ̂

∗) in the denoising
problem. Section 4.5 has algorithmic details and simulation evidence for the effectiveness
of (4.6) for denoising. Proofs for results in Section 4.3 are given in Section 4.6 while proof
for Section 4.4 are in Section 4.7. Metric entropy results for multivariate Gaussian location
mixture densities play a crucial rule in the proofs of the main results; these results are
stated and proved in Section 4.8. Section 4.9 contains the statement and proof for a crucial
ingredient for the proof of the main denoising theorem. Finally, additional technical results
needed in the proofs of the main results are collected in Section A together with their proofs.
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4.3 Hellinger Accuracy of NPMLE

Given data X1, . . . , Xn, let f̂n be any NPMLE defined as in (4.2). In this section, we shall
study the accuracy of f̂n in terms of the squared Hellinger distance (defined in (4.3)). All
the results in this section are proved in Section 4.6.

For investigations into the performance of f̂n, it is most natural to assume that the data
X1, . . . , Xn are independent observations having common density f ∗ ∈ M in which case we
seek bounds on H2(f̂n, f

∗). However, following Zhang [147], we work under the more general
assumption that X1, . . . , Xn are independent but not identically distributed and that each Xi

has a density that belongs to the classM. This additional generality will be used in Section
4.4 for proving results on the Empirical Bayes estimator (4.6) for the Gaussian denoising
problem.

Specifically, we assume that X1, . . . , Xn are independent and that each Xi has density
fGi

for some probability measures G1, . . . , Gn on Rd. This distributional assumption on
the data X1, . . . , Xn includes the following two important special cases: (a) G1, . . . , Gn are
all identically equal to G (say): in this case, the observations X1, . . . , Xn are identically
distributed with common density f ∗ = fG ∈ M, and (b) Each Gi is degenerate at some
θi ∈ Rd: here each data point Xi is normal with Xi ∼ Nd(θi, Id).

We let Ḡn := (G1+ · · ·+Gn)/n to be the average of the probability measures G1, . . . , Gn.
In the case when G1, . . . , Gn are all identically equal to G, then clearly Ḡn = G. On the other
hand, when each Gi is degenerate at some θi ∈ Rd, then Ḡn equals the empirical measure
corresponding to θ1, . . . , θn.

Under the above independent but not identically distributed assumption on X1, . . . , Xn, it
has been insightfully pointed out by Zhang [147] that every NPMLE f̂n based on X1, . . . , Xn

(defined as in (4.2)) is really estimating fḠn
. Note that fḠn

denotes the average of the
densities of X1, . . . , Xn.

In this section, we shall prove bounds for the accuracy of any NPMLE f̂n as an estimator
for fḠn

under the Hellinger distance i.e., for H(f̂n, fḠn
). For every compact set S ⊆ Rd and

M ≥ √10 log n, we shall prove an upper bound for H(f̂n, fḠn
) in terms of S and M . As

will be seen later in this section, under some simplifying assumptions on Ḡn, our bound for
H(f̂n, fḠn

) can be optimized over S and M to produce an explicit bound.
In order to state our main theorem, we need to introduce the following notation. For

nonempty sets S ⊆ Rd, we define the function dS : Rd → [0,∞) by

dS(x) := inf
u∈S
‖x− u‖ for x ∈ Rd (4.8)

where ‖·‖ is the usual Euclidean norm on Rd. Also for S ⊆ Rd, we let

S1 := {x : dS(x) ≤ 1} . (4.9)

Our bound on H(f̂n, fḠn
) will be controlled by the following quantity. For every non-empty
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compact set S ⊆ Rd and M ≥ √10 log n, let ǫn(M,S) be defined via

ǫ2n(M,S) := Vol(S1)
Md

n

(

√

log n
)(4−d)+

+ (log n) inf
p≥ d+1

2 logn

(

2µp(dS)

M

)p

(4.10)

where S1 is defined in (4.9), (4 − d)+ is defined by way of x+ := max(x, 0) and µp(dS) is
defined as the moment

µp(dS) :=

(∫

Rd

(dS(θ))
p dḠn(θ)

)1/p

for p > 0.

Note that the moments µp(dS) quantify how the probability (under Ḡn) decays as one moves
away from the set S.

The next theorem proves that H2(f̂n, fḠn
) is bounded (with high probability and in

expectation) by a constant (depending on d) multiple of ǫ2n(M,S) for every estimator f̂n
having the property that the likelihood of the data at f̂n is not too small compared to the
likelihood at fḠn

(made precise in inequality (4.11)). Every NPMLE trivially satisfies this
condition (as it maximizes likelihood) but the theorem also applies to certain approximate
likelihood maximizers.

Theorem 4.3.1. Let X1, . . . , Xn be independent random vectors with Xi ∼ fGi
and let

Ḡn := (G1 + · · ·+Gn)/n. Fix M ≥
√
10 log n and a non-empty compact set S ⊆ Rd and let

ǫn(M,S) be as defined in (4.10). Then there exists a positive constant Cd (depending only
on d) such that for every estimator f̂n based on the data X1, . . . , Xn satisfying

n
∏

i=1

f̂n(Xi)

fḠn
(Xi)

≥ exp

[

Cd(β − α)
min(1− α, β)nǫ

2
n(M,S)

]

for some 0 < β ≤ α < 1, (4.11)

we have

P

{

H(f̂n, fḠn
) ≥ tǫn(M,S)

√
Cd

√

min(1− α, β)

}

≤ 2n−t2 for every t ≥ 1. (4.12)

and

EH2(f̂n, fḠn
) ≤ 4Cd

min(1− α, β)ǫ
2
n(M,S). (4.13)

Theorem 4.3.1 asserts that the risk EH2(f̂n, f̄Ḡn
) is bounded from above by a constant

(depending on d, α and β) multiple of ǫ2n(M,S) for everyM ≥ √10 log n and compact subset
S ⊆ Rd. This is true for every estimator f̂n satisfying (4.11). Every NPMLE satistfies (4.11)
with α = β = 0.5 (note that the right hand side of (4.11) is always less than or equal to one
because β ≤ α).

Theorem 4.3.1 is novel to the best of our knowledge. When d = 1 and S is taken to be
[−R,R] for some R ≥ 0, then the conclusion given by Theorem 4.3.1 appears implicitly in
Zhang [147, Proof of Theorem 1]. The advantages of allowing S to be an arbitrary compact
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set will be clear from the special cases of Theorem 4.3.1 that are given below. Our proof of
Theorem 4.3.1 (given in Section 4.6) is greatly inspired by Zhang [147, Proof of Theorem 1].

To get the best rate for H(f̂n, fḠn
) from Theorem 4.3.1, we need to choose M and S so

that ǫn(M,S) is small. These choices depend on Ḡn and in the next result, we describe how
to choose M and S based on reasonable assumptions on Ḡn. This leads to explicit rates for
H(f̂n, fḠn

). For simplicity, we shall assume, for the next result, that f̂n is an NPMLE so
that (4.11) is satisfied with α = β = 0.5. We shall also only state the results on the risk
EH2(f̂n, fḠn

).

Corollary 4.3.2. Let X1, . . . , Xn be independent random vectors with Xi ∼ fGi
and let

Ḡn := (G1 + · · · + Gn)/n. Let f̂n be an NPMLE based on X1, . . . , Xn defined as in (4.2).
Below Cd denotes a positive constant depending on d alone.

1. Suppose that Ḡn is supported on a compact subset S of Rd. Then

EH2(f̂n, fḠn
) ≤ Cd

Vol(S1)

n

(

√

log n
)d+(4−d)+

. (4.14)

2. Suppose there exist a compact subset S ⊆ Rd and real numbers 0 < α ≤ 2 and K ≥ 1
such that

µp(dS) ≤ Kp1/α for all p ≥ 1. (4.15)

Then

EH2(f̂n, fḠn
) ≤ Cd

Vol(S1)(Ke1/α)d

n

(

√

log n
)(2d/α)+(4−d)+

. (4.16)

3. Suppose there exists a compact set S ⊆ Rd and real numbers µ > 0 and p > 0 such
that µp(dS) ≤ µ. Then there exists a positive constant Cd,µ,p (depending only on d, µ
and p) such that

EH2(f̂n, fḠn
) ≤ Cd,µ,p

(

Vol(S1)

n

)p/(p+d)
(

√

log n
)(2d+p(4−d)+)/(p+d)

. (4.17)

Corollary 4.3.2 is a generalization of Zhang [147, Theorem 1] as the latter result can be
seen as a special case of Corollary 4.3.2 for d = 1 and S = [−R,R] for some R ≥ 0. The
fact that S can be arbitrary in Corollary 4.3.2 allows us to deduce the following important
adaptation results of NPMLEs for estimating Gaussian mixtures whose mixing measures are
discrete. These results are, to the best of our knowledge, novel.

Proposition 4.3.3 (Near parametric risk for discrete Gaussian mixtures). Let X1, . . . , Xn

be independent random vectors with Xi ∼ fGi
and let Ḡn := (G1 + · · ·+Gn)/n. Let f̂n be an

NPMLE based on X1, . . . , Xn defined as in (4.2). Then there exists a positive constant Cd
depending only on d such that whenever Ḡn is a discrete probability measure that is supported
on a set of cardinality k, we have

EH2(f̂n, fḠn
) ≤ Cd

(

k

n

)

(

√

log n
)d+(4−d)+

. (4.18)
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The significance of Proposition 4.3.3 is the following. Note that the right hand side of
(4.18) is the parametric risk k/n up to an additional multiplicative factor that is logarithmic
in n. This inequality shows important adaptation properties of NPMLEs. When the true
unknown Gaussian mixture fḠn

is a discrete mixture having k Gaussian components, then
every NPMLE nearly (up to logarithmic factors) achieves the parametric squared Hellinger
risk k/n. For a fixed k, it is well-known that fitting a k-component Gaussian mixture via
maximum likelihood is a non-convex problem that is usually solved by the EM algorithm.
On the other hand, NPMLE is given by a convex optimization algorithm, does not require
any prior specification of k and still achieves the k/n rate (up to logarithmic factors) when
the truth is a k-component Gaussian mixture.

Note that Proposition 4.3.3 applies to the case of independent but not identically dis-
tributed X1, . . . , Xn which is more general compared to the i.i.d assumption. This implies,
in particular, that (4.18) also applies to the case when X1, . . . , Xn are i.i.d having density
f ∗ ∈M. In this case, we have

sup
f∗∈Mk

EH2(f̂n, f
∗) ≤ Cd

(

k

n

)

(

√

log n
)d+(4−d)+

. (4.19)

The interesting aspect of this inequality is that it holds for every k ≥ 1 and that the estimator
f̂n does not know or use any information about k.

It is straightforward to prove a minimax lower bound overMk that complements Propo-
sition 4.3.3. The following result proves that the minimax risk over Mk is bounded from
below by a constant multiple of k/n. This implies that the NPMLE is minimax optimal
overMk ignoring logarithmic factors of n. Moreover, this optimality is adaptive since MLE
does not require knowledge of k. This minimax lower bound is stated for the i.i.d case which
implies that it holds for the more general independent but not identically distributed case
as well.

Lemma 4.3.4. For k ≥ 1, let

R(Mk) := inf
f̃

sup
f∈Mk

EfH
2(f̃ , f)

where Ef denotes expectation when the data X1, . . . , Xn are independent observations drawn
from the density f . Then there exists a universal positive constant C such that

R(Mk) ≥ C
k

n
for every 1 ≤ k ≤ n. (4.20)

Inequality (4.19) and Lemma 4.3.4 together imply that every NPMLE f̂n is minimax
optimal up to logarithmic factors in n over the class Mk for every k ≥ 1. This optimality
is adaptive since the NPMLE requires no information on k. The logarithmic terms in (4.19)
are likely suboptimal but we are unable to determine the exact power of log n in (4.19).

So far we have studied estimation of Gaussian location mixture densities where the co-
variance matrix of each Gaussian component is fixed to be the identity matrix. We next
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show that the same estimator (NPMLE defined as in (4.2)) can be modified to estimate
arbitrary Gaussian mixtures (where the covariance matrices can be different from identity)
provided a lower bound on the eigenvalues of the covariance matrices is available. Suppose
that h∗ is the Gaussian mixture density

h∗(x) :=
k
∑

j=1

wjφd(x;µj,Σj) for x ∈ Rd (4.21)

where k ≥ 1, µ1, . . . , µk ∈ Rd and Σ1, . . . ,Σk are d × d positive definite matrices. Here
φd(·;µ,Σ) denotes the d-variate normal density with mean µ and covariance matrix Σ. Sup-
pose σ2

min and σ2
max are two positive numbers that are, respectively, smaller and larger than

all the eigenvalues of Σ1, . . . ,Σk i.e.,

σ2
min ≤ min

1≤j≤k
λmin(Σj) ≤ max

1≤j≤k
λmax(Σj) ≤ σ2

max (4.22)

Consider the problem estimating h∗ from i.i.d observations Y1, . . . , Yn. It turns out that for
every NPMLE f̂n computed as in (4.2) based on the data X1 := Y1/σmin, . . . , Xn := Yn/σmin

can be coverted to a very good estimator for h∗ via

ĥn(x) := σ−d
minf̂n(σ

−1
minx) for x ∈ Rd. (4.23)

Our next result shows that the squared Hellinger risk of ĥn is bounded from above by (k/n)
up to a logarithmic factor in n provided that σmax/σmin is bounded by a constant.

Proposition 4.3.5. Let Y1, . . . , Yn be independent and identically distributed observations
having density h∗ defined in (4.21). Consider the estimator ĥn for h∗ defined in (4.23). Then

EH2(ĥn, h
∗) ≤ Cd

(

k

n

)

(max(1, τ))d
(

√

log n
)d+(4−d)+

where τ :=

√

σ2
max

σ2
min

− 1. (4.24)

Proposition 4.3.5 shows that the estimator ĥn achieves near parametric risk k/n (up to
logarithmic factors in n) provided τ is bounded from above by a constant. Note that this
estimator ĥn uses knowledge of σ2

min but does not use knowledge of any other feature of
h∗ including the number of components k. In particular, this is an estimation procedure
which (without knowing the value of k) achieves nearly the k/n rate for k-component well-
conditioned Gaussian mixtures provided a lower bound σ2

min on eigenvalues is known a priori.
It is natural to compare Proposition 4.3.5 to the main results in Maugis and Michel [93]

where an adaptive procedure is developed for estimating k-component Gaussian mixtures
at the rate k/n (up to a logarithmic factor) without prior knowledge of k. The estimator
of Maugis and Michel [93] is very different from ours. They first fit m-component Gaussian
mixtures for different values of m and then select one of these estimators by optimizing
a penalized model-selection criterion. Thus, their procedure is based on solving multiple
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non-convex optimization problems. Also, Maugis and Michel [93] impose upper and lower
bounds on the means and the eigenvalues of the covariance matrices of the components of
the mixture densities. On the contrary, our method is based on convex optimization and
we only need a lower bound on the eigenvalues of the covariance matrices (no bounds on
the means are necessary). On the flip side, the result of Maugis and Michel [93] has much
better logarithmic factors compared to Proposition 4.3.5 and it is also stated in the form of
an Oracle inequality.

4.4 Application to Gaussian Denoising

In this section, we explore the role of the NPMLE for estimating the Oracle Bayes estimator
in the Gaussian denoising problem. The goal is to estimate unknown vectors θ1, . . . , θn in
Rd from independent random vectors X1, . . . , Xn such that Xi ∼ N(θi, Id) for i = 1, . . . , n.
The Oracle estimator is θ̂∗i , i = 1, . . . , n which is given by (4.5) where Ḡn is the empirical
measure corresponding to θ1, . . . , θn.

It is natural to estimate the Oracle Bayes estimator by the Empirical Bayes estimator θ̂i
which is defined as in (4.6) for i = 1, . . . , n. Here f̂n is any NPMLE based on X1, . . . , Xn

(defined as in (4.2)). We will gauge the performance of θ̂i as an estimator for θ̂∗ in terms of
the squared error risk measure Rn(θ̂, θ̂

∗) defined in (4.7).
The main theorem of this section is given below. This is stated in a form that is similar

to the statement of Theorem 4.3.1. It proves that, for every compact set S ⊆ Rd and
M ≥ √10 log n, the risk Rn(θ̂, θ̂

∗) is bounded from above by ǫ2n(M,S) up to an additional
logarithmic multiplicative factor in n. Recall the form of ǫ2n(M,S) from (4.10).

Theorem 4.4.1. Let X1, . . . , Xn with independent random vectors with Xi ∼ N(θi, Id) for
i = 1, . . . , n. Let Ḡn denote the empirical measure corresponding to θ1, . . . , θn. Let f̂n denote
an NPMLE based on X1, . . . , Xn defined as in (4.2). Let θ̂1, . . . , θ̂n be as defined in (4.6)
and let θ̂∗1, . . . , θ̂

∗
n be as in (4.5). Also, let R(θ̂, θ̂∗) be as in (4.7). Fix a non-empty compact

set S ⊆ Rd and M ≥ √10 log n and let ǫn(M,S) be defined as in (4.10). Then there exists
a positive constant Cd (depending only on d) such that

Rn(θ̂, θ̂
∗) ≤ Cdǫ

2
n(M,S) (log n)max(d,3) .

Remark 4.4.2. For the case of d = 1, Jiang and Zhang [63, Theorem 5] established a related
result on the risk of θ̂i in comparison to θ̂∗i . The risk used therein is

[

E

(

1

n

n
∑

i=1

|θ̂i − θi|2
)]1/2

−
[

E

(

1

n

n
∑

i=1

|θ̂∗i − θi|2
)]1/2

Jiang and Zhang [63] investigated the above risk in the case where d = 1 and S = [−R,R] for
some R ≥ 0. The statement of Theorem 4.4.1 and its proof as well as the following corollary
are inspired by Jiang and Zhang [63, Proof of Theorem 5].
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Under specific reasonable assumptions on Ḡn, it is possible to choose M and S explicitly
which leads to the following result that is analogous to Corollary 4.3.2.

Corollary 4.4.3. Consider the same setting and notation as in Theorem 4.4.1. Below Cd
denotes a positive constant depending on d alone.

1. Suppose that Ḡn is supported on a compact subset S of Rd. Then

Rn(θ̂, θ̂
∗) ≤ Cd

Vol(S1)

n

(

√

log n
)d+(4−d)+

(log n)max(d,3). (4.25)

2. Suppose there exist a compact subset S ⊆ Rd and real numbers 0 < α ≤ 2 and K ≥ 1
such that (4.15) holds. Then

Rn(θ̂, θ̂
∗) ≤ Cd

Vol(S1)(Ke1/α)d

n

(

√

log n
)(2d/α)+(4−d)+

(log n)max(d,3). (4.26)

3. Suppose there exists a compact set S ⊆ Rd and real numbers µ > 0 and p > 0 such
that µp(dS) ≤ µ. Then there exists a positive constant Cd,µ,p (depending only on d, µ
and p) such that

Rn(θ̂, θ̂
∗) ≤ Cd,µ,p

(

Vol(S1)

n

)p/(p+d)
(

√

log n
)(2d+p(4−d)+)/(p+d)

(log n)max(d,3). (4.27)

Corollary 4.4.3 has interesting consequences. Inequality (4.25) states that when Ḡn is
supported on a fixed compact set S, then the risk Rn(θ̂, θ̂

∗) is parametric upto logarithmic
multiplicative factors in n. This is especially interesting because θ̂1, . . . , θ̂n do not use any
knowledge of S.

Corollary 4.4.3 also leads to the following result with gives an upper bound for Rn(θ̂, θ̂
∗)

when θ1, . . . , θn are clustered into k groups.

Proposition 4.4.4. Consider the same setting and notation as in Theorem 4.4.1. Suppose
that θ1, . . . , θn satisfy

max
1≤i≤n

min
1≤j≤k

‖θi − aj‖ ≤ R (4.28)

for some a1, . . . , ak ∈ Rd and R ≥ 0. Then

Rn(θ̂, θ̂
∗) ≤ Cd (1 +R)d

(

k

n

)

(

√

log n
)d+(4−d)+

(log n)max(d,3). (4.29)

The assumption (4.28) means that θ1, . . . , θn can be grouped into the k balls each of
radius R centered at the points a1, . . . , ak. When R is not large, this implies θ1, . . . , θn
can be clustered into k groups. In particular, when R = 0, the assumption (4.28) implies
that θ1, . . . , θn take only k distinct values. In words, Proposition 4.4.4 states that when



CHAPTER 4. NPMLE FOR GAUSSIAN LOCATION MIXTURES 78

θ1, . . . , θn are clustered into k groups, then θ̂1, . . . , θ̂n estimate θ̂∗1, . . . , θ̂
∗
n in squared error

loss with accuracy k/n up to logarithmic multiplicative factors in n. The notable aspect
about this result is that the estimator does not use any knowledge of k and is tuning-free.
It is well-known in the clustering literature that choosing the optimal number of clusters is
a challenging task (see, for example, Tibshirani, Walther, and Hastie [130]). It is therefore
helpful that the estimator θ̂1, . . . , θ̂n achieves nearly the k/n rate in (4.28) without explicitly
getting into the pesky problem of estimating k. Moreover, θ̂1, . . . , θ̂n is given by convex
optimization (on the other hand, one usually needs to deal with non-convex optimization
problems for solving clustering-type problems even if the number of clusters k is known).

