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Abstract 

Two information-theoretic principles—maximum entropy, and minimum description 

length—dictate a computational model of associative learning that explains cue 

competition (assignment of credit) and response timing. The theory's primitives are two 

cue types—state cues and point cues—and two stochastic distributions.  The preferred 

stochastic model gives the relative code lengths for an efficient encoding of the data 

already seen; it predicts the data not yet seen; and the associated hazard function roughly 

predicts the observed timing of anticipatory (conditioned) behavior. State cues use the 

exponential distribution to encode, predict and time; point cues use a form of the 

Gaussian distribution that allows for event failure. An implementation of the refined 

minimum-description-length approach to stochastic model selection (Rissanen 1999) 

determines which stochastic model best compresses the data, and hence which is the best 

predictive model for a given protocol. The model brings into sharp focus the need to 

focus neurobiological inquiry on the coding question in memory.
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Introduction 

It is widely believed that brains compute but not in the way computers compute 

(Piccinini & Bahar, 2012). The grounds for belief in the uniqueness of neural 

computation are suspect because we know how computers compute but we don’t know 

how brains compute. A common belief is that all neural computation can be conceived of 

as signal processing by, for example, convolution networks that have been rewired by 

experience (LeCun, Bengio et al. 2015). 

In pure signal processing computations, transient signals generated by external events 

(stimuli) carry information into computational operations in the brain, where it is 

processed on line in real time, so memory is not required. More often than not, however, 

brains and computers process information extracted from experiences spread out in time 

and space and slowly accumulated in memory. Computers can do this because they have 

an addressable read-write memory into which information is put as it becomes available, 

and from which they retrieve information as it becomes relevant to further computation. 

By preserving accumulated information and the results of earlier computations in 

retrievable form, addressable read-write memory liberates computation from the tyranny 

of the current moment (Gallistel and King 2010). 

The computations that enable brains to navigate time and space imply the presence of 

a similar memory in the brain. Abstract quantities like distance, direction, duration and 

probability are encoded in retrievable form and kept over long retention intervals. The 

computations mediating spatial navigation depend on retrieving the global geometry of 

the experienced environment (Moser, Kripff et al. 2008, Gallistel and Matzel 2013), but 

the large-scale environment is experienced one small portion at a time, not all at once. 

Temporal navigation—the anticipation of future events—depends on the remembered 

durations of the intervals between different events experienced on different occasions in 

the past (Balsam and Gallistel 2009). Risk assessment in the “switch” paradigm depends 

on the remembered relative frequencies of short and long trials, which are separately 

experienced one by one over long stretches of time (Balci, Freestone et al. 2009, Kheifets 

and Gallistel 2012). What is common to these diverse examples is that the quantities 

involved—distances, directions, relative rates, relative frequencies, etc.—are summaries 

of the animal's experience over time: summaries that cannot be computed without some 

method of preserving information over time in a computationally accessible form. 

Hebbian synapses (more generally, plastic synapses)—the commonly assumed 

medium of memory—are not in and of themselves capable of encoding distances, 

directions, durations or probabilities (Gallistel and King 2010, Gallistel and Matzel 

2013). Alterations in synaptic conductances are the hypothesized physical realization of 

associative bonds. Associative bonds are not symbols; they affect signal flow through the 

system, but they do not encode any experiential fact. Thus, they cannot supply 

computational machinery with information that has been accumulated piecewise over 

time (Elman 1990). Nor can they supply computations with information that may be 

needed under circumstances quite different from those in which it was acquired, that is, in 
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the absence of the original stimuli. In defiance of this obvious fact, many neurally 

oriented timing models adopt a signal-processing stance. They do not assume that 

experienced durations are encoded in a temporally stable readable memory medium. 

Instead, they posit temporally patterned neural activities set in motion by stimuli. These 

differentially rising and falling traces of past events become selectively associated with 

anticipatory behavior (Grossberg and Schmajuk 1991, Fiala, Grossberg et al. 1996, Meck 

2003, Mauk and Buonomano 2004). In these models, experienced durations are not 

encoded in altered synaptic conductances. Neither are they encoded in the stimulus 

traces, because the traces are assumed to be innate properties of the stimulated neurons. 

The experienced intervals are merely implicit in the experience-altered neural circuitry. If 

you activate the circuit with the same stimuli that it experienced during the training 

experience, then it reproduces the interval that it experienced, but it does not encode that 

interval. In the absence of appropriate input from the environment, input that 

recapitulates input at the time the information was acquired, there is no way to read out 

what that interval was. 

Timing models that are intended to be neurobiologically plausible rest on the 

assumption that the kinetics of neuronal responses to stimuli allows the brain to 

reproduce previously experienced intervals. One may doubt the neural plausibility of 

such accounts when confronted with the fact that brains remember durations measured in 

hours (Gibbon, Baldock et al. 1977), but that is not the biggest problem with this 

approach to memory. A bigger problem is that these accounts are unique to duration. 

They give no idea how the brain remembers and processes a quantity like distance. From 

the nervous system's perspective, a distance of several kilometers is not a “stimulus” in 

any straightforward sense of the term, yet the nervous systems of navigating animals 

appear to operate on distances of this magnitude regularly. They store, retrieve, and 

combine them with other variables in the service of navigational computations. Distances 

measured in kilometers cannot be reproduced within the confines of the 1mm-in-diameter 

brain of an insect or even the 10mm-in-diameter brain of a rat, but distances are 

nonetheless remembered—and computed with—even by insects (Menzel, Fuchs et al. 

2011, Gallistel and Matzel 2013). The biggest problem is that there would appear to be 

no way to arithmetically combine quantities that are merely implicit in altered neural 

circuitry. How can the brain take an interval that is implicit in one neural circuit and 

subtract from it—or divide it by—an interval that is implicit in another neural circuit to 

produce a neural circuit in which the difference or ratio of those implicit input intervals is 

implicit? 