There exist techniques for estimating the number of clusters and subsequently employing
algorithms for minimizing the k-means objective (notably, the “gap statistic” of Tibshirani,
Walther, and Hastie [130]). However, we are not aware of any result analogous to Proposition
4.28 for such techniques. There also exist other techniques for clustering based on convex
optimization such as the method of convex clustering (see, for example, Lindsten, Ohlsson,
and Ljung [84], Hocking et al. [57], and Chen et al. [27]) which is based on a fused lasso-
type penalized optimization. This method requires specification tuning parameters. While
interesting theoretical development exists for convex clustering (see, for example, Radchenko
and Mukherjee [109], Zhu et al. [152], Tan and Witten [128], Wu et al. [145], and Wang et al.
[140]), to the best of our knowledge, a result similar to Proposition 4.28 is unavailable.

It is straightforward to see that it is impossible to devise estimators that achieve a rate
that is faster than k/n for the risk measure Rn. We provide a proof of this via a minimax
lower bound in the following lemma. The logarithmic factors can probably be improved in
Proposition 4.28 but we are unable to do so at the present moment. For the lower bound,
let Θn,d,k denote the class of all n-tuples (θ1, . . . , θn) with each θi ∈ Rd and such that the
number of distinct vectors among θ1, . . . , θn is equal to k. Equivalently, Θn,d,k consists of all
n-tuples (θ1, . . . , θn) whose empirical measure is supported on a set of cardinality k. The
minimax risk for estimating θ̂∗1, . . . , θ̂

∗
n with (θ1, . . . , θn) ∈ Θn,d,k in squared error loss from

the observations X1, . . . , Xn can be defined as

R∗(Θn,d,k) := inf
θ̃1,...,θ̃n

sup
(θ1,...,θn)∈Θn,d,k

E

[

1

n

n
∑

i=1

∥

∥

∥θ̃i − θ̂∗i
∥

∥

∥

2
]

The following result proves that R∗(Θn,d,k) is at least Ck/n for a universal positive constant
C.

Lemma 4.4.5. Let Θn,d,k and R∗(Θn,d,k) be defined as above. There exists a universal
positive constant C such that

R∗(Θn,d,k) ≥ C
k

n
for every 1 ≤ k ≤ n. (4.30)

Lemma 4.4.5, together with Proposition 4.4.4, implies that θ̂1, . . . , θ̂n is nearly minimax
optimal (up to logarithmic multiplicative factors) for estimating θ̂∗1, . . . , θ̂

∗
n over the class
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Θn,d,k. Moreover, this optimality is adaptive over k because the estimator does not use any
knowledge of k.

4.5 Implementation Details and Some Simulation

Results

In this section, we shall discuss some computational details concerning the NPMLE and also
provide numerical evidence for the effectiveness of the estimator (4.6) based on the NPMLE
for denoising.

For the optimization problem (4.2), it can be shown that f̂n exists and is non-unique.
However f̂n(X1), . . . , f̂n(Xn) are unique and they solve the finite dimensional optimization
problem:

argmax
n
∑

i=1

log fi (4.31)

subject to (f1, . . . , fn) ∈ ConvexHull
{

(φ(X1 − θ), . . . , φ(Xn − θ)) : θ ∈ Rd
}

.

The constraint set in the above problem however involves every θ ∈ Rd. A natural way of
computing an approximate solution is to fix a finite data-driven set {a1, . . . , am} ⊆ Rd and
restrict the infinite convex hull to the convex hull over θ belonging to this set. This leads to
the problem:

argmax
n
∑

i=1

log fi (4.32)

subject to (f1, . . . , fn) ∈ ConvexHull {(φd(X1 − aj), . . . , φd(Xn − aj)) : j = 1, . . . ,m} .

This can also be seen as an approximation to (4.2) where the densities f ∈M are restricted
to have atoms in {a1, . . . , am} ⊆ Rd. (4.32) is a convex optimization problem over the
probability simplex in m dimensions and can be solved using many algorithms (for example,
standard interior point methods as implemented in the software, Mosek, can be used here).

The effectiveness of (4.32) as an approximation to (4.2) depends crucially on the choice
of {a1, . . . , am}. For d = 1, Koenker and Mizera [68] propose the use of a uniform grid within
the range of the observations [min1≤i≤nXi,max1≤i≤nXi]. Dicker and Zhao [38] discuss this
approach in more detail and recommend the choice m := [

√
n]. They also prove (see Dicker

and Zhao [38, Theorem 2]) that the resulting approximate MLE, f̃n, has a squared Hellinger
accuracy, H2(f̃n, f0), of Op((log n)

2/n) when the mixing measure corresponding to f0 has
bounded support. For d ≥ 1, Feng and Dicker [45] recommend taking a regular grid in a
compact region containing the data. They also mention that empirical results seem “fairly
insensitive” to the choice of m.

A proposal for selecting {a1, . . . , am} that is different from gridding is the so called
“exemplar” choice where one takes m = n and ai = Xi for i = 1, . . . , n. This choice is
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proposed in Böhning [18] for d = 1 and in Lashkari and Golland [71] for d ≥ 1. This
avoids gridding which can be problematic in multiple dimensions. Also, this method is
computationally feasible as long as n is moderate (up to a few thousands) but becomes
expensive for larger n . In such instances, a reasonable strategy is to take a1, . . . , am as a
random subsample of the data X1, . . . , Xn. For fast implementations, one can also extend
the idea of Koenker and Mizera [68] by binning the observations and weighting the likelihood
terms in (4.2) by relative multinomial bin counts.

We shall now provide some graphical evidence of the effectiveness of the NPMLE for
denoising. In all these plots, the NPMLE is approximately computed via the algorithm
(4.32) where the a1, . . . , am are chosen to be the data points X1, . . . , Xn with m = n (i.e., we
follow the exemplar recommendation of Böhning [18] and Lashkari and Golland [71]). We
use the software, Mosek, to solve the problem (4.32). The theorems of this chapter do not
apply directly to these approximate NPMLEs and extending them is the subject of future
work. However, we shall argue via simulations that these approximate NPMLEs work well
for denoising.

In Figure 4.1, we illustrate the performance of θ̂1, . . . , θ̂n (defined as in (4.6)) for denoising
when the true vectors θ1, . . . , θn take values in a bounded region of R2. The plots refer to
these estimates as the Empirical Bayes estimates and the quantities (4.5) as the Oracle Bayes
estimates. In each of the four subfigures in Figure 4.1, we generate n vectors θ1, . . . , θn
from a bounded region in Rd for d = 2: they are generated from two concentric circles
in the first subfigure, a triangle in the second subfigure, the digit 8 in the third subfigure
and the uppercase letter A in the last subfigure. Note that, in each of these cases, the
empirical measure Ḡn is supported on a bounded region so that Corollary 4.4.3 yields the
near parametric rate 1/n up to logarithmic multiplicative factors in n for every NPMLE. In
each of the subfigures in Figure 4.1, we plot the true parameter values θ1, . . . , θn in black,
the data X1, . . . , Xn (generated independently according to Xi ∼ N(θi, I2)) are plotted in
gray, the Oracle Bayes estimates θ̂∗1, . . . , θ̂

∗
n are plotted in blue while the estimates θ̂1, . . . , θ̂n

are plotted in red. The mean squared discrepancies:

1

n

n
∑

i=1

∥

∥

∥θ̂∗i − θi
∥

∥

∥

2

,
1

n

n
∑

i=1

∥

∥

∥θ̂i − θi
∥

∥

∥

2

and
1

n

n
∑

i=1

∥

∥

∥θ̂∗i − θ̂i
∥

∥

∥

2

are given in each figure in the legend at the upper-right corner. Note that the third MSE is
much smaller than the other two in each subfigure.

As can be observed from Figure 4.1, the Empirical Bayes estimates (4.6) approximate
their targets (4.5) quite well. The most noteworthy fact is that the estimates (4.6) do not
require any knowlege of the underlying structure in Ḡn, for instance, concentric circles, or
triangle or a letter of the alphabet etc. We should also note here that the noise distribution
here is completely known to beN(0, Id) which implies, in particular, that there is no unknown
scale parameter representing the noise variance.

We shall now illustrate the denoising performance when the true vectors θ1, . . . , θn have a
clustering structure. Here we take d = 2 and consider the following four simulation settings:
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(a) Two circles: n = 1000. Half of {θi}ni=1

are drawn uniformly at random from each of
the concentric circles of radii 2 and 6 respec-
tively.
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Empirical Bayes

MSE(OB, truth) =  1.158

MSE(EB, truth) =  1.214

MSE(OB, EB) =    0.055

(b) Triangle: n = 999. A third of {θi}ni=1

are drawn uniformly at random from each
edge of the triangle with vertices (−3, 0),
(0, 6) and (3, 0)
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MSE(OB, truth) =  1.196

MSE(EB, truth) =  1.243

MSE(OB, EB) =    0.044

(c) Digit 8: n = 1000. Half of {θi}ni=1 are
drawn uniformly at random from each of the
circles of radii 3 cnetered at (0, 0) and (0, 6)
respectively.
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MSE(OB, truth) =  1.209

MSE(EB, truth) =  1.288

MSE(OB, EB) =    0.074

(d) Letter A: n = 1000. A fifth of
{θi}ni=1 are drawn uniformly at random from
each of the line segments joining the points
(−4,−6), (−2, 0), (0, 6), (2, 0) and (4, 6) so as
to form the letter A.

Figure 4.1: Illustrations of denoising using the Empirical Bayes estimates (4.6)
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1. Setting One: We generate θ1, . . . , θn as i.i.d from the distribution which puts equal
probability (0.5) at (0, 0) and (2, 2).

2. Setting Two: We generate θ1, . . . , θn as i.i.d from the distribution which puts 1/4
probability at (0, 0) and 3/4 probability at (2, 2).

3. Setting Three: We generate θ1, . . . , θn as i.i.d from the distribution which puts 1/4
probability each at (0, 0) and (0, 2) and 1/2 probability at (2,−2).

4. Setting Four: We generate a random probability vector (α1, α2, .α3, α4) from the Dirich-
let distribution with parameters (1, 1, 1, 1) and then generate θ1, . . . , θn as i.i.d from
the probability distribution with puts probabilities α1, α2, α3 and α4 at the four points
(0, 0), (0, 3), (3, 0) and (3, 3).

The observed data X1, . . . , Xn are, as usual, generated independently as Xi ∼ N(θi, Id).
We allow the sample size n to range in the set {300, 600, 900, 1200, 1500, 1800, 2100}. For
each n, we perform 1000 replicates to get accurate estimates of mean squared error. For
each dataset, we compute the Empirical Bayes estimates (4.6). For comparison, we also
computed k-means estimates based on the true (Oracle) value of k and those based on the
gap statistic (from Tibshirani, Walther, and Hastie [130]). These estimates will be referred
to, in the sequel, as kmeans-Oracle and kmeans-gap respectively. For k-means, we used the
standard Lloyd’s algorithm based on 10 random starts and the best solution is considered of
the random starts. Note that because of non-convexity, no implementation of k-means can
provably reach global optimum.

For each of the these three estimates, we plotted the mean squared errors in Figure 4.2
(see the first plot in each pair of plots for the different settings). From these MSE plots, it
is clear that the Empirical Bayes estimates based on the NPMLE are more accurate than
kmeans-gap. In fact, with the exception of the first setting, the Empirical Bayes estimates
are even more accurate than kmeans-Oracle. This is probably because of the non-convexity
of k-means.

In addition to the MSE, we also compared the clusterings given by the different methods
based on the Adjusted Rand Index (ARI) [111]. The Empirical Bayes is designed to work
well for the squared error objective and not quite for the ARI. We plotted the average ARI
of each of the three methods as well as the average ARI of the Oracle Bayes estimate.
Higher ARIs are preferred to lower values. Here the Oracle Bayes estimate is the best; the
kmeans-Oracle method is superior to the Empirical Bayes estimate as well as kmeans-gap.
The comparison between the Empirical Bayes and the kmeans-gap estimates in terms of
ARI can be summarized as follows. In the first setting, the performance of kmeans-gap is
very good and is indistinguishable from kmeans-Oracle. In more complicated settings with
more than two clusters and/or with imbalanced cluster proportions, a distinction between
the two methods becomes apparent. In the second and fourth settings, the Empirical Bayes
method outperforms kmeans-gap. In the third setting, the performances of the two methods
start to coincide for larger sample sizes.
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(a) Setting 1. Two equally sized clusters centered
at (0, 0) and (2, 2). For clarification, in the ARI
plot the red and green curves coincide.
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(b) Setting 2. Two clusters centered at (0, 0) and
(2, 2) with cluster proportions 1/4 and 3/4.For
clarification, in the ARI plot the red and green
curves coincide.
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(c) Setting 3. Three clusters centered at
(0, 0), (0, 2), (2,−2) with cluster proportions
1/4, 1/4, 1/2 respectively.
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(d) Setting 4. Four cluster centers centered at
(0, 0), (0, 3), (3, 0), (3, 3) with cluster proportions
drawn from Dirichlet distribution with parame-
ters (1, 1, 1, 1)

Figure 4.2: Empirical performance of methods in the denoising problem in four different
clustering settings. A method with lower MSE is preferred over one with higher MSE. In
contrast, a method with higher ARI is preferred over one with lower ARI. The lines show
mean of the metric in question over 1000 replicates.
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4.6 Proofs of results in Section 4.3

The following notation will be used in the proofs in the sequel.

1. For x ∈ Rd and a > 0, let

B(x, a) := {u ∈ Rd : ‖u− x‖ ≤ a}

denote the closed ball of radius a centered at x.

2. For a subset S ⊆ Rd and a > 0, we denote the set Sa by

Sa := ∪x∈SB(x, a) = {y : dS(y) ≤ a} (4.33)

where dS(·) is defined as in (4.8).

3. For a compact subset S of Rd and ǫ > 0, we denote the ǫ-covering number of S in
the usual Euclidean distance by N(ǫ, S) i.e., N(ǫ, S) stands for the smallest number of
closed balls of radius ǫ whose union contains S.

4. Given a pseudometric ̺ on M, let N(ǫ,M, ̺) denote the ǫ-covering number of M
under the pseudometric ̺ by N(ǫ,M, ̺) i.e., N(ǫ,M, ̺) denotes the smallest positive
integer N for which there exist densities f1, . . . , fN ∈M satisfying

sup
f∈M

inf
1≤i≤N

̺(f, fi) ≤ ǫ.

In the proof below, we will be concerned with N(ǫ,M, ̺) for the following choice of ̺.
For a compact set S, let ‖·‖∞,S denote the pseudonorm onM defined by

‖f‖∞,S := sup
x∈S
|f(x)|. (4.34)

This pseudonorm naturally induces a pseudometric onM given by ̺(f, g) := ‖f − g‖∞,S.
The covering number for this pseudometric will be denoted by N(ǫ,M, ‖·‖∞,S). In the
proofs for the results in Section 4.4, we will need to deal with covering numbers for
other pseudometrics ̺ onM as well. These pseudometrics will be introduced in Section
4.7.

With the above notation in place, we are now ready to give the proof of Theorem 4.3.1.
This proof uses additional ingredients which are proved in later sections. Arguably the
most important ingredient for the proof of this theorem is a bound on the covering numbers
N(ǫ,M, ‖·‖∞,S). These bounds are given in Section 4.8 (specifically inequality (4.76) in
Theorem 4.8.1 will be used). Other ingredients include inequality (A.13) (which is a con-
sequence of Lemma A.0.4) and a standard fact (Lemma A.0.9) giving a volumetric upper
bound for Euclidean covering numbers.
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4.6.1 Proof of Theorem 4.3.1

Proof of Theorem 4.3.1. We shall prove inequalities (4.12) and (4.13) under the assumption
that the sample size n satisfies

n ≥ max

(

exp

(

d+ 1

2

)

,
1

2
(2π)(d−1)/2

)

. (4.35)

If (4.35) is not satisfied, then ǫn(M,S) (and also the larger quantity ǫn(M,S)/min(1−α, β))
will be bounded from below by a positive constant κd. We can then therefore choose Cd in
(4.12) and (4.13) large enough so that ǫn(M,S)

√
Cd >

√

2min(1− α, β). Because the

Hellinger distance H(f̂n, fḠn
) is always bounded from above by

√
2, the probability on the

left hand side of (4.12) will then equal zero so that (4.12) holds trivially. Inequality (4.13)
will also be trivial because its right hand side will then be larger than 2.

Let us therefore fix n satisfying (4.35). Fix a positive sequence {γn} and assume that f̂n
satisfies

n
∏

i=1

f̂n(Xi)

fḠn
(Xi)

≥ exp
(

(β − α)nγ2n
)

for some 0 < β ≤ α < 1. (4.36)

We shall then bound the probability

P{H(f̂n, fḠn
) ≥ tγn}

for t ≥ 1.
Fix a non-empty compact set S ⊆ Rd and M ≥ √10 log n. We shall work with the set

SM (defined as in (4.33)) and the pseudometric given by the pseudonorm ‖·‖∞,SM (defined
as in (4.34)).

Let η := 1/n2 and let {h1, . . . , hN} ⊆ M denote an η-covering set ofM in the pseudo-
metric given by ‖ · ‖∞,SM where N = N(η,M, ‖ · ‖∞,SM ) i.e.,

sup
h∈M

inf
1≤j≤N

‖h− hj‖∞,SM ≤ η.

Inequality (4.76) in Theorem 4.8.1 gives an upper bound for N that will be crucially used
in this proof.

Let J denote the set of all j ∈ {1, . . . , N} for which there exists a density h0j ∈ M
satisfying

‖h0j − hj‖∞,SM ≤ η and H(h0j, fḠn
) ≥ tγn.

Because h1, . . . , hN cover M, there will exist 1 ≤ j ≤ N such that ‖hj − f̂n‖∞,SM ≤ η. If

H(f̂n, fḠn
) ≥ tγn, then j ∈ J and consequently

‖f̂n − h0j‖∞,SM ≤ 2η. (4.37)



CHAPTER 4. NPMLE FOR GAUSSIAN LOCATION MIXTURES 86

We now define a function v := vS,M : Rd → (0,∞) via

v(x) :=







η if x ∈ SM

η
(

M
dS(x)

)d+1

otherwise
(4.38)

where dS : Rd → [0,∞) is defined as in (4.8).
Inequality (4.37) clearly implies that f̂n(Xi) ≤ h0j(Xi)+2η = h0j(Xi)+2v(Xi) whenever

Xi ∈ SM which allows us to write

n
∏

i=1

f̂n(Xi) ≤
∏

i:Xi∈SM

{h0j(Xi) + 2v(Xi)}
∏

i:Xi /∈SM

(2π)−d/2

where we used the bound f̂n(Xi) ≤ supx f̂n(x) ≤ (2π)−d/2 for Xi /∈ SM (the bound
supx f(x) ≤ (2π)−d/2 holds for every f ∈ M as can easily be seen). From here, we de-
duce

n
∏

i=1

f̂n(Xi) ≤
n
∏

i=1

{h0j(Xi) + 2v(Xi)}
∏

i:Xi /∈SM

(2π)−d/2

h0j(Xi) + 2v(Xi)

≤
n
∏

i=1

{h0j(Xi) + 2v(Xi)}
∏

i:Xi /∈SM

(2π)−d/2

2v(Xi)

We have therefore proved that the inequality

n
∏

i=1

f̂n(Xi)

fḠn
(Xi)

≤ max
j∈J

n
∏

i=1

h0j(Xi) + 2v(Xi)

fḠn
(Xi)

∏

i:Xi /∈SM

(2π)−d/2

2v(Xi)

holds on the event H(f̂n, fḠn
) ≥ tγn.