We believe that the goal of computational theories of behavior is to guide 

neurobiological inquiry—to tell us what is to be looked for within the nervous system. 

Thus, the first goal of a computational theory should be to parsimoniously explain a rich 

body of behaviorally established fact. A theory that does this can then serve as a guide to 

what to look for in the brain. Many aspects of the behavior produced by the Pavlovian 

and operant conditioning protocols commonly used to study associative learning have 

been shown to depend on differences and ratios between intervals demarcated by 

different events and experienced at different times in the course of training (Gallistel 

1990, Barnet and Miller 1996, Barnet, Cole et al. 1997, Savastano and Miller 1998, 

Arcediano, Escobar et al. 2003, Balsam and Gallistel 2009, Balsam, Drew et al. 2010). 
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And, it has repeatedly been shown that earlier experiences are re-encoded in the light of 

much later experiences (Matzel, Schachtman et al. 1985, Baker and Mercier 1989, Yin, 

Grahame et al. 1993, Blaisdell, Gunther et al. 1999, Arcediano, Escobar et al. 2003, 

Urushihara and Miller 2010). Thus, we want a theory that focuses on (i) how past 

experience is encoded in memory in a manner that allows it to be re-encoded in the light 

of later experience, and (ii) how that encoding can be used to predict future experience. 

 

The Analytic Theory of Associative Learning 

We call our theory the analytic theory of associative learning (TATAL), first because it is 

rooted in mathematical principles of optimal inference from states of extremely limited 

information—a computational problem that any well-designed mechanism for associative 

learning must be able to solve. Second, because it is implemented entirely with analytic, 

closed-form functions. The theory’s core assumption is that the brain encodes inter-event 

intervals and the cues that predict them, using one or the other of two stochastic model 

forms, the exponential and the Gaussian. These stochastic models enable compression of 

the data extracted from experience in such a way that they can be reconstituted in their 

originally registered precision (lossless compression). The same models enable prediction 

of future experiences of the same kind. 

The theory rests on a fundamental result in probabilistic inference: The model that 

achieves the greatest compression of data already seen is the model that best predicts data 

not yet seen (Grünwald, Myung et al. 2005). Thus, by asking not, “Which model is best?” 

but rather “How can the data of experience be best compressed?”, the problem of model 

selection can be solved essentially for free. By focusing on data compression, the nervous 

system achieves two highly desirable goals: efficient use of memory, and good prediction 

of the future. 

The theory is unusual among theories of associative learning in that: 1) There are no 

associative bonds (plastic synapses), hence no window of associability (Hawkins and 

Kandel 1984, Gluck and Thompson 1987) and no spike-timing dependent plasticity 

(Gallistel and Matzel 2013). 2) There is no ad hoc parsing of time into discrete trials prior 

to feeding experience to the model, as there is in most associative models (for example, 

Rescorla and Wagner 1972, Mackintosh 1975, Wagner 1981, McClaren, Kaye et al. 

1989, Dickinson 2001). 3) The computational model does not parse time into sequences 

of discrete states, as do reinforcement learning models (see Gershman, Moustafa et al. 

2014 for review). 4) There are no free parameters, hence no learning rates and no 

decaying stimulus traces. 5) Deciding between the two possible kinds of stochastic 

models mediates both cue competition (aka credit assignment) and the timing of 

conditioned responding. Thus, the theory tightly integrates what have been treated as 

separate aspects of associative learning. 6) The theory explains the parametric invariances 

in the acquisition and extinction of conditioned responses. These invariances constitute a 

serious explanatory challenge for associative theories of associative learning (Gallistel 

and Gibbon 2000, Balsam and Gallistel 2009, Gallistel 2012). 
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The theory is rooted in two information-theoretic principles that constrain the choice 

of stochastic forms (‘models’ in the statisticians’ sense): the maximum-entropy principle 

(Jaynes 1957, Jaynes 2003) and the minimum-description-length principle (Rissanen 

1978, Rissanen 1999, Grünwald, Myung et al. 2005). Both principles mediate the 

mathematical realization of Occam’s razor, construed as “assume as little as possible.” 

The maximum entropy principle counsels us to choose the model form that has the 

maximum entropy (maximum residual uncertainty) given the parameters to be estimated 

from the data. When only the first moment (the mean) is estimated, this principle dictates 

the choice of the exponential distribution if the data are real valued, like inter-event 

intervals, and the Bernoulli if they are binary (happens/doesn’t happen). When only the 

first two moments are estimated (the mean and standard deviation) and the data are real 

valued, the maximum entropy principle dictates the choice of the Gaussian distribution. 

 

 

Figure 1. BernoulliGauss 

functions 
B
G(L, p,𝜇,𝜎), for 

values of p ranging from 0.9 

(left column) to .5 (middle) to 

.1 (right). Elapsed Time = L 

(for latency). Top row gives 

the cumulative distributions; 

second row the probability 

density functions; third row 

the hazard functions. The 

values of these functions are 

2-element vectors (solid and 

dashed curves). See text for 

further explanation. 

  

 

In what follows, we will 

use the term BernoulliGauss to refer to an evitable Gaussian: that is, a Gaussian 

distribution whose event of interest may fail to occur. More concretely, a 

BernoulliGaussian 
B
G(p,µ,σ) is the distribution generated by a binary-outcome process 

(happens/doesn’t happen) unfolding in time in accord with a Gaussian distribution on t 

(Figure 1). It describes the expected location in time of an event that occurs with 

probability, p, following a point cue at an expected latency, µ, with an expected temporal 

dispersion measured by σ. 

The exponential distribution is the distribution of the intervals between events 

generated by a Poisson process (aka a random rate). The temporal locations of the events 

cannot be predicted, only their rate. Therefore, the exponential distribution can only be 
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signaled by states. State cues, by definition, have duration. The onset or offset of a state 

may serve as a point cue (a temporal landmark), but the state itself cannot so serve 

because it is spread out in time.  The BernoulliGauss, by contrast, can only be signaled by 

a point cue, an event that marks a point in time, from which a latency can be measured, as 

in delay conditioning and trace conditioning protocols. Thus, we have two possible cue-

model pairs: state-exponential and point-BernoulliGauss, hereafter denoted by State_E 

and Point_
B
G. 