Because f̂n satisfies (4.36), we obtain

P
(

H(f̂n, fḠn
) ≥ tγn

)

≤ P

{

max
j∈J

n
∏

i=1

h0j(Xi) + 2v(Xi)

fḠn
(Xi)

∏

i:Xi /∈SM

(2π)−d/2

2v(Xi)
≥ exp

(

(β − α)nt2γ2n
)

}

≤ P

{

max
j∈J

n
∏

i=1

h0j(Xi) + 2v(Xi)

fḠn
(Xi)

≥ e−αnt
2γ2n

}

(4.39)

+ P

{

∏

i:Xi /∈SM

(2π)−d/2

2v(Xi)
≥ eβnt

2γ2n

}

.
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We shall bound the two probabilities above separately. For the first probability:

P

{

max
j∈J

n
∏

i=1

h0j(Xi) + 2v(Xi)

fḠn
(Xi)

≥ e−αnt
2γ2n

}

≤
∑

j∈J
P

{

n
∏

i=1

h0j(Xi) + 2v(Xi)

fḠn
(Xi)

≥ e−αnt
2γ2n

}

≤ eαnt
2γ2n/2

∑

j∈J
E

n
∏

i=1

√

h0j(Xi) + 2v(Xi)

fḠn
(Xi)

= eαnt
2γ2n/2

∑

j∈J

n
∏

i=1

E

√

h0j(Xi) + 2v(Xi)

fḠn
(Xi)

.

Now for each fixed j ∈ J , we have

n
∏

i=1

E

√

h0j(Xi) + 2v(Xi)

fḠn
(Xi)

= exp

(

n
∑

i=1

logE

√

h0j(Xi) + 2v(Xi)

fḠn
(Xi)

)

≤ exp

(

n
∑

i=1

E

√

h0j(Xi) + 2v(Xi)

fḠn
(Xi)

− n
)

≤ exp

(

n
∑

i=1

∫

√

h0j + 2v

fḠn

fGi
− n

)

= exp

(

n

∫

√

(h0j + 2v) fḠn
− n

)

.

Because of
√
α + β ≤ √α+√β and the Cauchy-Schwartz inequality (along with

∫

fḠn
= 1),

we obtain
∫

√

(h0j + 2v) fḠn
≤
∫

√

h0jfḠn
+
√
2

∫

√

vfḠn

≤
∫

√

h0jfḠn
+
√
2

√

∫

v = 1− 1

2
H

2(h0j, fḠn
) +
√
2

√

∫

v.

We now use Lemma A.0.8 which gives an upper bound on
∫

v. This (along with the fact
that H(h0j, fḠn

) ≥ tγn) allows us to deduce:

∫

√

(h0j + 2v(Xi)) fḠn
≤ 1− t2

2
γ2n + Cd

√

2ηVol(SM).

We have therefore proved that

P

{

max
j∈J

n
∏

i=1

h0j(Xi) + 2v(Xi)

fḠn
(Xi)

≥ e−αnt
2γ2n

}

≤ exp

(

α

2
nt2γ2n + log |J | − 1

2
nt2γ2n + nCd

√

ηVol(SM)

)

≤ exp

(

α− 1

2
nt2γ2n + logN + Cd

√

Vol(SM)

)

(4.40)
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because η := n−2 and |J | ≤ N (as J ⊆ {1, . . . , N}).
We now use the upper bound on N from inequality (4.76) in Theorem 4.8.1. Because

η = 1/n2 and n ≥ 2, the quantity a appearing in Theorem 4.8.1 satisfies

a =

√

2 log
2
√
2π

(2π)d/2η
=

√

2 log
2
√
2π

(2π)d/2
+ 4 log n ≤

√

6 log n.

Also because of (4.35), we have 2n ≥ (2π)(d−1)/2 so that

a =

√

2 log
2
√
2π

(2π)d/2η
=

√

2 log
2
√
2π

(2π)d/2
+ 4 log n ≥

√

2 log(1/n) + 4 log n =
√

2 log n.

Thus Theorem 4.8.1 gives

logN ≤ CdN(a, (SM)a)(log n)2 ≤ CdN(
√

2 log n, SM+
√
6 logn)(log n)2.

Using Lemma A.0.9 to bound the Euclidean covering number appearing in the right hand
side above, we deduce that

N(
√

2 log n, SM+
√
6 logn) ≤ Cd(

√

2 log n)−dVol(SM+
√
6 logn+

√
2 logn/2)

≤ Cd(log n)
−d/2Vol(SM+

√
10 logn) ≤ Cd(log n)

−d/2Vol(S2M)

as M ≥ √10 log n. Thus

logN ≤ Cd(log n)
2−(d/2)Vol(S2M).

Using the above in (4.40), we obtain

P

{

max
j∈J

n
∏

i=1

h0j(Xi) + 2v(Xi)

fḠn
(Xi)

≥ e−αnt
2γ2n

}

≤ exp

(

α− 1

2
nt2γ2n (4.41)

+ Cd(log n)
2−(d/2)Vol(S2M) + Cd

√

Vol(SM)

)

.

We shall now bound the second probability in (4.39). First observe, by Markov’s inequality,
that

P







∏

i:Xi /∈SM

(2π)−d/2

2v(Xi)
≥ eβnt

2γ2n







≤ exp

(

−βnt
2γ2n

2 log n

)

E





∏

i:Xi /∈SM

(2π)−d/2

2v(Xi)





1/(2 logn)
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The expectation above can be bounded as (recall the formula for v(·) from (4.38))

E





∏

i:Xi /∈SM

(2π)−d/2

2v(Xi)





1/(2 logn)

≤ E





∏

i:Xi /∈SM

1

v(Xi)





1/(2 logn)

= E





∏

i:Xi /∈SM

dS(Xi)

Mη1/(d+1)





(d+1)/(2 logn)

= E

[

n
∏

i=1

(

dS(Xi)

Mη1/(d+1)

)I{dS(Xi)≥M}
](d+1)/(2 logn)

The above term will be controlled below by using inequality (A.13) (which is a consequence
of Lemma A.0.4) with

a :=
1

Mη1/(d+1)
and λ :=

d+ 1

2 log n
(4.42)

to obtain

E

[

n
∏

i=1

(

dS(Xi)

Mη1/(d+1)

)I{dS(Xi)≥M}
](d+1)/(2 logn)

≤ exp

{

Cda
λMλ+d−2 (4.43)

+ (aM)λn

(

2µp(dS)

M

)p}

.

We need to assume here that

log n ≥ d+ 1

2min(1, p)

to ensure that λ ≤ min(1, p) as required for inequality (A.13). This is satisfied as long as
p ≥ (d+1)/(2 log n) because under the assumption (4.35), we have log n ≥ d+1

2
. Thus (4.43)

holds for all p ≥ (d+ 1)/(2 log n).
For notational convenience, we write µp := µp(dS) in the rest of the proof. With the

choices (4.42) (and η = 1/n2), the first term in the exponent of the right hand side of (4.43)
is calculated as

aλMλ+d−2 =Md−2η−λ/(d+1) =Md−2n1/(logn) = eMd−2.

On the other hand, the second term in the exponent in (4.43) becomes

(aM)λn

(

2µp(dS)

M

)p

= en

(

2µp
M

)p

.

Therefore the second probability in (4.39) satisfies the inequality:

P

{

∏

i:Xi /∈SM

(2π)−d/2

2v(Xi)
≥ eβnt

2γ2n

}

≤ exp

(

−βnt
2γ2n

2 log n
+ CdM

d−2 + en

(

2µp
M

)p)

.
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This is true for all p ≥ (d+ 1)/(2 log n) so we can also write

P

{

∏

i:Xi /∈SM

(2π)−d/2

2v(Xi)
≥ eβnt

2γ2n

}

≤ exp

(

−βnt
2γ2n

2 log n
+ CdM

d−2 + en inf
p≥(d+1)/(2 logn)

(

2µp
M

)p)

.

We have proved therefore that for every t > 0

P
{

H(f̂n, fḠn
) ≥ tγn

}

≤ exp

(

α− 1

2
nt2γ2n + Cd(log n)

2−(d/2)Vol(S2M) + Cd
√

Vol(SM)

)

+ exp

(

−βnt
2γ2n

2 log n
+ CdM

d−2 + en inf
p≥(d+1)/(2 logn)

(

2µp
M

)p)

.

We now note that
Vol(SM) ≤ Vol(S2M) ≤ CdM

dVol(S1)

which follows from inequality (A.27) in Lemma A.0.9. This, along with the definition of
ǫ2n(M,S) in (4.10), gives

max

(

(log n)2−(d/2)Vol(S2M),
√

Vol(SM),Md−2, n inf
p≥(d+1)/(2 logn)

(

2µp
M

)p)

≤ Cdnǫ
2
n(M,S).

As a result,

P
{

H(f̂n, fḠn
) ≥ tγn

}

≤ exp

(

α− 1

2
nt2γ2n + Cdnǫ

2
n(M,S)

)

+exp

(

−βnt
2γ2n

2 log n
+ Cdnǫ

2
n(M,S)

)

.

Now suppose that

γ2n = C ′
d

ǫ2n(M,S)

min(1− α, β) (4.44)

for some C ′
d ≥ 4Cd. We deduce then that, for every t ≥ 1,

P
{

H(f̂n, fḠn
) ≥ tγn

}

≤ exp

(

−1− α
2

nt2γ2n +
1− α
4

nγ2n

)

+ exp

(

− β

2 log n
nt2γ2n +

β

4 log n
nγ2n

)

≤ 2 exp

(

−min((1− α), β)
4 log n

nt2γ2n

)

(4.45)

Observe now that (because M ≥ √10 log n)

ǫ2n(M,S) ≥ Vol(S1)
Md

n

(

√

log n
)(4−d)+

≥ Vol(B(0, 1))
(log n)2

n

so that we can choose the constant C ′
d such that

nmin(1− α, β)γ2n ≥ C ′
dnǫ

2
n(M,S) ≥ 4(log n)2.
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This gives, via (4.45),

P
{

H(f̂n, fḠn
) ≥ tγn

}

≤ 2n−t2 .

We have therefore proved the above inequality for γn as chosen in (4.44) (provided C ′
d is

chosen sufficiently large) for every estimator f̂n satisfying (4.36). This completes the proof
of (4.12).

For (4.13), we multiply both sides of (4.12) by t and then integrate from t = 1 to t =∞
to obtain

E

(

H2(f̂n, fḠn
)min(1− α, β)

Cdǫ2n(M,S)

)

≤ 1 + 4

∫ ∞

1

tn−t2 ≤ 1 +
2

n log n
≤ 4

which proves (4.13) and completes the proof of Theorem 4.3.1.

4.6.2 Proof of Corollary 4.3.2

Proof of Corollary 4.3.2. To prove (4.14), assume that Ḡn is supported on a compact set S.
We then apply Theorem 4.3.1 to this S and M =

√
10 log n. Because Ḡn is supported on S,

we have µp(dS) = 0 for every p > 0 so that ǫ2n(M,S) (defined in (4.10)) becomes

ǫ2n(M,S) = Vol(S1)
Md

n

(

√

log n
)(4−d)+

=
Vol(S1)

n

(

√

log n
)d+(4−d)+

.

Inequality (4.14) then immediately follows from Theorem 4.3.1.
We next prove (4.16) assuming the condition (4.15). Let

M := 4K(e log n)1/α. (4.46)

This quantity M ≥ √10 log n because K ≥ 1 and α ≤ 2. We shall apply (4.13) with this M .
Let

T2(M,S) := (log n) inf
p≥ d+1

2 logn

(

2µp(dS)

M

)p

be the second term on the right hand side of (4.10) in the definition of ǫ2n(M,S). The infimum
over p above is easily seen to be achieved at p = (M/(2K))α(1/e). By the expression (4.46)
for M , it is easy to see that p ≥ (d+ 1)/(2 log n) provided

n ≥ exp
(

√

(d+ 1)/2
)

. (4.47)

We then deduce that

T2(M,S) ≤ (log n) exp

(−1
αe

(

M

2K

)α)

.
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It follows from here that T2(M,S) ≤ (log n)/n becauseM ≥ (4K)(e log n)1/α ≥ (2K)(αe log n)1/α.
Thus

ǫ2n(M,S) = Vol(S1)
Md

n

(

√

log n
)(4−d)+

+ T2(M,S)

≤ Vol(S1)
(4Ke1/α)d

n
(log n)d/α

(

√

log n
)(4−d)+

+
log n

n

and hence (4.16) readily follows as a consequence of Theorem 4.3.1. When the assumption
(4.47) does not hold, inequality (4.16) becomes trivially true when Cd is chosen sufficiently
large.

We now turn to (4.17). Assume that S is such that µp(dS) ≤ µ for fixed µ > 0 and p > 0.
Then Theorem 4.3.1 gives

EH2(f̂n, fḠn
) ≤ Cd inf

M≥
√
10 logn

ǫ2n(M,S)

= Cd inf
M≥

√
10 logn

(

Vol(S1)
Md

n

(

√

log n
)(4−d)+

+ (log n)

(

2µ

M

)p)

where we assumed that n is large enough so that p ≥ (d+ 1)/(2 log n). Taking

M =
(

√

log n
)(2−(4−d)+)/(p+d)

(

nµp

Vol(S1)

)1/(p+d)

results in (4.17). When n is large enough, M chosen as above exceeds
√
10 log n. For smaller

n, the inequality (4.17) trivially holds provided Cd,µ,p is chosen large enough.

4.6.3 Proof of Proposition 4.3.3

This directly follows from inequality (4.14). Suppose that Ḡn is supported on a finite set
S of cardinality k. We then apply inequality (4.14) to this S. It is easy to see then that
Vol(S1) ≤ Cdk which proves (4.18).

4.6.4 Proof of Lemma 4.3.4

The following uses standard ideas involving Assouad’s lemma (see, for example, Tsybakov
[135, Chapter 2].

Proof of Lemma 4.3.4. Fix δ > 0 and M > 0. Let a1, . . . , ak and b1, . . . , bk be points in Rd

such that

min

(

min
i 6=j
‖ai − aj‖ ,min

i 6=j
‖bi − bj‖ ,min

i 6=j
‖ai − bj‖

)

≥M (4.48)

and such that
‖ai − bi‖ = δ for every 1 ≤ i ≤ k. (4.49)
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Now for every τ ∈ {0, 1}k, let

fτ (x) =
1

k

k
∑

i=1

φd(x− ai(1− τi)− biτi)

where φd(·) is the standard normal density on Rd. Clearly fτ ∈ Mk for every τ ∈ {0, 1}k.
We shall now employ Assouad’s lemma which gives

R(Mk) ≥
k

8
min
τ 6=τ ′

H2(fτ , fτ ′)

Υ(τ, τ ′)
min

Υ(τ,τ ′)=1

(

1−
∥

∥Pfτ − Pfτ ′
∥

∥

TV

)

where Υ(τ, τ ′) :=
∑k

i=1 I{τj 6= τ ′j} denotes Hamming distance and Pf (for f ∈ M) denotes
the joint distribution of X1, . . . , Xn which are independently distributed according to f .

We now fix τ 6= τ ′ ∈ {0, 1}k and bound H2(fτ , fτ ′) from below. For simplicity, let f = fτ
and g = fτ ′ . Also, for i = 1, . . . , k, let

fi(x) := φd(x− ai(1− τi)− biτi) and gi(x) := φd(x− ai(1− τ ′i)− biτ ′i)

so that f =
∑k

i=1 fi/k and g =
∑k

i=1 gi/k. This gives

1

2
H

2(f, g) = 1−
∫

√

f(x)g(x)dx = 1−
∫

√

1

k2

∑

i,j

fi(x)gj(x)dx ≥ 1− 1

k

∑

i,j

∫

√

fi(x)gj(x)dx

Because fi and gj are normal densities, by a straightforward computation, we obtain
∫

√

fi(x)gj(x)dx = exp
(

−
∥

∥ai(1− τi) + biτi − aj(1− τ ′j)− bjτ ′j
∥

∥

2
/8
)

so that by (4.48) and (4.49), we obtain that
∫

√

fi(x)gj(x)dx = I{τi = τ ′i}+ I{τi 6= τ ′i}e−δ
2/8 for i = j

and
∫

√

fi(x)gj(x)dx ≤ e−M
2/8 for i 6= j.

As a result, we obtain

1

2
H

2(fτ , fτ ′) = 1− 1

k

k
∑

i=1

∫

√

fi(x)gi(x)dx−
1

k

∑

i 6=j

∫

√

fi(x)gj(x)dx

≥ 1− 1

k

k
∑

i=1

I{τi = τ ′i} −
e−δ

2/8

k
Υ(τ, τ ′)− k2 − k

k
e−M

2/8

=
1

k
Υ(τ, τ ′)

(

1− e−δ2/8
)

− (k − 1)e−M
2/8 (4.50)
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for every τ 6= τ ′ ∈ {0, 1}k. Now let us fix τ, τ ′ with Υ(τ, τ ′) = 1 and bound from above the
total variation distance between Pfτ and Pfτ ′ . Without loss of generality, we can assume
that τ1 6= τ ′1 and that τi = τ ′i for i ≥ 2. Below D(Pfτ ||Pfτ ′ ) denotes the Kullback-Leibler
divergence between Pfτ and Pfτ ′ . Also D(fτ ||fτ ′) and χ2(fτ , fτ ′) denote the Kullback-Leibler
divergence and chi-squared divergence between the densities fτ and fτ ′ respectively. By
Pinsker’s inequality and the fact that D(fτ ||fτ ′) ≤ χ2(fτ , fτ ′), we obtain

∥

∥Pfτ − Pfτ ′
∥

∥

TV
≤
√

1

2
D(Pfτ ||Pfτ ′ ) =

√

n

2
D(fτ ||fτ ′) ≤

√

n

2
χ2(fτ ||fτ ′).

Further

χ2(fτ ||fτ ′) =
∫

(fτ (x)− fτ ′(x))2
fτ ′(x)

dx

=
1

k2

∫

(φd(x− a1(1− τ1)− b1τ1)− φd(x− a1(1− τ ′1)− b1τ ′1))2
fτ ′(x)

dx

≤ 1

k

∫

(φd(x− a1(1− τ1)− b1τ1)− φd(x− a1(1− τ ′1)− b1τ ′1))2
φd(x− a1(1− τ ′1)− b1τ ′1)

dx.

By a routine calculation, it now follows that

χ2(fτ ||fτ ′) ≤
1

k

{

exp
(

‖a1(1− τ1) + b1τ1 − a1(1− τ ′1)− b1τ ′1‖2
)

− 1
}

=
1

k

{

exp
(

‖a1 − b1‖2
)

− 1
}

=
1

k

(

eδ
2 − 1

)

.

We have therefore proved that

∥

∥Pfτ − Pfτ ′
∥

∥

TV
≤
√

n

2k
(eδ2 − 1) for every τ, τ ′ ∈ {0, 1}k with Υ(τ, τ ′) = 1. (4.51)

Combining (4.50) and (4.51), we obtain

R(Mk) ≥
k

4

(

1

k

(

1− e−δ2/8
)

− (k − 1)

Υ(τ, τ ′)
e−M

2/8

)(

1−
√

n

2k
(eδ2 − 1)

)

.

This inequality holds for every δ > 0 and M > 0. So we can let M tend to ∞ to deduce

R(Mk) ≥
1

4

(

1− e−δ2/8
)

(

1−
√

n

2k
(eδ2 − 1)

)

for every δ > 0. The inequalities 1− e−t ≥ t/2 and et − 1 ≤ 2t for 0 ≤ t ≤ 1 imply that

R(Mk) ≥
δ2

64

(

1−
√

n

k
δ

)

for every 0 ≤ δ ≤ 1.

The choice δ =
√

k/4n now proves (4.20).
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4.6.5 Proof of Proposition 4.3.5

Proof of Proposition 4.3.5. Note that

h∗(x) =
k
∑

j=1

wjφd(x;µj,Σj) =
k
∑

j=1

wj det(Σ
−1/2
j )φd

(

Σ
−1/2
j (x− µj)

)

where φd(z) := (2π)−d/2 exp
(

−‖z‖2 /2
)

denotes the standard d-dimensional normal density.
It is then easy to see that X1, . . . , Xn (where Xi = Yi/σmin) are independent observations
having the density f ∗ where

f ∗(x) = σdminh
∗(σminx) =

k
∑

j=1

wj

[

det
(

σ−2
minΣj

)−1/2
]

φd

(

{

σ−2
minΣj

}−1 (
x− σ−1

minµj
)

)

.

This means that f ∗ is the density of the normal mixture:

k
∑

j=1

wjN
(

σ−1
minµj, σ

−2
minΣj

)

where N(µ,Σ) denotes the multivariate normal distribution with mean vector µ and covari-
ance matrix Σ. It follows from here that f ∗ equals fG∗ (in the notation (4.1)) where G∗ is
the distribution of the normal mixture

k
∑

j=1

wjN
(

σ−1
minµj, σ

−2
minΣj − Id

)

where Id is the d× d identity matrix.
We can now use Corollary 4.3.2 to bound H2(f̂n, f

∗) (note that f̂n is an NPMLE based
on X1, . . . , Xn). Specifically we shall use inequality (4.16) with

S :=
{

σ−1
minµ1, . . . , σ

−1
minµk

}

.

In order to verify (4.15), observe first that Ḡn in Corollary 4.3.2 is G∗ since X1, . . . , Xn are
i.i.d fG∗ and that

dS(θ) = min
1≤i≤k

∥

∥σ−1
minµi − θ

∥

∥

As a result, for every p ≥ 1 and Z ∼ N(0, Id), we have

µp(dS) ≤
(

E max
1≤j≤k

∥

∥

∥

(

σ−2
minΣj − Id

)1/2
Z
∥

∥

∥

p
)1/p

≤
√

σ2
max

σ2
min

− 1 (E ‖Z‖p)1/p ≤ Cdτ
√
p.

Thus (4.15) holds with K := Cdmax(1, τ) and α = 2 and inequality (4.16) then gives

EH2(f̂n, f
∗) ≤ Cd

Vol(S1)

n
(max(1, τ))d

(

√

log n
)d+(4−d)+

.
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As S is a finite set of cardinality k, we have Vol(S1) ≤ kCd so that

EH2(f̂n, f
∗) ≤ Cd

(

k

n

)

(max(1, τ))d
(

√

log n
)d+(4−d)+

.

We now use the fact that the Hellinger distance is invariant under scale transformations
which implies that H(f̂n, f

∗) = H(ĥn, h
∗). This proves inequality (4.24).

4.7 Proofs of Results in Section 4.4

4.7.1 Proof of Theorem 4.4.1

The proof of Theorem 4.4.1 is similar to Jiang and Zhang [63, Proof of Theorem 5]. It uses
ingredients that are proved in Section 4.8, Section 4.9 and Section A. More precisely, crucial
roles are played by the metric entropy results of Section 4.8 (specifically Corollary 4.8.2)
and Theorem 4.9.1 in Section 4.9 which relates the denoising error to Hellinger distance
(thereby allowing the application of Theorem 4.3.1). Additionally, Lemma A.0.2, Lemma
A.0.4, Lemma A.0.6, Lemma A.0.9 and Lemma A.0.10 from Section A will also be used.

The notation described at the beginning of Section 4.6 will be followed in this section as
well.

Proof of Theorem 4.4.1. The goal is to bound

Rn(θ̂, θ̂
∗) = E

(

1

n

n
∑

i=1

‖θ̂i − θ̂∗i ‖2
)

= E





1

n

n
∑

i=1

∥

∥

∥

∥

∥

Xi +
∇f̂n(Xi)

f̂n(Xi)
−Xi −

∇fḠn
(Xi)

fḠn
(Xi)

∥

∥

∥

∥

∥

2




It is convenient to introduce some notation here. Let X denote the d × n matrix whose
columns are the observed data vectors X1, . . . , Xn. For a density f ∈ M, let Tf (X) denote
the d× n matrix whose ith column is given by the d× 1 vector:

Xi +
∇f(Xi)

f(Xi)
for i = 1, . . . , n.

With this notation, we can clearly rewrite Rn(θ̂, θ̂
∗) as

Rn(θ̂, θ̂
∗) = E

(

1

n

∥

∥

∥Tf̂n(X)− TfḠn
(X)

∥

∥

∥

2

F

)

where ‖·‖F denotes the usual Frobenius norm for matrices.

To bound the above, we first observe that since f̂n is an NPMLE defined as in (4.2),
it follows from the general maximum likelihood theorem (see, for example, Böhning [18,
Theorem 2.1]) that

1

n

n
∑

i=1

φd(Xi − θ)
f̂n(Xi)

≤ 1 (4.52)
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for every θ ∈ Rd. Taking θ = Xi in the above inequality, we deduce that

1 ≥ φd(Xi − θ)
nf̂n(Xi)

=
φd(0)

nf̂n(Xi)

so that f̂n(Xi) ≥ φd(0)/n = (2π)−d/2n−1. Since this is true for each i = 1, . . . , n, this means
that

min
1≤i≤n

f̂n(Xi) ≥ ρn :=
(2π)−d/2

n
. (4.53)

As a result, f̂n(Xi) = max(f̂n(Xi), ρn) for each i so that Tf̂n(X) = Tf̂n(X, ρn) where for

f ∈ M and ρ > 0, we define Tf (X, ρ) to be the d × n matrix whose ith column is given by
the d× 1 vector:

Xi +
∇f(Xi)

max(f(Xi), ρ)
for i = 1, . . . , n.

This gives

Rn(θ̂, θ̂
∗) = E

(

1

n

∥

∥

∥
Tf̂n(X, ρn)− TfḠn

(X)
∥

∥

∥

2

F

)

.

A difficulty in dealing with the expectation on the right hand side above comes from the
fact that f̂n is random. This is handled by covering the random f̂n by an ǫ-net for a specific
ǫ in the following way. First fix a compact set S ⊆ Rd and M ≥ √10 log n. Note that by
Theorem 4.3.1 (specifically inequality (4.12) applied to α = β = 0.5 and t = 1), we deduce
that the following inequality holds with probability at least 1− (2/n):

H(f̂n, fḠn
) ≤ C̃dǫn(M,S). (4.54)

Here C̃d is a positive constant depending on d alone and ǫn(M,S) is defined as in (4.10). Let
En denote the event that (4.54) holds. We now obtain a covering of

{f ∈M : H(f, fḠn
) ≤ C̃dǫn(M,S)} (4.55)

under the pseudometric given by

‖f − g‖ρn
SM ,∇ := sup

x∈SM

∥

∥

∥

∥

∇f(x)
max(f(x), ρn)

− ∇g(x)
max(g(x), ρn)

∥

∥

∥

∥

(4.56)

where SM := {x ∈ Rd : dS(x) ≤ M}. We have proved covering number bounds under this
pseudometric in Corollary 4.8.2 which will be used in this proof. Let fG1

, . . . , fGN
denote a

maximal subset of (4.55) such that for every i 6= j, we have
∥

∥fGi
− fGj

∥

∥

ρn

SM ,∇ ≥ 2η∗ (4.57)

where η∗ is defined in terms of

η∗ :=

(

1

ρn
+

√

1

ρ2n
log

1

(2π)dρ2n

)

η and η :=
ρn
n
. (4.58)
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By the usual relation between packing and covering numbers, the integer N is then bounded
from above by N(η∗,M, ‖·‖ρn

SMN,∇) which is bounded in Corollary 4.8.2. Specifically, Corol-

lary 4.8.2 (applied to SM) gives

logN ≤ CdN(a, (SM)a)| log η|2 ≤ CdN(a, SM+a)(log n)2

where

a :=

√

2 log(2
√
2πn2). (4.59)

This further implies (via the use of inequality (A.26) in Lemma A.0.9 to bound N(a, SM+a)
as N(a, SM+a) ≤ Cda

−dVol(SM+(3a/2))) that

logN ≤ Cd(log n)
2a−dVol(SM+(3a/2)) ≤ Cd(log n)

2−(d/2)Vol(SM+(3a/2)).

Using (A.27) in Lemma A.0.9 to bound Vol(SM+(3a/2)) in terms of Vol(S1) (and the fact that
a ≤ C

√
10 log n ≤ CM), we obtain

logN ≤ CdVol(S
1)Md(log n)2−(d/2). (4.60)

Also because fG1
, . . . , fGN

is a maximal subset of (4.55) satisfying (4.57), we have

max
1≤j≤N

H(fGj
, fḠn

) ≤ C̃dǫn(M,S) (4.61)

and, on the event En,

min
1≤j≤N

∥

∥

∥
f̂n − fGj

∥

∥

∥

ρn

SM ,∇
≤ 2η∗. (4.62)

We are now ready to bound the risk Rn(θ̂, θ̂
∗). The strategy is to break down the risk into

various terms involving the densities fG1
, . . . , fGN

.
Breakdown of the risk: The risk

Rn(θ̂, θ̂
∗) = E

(

1

n

∥

∥

∥
Tf̂n(X, ρn)− TfḠn

(X)
∥

∥

∥

2

F

)

will be broken down via the inequality:

‖Tf̂n(X, ρn)− TfḠn
(X)‖F ≤ ‖Tf̂n(X, ρn)− TfḠn

(X, ρn)‖F + ‖TfḠn
(X, ρn)− TfḠn

(X)‖F
≤ (ζ1n + ζ2n + ζ3n + ζ4n) + ζ5n (4.63)

where

ζ1n := ‖Tf̂n(X, ρn)− TfḠn
(X, ρn)‖F I(Ec

n)

ζ2n :=

(

‖Tf̂n(X, ρn)− TfḠn
(X, ρn)‖F − max

1≤j≤N
‖TfGj

(X, ρn)− TfḠn
(X, ρn)‖F

)

+

I(En)

ζ3n := max
1≤j≤N

(

‖TfGj
(X, ρn)− TfḠn

(X, ρn)‖F − E‖TfGj
(X, ρn)− TfḠn

(X, ρn)‖F
)

+

ζ4n := max
1≤j≤N

E‖TfGj
(X, ρn)− TfḠn

(X, ρn)‖F
ζ5n := ‖TfḠn

(X)− TfḠn
(X, ρn)‖F
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In conjunction with the elementary inequality (a1 + · · ·+ a5)
2 ≤ 5(a21 + · · ·+ a25), inequality

(4.63) gives

Rn(θ̂, θ̂
∗) ≤ 5

5
∑

i=1

Eζ2in
n

.

The proof of Theorem 4.4.1 will be completed below by showing the existence of a positive
constant Cd such that, for every i = 1, . . . , 5,

Eζ2in ≤ Cdnǫ
2
n(M,S) (log n)max(d,3)

= Cd

(

Vol(S1)Md
(

√

log n
)(4−d)+

+ n (log n) inf
p≥ d+1

2 logn

(

2µp(dS)

M

)p
)

(log n)max(d,3) .

(4.64)

It may be noted that ζ4n is non-random so that the expectation above can be removed for
i = 4. Every other ζin is random.

Bounding Eζ21n: We write

Eζ21n = E
(

‖Tf̂n(X, ρn)− TfḠn
(X, ρn)‖2F I(Ec

n)
)

=
n
∑

i=1

E





∥

∥

∥

∥

∥

∇f̂n(Xi)

max(f̂n(Xi), ρn)
− ∇fḠn

(Xi)

max(fḠn
(Xi), ρn)

∥

∥

∥

∥

∥

2

I(Ec
n)



 .

Inequality (A.2) in Lemma A.0.2 now gives

∥

∥

∥

∥

∥

∇f̂n(Xi)

max(f̂n(Xi), ρn)
− ∇fḠn

(Xi)

max(fḠn
(Xi), ρn)

∥

∥

∥

∥

∥

2

≤ 4 log
(2π)d

ρ2n
(4.65)

provided ρn ≤ (2π)−d/2e−1/2 which is equivalent to n ≥ √e and hence holds for all n ≥ 2.
This gives (note that P(Ec

n) ≤ 2/n)

Eζ21n ≤ 4n

(

log
(2π)d

ρ2n

)

P(Ec
n) ≤ 8

(

log
(2π)d

ρ2n

)

≤ Cd log n ≤ CdVol(S
1)Md(

√

log n)(4−d)+

which proves (4.64) for i = 1.
Bounding Eζ22n: For this, we write

ζ22n ≤ min
1≤j≤N

∥

∥

∥Tf̂n(X, ρn)− TfGj
(X, ρn)

∥

∥

∥

2

F
I(En)

= min
1≤j≤N

n
∑

i=1

∥

∥

∥

∥

∥

∇f̂n(Xi)

max(f̂n(Xi), ρn)
− ∇fGj

(Xi)

max(fGj
(Xi), ρn)

∥

∥

∥

∥

∥

2

I(En)

≤ min
1≤j≤N

(

∥

∥

∥
f̂n − fGj

∥

∥

∥

ρn

SM ,∇

)2
(

n
∑

i=1

I{Xi ∈ SM}
)

I(En) +

(

4 log
(2π)d

ρ2n

)

(

n
∑

i=1

I{Xi /∈ SM}
)

I(En).



CHAPTER 4. NPMLE FOR GAUSSIAN LOCATION MIXTURES 100

where we have used the notation (4.56) in the first term above and the inequality (4.65) in
the second term. We can simplify the above bound as

ζ22n ≤ n

(

min
1≤j≤N

∥

∥

∥
f̂n − fGj

∥

∥

∥

ρn

SM ,∇

)2

I(En) +

(

4 log
(2π)d

ρ2n

)

(

n
∑

i=1

I{Xi /∈ SM}
)

.

Inequality (4.62) and the expression (4.58) for η∗ now give

Eζ22n ≤
4

n

(

1 +

√

log
1

(2π)dρ2n

)2

+

(

4 log
(2π)d

ρ2n

)

(

n
∑

i=1

P{Xi /∈ SM}
)

≤ Cd
log n

n
+ Cd(log n)

(

n
∑

i=1

P{Xi /∈ SM}
)

.

To control the second term above, we use inequality (A.14) (which is a consequence of Lemma
A.0.4). Note that P{Xi /∈ SM} ≤ P{dS(Xi) ≥M}. Inequality (A.14) therefore gives

Eζ22n ≤ Cd
log n

n
+ Cd(log n)M

d−2 + Cd(n log n) inf
p≥ d+1

2 logn

(

2µp(dS)

M

)p

.

This proves (4.64) for i = 2 (note that (log n)Md−2 ≤Md as M ≥ √10 log n).
Bounding ζ23n: Here Lemma A.0.6 and the bound (4.60) will be crucially used. Let us

first write ζ3n := max1≤j≤N ζ3n.j where

ζ3n.j :=
(

‖TfGj
(X, ρn)− TfḠn

(X, ρn)‖F − E‖TfGj
(X, ρn)− TfḠn

(X, ρn)‖F
)

+
.

Lemma A.0.6 then gives

P {ζ3n.j ≥ x} ≤ exp

( −x2
8L4(ρn)

)

for every 1 ≤ j ≤ N and x > 0.

where

L(ρn) =

√

log
1

(2π)dρ2n
=
√

log n. (4.66)

By the union bound, we have

P {ζ3n ≥ x} ≤ N exp

( −x2
8L4(ρn)

)

for every x > 0

so that, for every x0 > 0,

Eζ23n ≤
∫ ∞

0

P
{

ζ3n ≥
√
x
}

dx

≤ x0 +

∫ ∞

x0

N exp

( −x
8L4(ρn)

)

dx = x0 + 8NL4(ρn) exp

( −x0
8L4(ρn)

)

.



CHAPTER 4. NPMLE FOR GAUSSIAN LOCATION MIXTURES 101

Minimizing the above bound over x0 > 0, we deduce that

Eζ23n ≤ 8L4(ρn) log (eN) .

The bound (4.60) (along with (4.66)) then gives

Eζ23n ≤ CdVol(S
1)Md(

√

log n)8−d ≤ CdVol(S
1)Md(

√

log n)(4−d)+(log n)3

which proves (4.64) for i = 3.
Bounding ζ24n: To bound the non-random quantity ζ24n, we only need to bound

Γ2
j := E

∥

∥

∥
TfGj

(X, ρn)− TfḠn
(X, ρn)

∥

∥

∥

2

F

for each 1 ≤ j ≤ N . We can clearly write

Γ2
j =

n
∑

i=1

E

∥

∥

∥

∥

∇fGj
(Xi)

max(fGj
(Xi), ρn)

− ∇fḠn
(Xi)

max(fḠn
(Xi), ρn)

∥

∥

∥

∥

2

= n

∫
∥

∥

∥

∥

∇fGj
(x)

max(fGj
(x), ρn)

− ∇fḠn
(x)

max(fḠn
(x), ρn)

∥

∥

∥

∥

2

fḠn
(x)dx.

The above term can be bounded by a direct application of Theorem 4.9.1 which furnishes a
bound in terms of H(fGj

, fḠn
). Indeed, because n ≥ 2, we have ρn ≤ (2π)−d/2e−1/2 so that

Theorem 4.9.1 applies (with G = Gj and G0 = Ḡn) and we obtain

1

n
Γ2
j ≤ Cdmax

{

(

log
(2π)−d/2

ρn

)3

, | logH(fGj
, fḠn

)|
}

H
2(fGj

, fḠn
)

= Cdmax
{

(log n)3 , | logH(fGj
, fḠn

)|
}

H
2(fGj

, fḠn
).

We now use the fact that H(fGj
, fḠn

) is bounded from above by C̃dǫn(M,S) (see (4.61)). We

can then work with two cases. If C̃dǫn(M,S) ≤ e−1/2 , then using the fact that h 7→ h2| log h|
is increasing on (0, e−1/2], we have

1

n
Γ2
j ≤ CdC̃

2
d max

{

(log n)3 ,
∣

∣

∣
log(C̃dǫn(M,S))

∣

∣

∣

}

ǫ2n(M,S).

The trivial observation ǫn(M,S) ≥ Kd/n for a constant Kd now gives

Γ2
j ≤ nCd(log n)

3ǫ2n(M,S). (4.67)

On the other hand when C̃dǫn(M,S) > e−1/2, then we can simply bound | logH(fGj
, fḠn

)|H2(fGj
, fḠn

)
by a constant (the function h 7→ h2| log h| is bounded on h ∈ (0, 2]) so that the inequality
(4.67) still holds. The bound in the right hand side of (4.67) does not depend on j so that
it is an upper bound for ζ24n as well. This proves (4.64) for i = 4.
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Bounding Eζ25n: We write

Eζ25n = E
∥

∥

∥TfḠn
(X)− TfḠn

(X, ρn)
∥

∥

∥

2

F

=
n
∑

i=1

E

∥

∥

∥

∥

∇fḠn
(Xi)

fḠn
(Xi)

− ∇fḠn
(Xi)

max(fḠn
(Xi), ρn)

∥

∥

∥

∥

2

= n

∫
∥

∥

∥

∥

∇fḠn
(x)

fḠn
(x)

− ∇fḠn
(x)

max(fḠn
(x), ρn)

∥

∥

∥

∥

2

fḠn
(x)dx

= n

∫ (

1− fḠn

max (fḠn
, ρ)

)2 ‖∇fḠn
‖2

fḠn

= n∆(Ḡn, ρn)

where we define

∆(G, ρ) :=

∫ (

1− fG
max (fG, ρ)

)2 ‖∇fG‖2
fG

for probability measures G on Rd and ρ > 0. We now use Lemma A.0.10 to bound ∆(Ḡn, ρn).
Specifically, inequality (A.29) in Lemma A.0.10 applied to the compact set SM gives

∆(Ḡn, ρn) ≤ CdN

(

4

L(ρn)
, SM

)

Ld(ρn)ρn + d Ḡn((S
M)c). (4.68)

The first term above is bounded using Lemma A.0.9 as follows (note that ρn = (2π)−d/2/n
and L(ρn) =

√
log n as shown in (4.66)):

N

(

4

L(ρn)
, SM

)

Ld(ρn)ρn = N

(

4√
log n

, SM
)

(log n)d/2
(2π)−d/2

n

≤ Cd(4/
√

log n)−dVol((SM)2/
√
logn)

(log n)d/2

n
(using inequality (A.26))

≤ Cd
n
(log n)dVol(SM+2/

√
logn)

≤ Cd
n
(log n)dVol(S1)

(

1 +
M

4
+

1

2
√
log n

)d

(using inequality (A.27))

≤ Cd
n
(log n)dMdVol(S1).

For the second term in (4.68), note that

Ḡn((S
M)c) ≤

∫

I{dS(θ) ≥M}dḠn(θ) ≤ inf
p≥ d+1

2 logn

(

2µp(dS)

M

)p

.

We have therefore proved that

Eζ25n ≤ n∆(Ḡn, ρn) ≤ Cd

{

(log n)dMdVol(S1) + n inf
p≥ d+1

2 logn

(

2µp(dS)

M

)p
}

which evidently implies (4.64). The proof of Theorem 4.4.1 is now complete.
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4.7.2 Proof of Corollary 4.4.3

The idea is to choose M and S appropriately under each of the assumptions on Ḡn and then
to appropriately bound ǫn(M,S). The necessary work for this is already done in Corollary
4.3.2 from which Corollary 4.4.3 immediately follows.