The minimum-description-length principle is that the more a stochastic model enables 

lossless compression of data already seen, the better it predicts the data not yet seen. 

Thus, learning to better predict the future is the same as learning to better compress the 

data extracted from past experience (Barron, Rissanen et al. 1998, Grünwald, Myung et 

al. 2005)—provided that model complexity is properly taken into account. In our theory, 

this principle mediates the choice between the stochastic models permitted by the 

maximum-entropy-principle. 

A striking feature of the theory is that in solving the cue competition problem, it also 

solves the response-timing problem The issues of cue competition and response timing 

are together evident when considering Figure 2, which shows the first two CS 

presentations in an experimental protocol like Rescorla’s (1968) truly-random-control 

experiment. CS is short for a conditioned stimulus, a stimulus that may predict a 

motivationally significant event in conditioning protocol. The latter is called a US, short 

for unconditioned stimuli. In Figure 2, the potential CSs are the Background (aka the 

context), which is the chamber in which the protocol is run, and a transient tone, which 

comes on and goes off repeatedly while the subject is in the chamber. The constant 

presence of the background is indicated by the gray. The intermittent presence of the 

superimposed tone (conventionally, the CS) is indicated by the white boxes riding on the 

background gray. The US is indicated by the dot. 

 

Figure 2. Time line for the first two trials (CS presentations, white rectangles) in one of 

Rescorla’s (1968) protocols. The subject is introduced to the box (gray background) at 

Bon. The US is a shock to the feet. Its latency is L1 if measured from Bon or L2  if measured 

from CSon. The state cues are the Background (gray) and the CS (white). The point cues 

are the onsets and offsets of these states. The appropriate encoding and prediction model 

is ambiguous at time t (see text). 

At time t in Figure 2, there is massive ambiguity as to the best model for encoding the 

so-far experienced timing of US occurrences and predicting its recurrence. Four 1-cue 

stochastic models are consistent with the theory’s principles: 

Bck_Exp	  model.	  The	  shocks	  occur	  at	  random	  in	  the	  experimental	  chamber.	  That	  

the	  first	  one	  happens	  while	  the	  tone	  CS	  is	  present	  is	  pure	  coincidence.	  This	  was	  
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in	  fact	  the	  case	  in	  one	  of	  Rescorla’s	  (1968)	  protocols,	  the	  so-‐called	  truly	  

random	  control.	  

CS_ExpE	  model.	  USs	  occur	  randomly	  but	  only	  when	  the	  tone	  CS	  is	  present.	  This	  

was	  the	  case	  in	  Rescorla’s	  (1968)	  CS-‐US	  contingency	  protocol.	  

Bckon_BG	  model.	  Placement	  in	  the	  box	  predicts	  a	  shock	  at	  Latency	  1	  (cf	  Fanselow	  

1990).	  

CSon_BG	  model.	  Shocks	  occur	  with	  some	  probability	  less	  than	  1	  at	  Latency	  2	  

following	  the	  onsets	  of	  the	  tone	  CS,	  as	  in	  a	  delay	  conditioning	  protocol	  with	  

partial	  reinforcement.	  

Our computational realization of the minimum-description-length principle’s 

prescription for stochastic model selection explains the results observed in the classic cue 

competition experiments (Rescorla 1968, Wagner, Logan et al. 1968, Kamin 1969), 

including the retroactive blocking and unblocking versions of those experiments (Matzel, 

Schachtman et al. 1985, Yin, Grahame et al. 1993, Blaisdell, Gunther et al. 1999, 

Urushihara and Miller 2010). 

Its success rests on two fundamental results in information theory and statistics: i) 

Shannon’s efficient coding theorem and ii) Rissanen’s (1989) refined MDL solution to 

the problem of devising a language-independent measure of a stochastic model’s 

complexity. 

Shannon (1948) proved that a maximally efficient encoding of the data from a given 

source must encode the i
th

 possible datum with a code word whose length is proportionate 

to log2(1/pi), where pi is the probability of that datum from that source. His theorem 

establishes a monotone inverse mapping between the objective probabilities of the 

possible events for a given source and the optimal relative lengths of the code words, that 

is, the physically realized symbols by which those events may be represented in a 

receiver, such as the brain; the higher the probability of a datum, the shorter the optimal 

symbol for it. Samuel Morse understood this principle intuitively when he chose to 

symbolize ‘e’—the most frequent letter in English—with a dot, the shortest possible code 

in his system. 

The to-be-encoded events of principal interest in our theory are the homogeneous and 

heterogeneous inter-event intervals. A homogeneous inter-event interval is the interval 

between two events of the same kind, for example, between two USs of the same kind or 

between two successive onsets of the same CS. A heterogeneous inter-event interval is 

the interval between two different events, for example between a CS onset and a US, or 

between a CS onset and its offset, or between the onset of one CS and the onset of a 

different CS. 

By Shannon’s theorem, a scheme for encoding data into memory is an implicit 

stochastic model for the data it encodes, because an encoding implicitly assigns a relative 

frequency (probability) to each possible datum when it uses a code of a given length to 

stand for that datum. In an inefficient code, the relative lengths of the symbols do not 

match the logarithms of the inverses of the relative frequencies of the events to which 

they refer. ASCII is an inefficient code for the typographic characters on a keyboard, 
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because it assigns an 8-bit word to every character. It implicitly assumes that every 

character is used with equal frequency, which is far from the case. 

The more the probability distribution implicit in a coding scheme deviates from the 

optimal scheme, the less it compresses the encoded data and the more poorly the implicit 

stochastic model predicts future data from that source. The ASCII code is thus a terrible 

guide to the relative frequency with which different typographic elements are used. The 

Kullback-Leibler divergence gives, in bits per datum encoded, the cost of encoding data 

non-optimally, that is with a stochastic model that does not accurately represent the 

source statistics (Kullback 1987, Cover and Thomas 1991). The better a stochastic model 

is—that is, the more it captures non-random structure in the data—the higher the 

frequency-weighted average of the probabilities it assigns; hence the shorter the average 

code word. 

A stochastic model, like the exponential distribution or the Gaussian distribution or a 

regression model, assigns probabilities to possibilities. If two different models assign two 

different sets of probabilities to the same set of possibilities, then the model that assigns 

the better set (the set in which the assigned probabilities better match the actually 

experienced relative frequencies), is the better model, assuming the models are equally 

complex.  However, they may not be equally complex. In our case, a Point:
B
G model is 

more complex than a State:E model. Rissanen’s refined MDL method for measuring the 

cost of a stochastic model (Rissanen 1999, Grünwald, Myung et al. 2005) solves the 

problem of finding the happy medium in the trade-off between model complexity and 

model accuracy. Overly complex models find bogus structure in the data, which they use 

to achieve illusory data-coding efficiency, an efficiency that does not continue to be 

realized as more data come in. Moreover, because the structure they find is bogus, they 

badly predict the future. 

Rissanen elaborated a principle that enables one to compute the language-independent 

complexity of a stochastic model in the same currency (bits or nats) as the cost of 

encoding the data already seen using the symbol sizes dictated by the probabilities 

assigned by that model. The cost of encoding the model itself is a function only of its so-

called parametric complexity and the size of the data set. Thus, the cost of storing the 

stochastic model used to generate the code for the data appears as a surcharge on the 

amount of data encoded. The best model among those entertained is the one that achieves 

the lowest total cost, where total cost is the sum of the cost of encoding the data using 

word lengths dictated the stochastic model plus the cost of encoding the stochastic model 

itself. The models chosen in this way make the smallest demand on memory and best 

predict the future (Grünwald, Myung et al. 2005). We assume that in the evolution of the 

neurobiological machinery that encodes experience into a memory medium and uses that 

experience to anticipate future experience, the more efficient use of the memory medium 

and the accurate prediction of the future have both increased fitness.  

 

Solving the Cue Competition Problem 

If	  State_E	  models—models	  in	  which	  different	  state	  cues	  predicted	  different	  random	  

rates—were	  the	  only	  possible	  form	  of	  stochastic	  model,	  then	  the	  problem	  of	  finding	  
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the	  model	  that	  maximizes	  coding	  efficiency	  would	  be	  solved	  by	  the	  matrix-‐algebra	  

computation	  at	  the	  core	  of	  Rate	  Estimation	  Theory	  (Gallistel	  1990,	  Gallistel	  and	  

Gibbon	  2000):	  

	  

	   	   	   	   	  𝜆! = 𝑇
!!
𝜆!,	  

	  

where	  𝜆! = 𝜆!,𝜆!,… , 𝜆! 	  is	  the	  vector	  of	  corrected	  US	  rate	  assignments,	  one	  for	  

each	  state	  cue	  in	  the	  protocol,	  	  𝜆! = 𝑁! 𝑇!,𝑁! 𝑇!,… ,𝑁! 𝑇! 	  is	  the	  vector	  of	  raw	  

rates,	  and	  T	  is	  the	  temporal	  coefficient	  matrix:	  

	   	   	   	  
In	  this	  matrix	  computation,	  Ni	  is	  the	  cumulative	  count	  of	  USs	  that	  occur	  in	  the	  

presence	  of	  the	  ith	  state;	  Ti	  	  is	  the	  cumulative	  presence	  of	  the	  ith	  state	  (the	  reading	  on	  

a	  clock	  that	  runs	  only	  when	  the	  ith	  state	  is	  present,	  and	  never	  resets);	  and	  Ti,j	  is	  the	  

cumulative	  presence	  of	  the	  superposed	  ith	  and	  jth	  states	  (the	  reading	  on	  a	  clock	  that	  

runs	  only	  when	  those	  two	  state	  cues	  are	  superposed,	  and	  never	  resets). 

The matrix computation identifies the assignment of US rates to state cues that 

maximizes the likelihood, that is, the probability of the data. In so doing, it identifies the 

assignment that maximizes coding efficiency under the assumption that only exponential 

models are appropriate. 

An exponential model is not appropriate in delay and trace conditioning. In those 

protocols, the US repeatedly follows a point cue at a more or less fixed interval. In such 

cases, the BernoulliGauss distribution, which we denote by 
B
G, gives a more efficient 

encoding. The second stage of our computational model identifies the cases in which a 

Point:
 B

G model gives a better encoding than a State:E model. 

The cumulative 
B
G is a 2-element-vector function of L, the elapsing time, as 

measured from a point cue (Figure 1, top row). The first element of the vector function 

specifies the probability of the event’s having already happened; the second element 

specifies the complementary probability of its having not happened yet: 

 

  
B
G 𝐿,𝑝, 𝜇,𝜎 = 𝑝Φ 𝐿, 𝜇,𝜎 1− 𝑝 1−Φ 𝐿, 𝜇,𝜎 , 

 

where Φ is the cumulative normal distribution. The surprisal when the predicted event 

happens at latency L following the point predictor is – log𝑝 − logϕ 𝐿, 𝐿,𝜎 , where ϕ is 

the normal probability density function. The surprisal when it fails to happen at 
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approximately the expected time (𝐿) following the point predictor is –log(1-p). A failure 

is deemed to have occurred when the event does not occur within a latency of 1.5𝐿. 

When encoding the inter-event intervals that terminate with a US, the second stage of 

the computation compares distributions of the homogeneous US-US intervals to the 

distributions of heterogeneous intervals terminating in a US. In doing so it asks whether a 

cue other than the US itself does a better job of predicting the wait time for the next US. 

Both the homogeneous and the heterogeneous intervals are measured on a clock that runs 

only when the relevant state is present. 