4.7.3 Proof of Proposition 4.4.4

The assumption (4.28) implies that the empirical measure Ḡn of θ1, . . . , θn is supported on

S := ∪kj=1B(aj, R) where B(aj, R) :=
{

x ∈ Rd : ‖x− aj‖ ≤ R
}

.

We can therefore apply inequality (4.25) in Corollary 4.4.3 to bound Rn(θ̂, θ̂
∗). The conclu-

sion (4.29) then immediately follows from (4.25) because

Vol(S1) ≤
k
∑

j=1

Vol(B(aj, 1 +R)) ≤ Cdk(1 +R)d.

4.7.4 Proof of Lemma 4.4.5

The proof of Lemma 4.4.5 uses Assouad’s lemma (see, for example, Tsybakov [135, Chapter
2] as well as Lemma A.0.12 (stated and proved in Section A).

Proof of Lemma 4.4.5. Fix k and n with 1 ≤ k ≤ n. Also fix δ > 0 and M ≥ 2. Let
a1, . . . , ak and b1, . . . , bk be points in Rd such that

min

(

min
i 6=j
‖ai − aj‖ ,min

i 6=j
‖bi − bj‖ ,min

i 6=j
‖ai − bj‖

)

≥M (4.69)

and such that
‖ai − bi‖ = δ for every 1 ≤ i ≤ k. (4.70)

We now define a partition S1, . . . , Sk, Sk+1 of {1, . . . , n} via

Si := {(i− 1)m+ 1, . . . , im} for i = 1, . . . , k

and Sk+1 := {km + 1, . . . , n} where m := [n/k] ( for x > 0, we define [x] as usual to be the
largest integer that is smaller than or equal to x). Note that the cardinality of Sj equals m
for i = 1, . . . , k and that Sk+1 will be empty if n is a multiple of k.

Now for every τ ∈ {0, 1}k, we define n vectors θ1(τ), . . . , θn(τ) in Rd via

θi(τ) := (1− τj)aj + τjbj provided i ∈ Sj for some 1 ≤ j ≤ k

and for i ∈ Sk+1, we take θi(τ) := a1.
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Let Θ(τ) denote the collection of all n-tuples (θ1(τ), . . . , θn(τ)) as τ ranges over {0, 1}k.
It is easy to see that Θ(τ) ⊆ Θn,d,k so that

R∗(Θn,d,k) ≥ R∗(Θ(τ)) := inf
θ̃1,...,θ̃n

sup
(θ1,...,θn)∈Θ(τ)

E

[

1

n

n
∑

i=1

∥

∥

∥θ̃i − θ̂∗i
∥

∥

∥

2
]

.

The elementary inequality ‖a− b‖2 ≥ ‖a‖2 /2− ‖b‖2 for vectors a, b ∈ Rd gives

1

n

n
∑

i=1

∥

∥

∥θ̃i − θ̂∗i
∥

∥

∥

2

≥ 1

2n

n
∑

i=1

∥

∥

∥θ̃i − θi
∥

∥

∥

2

− 1

n

n
∑

i=1

∥

∥

∥θ̂∗i − θi
∥

∥

∥

2

for every θ1, . . . , θn and estimators θ̃1 . . . , θ̃n. As a result, we deduce that

R∗(Θ(τ)) ≥ R̆(Θ(τ))− sup
(θ1,...,θn)∈Θ(τ)

E

[

1

n

n
∑

i=1

∥

∥

∥
θ̂∗i − θi

∥

∥

∥

2
]

(4.71)

where

R̆(Θ(τ)) := inf
θ̃1,...,θ̃n

sup
(θ1,...,θn)∈Θ(τ)

E

[

1

n

n
∑

i=1

∥

∥

∥
θ̃i − θi

∥

∥

∥

2
]

.

We first bound R̆(Θ(τ)) from below via Assouad’s lemma. For τ, τ ′ ∈ {0, 1}k, let

L(τ, τ ′) :=
1

n

n
∑

i=1

‖θi(τ)− θi(τ ′)‖2 .

Also let Pτ denote the joint distribution of the independent random variables X1, . . . , Xn

with Xi ∼ N(θi(τ), Id) for i = 1, . . . , n. Assouad’s lemma then gives

R̆(Θ(τ)) ≥ k

8
min
τ 6=τ ′

L(τ, τ ′)

Υ(τ, τ ′)
min

Υ(τ,τ ′)=1
(1− ‖Pτ − Pτ ′‖TV ) (4.72)

where Υ(τ, τ ′) :=
∑k

j=1 I{τj 6= τ ′j} is the Hamming distance and ‖Pτ − Pτ ′‖TV denotes the
variation distance between Pτ and Pτ ′ . We now bound the terms appearing in the right hand
side of (4.72). For τ, τ ′ ∈ {0, 1}k, observe that

L(τ, τ ′) =
1

n

k
∑

j=1

∑

i:i∈Sj

‖aj − bj‖2 I{τj 6= τ ′j} =
1

n

k
∑

j=1

|Sj| ‖aj − bj‖2 I{τj 6= τ ′j} =
mδ2

n
Υ(τ, τ ′)

(4.73)
where |Sj| denotes the cardinality of Sj. We have used above the fact that |Sj| = m for
1 ≤ j ≤ k and (4.70).
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To bound the last term in (4.72), we use Pinsker’s inequality (below D stands for
Kullback-Leibler divergence) to obtain

‖Pτ − Pτ ′‖TV ≤
√

1

2
D(Pτ ||Pτ ′) =

1

2

√

√

√

√

n
∑

i=1

‖θi(τ)− θi(τ ′)‖2 =
1

2

√

nL(τ, τ ′).

Thus, from (4.73), we deduce that for Υ(τ, τ ′) = 1,

‖Pτ − Pτ ′‖TV ≤
1

2

√
mδ2.

Inequality (4.72) thus gives

R̆(Θ(τ)) ≥ kmδ2

8n

(

1−
√
mδ2

2

)

. (4.74)

To bound the second term in (4.71), we use Lemma A.0.12 which gives that for every
θ1, . . . , θn ∈ Θ(τ), we have

E

[

1

n

n
∑

i=1

∥

∥

∥
θ̂∗i − θi

∥

∥

∥

2
]

≤ k

2
√
2π

∑

j,l:j 6=l
(pj + pl) ‖cj − cl‖ exp

(

−1

8
‖cj − cl‖2

)

where c1, . . . , ck+1 denote the distinct elements from θ1, . . . , θn and pj, j = 1, . . . , k + 1 are
nonnegative real numbers summing to one. Now each cj equals either aj or bj and hence, by
(4.69), we have ‖cj − cl‖ ≥ M for every j 6= l. As x 7→ xe−x

2/8 is decreasing for x > 2 and
M > 2, we deduce that

E

[

1

n

n
∑

i=1

∥

∥

∥
θ̂∗i − θi

∥

∥

∥

2
]

≤ k

2
√
2π
Me−M

2/8
∑

j,l:j 6=l
(pj + pl) ≤

k√
2π
Me−M

2/8. (4.75)

We obtain therefore from (4.71), (4.74) and (4.75), that

R∗(Θn,d,k) ≥
kmδ2

8n

(

1−
√
mδ2

2

)

− k√
2π
Me−M

2/8.

The left hand side above does not depend on M so we can let M →∞ to obtain

R∗(Θn,d,k) ≥
kmδ2

8n

(

1−
√
mδ2

2

)

.

We now make the choice δ := 1/
√
m to obtain R∗(Θn,d,k) ≥ k/(16n) which proves Lemma

4.4.5.
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4.8 Main Metric Entropy Results and Proofs

For a compact set S ⊆ Rd, let ‖·‖S and ‖·‖S,∇ denote two pseudonorms given by

‖f‖S := sup
x∈S
|f(x)| and ‖f‖S,∇ := sup

x∈S
‖∇f(x)‖

for densities f ∈ M. These naturally lead to two pseudometrics on M and we shall
denote the η-covering numbers of M under these pseudometrics by N(η,M, ‖·‖S) and
N(η,M, ‖·‖S,∇) respectively. The notion of covering numbers is defined at the begin-
ning of Section 4.6. The following theorem gives upper bounds for N(η,M, ‖·‖S) and
N(η,M, ‖·‖S,∇). Recall the notation introduced at the beginning of Section 4.6.

Theorem 4.8.1. There exists a positive constant Cd depending on d alone such that for
every compact set S ⊆ Rd and 0 < η ≤ 2

√
2π

(2π)d/2
√
e
, we have

logN(η,M, ‖·‖S) ≤ CdN(a, Sa)| log η|2 (4.76)

and
logN(η,M, ‖·‖S,∇) ≤ CdN(a, Sa)| log η|2 (4.77)

where a is defined as

a :=

√

2 log
2
√
2π

(2π)d/2η
. (4.78)

Theorem 4.8.1 immediately implies a covering number result forM in terms of another
pseudometric that is defined in terms of both f(x) and ∇f(x). This is given in the next
corollary which was used in the proof of Theorem 4.4.1.

Corollary 4.8.2. For a compact set S ∈ Rd and ρ > 0, define the pseudometric:

‖f − g‖ρS,∇ := sup
x∈S

∥

∥

∥

∥

∇f(x)
max(f(x), ρ)

− ∇g(x)
max(g(x), ρ)

∥

∥

∥

∥

(4.79)

for functions f : Rd → R which are bounded on S and whose derivatives are bounded on
S. Let the ǫ-covering number of M in the pseudometric given by (4.79) be denoted by
N(ǫ,M, ‖·‖ρS,∇). Then there exists a positive constant Cd depending on d alone such that for

every ρ > 0, 0 < η ≤ 2
√
2π

(2π)d/2
√
e
and compact subset S ⊆ Rd, we have

logN(η∗,M, ‖·‖ρS,∇) ≤ CdN(a, Sa)| log η|2 (4.80)

where a is defined as in (4.78) and

η∗ :=

(

1

ρ
+

√

1

ρ2
log

1

(2π)dρ2

)

η. (4.81)
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Remark 4.8.3. When d = 1 and S = [−M,M ], we have

N(a, Sa) ≤ Cmax

{

M
√

| log η|
, 1

}

so that inequalities (4.76), (4.77) and (4.80) become

logN(η,M, ‖·‖[−M,M ]) ≤ C| log η|2 max

{

M
√

| log η|
, 1

}

, (4.82)

logN(η,M, ‖·‖[−M,M ],∇) ≤ C| log η|2 max

{

M
√

| log η|
, 1

}

, (4.83)

and

logN(η∗,M, ‖·‖ρ[−M,M ],∇) ≤ C| log η|2 max

{

M
√

| log η|
, 1

}

(4.84)

respectively. Inequality (4.82) has previously appeared in Zhang [147, Lemma 2] (improving
an earlier result of Ghosal and Vaart [48]). Inequality (4.83) does not seem to have been stated
explicitly previously but is implicit in Jiang and Zhang [63, Proof of Proposition 3]. Inequality
(4.84) has previously appeared as Jiang and Zhang [63, Proposition 3]. Our contribution
therefore lies in generalizing these results to multiple dimensions and further in allowing S
to take the form of any compact subset of Rd.

The rest of this section is devoted to the proofs of Theorem 4.8.1 and Corollary 4.8.2.

4.8.1 Proof of Theorem 4.8.1

Moment Matching Lemma

Recall that for x ∈ Rd and a > 0, we denote the closed Euclidean ball of radius a centered
at x by B(x, a). We also let

B̊(x, a) := {u ∈ Rd : ‖u− x‖ < a}

denote the open ball of radius a centered at x.

Lemma 4.8.4. Let G and G′ be two arbitrary probability measures on Rd. Fix a ≥ 1 and
x ∈ Rd. Let A be a subset of Rd such that

B̊(x, a) ⊆ A ⊆ B(x, ca)

for some c ≥ 1. Suppose that, for some m ≥ 1, we have
∫

A

θkj dG(θ) =

∫

A

θkj dG
′(θ) for every 1 ≤ j ≤ d and 0 ≤ k ≤ 2m+ 1. (4.85)
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Then

|fG(x)− fG′(x)| ≤ 1

(2π)(d+1)/2

(

c2a2e

2(m+ 1)

)m+1

+
e−a

2/2

(2π)d/2
. (4.86)

and

‖∇fG(x)−∇fG′(x)‖ ≤ ca

(2π)(d+1)/2

(

c2a2e

2(m+ 1)

)m+1

+
ae−a

2/2

(2π)d/2
(4.87)

Proof of Lemma 4.8.4. First write

fG(x)− fG′(x) =

∫

φd(x− θ) (G(dθ)−G′(dθ))

and

∇fG(x)−∇fG′(x) =

∫

(θ − x)φd(x− θ) (G(dθ)−G′(dθ)) .

We split each integral above into two terms by restricting their range first over A and then
over Ac, the complement set of A:

fG(x)− fG′(x) =

∫

A

φd(x− θ) (dG(θ)− dG′(θ)) +

∫

Ac

φd(x− θ) (dG(θ)− dG′(θ))

(4.88)

∇fG(x)−∇fG′(x) =

∫

A

(θ − x)φd(x− θ) (dG(θ)− dG′(θ)) +

∫

Ac

(θ − x)φd(x− θ) (dG(θ)− dG′(θ))

(4.89)

Because A ⊇ B̊(x, a), it is clear that

sup
θ∈Ac

φd(x− θ) ≤ sup
θ:‖x−θ‖≥a

φd(x− θ) ≤ (2π)−d/2 exp(−a2/2)

sup
θ∈Ac

‖θ − x‖φd(x− θ) ≤ sup
θ:‖x−θ‖≥a

‖x− θ‖φd(x− θ) ≤ (2π)−d/2 sup
u≥a

ue−u
2/2 = (2π)−d/2ae−a

2/2

because a ≥ 1. Therefore the second terms on the right hand side on (4.88) and (4.89)
are respectively bounded in absolute value by the final terms in (4.86) and (4.87). It only
remains to prove the following pair of inequalities

∣

∣

∣

∣

∫

A

φd(x− θ) (dG(θ)− dG′(θ))

∣

∣

∣

∣

≤ 1

(2π)(d+1)/2

(

c2a2e

2(m+ 1)

)m+1

(4.90)

∣

∣

∣

∣

∫

A

(θ − x)φd(x− θ) (dG(θ)− dG′(θ))

∣

∣

∣

∣

≤ ca

(2π)(d+1)/2

(

c2a2e

2(m+ 1)

)m+1

(4.91)

For this, we use Taylor expansion and the moment matching condition (4.85). Taylor’s
formula for eu is

eu =
m
∑

i=0

ui

i!
+

um+1

(m+ 1)!
ev
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for every u where v is some real number lying between 0 and u. Using this for u = −t2/2,
we obtain

exp(−t2/2) =
m
∑

i=0

(−t2/2)i
i!

+ (−1)m+1 (t
2/2)m+1

(m+ 1)!
ev

where v lies between 0 and −t2/2. Because ev ≤ 1, this gives
∣

∣

∣

∣

∣

exp(−t2/2)−
m
∑

i=0

(−t2/2)i
i!

∣

∣

∣

∣

∣

≤ (t2/2)m+1

(m+ 1)!
.

We can therefore write φd(z) = Pd(z) +Rd(z) for every z ∈ Rd where Pd(z) is a polynomial
of degree 2m in z and Rd(z) is a remainder term which satisfies

|Rd(z)| ≤
(‖z‖2/2)m+1

(2π)d/2(m+ 1)!
.

Using this for z = x− θ, we can write
∣

∣

∣

∣

∫

A

φd(x− θ) (dG(θ)− dG′(θ))

∣

∣

∣

∣

≤
∣

∣

∣

∣

∫

A

Pd(x− θ) (dG(θ)− dG′(θ))

∣

∣

∣

∣

+

∣

∣

∣

∣

∫

A

Rd(x− θ) (dG(θ)− dG′(θ))

∣

∣

∣

∣

and similarly,
∣

∣

∣

∣

∫

A

(θ − x)φd(x− θ) (dG(θ)− dG′(θ))

∣

∣

∣

∣

≤
∣

∣

∣

∣

∫

A

(θ − x)Pd(x− θ) (dG(θ)− dG′(θ))

∣

∣

∣

∣

+

∣

∣

∣

∣

∫

A

(θ − x)Rd(x− θ) (dG(θ)− dG′(θ))

∣

∣

∣

∣

The first terms in the above two equations are zero because of condition (4.85) and the fact
that Pd(x−θ) is a polynomial in θ with degree 2m (implying that for every j, (θj−xj)Pd(x−θ)
is a polynomial of degree 2m + 1). Because A ⊆ B(x, ca), we have ‖x − θ‖ ≤ ca for every
θ ∈ A so that

|Rd(x− θ)| ≤
(2π)−d/2

(m+ 1)!

(‖x− θ‖2
2

)m+1

≤ (2π)−d/2

(m+ 1)!

(

c2a2

2

)m+1

.

Stirling’s formula n! ≥
√
2πn(n/e)n ≥

√
2π(n/e)n applied to n = m+ 1 yields

|Rd(x− θ)| ≤
1

(2π)(d+1)/2

(

c2a2e

2(m+ 1)

)m+1

for every θ ∈ A

and

‖θ − x‖ |Rd(x− θ)| ≤
ca

(2π)(d+1)/2

(

c2a2e

2(m+ 1)

)m+1

for every θ ∈ A

which completes the proof.
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Approximation by mixtures with discrete mixing measures

Given any distribution fG, what is a bound on ℓ such that we can approximate fG by
another gaussian mixture fG′ where G′ is a discrete measure with at most ℓ atoms. The fol-
lowing lemma addresses this question where approximation is in terms of the pseudometrics
supx∈S |fG(x)− fG′(x)| as well as supx∈S ‖∇fG(x)−∇fG′(x)‖.

Recall that for a subset S of Rd, we write N(η, S) to mean its η covering number (defined
as the smallest number of closed balls of radius η whose union contains S).

Lemma 4.8.5. Let G be an arbitrary probability measure on Rd and let S denote an arbitrary
compact subset of Rd. Also let a ≥ 1. Then there exists a discrete probability measure G′

that is supported on Sa := ∪x∈SB(x, a) and having at most

ℓ := d
(

2⌊(13.5)a2⌋+ 2
)

N(a, Sa) + 1 (4.92)

atoms such that

sup
x∈S
|fG(x)− fG′(x)| ≤

(

1 +
1√
2π

)

(2π)−d/2e−a
2/2 (4.93)

and

sup
x∈S
‖∇fG(x)−∇fG′(x)‖ ≤

(

a+
3a√
2π

)

(2π)−d/2e−a
2/2. (4.94)

Proof of Lemma 4.8.5. Let S̊a := ∪x∈SB̊(x, a) (here B̊(x, a) denotes the open ball of radius
a centered at x) and let L := N(a, S̊a) denote the a-covering number of S̊a. Note that
L ≤ N(a, Sa). Let B1, . . . , BL denote closed balls of radius a whose union contains S̊a. Let
E1, . . . , EL denote the standard disjointification of the sets B1, . . . , BL i.e., E1 := B1 and
Ei := Bi \ (∪j<iBj) for i = 2, . . . , L. We can also ensure that ∪Li=1Ei = S̊a by removing the

set S̊a \ ∪iEi from each set Ei.
Let m := ⌊(13.5)a2⌋, suppose that a probability measure G′ is chosen so that G and G′

have the same moments up to order 2m+ 1 on each set Ei for i = 1, . . . , L i.e.,

∫

Ei

θkj dG(θ) =

∫

Ei

θkj dG
′(θ) for 1 ≤ j ≤ d, 0 ≤ k ≤ 2m+ 1 and 1 ≤ i ≤ L. (4.95)

We shall then prove below that inequalities (4.93) and (4.94) are satisfied. Fix x ∈ S.
Because B̊(x, a) is contained in S̊a, the sets E1, . . . , EL cover B̊(x, a) i.e.,

B̊(x, a) ⊆ ∪i∈FEi

where F :=
{

1 ≤ i ≤ L : Ei ∩ B̊(x, a) 6= ∅
}

. Also because the diameter of Ei ⊆ Bi is at

most 2a, we deduce that
B̊(x, a) ⊆ ∪i∈FEi ⊆ B(x, 3a).
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We now use Lemma 4.8.4 with A = ∪i∈FEi and c = 3 to deduce that

|fG(x)− fG′(x)| ≤ 1√
2π

1

(2π)d/2

(

9a2e

2(m+ 1)

)m+1

+
e−a

2/2

(2π)d/2

‖∇fG(x)−∇fG′(x)‖ ≤ 3a√
2π(2π)d/2

(

9a2e

2(m+ 1)

)m+1

+
ae−a

2/2

(2π)d/2

Because m := ⌊13.5a2⌋, we have m+ 1 ≥ 13.5a2 and consequently,

(

9a2e

2(m+ 1)

)m+1

≤
(e

3

)m+1

≤ exp

(

−m+ 1

12

)

≤ exp

(−27a2
24

)

≤ e−a
2/2

where we have also used that (e/3)6 ≤ e−1/2. This proves both inequalities (4.93) and (4.94)
.