In the case of delay conditioning, where the US occurs only during the CS and always 

at a fixed interval after CS onset, the first stage attributes a non-zero US rate only to the 

CS. Therefore, the second stage of computation—the model selection stage—considers 

only the models that could predict the USs that occur only in the presence of the CS. In 

Figure 2, the only heterogeneous interval that could predict the US in the presence of the 

CS is the CSon–>US interval. Therefore, the CSon:
B
G(p,µ,σ) model is 

B
G(p=0.5, µ=L2, 

σ=wL2), where w is the subject’s Weber fraction for the representation of duration. 

The Weber fraction, w, limits the scalar precision with which the brain represents a 

quantity. A consequence of this scalar limit on precision is that the σ parameter of the 
B
G 

function is defined even when there is only one datum, as in Figure 2, where there is only 

one US, hence only one L2. The competing state-cue model is CS:E(µ=L2). The CSon:
B
G 

model assigns higher probability to the L2 datum than does the CS:E model, first because 

its mode is at L2, and, second because it concentrates the probability mass around that 

mode. However, it has greater parametric complexity than the exponential model. Thus, 

the question is whether the greater complexity of this stochastic model form is justified 

by reduced data encoding costs. The total cost of encoding data vector, D, using 

stochastic model, M, is: 

 

   𝐶 𝐃
!
𝑀 = −log𝑃 𝐃 𝑀,𝜃 𝐃 + 𝐶𝑂𝑀𝑃! 𝑀 , 

 

where n is the length of the data vector. The first term is the probability of the data given 

both the stochastic model and the maximum likelihood estimate of its parameter vector, 

𝜃 𝐃 .  The second term is the so-called parametric complexity of the stochastic model. 

For the Bernoulli model, 

  

    𝐶𝑂𝑀𝑃! B = log
𝑛

𝑖

!

!

!
!!!

!!!

!!!

!

!!!

,  (1) 

 

which, for n > 100, is approximated by 

 

     𝐶𝑂𝑀𝑃! B =
!

!
log𝑛 + .2.     (2) 

We approximate the exponential model as a Bernoulli process by discretizing time 

into bins of width 𝜏, where 𝜏 is sufficiently small so that the p in the geometric 
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approximation to the exponential (the probability of an event falling in any one bin) is 

always very small. Then, the n for any inter-event interval, I, is correspondingly large, 

because we have chosen 𝜏 such that 𝑛 𝐼 = 𝐼 𝜏 ≫ 1 for all actual I. We then use (2) to 

approximate, the complexity of the exponential model by: 

 

   𝐶𝑂𝑀𝑃! ! E =
!

!
log

!

!
+ .2,     (3) 

 

where T is the cumulative presence of the predicting state. 

The parametric complexity of a Gaussian model is approximated by  

 

  𝐶𝑂𝑀𝑃!!" G = 1+ log
!
!

!
!!"

!!
,     (4) 

             

In	  this	  formula,	  𝑛!"	  is	  the	  number	  of	  USs,	  hence	  the	  number	  of	  Point–>US	  intervals	  

in	  the	  encoded	  data	  set.	  The	  encoded	  data	  set	  is	  comprised	  of	  the	  number	  of	  USs	  the	  

model	  imputes	  to	  a	  given	  point	  cue;	  w	  is	  the	  Weber	  fraction	  for	  the	  brain’s	  

representation	  of	  duration;	  and	  T	  is	  the	  maximum	  value	  that	  the	  latency	  could	  have	  

at	  a	  given	  point	  in	  the	  subject’s	  experience	  of	  that	  predictive	  state	  (Foster	  and	  Stine	  

2005). 

The complexity of the 
B
G model is given by either (1) + (4) or (2) + (4), depending on 

NCS, which is the number of CSon or CSoff. These numbers give the number of occasions 

on which the onset or the offset of the CS could have predicted a US. In a partial 

reinforcement protocol, NCS > NUS, because in such a protocol the CS often fails to 

predict a US, while every US is predicted by a CS. 

With these formulae, we compute the total costs of the candidate encodings as a 

function of time and trials, using one or another model. The protocol shown in Figure 2 is 

ambiguous: depending on how it further unfolds, four different 1-cue models may prove 

to deliver the best encoding of it. In Figure 3, we plot the total costs as these 4 possible 

protocols lead to different stochastic models: 

1. Subsequent USs (dots) are scattered at random without regard to the 

presence of absence of the CS. In that case, the B_E model prevails. This 

is Rescorla’s (1968) truly random control, in which the subject eventually 

attributes the USs to the background. 

2. Subsequent USs appear only when the CS is present but are scattered at 

random within the CS intervals. In that case, the CS_E model prevails. 

This is Rescorla’s (1968) contingency protocol in which the subject 

eventually attributes the USs to the CS. 

3. Further USs may occur but always at latency L2 following a CS onset. In 

that case, the CSon_
B
G model prevails. This is the delay conditioning 

protocol, the most common of protocols. The timing of the anticipatory 
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behavior (conditioned responses) produced by this protocol differs 

dramatically from the timing of the conditioned responses produced by 

Protocol 2—see following section on Response Timing. 

4. There is no 2
nd

 US so long as the session continues, but the US recurs at 

the same latency on each subsequent placement in the test chamber. In that 

case, the Bon_
B
G model prevails, because its cost does not increase with 

further unreinforced CS presentations, whereas the cost of encoding the 

data with the CSon_
B
G model does increase, because the estimate of its p 

parameter gets smaller and smaller. 

 

Figure 3. The total encoding costs as a function 

of time elapsed in the protocol. For each of 4 

protocols (top to bottom), 4 different models are 

considered (legend). The training time shown 

for a protocol is that required for the model 

with the lowest final cost to emerge as the best 

model. The final cost was the cost after 20 

sessions (120 minutes/session). The models with 

the lowest final cost are those that accord with 

the literature on cue competition for these 

protocols: In the Truly Random protocol, the 

USs are attributed to the context (Background); 

in the Contingent protocol, they are attributed 

to the CS state; in the Delay protocol, they are 

attributed to CSon; in the Bon:US protocol, they 

are attributed to Bon. Vertical segments indicate 

when the cost for a given model goes to, or 

returns from, infinity. For example, in the top 

plot, the costs of the CSon:
B
G, CS:E and 

Bon:
B
G go to infinity at shortly after 5 minutes, 

when the first ITI US occurs (and the 2
nd

 US in 

the first session), at which point, those three 

models become invalid because none of them 

can predict that US. The cost of the B:E model 

has been infinite up to this point, because it is 

ascribed 0 rate by the matrix computation.  With 

the occurrence of an ITI US, the background is 

no longer ascribed 0 rate and so the B:E model 

now predicts both the first and second US. 

 

Response Timing 

A	  stochastic	  distribution	  provides	  a	  suite	  of	  four	  parameterized	  functions:	  a	  

cumulative	  probability	  function,	  F;	  a	  probability	  mass	  or	  probability	  density	  
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function,	  F’;	  the	  survivor	  function,	  1-‐	  F,	  and	  the	  hazard	  function,	  F’/(1–F).	  Roughly	  

speaking,	  the	  hazard	  function	  gives	  the	  probability	  that	  the	  event	  will	  happen	  in	  the	  

next	  moment,	  given	  that	  it	  has	  not	  yet	  happened.	  Thus,	  the	  hazard	  function	  is	  a	  

natural	  basis	  for	  the	  timing	  of	  anticipatory	  behavior.	  

Associative theories of associative learning do not, generally speaking, attempt to 

explain the timing of conditioned responses. When they do attempt it, they make 

assumptions about the kinetics of different neurons activated by the CS. These 

assumptions introduce a large number of free parameters (Fiala, Grossberg et al. 1996, 

Meck 2003, Mauk and Buonomano 2004). The analytic theory explains cue competition 

and response timing using the assumptions already specified in the explanation of cue 

competition, with no free parameters. 

The exponential hazard function is flat; the probability that a US (aka a reinforcer) 

occurs in the next moment is independent of how long it has been since: 1) the last US; 2) 

observation began; 3) the Poisson process began generating USs. Thus, when the 

exponential model is used to encode the subject’s experience of US latencies and to 

anticipate their recurrence, one expects to see steady responding, as, in fact, one does. 

The best known example is the steady responding seen in variable interval schedules of 

reinforcement (Ferster and Skinner 1957, Gallistel, Craig et al. 2013), where the 

distribution of inter-reinforcement intervals is approximately exponential. 

There are also examples in the Pavlovian fear conditioning literature. Libby and 

Church (1975) used 4 protocols with foot shock as the US. The US occurred only during 

CS presentations. In two protocols, CS duration varied exponentially with an expectation 

of 1 m. In the other two, it was fixed at 1 m. The rate of US occurrence in the presence of 

the CS was 1/minute in all 4 protocols. 

 In one of the two protocols where CS duration varied exponentially, the fixed rate of 

US occurrence was achieved by having the US occur at a random rate of 1/minute 

whenever the CS was on. In the other, it was achieved by having a US occur at the 

termination of each CS. In either case, the US hazard stepped up abruptly when the CS 

came on and remained at that same higher level so long as the CS stayed on. As may be 

seen in Figure 4A, these protocols produced similar patterns of responding; the fear index 

went up abruptly at CS onset then subsided to a more or less flat level within 20 seconds 

of CS onset. There was no statistically significant decline in the fear ratio after 30 s into 

the CSs in either of these protocols. The abrupt overshoot in fear at CS onset is 

reminiscent of the overshoot in brightness at points were luminance abruptly increases. In 

other words, it is a contrast effect. Here, the transient overshoot occurs in response to an 

abrupt increase in the imminence of shock. The flat fear response later in a CS is 

predicted by the CS:E model’s flat hazard function. 

 In two protocols where CS duration was fixed at 1 minute, the pattern of responding 

differed dramatically depending on whether the CS occurred at a random rate during the 

CSs or at the termination of each CS (Figure 4B). In the first case, the US hazard 

decreased as the interval since CS onset increased, because the hazard of CS termination 

increased. In the second case, the US hazard was low at CS onset and increased 
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throughout the CS. In the first case, the fear index decreased throughout the CS; in the 

second case, it increased. Thus, in all 4 protocols, the pattern of responding reflects the 

US hazard, which is signaled by the hazard function for the stochastic model that TATAL 

predicts for that protocol. 

 

Figure 4. Mean fear ratio as a function of time since CS onset for 4 different fear-

conditioning protocols, in each of which shocks occurred at a rate of 1/m in the presence 

of the CS. A. CS duration random with 1m expectation. USs occurred either at CS 

termination or randomly during CS. B. CS duration fixed at 1m. USs occurred either 

randomly during CS or at its termination. Retraced from Figures 2 and 3 in Libby and 

Church (1975) with permission of the author(s) and the publisher. 

A well-known protocol for demonstrating the fundamental role of remembered 

reinforcement latency in associative learning is the peak protocol. In this protocol, CS 

onset signals that a US (a small amount of food) will be delivered with some probability 

(usually 0.5) in response to the first response made after a fixed interval has elapsed (the 

fixed reinforcement latency). On trials where the reinforcement (US) is not delivered 

(called peak trials), the CS persists for 3 or 4 times the expected reinforcement latency. 