It therefore remains to prove that a discrete probability G′ satisfying (4.95) can be chosen
with at most ℓ atoms where ℓ is given by (4.92). This is guaranteed by Caratheodory’s
theorem as argued below. Let P(Rd) denote the collection of all probability measures on Rd

and let

T :=

{(∫

θkj {θ ∈ Ei}dG(θ), 1 ≤ j ≤ d, 0 ≤ k ≤ 2m+ 1, 1 ≤ i ≤ L

)

: G ∈ P(Rd)

}

.

This set T is clearly a convex subset of Rp for p := d(2m + 2)L. Moreover, it is easy to see
that T is simply the convex hull of

C :=
{(

θkj {θ ∈ Ei}, 1 ≤ j ≤ d, 0 ≤ k ≤ 2m+ 1, 1 ≤ i ≤ L
)

: θ ∈ Sa
}

.

Therefore, by Caratheodory’s theorem, every element of T can be written as a convex com-
bination of at most p+ 1 elements of C. We therefore take G′ to be the discrete probability
measure supported upon these elements with probabilities given by the weights of this con-
vex combination. Note that the number of atoms of G′ is bounded from above by ℓ given in
(4.92). It is also easy to see that G′ is supported on Sa. This completes the proof.

Proof of Theorem 4.8.1

Proof. Fix 0 < η ≤ 2
√
2π

(2π)d/2
√
e
and define a as in (4.78). Note that a ≥ 1. Fix G ∈ G.

According to Lemma 4.8.5, there exists a discrete probability measure G′ supported on Sa

and having ℓ atoms (with ℓ as in (4.92)) such that:

sup
x∈S
|fG(x)− fG′(x)| ≤

(

1 +
1√
2π

)

(2π)−d/2e−a
2/2 (4.96)

and

sup
x∈S
‖∇fG(x)−∇fG′(x)‖ ≤

(

a+
3a√
2π

)

(2π)−d/2e−a
2/2. (4.97)
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Now let α > 0 and let s1, . . . , sD be an α−cover of Sa (i.e., sups∈Sa inf1≤i≤D ‖s − si‖ ≤ α)

with D = N(α, Sa). Now if G′ =
∑ℓ

i=1wiδai (for some probability vector (w1, . . . , wℓ) and

atoms a1, . . . , aℓ ∈ Sa), then let G′′ :=
∑ℓ

i=1wiδbi where bi ∈ {s1, . . . , sD} and ‖ai− bi‖ ≤ α.
Then, for every x ∈ S,

|fG′(x)− fG′′(x)| =
∣

∣

∣

∣

∣

ℓ
∑

i=1

wiφd(x− ai)−
ℓ
∑

i=1

wiφd(x− bi)
∣

∣

∣

∣

∣

≤
ℓ
∑

i=1

wi |φd(x− ai)− φd(x− bi)|

≤
ℓ
∑

i=1

wi sup
t
‖∇φd(t)‖α

≤ α sup
t
‖∇φd(t)‖ = α(2π)−d/2 sup

t
‖t‖e−‖t‖2/2 = α(2π)−d/2e−1/2.

We shall now bound ‖∇fG′(x)−∇fG′′(x)‖ using similar arguments. By the mean value
theorem, there exists ui on the line segment joining x− ai and x− bi such that,

φd(x− bi) = φd(x− ai) + (ai − bi)⊤∇φd(ui)

and consequently

x− bi = ui + ζi for some ζi satisfying ‖ζi‖ ≤ α.

Similarly,

‖∇fG′(x)−∇fG′′(x)‖ =
ℓ
∑

i=1

wi ‖∇φd(x− ai)−∇φd(x− bi)‖

=
ℓ
∑

i=1

wi ‖(ai − x)φd(x− ai)− (bi − x)φd(x− bi)‖

=
ℓ
∑

i=1

wi
∥

∥(bi − ai)φd(x− ai) + (ui + ζi)
[

(ai − bi)⊤∇φd(ui)
]∥

∥

≤ α sup
t
φd(t) + α sup

t
(‖t‖+ α) ‖∇φd(t)‖

≤ α sup
t
φd(t) + α sup

t
‖t‖2 φd(t) + α2 sup

t
‖t‖φd(t)

=
α

(2π)d/2

[

1 +
2

e
+ α

1√
e

]
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Now if G′′′ :=
∑ℓ

i=1w
′
iδbi for some other probability vector w′ := (w′

1, . . . , w
′
ℓ), then clearly

|fG′(x)− fG′′(x)| =
∣

∣

∣

∣

∣

ℓ
∑

i=1

(wi − w′
i)φ(x− bi)

∣

∣

∣

∣

∣

≤ (2π)−d/2
ℓ
∑

i=1

|wi − w′
i|

‖∇fG′(x)−∇fG′′(x)‖ =
∥

∥

∥

∥

∥

ℓ
∑

i=1

(wi − w′
i)∇φ(x− bi)

∥

∥

∥

∥

∥

≤
ℓ
∑

i=1

|wi − w′
i|
[

sup
t
‖tφd(t)‖

]

= (2π)−d/2e−1/2

ℓ
∑

i=1

|wi − w′
i|

Therefore if
∑

i=1 |wi − w′
i| ≤ v, then

sup
x∈S
|fG(x)− fG′′′(x)| ≤

(

1 +
1√
2π

)

(2π)−d/2e−a
2/2 + α(2π)−d/2e−1/2 + (2π)−d/2v

and

sup
x∈S
‖∇fG(x)−∇fG′′′(x)‖ ≤

(

a+
3a√
2π

)

(2π)−d/2e−a
2/2 + α(2π)−d/2

[

1 +
2

e
+ α

1√
e

]

+ (2π)−d/2e−1/2v.

By choosing

v = α =
(2π)d/2

2
√
2π

η and a =

√

2 log
2
√
2π

(2π)d/2η
=

√

2 log
1

α
,

we obtain

sup
x∈S
|fG(x)− fG′′′(x)| < α

(2π)d/2

[

2 +
1√
2π

+
1√
e

]

< η

sup
x∈S
‖∇fG(x)−∇fG′′′(x)‖ ≤ aα

(2π)d/2

[

2 +
3√
2π

+
3

e
+

1√
e

]

< aη

where we have noted that a ≥ 1 and α ≤ e−1/2.
It only remains to count the number of ways of choosing the discrete probability measure

G′′′. The number of ways of choosing the atoms of G′′′ is clearly

(

D

ℓ

)

≤ Dℓ

ℓ!
≤
(

De

ℓ

)ℓ

where we used that ℓ! ≥ (ℓ/e)ℓ, a fact that follows from Stirling’s formula.
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The probability vector w′ = (w′
1, . . . , w

′
ℓ) can be chosen to belong to a v-covering set for

all ℓ-dimensional probability vectors under the L1 norm. This covering number is well known
to be at most: (1 + (2/v))ℓ. Therefore N(η,M, dS,α1,α2

) is bounded from above by:

[

De

ℓ

(

1 +
2

v

)]ℓ

= Aℓ where A :=
De

ℓ

(

1 +
2

v

)

.

We shall bound A below. Below Cd will denote a constant that depends on d alone. Because
v ≤ e−1/2,

1 +
2

v
≤
(

1√
e
+ 2

)

1

v
=
Cd
η
.

Also note that from the expression for ℓ given in (4.92), we have ℓ ≥ N(a, Sa) and hence

D

ℓ
≤ N(α, Sa)

N(a, Sa)
≤ N(α,B(0, a)) ≤

(

1 +
a

α

)d

≤ Cd

(

1

η

)3d/2

.

where we have used the trivial fact that

a =

√

2 log
1

α
≤
√

4

α
= Cd

1√
η
. (4.98)

We thus have
A ≤ Cdη

−1−3d/2

so that,

logN(η,M, ‖·‖S) ≤ ℓ logA ≤ Cdℓ log
1

η

which along with the expression (4.92) for ℓ proves (4.88). Similarly,

logN(aη,M, ‖·‖S,∇) ≤ Cdℓ log
1

η
≤ CdN(a, Sa)| log η|2.

This implies that

logN(η,M, ‖·‖S,∇) ≤ CdN(a, Sa)
∣

∣

∣
log

η

a

∣

∣

∣

2

≤ CdN(a, Sa)| log η|2

where the last inequality follows from (4.98). This completes the proof of (4.89) and conse-
quently Theorem 4.8.1.
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4.8.2 Proof of Corollary 4.8.2

Proof of Corollary 4.8.2. Fix ρ > 0, 0 < η ≤ 2
√
2π

(2π)d/2
√
e
and compact subset S ⊆ Rd. For

a, b ∈ R, we shall denote the maximum of a and b by a ∨ b. Note first that for every pair of
densities fG, fH ∈M and x ∈ S, we have
∥

∥

∥

∥

∇fG(x)
ρ ∨ fG(x)

− ∇fH(x)
ρ ∨ fH(x)

∥

∥

∥

∥

=

∥

∥

∥

∥

∇fG(x)
ρ ∨ fG(x)

− ∇fG(x)
ρ ∨ fH(x)

+
∇fG(x)
ρ ∨ fH(x)

− ∇fH(x)
ρ ∨ fH(x)

∥

∥

∥

∥

≤ ‖∇fG(x)‖
ρ ∨ fG(x)

|ρ ∨ fG(x)− ρ ∨ fH(x)|
ρ ∨ fH(x)

+
1

ρ
‖∇fG(x)−∇fH(x)‖

Using inequality (A.2) (in Lemma A.0.2) and the fact that t 7→ ρ∨t is 1-Lipschitz, we deduce
from the above that

∥

∥

∥

∥

∇fG(x)
ρ ∨ fG(x)

− ∇fH(x)
ρ ∨ fH(x)

∥

∥

∥

∥

≤
√

1

ρ2
log

1

(2π)dρ2
|fG(x)− fH(x)|+

1

ρ
‖fG(x)− fH(x)‖ .

Because this is true for every x ∈ S, we have

‖fG − fH‖ρS,∇ ≤
√

1

ρ2
log

1

(2π)dρ2
‖fG − fH‖S +

1

ρ
‖fG − fH‖S,∇ .

We thus have
N(η∗, Tρ, ‖·‖S) ≤ N(η,M, ‖·‖S) +N(η,M, ‖·‖S,∇)

from which (4.80) follows.

4.9 Bounding Bayes Discrepancy via Hellinger

Distance

The purpose of this section is to state and prove the following theorem relating the quantity:

Γ(G0, G, ρ) :=

(

∫
∥

∥

∥

∥

∇fG(x)
max(fG(x), ρ)

− ∇fG0
(x)

max(fG0
(x), ρ)

∥

∥

∥

∥

2

fG0
(x)dx

)1/2

. (4.99)

for ρ > 0 and two probability measures G0 and G on Rd in terms of the squared Hellinger
distance between fG and fG0

. This result is crucial for the proof of Theorem 4.4.1.

Theorem 4.9.1. There exists a universal positive constant C such that for every pair of
probability measures G and G0 on Rd and 0 < ρ ≤ (2π)−d/2e−1/2, we have

Γ2(G0, G, ρ) ≤ Cdmax

{

(

log
(2π)−d/2

ρ

)3

, | logH(fG, fG0
)|
}

H
2(fG, fG0

) (4.100)

where Γ(G0, G, ρ) is defined as in (4.99).
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The above theorem is a generalization of Jiang and Zhang [63, Theorem 3] to the case
when d ≥ 1. Its proof given below follows Jiang and Zhang [63, Proof of Theorem 3] with
appropriate changes to deal with the d ≥ 1 case. Lemma A.0.2 and Lemma A.0.3 from
Section A will be used in this proof.

Proof of Theorem 4.9.1. For real numbers a and b, we denote max(a, b) by a∨b. For functions
u : Rd → Rd, we let

‖u‖0 :=
(∫

‖u(x)‖2 fG0
(x)dx

)1/2

so that

Γ(G0, G, ρ) =

∥

∥

∥

∥

∇fG
fG ∨ ρ

− ∇fG0

fG0
∨ ρ

∥

∥

∥

∥

0

=

∥

∥

∥

∥

∇fG
fG ∨ ρ

− 2∇fG
fG ∨ ρ+ fG0

∨ ρ + 2
∇fG −∇fG0

fG ∨ ρ+ fG0
∨ ρ +

2∇fG0

fG ∨ ρ+ fG0
∨ ρ −

∇fG0

fG0
∨ ρ

∥

∥

∥

∥

0

≤ 2 max
H∈{G,G0}

∥

∥

∥

∥

(∇fH)|fG ∨ ρ− fG0
∨ ρ|

(fH ∨ ρ) (fG ∨ ρ+ fG0
∨ ρ)

∥

∥

∥

∥

0

+ 2

∥

∥

∥

∥

∇fG −∇fG0

fG ∨ ρ+ fG0
∨ ρ

∥

∥

∥

∥

0

,

where we have used the triangle inequality for ‖‖0 in the last step. Let us represent the two
terms on the right hand side above by T1 and T2 respectively so that Γ(G0, G, ρ) ≤ T1 + T2.
We shall now bound T1 and T2 separately. For T1, we use inequality (A.2) in Lemma A.0.2
(note that we have assumed 0 < ρ ≤ (2π)−d/2e−1/2). This inequality allows us to bound T1
as follows:

1

4
T 2
1 = max

H∈{G,G0}

∫ ‖∇fH‖2 (fG ∨ ρ− fG0
∨ ρ)2

(fH ∨ ρ)2 (fG ∨ ρ+ fG0
∨ ρ)2

fG0

≤
[

log
(2π)−d

ρ2

] ∫

(fG ∨ ρ− fG0
∨ ρ)2

(fG ∨ ρ+ fG0
∨ ρ)2

fG0

≤
[

log
(2π)−d

ρ2

] ∫

(fG − fG0
)2

(fG ∨ ρ+ fG0
∨ ρ)2

fG0

=

[

log
(2π)−d

ρ2

] ∫

(

√

fG −
√

fG0

)2
(√

fG +
√

fG0

)2

(fG ∨ ρ+ fG0
∨ ρ)2

fG0

≤ 2

[

log
(2π)−d

ρ2

] ∫

(

√

fG −
√

fG0

)2 (fG + fG0
)

(fG ∨ ρ+ fG0
∨ ρ)2

fG0

= 2

[

log
(2π)−d

ρ2

] ∫

(

√

fG −
√

fG0

)2
{

fG + fG0

fG ∨ ρ+ fG0
∨ ρ

}{

fG0

fG ∨ ρ+ fG0
∨ ρ

}

≤ 2

[

log
(2π)−d

ρ2

] ∫

(

√

fG −
√

fG0

)2

= 2

[

log
(2π)−d

ρ2

]

H
2(fG, fG0

)
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which gives

T1 ≤ 2
√
2H(fG, fG0

)

√

log
(2π)−d

ρ2
. (4.101)

We shall now deal with T2. This requires an elaborate argument. Start by writing

1

4
T 2
2 =

∫ ‖∇fG −∇fG0
‖2

(fG ∨ ρ+ fG0
∨ ρ)2

fG0

=

∫ ‖∇fG −∇fG0
‖2

fG ∨ ρ+ fG0
∨ ρ

(

fG0

fG ∨ ρ+ fG0
∨ ρ

)

≤
∫ ‖∇fG −∇fG0

‖2
fG ∨ ρ+ fG0

∨ ρ =
d
∑

i=1

∆2
i,1 (4.102)

where, for 1 ≤ i ≤ d and k ≥ 0,

∆2
i,k :=

∫

(

∂ki (fG − fG0
)
)2

fG ∨ ρ+ fG0
∨ ρ with ∂ki f :=

∂k

∂xki
f.

The next task therefore is to bound ∆2
i,1 from above. Before dealing with ∆2

i,1, let us first
note that it is easy to bound ∆i,0 by the Hellinger distance between fG and fG0

. Indeed, we
can write

∆2
i,0 =

∫

(fG − fG0
)2

fG ∨ ρ+ fG0
∨ ρ =

∫

(

√

fG −
√

fG0

)2 (
√
fG +

√

fG0
)2

fG ∨ ρ+ fG0
∨ ρ

≤ 2

∫

(

√

fG −
√

fG0

)2 (fG + fG0
)

fG ∨ ρ+ fG0
∨ ρ ≤ 2H2(fG, fG0

).

(4.103)

A simple upper bound for ∆2
i,k for general k ≥ 1 can be obtained via Lemma A.0.3. Indeed,

noting that (via fG ∨ ρ+ fG0
∨ ρ ≥ 2ρ)

∆2
i,k ≤

1

2ρ

∫

(

∂ki (fG − fG0
)
)2

we can apply Lemma A.0.3 to deduce that

∆2
i,k ≤

2(2π)−d/2

ρ

{

a2kH2(fG, fG0
) +

√

2

π
a2k−1e−a

2

}

for every a ≥
√
2k − 1. (4.104)

The problem with this bound is the presence of ρ in the denominator. This ρ will be, in
applications of Theorem 4.9.1, of the order n−1 which makes the above bound quite large.
The more refined argument below will get rid of the ρ factor in the denominator. This
argument involves integration by parts for bounding ∆2

i,1. It will be clear that the use of
integration by parts will result in expressions involving ∆2

i,k for k ≥ 2. It will then become
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necessary to deal with ∆2
i,k for k ≥ 2 even though we are only interested in ∆2

i,1. Indeed,
integration by parts gives, for k ≥ 1,

∆2
i,k = −

∫

[

∂k−1
i (fG − fG0

)
] [

∂ki (fG − fG0
)
]

∂i

(

1

fG ∨ ρ+ fG0
∨ ρ

)

−
∫

[

∂k−1
i (fG − fG0

)
] [

∂k+1
i (fG − fG0

)
]

fG ∨ ρ+ fG0
∨ ρ . (4.105)

Note now that, almost surely
∣

∣

∣

∣

∂i

(

1

fG ∨ ρ+ fG0
∨ ρ

)∣

∣

∣

∣

≤ |∂ifG|+ |∂ifG0
|

(fG ∨ ρ+ fG0
∨ ρ)2

≤ |∂ifG|/(fG ∨ ρ) + |∂ifG0
|/(fG0

∨ ρ)
fG ∨ ρ+ fG0

∨ ρ

≤ ‖∇fG‖ /(fG ∨ ρ) + ‖∇fG0
‖ /(fG0

∨ ρ)
fG ∨ ρ+ fG0

∨ ρ

≤ 2

fG ∨ ρ+ fG0
∨ ρ

√

log
(2π)−d

ρ2

where, in the last inequality, we used (A.2) in Lemma A.0.2. Imputing the above inequality
into (4.105), we obtain

∆2
i,k ≤ 2

√

log
(2π)−d

ρ2

∫

∣

∣∂k−1
i (fG − fG0

)
∣

∣

∣

∣∂ki (fG − fG0
)
∣

∣

fG ∨ ρ+ fG0
∨ ρ +

∫

∣

∣∂k−1
i (fG − fG0

)
∣

∣

∣

∣∂k+1
i (fG − fG0

)
∣

∣

fG ∨ ρ+ fG0
∨ ρ .

Applying the Cauchy-Schwarz inequality to each of the two terms on the right hand side
above, we obtain

∆2
i,k ≤ 2

√

log
(2π)−d

ρ2

√

∫

(

∂k−1
i (fG − fG0

)
)2

fG ∨ ρ+ fG0
∨ ρ

√

∫

(

∂ki (fG − fG0
)
)2

fG ∨ ρ+ fG0
∨ ρ

+

√

∫

(

∂k−1
i (fG − fG0

)
)2

fG ∨ ρ+ fG0
∨ ρ

√

∫

(

∂k+1
i (fG − fG0

)
)2

fG ∨ ρ+ fG0
∨ ρ

which can be rewritten as

∆2
i,k ≤ Υ∆i,k−1∆i,k +∆i,k−1∆i,k+1 where Υ := 2

√

log
(2π)−d

ρ2
. (4.106)

The strategy to bound ∆i,1 is now as follows. Divide both sides of (4.106) by ∆i,k−1∆i,k to
get

∆i,k

∆i,k−1

≤ Υ+
∆i,k+1

∆i,k

for every k ≥ 1. (4.107)
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Fix an integer k0 ≥ 1 and a real number β > 0. Our bound on ∆i,1 will depend on k0 and β
and the bound will be optimized for k0 and β at the end.

Suppose first that there exists an integer 1 ≤ k ≤ k0 such that ∆i,k+1 ≤ β∆i,k. Then
applying (4.107) recursively for 1, . . . , k, we obtain

∆i,1

∆i,0

≤ kΥ+ β

so that, by (4.103),

∆i,1 ≤ (kΥ+ β)∆i,0 ≤
√
2 (kΥ+ β)H(fG, fG0

) ≤
√
2 (k0Υ+ β)H(fG, fG0

). (4.108)

Now suppose that ∆i,k+1 > β∆i,k for every integer 1 ≤ k ≤ k0. In this case, we deduce from
(4.107) that

∆i,k

∆i,k−1

≤ Υ+
∆i,k+1

∆i,k

≤
(

1 +
Υ

β

)

∆i,k+1

∆i,k

for every k = 0, . . . , k0.

A recursive application of this inequality implies that

∆i,1

∆i,0

≤
(

1 +
Υ

β

)k
∆i,k+1

∆i,k

for every k = 0, . . . , k0.

To obtain a bound for ∆i,1/∆i,0 that depends only on ∆i,k0+1 and ∆i,0, one can take the
geometric mean of the above inequality for k = 0, 1, . . . , k0. This gives

∆i,1

∆i,0

≤
(

k0
∏

k=0

(

1 +
Υ

β

)k
∆i,k+1

∆i,k

)1/(k0+1)

=

(

1 +
Υ

β

)k0/2

∆
1/(k0+1)
i,k0+1 ∆

−1/(k0+1)
i,0

which is same as

∆i,1 ≤
(

1 +
Υ

β

)k0/2

∆
1/(k0+1)
i,k0+1 ∆

k0/(k0+1)
i,0

Now using (4.103) and the bound (4.104) (with k = k0 + 1), we obtain

∆i,1 ≤
(

1 +
Υ

β

)

k0
2

(

2(2π)−d/2

ρ

[

a2k0+2
H

2(fG, fG0
) +

√

2

π
a2k0+1e−a

2

]) 1
2k0+2

(

2H2(fG, fG0
)
)

k0
2k0+2

(4.109)
for every a ≥

√
2k0 + 1. The final bound obtained for ∆i,1 is the maximum of the right

hand side above and the right hand side of (4.108). This bound will need to be optimized
by choosing k0, β and a ≥

√
2k0 + 1 appropriately.

β will be chosen as β = k0Υ so that the bound (4.108) becomes 2
√
2k0ΥH(fG, fG0

) and
the term (1 + Υ/β)k0/2 appearing in (4.109) is bounded by

√
e. To select k0, the key is to

focus on the term involving ρ in (4.109) which is

(

(2π)−d/2

ρ

)1/(2k0+2)

= exp

(

Υ2

16(k0 + 1)

)

.
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This suggests taking k0 to be the smallest integer ≥ 1 such that k0 + 1 ≥ Υ2/8 so that the
above term is at most

√
e. Finally a will be taken to be

a := max
(

√

2k0 + 1,
√

2 |logH(fG, fG0
)|
)

which will ensure that e−a
2 ≤ H2(fG, fG0

) and the term involving a in (4.109) can then be
bounded by

(

a2k0+2
H

2(fG, fG0
) +

√

2

π
a2k0+1e−a

2

) 1
2k0+2

≤ a

(

1 +

√

2

π

) 1
2k0+2

(H(fG, fG0
))

1
k0+1

≤
(

1 +

√

2

π

)

a (H(fG, fG0
))

1
k0+1

≤ 2a (H(fG, fG0
))

1
k0+1 .

We have therefore proved that the right hand side in (4.109) is bounded from above by
2
√
2eaH(fG, fG0

). Because ∆i,1 is bounded by the maximum of the bounds given by (4.108)
and (4.109), we obtain:

∆i,1 ≤ 2
√
2max {k0Υ, ea}H(fG, fG0

) ≤ 2
√
2max

{

k0Υ, e
√

2k0 + 1, e
√

2| logH(fG, fG0
)|
}

H(fG, fG0
).

Now because k0 is chosen to be the smallest integer ≥ 1 such that k0 + 1 ≥ Υ2/8, we have

k0 ≤ 1 +
Υ2

8
= log

e(2π)−d/2

ρ
≤ 3

2
log

(2π)−d/2

ρ

because ρ ≤ (2π)−d/2e−1/2. This, along with the expression for Υ, gives

∆i,1 ≤ Cmax

{

(

log
(2π)−d/2

ρ

)3/2

,
√

| logH(fG, fG0
)|
}

H(fG, fG0
)

where C is a universal positive constant. Combining with (4.102), we deduce that

T 2
2 ≤ Cdmax

{

(

log
(2π)−d/2

ρ

)3

, | logH(fG, fG0
)|
}

H
2(fG, fG0

).

The proof of Theorem 4.9.1 is now completed by combining the above inequality with the
bound (4.101) and the fact that Γ(G0, G, ρ) ≤ T1 + T2 (which implies that Γ2(G0, G, ρ) ≤
2T 2

1 + 2T 2
2 ).
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Appendix A

Auxiliary results for Chapter 4

This section collects various results which were used in the proofs of the main results of the
chapter. We start with the following lemma which is standard and is stated without proof.

Lemma A.0.1. Suppose X|θ ∼ N(θ, σ2Id) and θ ∼ G. Then

E (θ|X) = X + σ2∇fG(X)

fG(X)

and

E

∥

∥

∥

∥

X + σ2∇fG(X)

fG(X)
− θ
∥

∥

∥

∥

2

= dσ2 − σ4

∫
∥

∥

∥

∥

∇fG
fG

∥

∥

∥

∥

2

fG.

The following lemma generalizes Jiang and Zhang [63, Lemma A.1] to the case d ≥ 1.

Lemma A.0.2. Fix a probability measure G on Rd. For every x ∈ Rd, we have (‖·‖ denotes
the usual Euclidean norm on Rd)

(‖∇fG(x)‖
fG(x)

)2

≤ tr

(

Id +
HfG(x)

fG(x)

)

≤ log
(2π)−d

f 2
G(x)

(A.1)

where ∇ and H stand for gradient and Hessian respectively and tr denotes trace.
Also for every x ∈ Rd, we have

‖∇fG(x)‖
max (fG(x), ρ)

≤
√

log
(2π)−d

ρ2
0 < ρ ≤ (2π)−d/2e−1/2 (A.2)

and
(‖∇fG(x)‖

fG(x)

)2
fG(x)

fG(x) ∨ ρ
≤ log

(2π)−d

ρ2
for 0 < ρ ≤ (2π)−d/2e−1. (A.3)
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Proof of Lemma A.0.2. If θ ∼ G and X|θ ∼ N(θ, Id), then it is easy to verify that, for every
x ∈ Rd,

∇fG(x)
fG(x)

= E (θ −X|X = x)

and
HfG(x)

fG(x)
= −Id + E

(

(θ −X)(θ −X)T |X = x
)

. (A.4)

From here, we can deduce that

Id +
HfG(x)

fG(x)
= E

(

(θ −X)(θ −X)T |X = x
)

= (E(θ −X|X = x)) (E(θ −X|X = x))T + E
(

(θ − E(θ|X = x))(θ − E(θ|X = x))T |X = x
)

=
∇fG(x)
fG(x)

(∇fG(x))T
fG(x)

+ E
(

(θ − E(θ|X = x))(θ − E(θ|X = x))T |X = x
)

and hence

Id +
HfG(x)

fG(x)
� ∇fG(x)

fG(x)

(∇fG(x))T
fG(x)

(A.5)

where A � B means that A− B is non-negative definite.
Also from (A.4) and the convexity of A 7→ exp(tr(A)/2) (tr(A) denotes the trace of the

d× d matrix A), we have

exp

(

1

2
tr

(

Id +
HfG(x)

fG(x)

))

= exp

(

1

2
tr
(

E
(

(θ −X)(θ −X)T |X = x
))

)

≤ E

(

exp

(

1

2
tr(θ −X)(θ −X)T

)

|X = x

)

= E

(

exp

(

1

2
‖X − θ‖2

)

|X = x

)

=
(2π)−d/2

fG(x)

so that we have

tr

(

Id +
HfG(x)

fG(x)

)

≤ log
(2π)−d

f 2
G(x)

.

Combining with (A.5), we obtain (A.1).
To prove (A.2), note first from (A.1) that

‖∇fG(x)‖
max(fG(x), ρ)

≤
√

log
(2π)−d

f 2
G(x)

fG(x)

max(fG(x), ρ)
=







√

log (2π)−d

f2G(x)
≤
√

log (2π)−d

ρ2
if fG(x) > ρ

√

log (2π)−d

f2G(x)

fG(x)
ρ

if fG(x) ≤ ρ

The function v 7→ v log
(

(2π)−d/v
)

is non-decreasing on (0, (2π)−d/e] and hence when f 2
G(x) ≤

ρ2 ≤ (2π)−d/e, the inequality
√

log
(2π)−d

f 2
G(x)

fG(x)

ρ
≤
√

log
(2π)−d

ρ2
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holds and this proves (A.2).
We now turn to (A.3). Whenever fG(x) ≥ ρ, note that (A.3) follows directly from (A.2).

Thus, (A.3) only needs to be established when fG(x) < ρ. In this case using (A.1),

(‖∇fG(x)‖
fG(x)

)2
fG(x)

max{fG(x), ρ}
≤
(

fG(x)

ρ

)

log
(2π)−d

f 2
G(x)

= 2 log
(2π)−d/2

fG(x)

fG(x)

ρ

From here we note that v 7→ v log
(

(2π)−d/v2
)

is non-decreasing on (0, (2π)−d/2/e]. This,
along with fG(x) < ρ, immediately implies (A.3).

For an infinitely differentiable function u : Rd → R, 1 ≤ i ≤ d and k ≥ 1, let ∂ki u : Rd → R
denote the function

(∂ki u)(x) :=
∂k

∂xki
u(x).

Lemma A.0.3. For every pair of probability measures G and G0 on Rd, 1 ≤ i ≤ d and
k ≥ 1, we have

∫

{

∂ki (fG(x)− fG0
(x))

}2
dx ≤ 4(2π)−d/2 inf

a≥
√
2k−1

{

a2kH2(fG, fG0
) +

√

2

π
a2k−1e−a

2

}

.

(A.6)

Proof of Lemma A.0.3. Fix a ≥
√
2k − 1 and assume, without loss of generality, that i = 1.

Let

f ∗
G,1(u, x2, . . . , xd) :=

∫

eiux1fG(x)dx1

denote the Fourier transform of fG treated as a function of x1. The function f
∗
G0,1

is defined
analogously. For ease of notation, we shall suppress the dependence of f ∗

G,1(u, x2, . . . , xd)
(resp. f ∗

G0
(u, x2, . . . , xd)) on x2, . . . , xd below and write it simply as f ∗

G1
(u) (resp. f ∗

G0
(u)).

For every x2, . . . , xd, we then have (by Plancherel’s identity)

2π

∫

{

∂k1 (fG(x)− fG0
(x))

}2
dx1 =

∫

u2k
∣

∣f ∗
G,1(u)− f ∗

G0,1
(u)
∣

∣

2
du

≤ a2k
∫

∣

∣f ∗
G,1(u)− f ∗

G0,1
(u)
∣

∣

2
du+

∫

|u|>a
u2k
∣

∣f ∗
G,1(u)− f ∗

G0,1
(u)
∣

∣

2
du

= (2π)a2k
∫

(fG(x)− fG0
(x))2 dx1 +

∫

|u|>a
u2k
∣

∣f ∗
G,1(u)− f ∗

G0,1
(u)
∣

∣

2
du

(A.7)
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for every a > 0. Also note that for every u, x2, . . . , xd ∈ R,

f ∗
G,1(u) =

∫

eiux1
(∫

φd(x− θ)dG(θ)
)

dx1

=

∫ (∫

eiux1φd(x− θ)dx1
)

dG(θ)

=

∫

(2π)−d/2
[∫

eiux1e−(x1−θ1)2/2dx1

]

exp

(

−
∑

j 6=1

(xj − θj)2/2
)

dG(θ)

= (2π)−(d−1)/2

∫

eiux1e−u
2/2 exp

(

−
∑

j 6=1

(xj − θj)2/2
)

dG(θ)

so that
∣

∣f ∗
G,1(u)

∣

∣ ≤ (2π)−(d−1)/2e−u
2/2

∫

exp

(

−
∑

j 6=1

(xj − θj)2/2
)

dG(θ).

An analogous bound also holds for |f ∗
G0,1

(u)|. Using these bounds for f ∗
G,1(u) and f

∗
G0,1

(u),
the second term in (A.7) can be bounded from above as

∫

|u|>a
u2k
∣

∣f ∗
G,1(u)− f ∗

G0,1
(u)
∣

∣

2
du ≤ 2(2π)−(d−1)

∫

exp

(

−
∑

j 6=1

(xj − θj)2
)

{dG(θ) + dG0(θ)}
∫

|u|>a
u2ke−u

2

du

Thus integrating both sides of (A.7) with respect to x2, . . . , xd, we deduce that

2π

∫

{

∂k1 (fG(x)− fG0
(x))

}2
dx ≤ (2π)a2k

∫

(fG − fG0
)2 + 4(2π)−(d−1)/2

∫

|u|>a
u2ke−u

2

du.

which implies that
∫

{

∂k1 (fG(x)− fG0
(x))

}2
dx ≤ a2k

∫

(fG − fG0
)2 + 8(2π)−(d+1)/2

∫

u>a

u2ke−u
2

du.

We now use the integration by parts argument in Jiang and Zhang [63, Page 1675] which
gives

∫

u>a

u2ke−u
2

du ≤ a2k−1e−a
2

provided a ≥
√
2k − 1.

The proof of Lemma A.0.3 is now completed by noting that
∫

(fG − fG0
)2 ≤

∫

(

√

fG −
√

fG0

)2 (√

fG +
√

fG0

)2

≤ 4(2π)−d/2H2(fG, fG0
)

where we have used that every Gaussian mixture density fG is bounded from above by
(2π)−d/2.
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Lemma A.0.4. Let X1, . . . , Xn be independent random variables with Xi ∼ fGi
and Ḡn :=

(G1 + · · ·+Gn)/n. Let g : Rd → [0,∞) be a 1-Lipschitz function i.e.,

g(x)− g(y) ≤ ‖x− y‖ for all x, y ∈ Rd.

Also let µp(g) denote the pth moment of g under the measure Ḡn i.e.,

µp(g) :=

(∫

Rd

g(θ)pdḠn(θ)

)1/p

.

There then exists a positive constant Cd depending only on d such that

E

{

n
∏

i=1

|ag(Xi)|I{g(Xi)≥M}
}λ

≤ exp

{

Cda
λMλ+d−2 + (aM)λn

(

2µp(g)

M

)p}

(A.8)

for every a > 0,M ≥ √8 log n and 0 < λ ≤ min(1, p).
Further, there exists a positive constant Cd depending only on d such that

1

n

n
∑

i=1

P [g(Xi) ≥M ] ≤ Cd
Md−2

n
+ inf

p≥ d+1
2 logn

(

2µp(g)

M

)p

(A.9)

for any M ≥ √8 log n.

Proof of Lemma A.0.4. We write

E

{

n
∏

i=1

|ag(Xi)|I{g(Xi)≥M}
}λ

=
n
∏

i=1

E |ag(Xi)|λI{g(Xi)≥M}

≤
n
∏

i=1

{

1 + aλE
[

(g(Xi))
λI{g(Xi) ≥M}

]}

≤
n
∏

i=1

exp
(

aλE(g(Xi))
λI{g(Xi) ≥M}

)

= exp

(

aλ
n
∑

i=1

E
[

(g(Xi))
λI{g(Xi) ≥M}

]

)

= exp

(

naλ
∫

(g(x))λI{g(x) ≥M}fḠn
(x)dx

)

= exp
(

naλU
)

where

U :=

∫

(g(x))λI{g(x) ≥M}fḠn
(x)dx = E

[

(g(θ + Z))λI{g(θ + Z) ≥M}
]
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with independent random variables Z ∼ N(0, Id) and θ ∼ Ḡn. Because of the 1-Lipschitz
property of g, we have g(θ + z) ≤ g(θ) + ‖z‖ so that

U ≤ E(2‖Z‖)λI {2‖Z‖ ≥M}+ E(2g(θ))λI {2g(θ) ≥M} . (A.10)

The first term above will be bounded as

E
[

(2‖Z‖)λI{2‖Z‖ ≥M}
]

=MλE

[

( ‖Z‖
M/2

)λ

I{‖Z‖ ≥M/2}
]

≤MλE

[( ‖Z‖
M/2

)

I{‖Z‖ ≥M/2}
]

since λ ≤ 1

= 2Mλ−1 1

(2π)d/2

∫

‖x‖≥M/2

‖x‖e−‖x‖2/2dx

≤ CdM
λ−1

∫

r≥M/2

re−r
2/2rd−1dr ≤ CdM

λ+d−2e−M
2/8

where the last inequality follows from Lemma A.0.7. Because M ≥ √8 log n, we have
e−M

2/8 ≤ 1/n and this gives

E
[

(2‖Z‖)λI{2‖Z‖ ≥M}
]

≤ Cd
n
Mλ+d−2. (A.11)

For the second term in (A.10), note that (because λ ≤ p)

E
[

(2g(θ))λI{2g(θ) ≥M}
]

=Mλ

∫

g(θ)≥M/2

(

g(θ)

M/2

)λ

Gn(dθ)

≤Mλ

∫ (

g(θ)

M/2

)p

Gn(dθ) =Mλ

(

2µp(g)

M

)p

. (A.12)

The proof of (A.8) is now completed by putting together inequalities (A.10), (A.11) and
(A.12).

For (A.9), we first use an argument similar to the above to write

1

n

n
∑

i=1

P [g(Xi) ≥M ] = P [g(θ + Z) ≥M ]

where θ ∼ Ḡn and Z ∼ N(0, Id) are independent. Since g is 1-Lipschitz, g(θ+z) ≤ g(θ)+‖z‖.
Consequently,

P [g(θ + Z) ≥M ] ≤ P [2g(θ) ≥M ] + P [2‖Z‖ ≥M ]

Applying (A.11) and (A.12) with λ = 0 then concludes the proof of (A.9).
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Remark A.0.5. We shall apply Lemma A.0.4 to the function

dS(x) := inf
u∈S
‖x− u‖

for a fixed subset S of Rd. This function is clearly nonnegative and 1-Lipschitz. Inequality
(A.8) in Lemma A.0.4 then gives the inequality

E

{

n
∏

i=1

|adS(Xi)|I{dS(Xi)≥M}
}λ

≤ exp

{

Cda
λMλ+d−2 + (aM)λn

(

2µp(dS)

M

)p}

(A.13)

for all a > 0,M ≥ √8 log n and 0 < λ ≤ min(1, p).
Further, inequality (A.9) for g = dS gives

1

n

n
∑

i=1

P [dS(Xi) ≥M ] ≤ Cd
Md−2

n
+ inf

p≥ d+1
2 logn

(

2µp(dS)

M

)p

(A.14)

for all M ≥ √8 log n.
These two inequalities (A.13) and (A.14) hold under the same assumptions on X1, . . . , Xn

as in Lemma A.0.4.

Lemma A.0.6. Fix θ1, . . . , θn ∈ Rd. Suppose X1, . . . , Xn are independent random vectors
with Xi ∼ N(θi, Id) for i = 1, . . . , n. Let X denote the d × n matrix whose columns are
X1, . . . , Xn. For f ∈ M and ρ, let Tf (X, ρ) be defined as in the proof of Theorem 4.4.1 as
the d× n matrix whose ith column is given by the d× 1 vector:

Xi +
∇f(Xi)

max(f(Xi), ρ)
for i = 1, . . . , n.

Then for every f ∈M, 0 < ρ ≤ (2π)−d/2e−3/2 and x > 0, we have

P
{∥

∥

∥Tf (X, ρ)− TfḠn
(X, ρ)

∥

∥

∥

F
≥ E

∥

∥

∥Tf (X, ρ)− TfḠn
(X, ρ)

∥

∥

∥

F
+ x
}

≤ exp

( −x2
8L4(ρ)

)

(A.15)
where

L(ρ) :=

√

log
1

(2π)dρ2

and Ḡn denotes the empirical measure corresponding to θ1, . . . , θn.