Subjects trained on the peak protocol begin responding abruptly when some 

proportion of the reinforcement latency has elapsed. On peak trials (unreinforced trials), 

they cease responding equally abruptly when the elapsed time in the CS exceeds by some 

proportion the expected reinforcement latency (Cheng and Westwood 1993, Church, 

Meck et al. 1994, Gallistel, King et al. 2004). The proportions at which responding 

begins and ends vary from peak trial to peak trial. Averaging responding over the peak 

trials and normalizing by the maximum of the average gives the probability that the 

subject is responding as a function of the time elapsed since CS onset (Figure 5, solid 

curve). The dashed line in Figure 5 is the 
B
G hazard function when p = 0.5 and w = .33. 
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The 
B
G hazard function provides an appropriate time signal on which to base the 

decisions to start and stop responding. It does not, of course, predict the observed 

probability-of-responding curve exactly. One would not expect it to do so, because the 

abrupt onsets and offsets of responding are determined by the location of, and variability 

in, start and stop decision thresholds (Church, Meck et al. 1994). That is why there are 

marked between-subject differences in the exact forms of the peak functions. However, 

like the 
B
G hazard function, empirical peak functions always rise to a peak at the 

expected latency of reinforcement and then fall. That is, it provides the timing signal 

needed for an appropriately timed response. 

Figure 5. Probability of a conditioned responding 

(pecking at the illuminated key) as a function of 

time elapsed in peak trials for one pigeon in a 

protocol with a 50s feed latency following key 

illumination (solid curve, plotted against left axis) 

and the 
B
G hazard function for that latency with p 

= .5 and a Weber fraction of .33 (dashed curve, 

plotted against right axis). The behavioral data 

are from the laboratory of John Gibbon 

(deceased). 

 

In delay conditioning, the 
B
G hazard function drops to essentially 0 immediately after 

CS onset. Thus, although the onset of a CS shortens the anticipated wait for the next US, 

its immediate effect is to lower the US hazard. Fairhurst, Gallistel and Gibbon (2003) 

showed that this effect can be made behaviorally manifest using the peak protocol. They 

ran a peak protocol with two different CSs; one that predicted reinforcement at a 60 s 

latency; the other predicted reinforcement at a15 s latency. The two CSs occurred singly 

on some trials and together on others. When they occurred together, the onset of the CS 

that predicted reinforcement at a 60s latency was followed after 45 seconds by the onset 

of the CS that predicted reinforcement at a 15 s latency. Reinforcement occurred at the 

jointly predicted latency on 50% of all trials. On the 2-CS peak trials, the rise in the 

probability of responding in response to the 60s predictor was exactly the same as when 

the 60-s predictor occurred without the 15-s predictor, as it should be. However, at the 

onset of the 15-s predictor, the probability of responding dropped abruptly, only to rise 

again much more steeply as the 15 s latency elapsed. It is difficult to see how theories 

that explain anticipatory responding by postulating selective associations to neurons 

whose innate kinetics cause the activities stimulated by a CS to peak at different latencies 

could explain this result. In such a theory, the onset of the second CS should immediately 

increase the probability of a conditioned response, not reduce it. 

 

Inhibitory Conditioning 

Inhibitory	  state	  cues	  predict	  a	  reduction	  in	  the	  US	  rate.	  If,	  for	  example,	  USs	  occur	  

only	  in	  the	  absence	  of	  a	  tone,	  then	  the	  tone’s	  presence	  signals	  that	  the	  rate	  predicted	  

by	  the	  Background	  or	  Context	  is	  suppressed.	  
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Inhibitory point cues predict the failure of a US to occur at a time when it is otherwise 

expected. The protocols that convincingly show timed suppression employ three CSs, 

two of which, the excitatory CSs, predict a US coincident with their termination at the 

end of a fixed delay. During training, the third CS, the inhibitory CS, is presented 

together with one of the excitatory CSs on some trials. On those trials, the US fails to 

occur. As training proceeds, the anticipatory (conditioned) response to the excitatory CS 

is suppressed on the trials when it occurs in compound with the inhibitory CS. On test 

trials, the inhibitory CS is paired with the other excitatory CS, the one not used in the 

inhibitory training. It suppresses the anticipatory responses to that CS as well, but only if 

that excitatory CS predicts the US with the same latency as the one used in training. In 

other words, the inhibitory effect is localized in time, just as is the excitatory effect 

(Denniston, Cole et al. 1998, Burger, Denniston et al. 2001, Denniston, Blaisdell et al. 

2004). 

The computation of the inhibitory effects is the same as for the excitatory effects. The 

inhibitory CS may function as a state cue or as a point cue. In either case, the matrix 

computation gives a positive rate for the excitatory cue and a negative rate for the 

inhibitory cue. The second computational stage, the computation of model complexity 

computation, then determines which is the better inhibitory model, the CS:E model 

(State:Exponential) or the CSon:
B
G model (Point:BernoulliGauss). The CSon:

B
G model for 

an inhibitory CS prevails over the CS:E model when the onset of the excitatory cue 

predicts the time at which the US is expected and the inhibitory CS cancels or reduces the 

probability that the US occurs at that time. 

 Recall that the 
B
G function outputs a 2-element vector (Figure 1). For the cumulative 

B
G distribution, one element, 𝑝!, gives the probability as a function of time that the US 

will have happened (Figure 1, top, solid curves). This probability starts at 0 and rises to 

asymptote at p, the probability of a US on any given trial. The second element, 

𝑝! = 1− 𝑝! gives the probability that the US will not have happened yet; it starts at 1 and 

decreases to asymptote at 1–p (Figure 1, top, dashed curves). The decrease in the second 

element reflects the increase in the first, because the two elements must sum to 1 at every 

moment. 

The excitatory and inhibitory probability densities are the derivatives of the 

cumulative functions. In the typical delay inhibitory conditioning protocol, where the US 

always occurs when only the excitatory CS comes on and always fails to occur when the 

excitatory and the inhibitory CS both come on, 𝑝!, the probability density for the 

excitatory effect of the excitatory CS, and 𝑝!, probability density for the inhibitory effect 

of the inhibitory CS, are equal in magnitude and opposite in sign at all values of the 

latency. Their sum, therefore, is everywhere 0, which means that the hazard function is 

flat at 0 throughout the trial. 