Proof of Lemma A.0.6. Let

F (X) :=
∥

∥

∥
Tf (X, ρ)− TfḠn

(X, ρ)
∥

∥

∥

F
.
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We shall prove that F (X), as a function of X, is Lipschitz with constant 2L2(ρ) under the
Frobenius matrix on X i.e.,

|F (X)− F (Y)| ≤ 2L2(ρ) ‖X−Y‖F . (A.16)

Inequality (A.0.6) would then directly follow from the standard concentration inequality for
Lipschitz functions of Gaussian random vectors (see, for example, Boucheron, Lugosi, and
Massart [19, Theorem 5.6]). To prove (A.16), note first that

|F (X)− F (Y)| =
∣

∣

∣

∥

∥

∥
Tf (X, ρ)− TfḠn

(X, ρ)
∥

∥

∥

F
−
∥

∥

∥
Tf (Y, ρ)− TfḠn

(Y, ρ)
∥

∥

∥

F

∣

∣

∣

≤ ‖Tf (X, ρ)− Tf (Y, ρ)‖F +
∥

∥

∥
TfḠn

(X, ρ)− TfḠn
(Y, ρ)

∥

∥

∥

F
.

Note now that

‖Tf (X, ρ)− Tf (Y, ρ)‖2F =
n
∑

i=1

‖tf (Xi, ρ)− tf (Yi, ρ)‖2 (A.17)

where

tf (x, ρ) := x+
∇f(x)

max(f(x), ρ)
.

To bound ‖tf (Xi, ρ)− tf (Yi, ρ)‖, we compute the Jacobian of the map x 7→ tf (x, ρ) as

Jtf (x, ρ) =







Id +
Hf(x)
ρ

if f(x) < ρ

Id +
Hf(x)
f(x)

−
(

∇f(x)
f(x)

)(

∇f(x)
f(x)

)T

if f(x) > ρ

where ∇ and H denote gradient and Hessian respectively. We shall now argue that

0 � Jtf (x, ρ) � L2(ρ)Id (A.18)

where A � B means that B−A is a nonnegative definite matrix. Before proving (A.18), let
us first note that (A.18) implies

‖tf (x, ρ)− tf (y, ρ)‖ ≤ L2(ρ) ‖x− y‖

which further implies, via (A.17), that

‖Tf (X, ρ)− Tf (Y, ρ)‖2F ≤ L2(ρ) ‖X−Y‖2F .

Since this inequality holds for every f ∈ M, it also holds for fḠn
which gives (A.16) and

completes the proof of Lemma A.0.6.
It remains to prove (A.18). For this, we shall use the above expression for Jtf (x, ρ) as

well as inequality (A.1) from Lemma A.0.2 and inequality (A.5) from the proof of Lemma
A.0.2. First when f(x) > ρ, note that

Jtf (x, ρ) = Id +
Hf(x)

f(x)
−
(∇f(x)
f(x)

)(∇f(x)
f(x)

)T
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which is � 0 from (A.5) and, by (A.1), we get

0 � Jtf (x, ρ) � Id +
Hf(x)

f(x)
� tr

(

I +
Hf(x)

f(x)

)

Id � L2(f(x))Id � L2(ρ)Id

where, in the last inequality, we have used that L(·) is a decreasing function. Here tr denotes
trace. This proves (A.18) when f(x) > ρ. Now let f(x) < ρ. Then

Jtf (x, ρ) = Id +
Hf(x)

ρ
=

(

1− f(x)

ρ

)

Id +
f(x)

ρ

(

Id +
Hf

f

)

which is � 0 because f(x) < ρ and because of (A.5). Also, by (A.1),

Jtf (x, ρ) =

(

1− f(x)

ρ

)

Id +
f(x)

ρ

(

Id +
Hf

f

)

�
(

1− f(x)

ρ

)

Id +
f(x)

ρ
Idtr

(

Id +
Hf

f

)

�
(

1 +
f(x)

ρ

(

log
(2π)−d

f 2(x)
− 1

))

Id =

(

1 +
f(x)

ρ

(

L2(f(x))− 1
)

)

Id

The right hand side above is � L2(ρ)Id because t 7→ t(L2(t) − 1) is non-decreasing on
t ∈ (0, (2π)−d/2e−3/2] so that when f(x) < ρ, we have

1 +
f(x)

ρ

(

L2(f(x))− 1
)

≤ L2(ρ).

This proves (A.18) which completes the proof of Lemma A.0.6.

Lemma A.0.7. There exists a positive constant Ad depending only on d such that for every
M ≥ 1 and d ∈ {0, 1, 2, . . . }, we have

I(d) :=

∫

r≥M
rde−r

2/2dr ≤ AdM
d−1e−M

2/2. (A.19)

Proof of Lemma A.0.7. Let A0 := 1, A1 := 1 and define Ad for d ≥ 2 via the recursion
Ad := 1 + (d− 1)Ad−2. Clearly

I(0) =

∫

r≥M
e−r

2/2dr ≤
∫

r≥M

r

M
e−r

2/2 =M−1e−M
2/2

and

I(1) =

∫

r≥M
re−r

2/2dr = e−M
2/2

and thus inequality (A.19) holds for d = 0 and d = 1. For d ≥ 2, integration by parts gives

I(d) =Md−1e−M
2/2 + (d− 1)I(d− 2).

Inequality (A.19) for d ≥ 2 now easily follows by induction on d.
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Lemma A.0.8. Let S be a compact subset of Rd. For η,M > 0, define

v(x) :=







η if x ∈ SM

η
(

M
dS(x)

)d+1

otherwise
(A.20)

Then, for some constant Cd depending only on d,

∫

v(x)dx ≤ CdηVol
(

SM
)

(A.21)

Proof of Lemma A.0.8. We first write

∫

v(x)dx = ηVol
(

SM
)

+ ηMd+1

∫

x/∈SM

1

dS(x)d+1
dx (A.22)

Let N be the maximal integer such that there exist u1, . . . , uN ∈ S with

min
i 6=j
‖ui − uj‖ ≥M/2. (A.23)

The maximality of N implies that supu∈S min1≤i≤N ‖u − ui‖ ≤ M/2. As a result, for every
x ∈ Rd, by triangle inequality, we have

dS(x) = min
u∈S
‖x− u‖ ≥ min

1≤i≤N
‖x− ui‖ −

M

2

so that

∫

x/∈SM

dx

(dS(x))d+1
≤
∫

x/∈SM

(

1

min1≤i≤N ‖x− ui‖ −M/2

)d+1

dx

≤
N
∑

i=1

∫

x/∈SM

(

1

‖x− ui‖ −M/2

)d+1

dx

≤
N
∑

i=1

∫

‖x−ui‖≥M

(

1

‖x− ui‖ −M/2

)d+1

dx

= N

∫

‖x‖≥M

(

1

‖x‖ −M/2

)d+1

dx

= NCd

∫ ∞

M

(

1

r −M/2

)d+1

rd−1dr

= NCd

∫ ∞

M/2

t−d−1

(

M

2
+ t

)d−1

dt ≤ NCd

∫ ∞

M/2

t−d−1(2t)d−1dt =
NCd2

d

M
.

(A.24)
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Note now that because of (A.23), the balls B(ui,M/4), i = 1, . . . , N have disjoint interiors
and are all contained in SM/4. As a result

N ≤ Vol(SM/4)

Vol(B(0,M/4))
≤ Cd

Vol(SM)

Md
. (A.25)

The proof of Lemma A.0.8 is completed by putting together inequalities (A.22), (A.24) and
(A.25).

Lemma A.0.9. There exists a positive constant Cd such that for every compact set K ⊆ Rd

and real numbers ǫ > 0 and M > 0, we have

N(ǫ,K) ≤ Cdǫ
−dVol(Kǫ/2) (A.26)

and

Vol(K2M) ≤ CdVol(K
ǫ/2)

(

1 +
M

ǫ

)d

(A.27)

Proof of Lemma A.0.9. Let us first prove (A.26). Let a1, . . . , aN ∈ K be a maximal set of
points such that mini 6=j ‖ai − aj‖ ≥ ǫ. Then clearly N(ǫ,K) ≤ N . The balls B(ai, ǫ/2) for
i = 1, . . . , N have disjoint interiors and are all contained in Kǫ/2. As a result

N(ǫ,K) ≤ N ≤ Vol(Kǫ/2)

Vol(B(0, ǫ/2))
(A.28)

from which (A.26) follows.
To prove (A.27), note that the K is contained in the union of the balls B(ai, ǫ) for

i = 1, . . . , N . This implies that

K2M ⊆ ∪Ni=1B(ai, ǫ+ 2M)

so that
Vol(K2M) ≤ NVol(B(0, ǫ+ 2M)).

Inequality (A.28) then gives

Vol(K2M) ≤ Vol(Kǫ/2)

Vol(B(0, ǫ/2))
Vol(B(0, ǫ+ 2M)) ≤ CdVol(K

ǫ/2)

(

1 +
M

ǫ

)d

.

Lemma A.0.10. Fix a probability measure G on Rd and let 0 < ρ ≤ (2π)−d/2/
√
e. Let

L(ρ) :=

√

log
1

(2π)dρ2
.

Then there exists a positive constant Cd such that for every compact set S ⊆ Rd, we have

∆(G, ρ) :=

∫ (

1− fG
max(fG, ρ)

)2 ‖∇fG‖2
fG

≤ CdN

(

4

L(ρ)
, S

)

Ld(ρ)ρ+ d G(Sc). (A.29)
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Proof of Lemma A.0.10. The proof uses Lemma A.0.11.
Fix a compact set S. Suppose first that G is supported on S so that the second term in

(A.29) equals 0.
We consider two further special cases. First assume that S is contained in a ball of

radius a := 4/L(ρ). Without loss of generality, we may assume that the ball is centered at
the origin. Because G is assumed to be supported on S, we have ‖θ‖ ≤ a almost surely
under G.

For θ ∼ G and X|θ ∼ N(θ, Id), we can write

∇fG(x)
fG(x)

= E (θ −X|X = x)

so that

‖∇fG(x)‖
fG(x)

= ‖E (θ −X|X = x)‖ ≤ E (‖θ −X‖ |X = x) ≤ ‖x‖+ a. (A.30)

Note also that

(2π)−d/2 exp

(

−1

2
(‖x‖+ a)2

)

≤ fG(x) ≤ (2π)−d/2 exp

(

−1

2
(‖x‖ − a)2+

)

(A.31)

because (‖x‖−a)+ ≤ ‖x− θ‖ ≤ ‖x‖+a whenever ‖θ‖ ≤ a. This also implies that whenever
fG(x) ≤ ρ, we have

ρ ≥ (2π)−d/2 exp

(

−1

2
(‖x‖+ a)2

)

which gives

‖x‖+ a ≥ L(ρ) :=

√

log
1

(2π)dρ2
. (A.32)

Putting together (A.30), (A.31) and (A.32), we deduce that

∆(G, ρ) ≤
∫

{fG ≤ ρ}
(‖∇fG‖

fG

)2

fG

≤
∫

{‖x‖+a≥L(ρ)}
(‖x‖+ a)2 (2π)−d/2 exp

(

−1

2
(‖x‖ − a)2+

)

dx.

Moving to polar coordinates, we deduce

∆(G, ρ) ≤ Cd

∫ ∞

(L(ρ)−a)+
(r + a)2 exp

(

−(r − a)2+/2
)

rd−1dr.

Note now that with a := 4/L(ρ) and ρ ≤ (2π)−d/2/
√
e, we have 4a ≤ L(ρ) so that

∆(G, ρ) ≤ Cd

∫ ∞

L(ρ)−a
(r + a)2 exp

(

−(r − a)2/2
)

rd−1dr.
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By a change of variable r − a 7→ r, we obtain

∆(G, ρ) ≤ Cd

∫ ∞

L(ρ)−2a

(s+ 2a)2 exp
(

−s2/2
)

(s+ a)d−1ds.

Because 4a ≤ L(ρ), we have

s+ a ≤ s+ 2a ≤ s+ L(ρ)− 2a ≤ 2s

whenever s ≥ L(ρ)− 2a. Thus

∆(G, ρ) ≤ Cd

∫ ∞

L(ρ)−2a

sd+1e−s
2/2ds.

By Lemma A.0.7, we deduce that

∆(G, ρ) ≤ Cd(L(ρ))
d exp

(

−1

2
(L(ρ)− 2a)2

)

≤ Cd(L(ρ))
de2aL(ρ)e−L

2(ρ)/2 = Cdρ(L(ρ))
de2aL(ρ).

We now take

a :=
4

L(ρ)

which gives
∆(G, ρ) ≤ Cdρ(L(ρ))

d (A.33)

whenever G is supported on a set that is contained in a ball of radius a = 4/L(ρ).
For the rest of the proof, we shall use Lemma A.0.11. Now suppose that G is supported

on a general compact set S. Then, for N := N(a, S) (where a := 4/L(ρ)), let E1, . . . , EN
denote a disjoint covering of S such that each Ei is contained in a ball of radius a. We can
then write

G :=
N
∑

j=1

wjHj

where wj := G(Ej) and Hj is the probability measure G conditioned on Hj. The bound
(A.35) in Lemma A.0.11 then gives

∆(G, ρ) ≤
N
∑

j=1

wj∆(Hj, ρ/wj).

Because Hj is supported on a ball of radius at most a, we can use (A.33) on each Hj to
deduce that

∆(G, ρ) ≤ Cd

N
∑

j=1

wj
ρ

wj
Ld(ρ/wj) ≤ CdρN(a, S)Ld(ρ). (A.34)
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To bound ∆(G, ρ) for an arbitrary probability measure G, we write

G = w1H1 + w2H2

where w1 = G(S) = 1 − w2 and H1 and H2 are the probability measures obtained by
conditioning G on S and Sc respectively. Then clearly H1 is supported on a compact set S
so that the bound (A.34) can be used for ∆(H2, ρ/w2). For ∆(H1, ρ/w1), we use the trivial
bound d (see the first part of Lemma A.0.11). This gives (via (A.35))

∆(G, ρ) ≤ CdG(S)N(a, S)Ld(ρ)ρ+ d G(Sc) ≤ CdN(a, S)Ld(ρ)ρ+ d G(Sc)

which completes the proof of Lemma A.0.10.

Lemma A.0.11. For a probability measure G on Rd and ρ > 0, let

∆(G, ρ) :=

∫ (

1− fG
max (fG, ρ)

)2 ‖∇fG‖2
fG

The following pair of statements are then true.

1. For every G and ρ > 0, we have ∆(G, ρ) ≤ d.

2. Suppose G =
∑m

j=1wjHj for some probability measures H1, . . . , Hm and weights w1, . . . , wm.
Then

∆(G, ρ) ≤
m
∑

j=1

wj∆(Hj, ρ/wj) . (A.35)

Proof of Lemma A.0.11. To prove that ∆(G, ρ) ≤ d, note that if θ ∼ G and X|θ ∼ N(θ, Id),
then

∇fG(x)
fG(x)

= E (θ −X|X = x) .

As a result

∆(G, ρ) ≤
∫ ‖∇fG‖2

fG
= E ‖E(θ −X|X)‖2 ≤ E ‖θ −X‖2 = d.

For proving (A.35), note first that by the convexity of x 7→ ‖x‖2, we have

‖∇fG‖2
fG

=

∥

∥

∥

∑

j wj∇fHj

∥

∥

∥

2

∑

j wjfHj

=

∥

∥

∥

∥

∥

∑

j

(

wjfHj
∑

j wjfHj

)

∇fHj

fHj

∥

∥

∥

∥

∥

2(
∑

j

wjfHj

)

≤
{

∑

j

(

wjfHj
∑

j wjfHj

)
∥

∥∇fHj

∥

∥

2

f 2
Hj

}(

∑

j

wjfHj

)

=
∑

j

wj

∥

∥∇fHj

∥

∥

2

fHj

.
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This, along with the trivial inequality (here a ∨ b stands for max(a, b))

(

1− fG
fG ∨ ρ

)2

≤
(

1− fHj

fHj
∨ (ρ/wj)

)2

for every 1 ≤ j ≤ m

yields (A.35).

Lemma A.0.12. Suppose X1, . . . , Xn are independent observations with Xi ∼ N(θi, Id) for
some θ1, . . . , θn ∈ Rd. Let the Oracle Bayes estimators θ̂∗1, . . . , θ̂

∗
n be defined as in (4.5) where

Ḡn is the empirical measure of θ1, . . . , θn. Suppose that Ḡn is supported on a set {a1, . . . , ak}
of cardinality k with Ḡn{ai} = pi for i = 1, . . . , k with pi ≥ 0 and

∑k
i=1 pi = 1. Then

E

[

1

n

n
∑

i=1

∥

∥

∥
θ̂∗i − θi

∥

∥

∥

2
]

≤ k − 1

2
√
2π

∑

j,l:j 6=l
(pj + pl) ‖aj − al‖ exp

(

−1

8
‖aj − al‖2

)

. (A.36)

Proof of Lemma A.0.12. Note first that θ̂∗i has the following expression

θ̂∗i =

∑k
j=1 ajpjφd(Xi − aj)
∑k

j=1 pjφd(Xi − aj)
for i = 1, . . . , n.

The above expression and the fact that Xi − θi ∼ N(0, Id) lets us write

R := E

[

1

n

n
∑

i=1

∥

∥

∥θ̂∗i − θi
∥

∥

∥

2
]

=
k
∑

l=1

plE

∥

∥

∥

∥

∥

∑k
j=1 ajpjφd(al + Z − aj)
∑k

j=1 pjφd(al + Z − aj)
− al

∥

∥

∥

∥

∥

2

=
k
∑

l=1

plE

∥

∥

∥

∥

∥

∑k
j=1 (aj − al) pjφd(al + Z − aj)
∑k

j=1 pjφd(al + Z − aj)

∥

∥

∥

∥

∥

2

=
k
∑

l=1

plE

∥

∥

∥

∥

∥

∑

j:j 6=l
(aj − al)wjl(Z)

∥

∥

∥

∥

∥

2

where Z ∼ N(0, Id) and

wjl(Z) :=
pjφd(al + Z − aj)

∑k
u=1 puφd(al + Z − au)

for 1 ≤ j, l ≤ k.

The elementary inequality ‖∑m
i=1 αi‖

2 ≤ m
∑m

i=1 ‖αi‖
2 for vectors α1, . . . , αm ∈ Rd now lets

us write

R ≤ (k − 1)
k
∑

l=1

pl
∑

j:j 6=l
‖aj − al‖2 Ew2

jl(Z). (A.37)

We now bound Ew2
jl(Z) in the following way. Let

U :=
{

z ∈ Rd : ‖aj − al‖2 ≥ 2 〈Z, aj − al〉
}

.
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When Z /∈ U , we shall use the trivial upper bound w2
jl(Z) ≤ 1. When Z ∈ U , we shall use

the bound

w2
jl(Z) ≤ wjl(Z) ≤

pjφd(al + Z − aj)
plφd(al + Z − al)

=
pjφd(al + Z − aj)

plφd(Z)
.

This gives

Ew2
jl(Z) ≤ P {Z /∈ U}+

∫

pjφd(al + z − aj)
plφd(z)

I{‖aj − al‖2 ≥ 2 〈z, aj − al〉}φd(z)dz

The change of variable x = al + z − aj in the integral above allows us to write

Ew2
jl(Z) ≤ P

{

〈Z, aj − al〉 >
1

2
‖aj − al‖2

}

+
pj
pl
P

{

〈Z, aj − al〉 ≤ −
1

2
‖aj − al‖2

}

≤
(

1 +
pj
pl

)(

1− Φ

(

1

2
‖aj − al‖

))

where Φ is the standard univariate Gaussian cumulative distribution function. The bound
1− Φ(t) ≤ φ(t)/t for t > 0 now gives

Ew2
jl(Z) ≤

1

2
√
2π

(

1 +
pj
pl

)

1

‖aj − al‖
exp

(

−1

8
‖aj − al‖2

)

.

This bound, when combined with (A.37), yields (A.36) and hence completes the proof of
Lemma A.0.12.
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[17] Dankmar Böhning. “A review of reliable maximum likelihood algorithms for semi-
parametric mixture models”. In: J. Statist. Plann. Inference 47.1-2 (1995). Statistical
modelling (Leuven, 1993), pp. 5–28. issn: 0378-3758. url: https://doi.org/10.
1016/0378-3758(94)00119-G.
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[87] Odalric Maillard and Rémi Munos. “Compressed least-squares regression”. In: Ad-
vances in Neural Information Processing Systems. 2009, pp. 1213–1221.
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