The 
B
G function formalizes the notion of the No-US, which has long been an 

essential, but conceptually problematic feature of associative theories of associative 

learning (Gleitman, Nachmias et al. 1954, Gallistel 2012). The 
B
G formalization removes 

the conceptual difficulties by localizing the No-US in time, by making it specific to the 
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failure of an explicitly encoded US, and by distinguishing between inhibitory contexts 

(state cues) and inhibitory point cues (CS onsets and offsets). 

 The Parametric Invariances in Acquisition and Extinction 

Trials-‐to-‐acquisition	  is	  the	  number	  of	  CS	  presentations	  required	  before	  the	  (usually	  

abrupt,	  see	  Gallistel,	  Balsam	  et	  al.	  2004)	  appearance	  of	  an	  anticipatory	  response	  to	  

the	  CS	  (the	  conditioned	  response).	  It	  varies	  by	  as	  much	  as	  two	  orders	  of	  magnitude	  

from	  subject	  to	  subject	  (Gallistel,	  Balsam	  et	  al.	  2004,	  Papachristos	  and	  Gallistel	  

2006).	  It	  also	  depends	  on	  which	  conditioned	  response	  one	  chooses	  to	  record	  

(Gallistel,	  Craig	  et	  al.	  2013	  Figures	  5	  and	  6).	  The	  same	  is	  true	  for	  trials	  to	  extinction;	  

the	  number	  of	  successive	  unreinforced	  CS	  presentations	  required	  to	  suppress	  a	  

previously	  established	  conditioned	  response.	  Clearly,	  predicting	  trials	  to	  acquisition	  

and	  trials	  to	  acquisition	  requires	  free	  parameters	  that	  are	  adjusted	  subject-‐by-‐

subject	  and	  that	  differ	  for	  differing	  choices	  of	  the	  conditioned	  response	  that	  is	  to	  be	  

extinguished. 

We are interested in what a theory of associative learning can explain without resort 

to free parameters. We focus therefore on three robust parametric invariances observed in 

the acquisition and extinction of conditioned responses in classical conditioning 

protocols: 

i. Time-scale invariance: Median trials to acquisition is proportionate to the CS duty 

cycle, that is, to the ratio of TCS (cumulative time on the clock that runs whenever 

the CS is present) and TB (cumulative time on the clock that runs whenever the 

subject is in the conditioning context). The smaller this ratio is, the sooner the 

conditioned response appears. The duration of the CS has no effect on trials to 

acquisition in and of itself; varying CS duration varies trials to acquisition only if 

it varies the duty cycle (Gibbon and Balsam 1981, Gallistel and Gibbon 2000, 

Ward, Gallistel et al. 2012, Ward, Gallistel et al. 2013). The number of CS-US 

pairings (reinforced trials) delivered in a given amount of training time is also 

irrelevant to the progress of conditioning (Gottlieb 2008). These two aspects of 

the time-scale invariance of acquisition pose serious explanatory challenges to 

associative theories of associative learning. In those theories, the absolute interval 

between predictive CS and US and the number of CS-US pairings are the protocol 

parameters that principally determine the rate at which an association strengthens. 

ii. The number of reinforced trials to acquisition—trials on which the US predicted 

by the CS actually occurs—is invariant under partial reinforcement. Interpolating, 

for example, an average of 9 unreinforced trials between each reinforced trial 

does not increase the number of reinforced trials required for the conditioned 

response to appear (Gibbon, Farrell et al. 1980, Williams 1981, Gottlieb 2005, 

Harris 2011). Because the interpolation of unreinforced CS presentations weakens 

net excitatory strength in associative theories of associative learning, this 

invariance also constitutes a strong explanatory challenge for such theories. 
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iii. The number of expected reinforcements that must be omitted to extinguish a 

conditioned response is invariant under partial reinforcement; increasing the 

number of unreinforced CS presentations interpolated randomly between 

reinforced CS presentations by a factor of 10 during training increases trials to 

extinction by that same factor. Therefore, the number of expected reinforcements 

that have failed to occur when the conditioned response no longer occurs is 

unaltered by the partial reinforcement during training (Gibbon, Farrell et al. 

1980). In its qualitative form, this is known as the partial reinforcement extinction 

effect; partial reinforcement increases trials to extinction. This fact has 

constituted a strong explanatory challenge for associative theories of associative 

learning for more than half a century (Kimble 1961, pp. 318-329). 

 We can understand the parametric invariances by focusing on the information-

theoretic divergence of one stochastic distribution from another. The divergence, which is 

asymmetric (hence the emphasis on ‘of’ and ‘from’), is measured by the Kullback-

Leibler divergence of one distribution, Q, from another, P: 

   𝐷!" 𝑃||𝑄 = 𝑃 𝑖 log!

! !

! !
. 

When the stochastic model, Q, that currently dictates the encoding of the data diverges 

from a model, P, that would encode the data more economically, the Kullback-Leibler 

divergence measures the additional coding cost per datum encoded. The excess cost of 

using the poorer code to encode n data is: 

 

      𝑛𝐷!" 𝑃||𝑄 .     (5) 

Experiment shows that the stochastic differences that determine trials-to-acquisition 

depend only on the differences in the raw rate of US occurrence in a given context and 

the raw rate of US occurrence during CSs. The divergence of a normal distribution 

(assumed to be supported only on ℝ!) from an exponential may be factored into two 

terms (Balsam and Gallistel 2009), one dependent on the difference between the first 

moments (the expectations) and one dependent on the square root of the second moment 

of the normal distribution (𝜎). Experiment shows that median trials to acquisition 

depends only on the difference in the first moments (Ward, Gallistel et al. 2012). What 

matters in acquisition is the factor by which CS onset alters the expected wait time. This 

factor is ratio of the US rate in the presence of the conditioned stimulus ( 𝑁!"

!"
𝑇!") to the 

overall background rate, the rate when subject is in the test environment ( 𝑁!"

!
𝑇!). 

In excitatory acquisition, the CS_Exp model, which attributes the USs to the CS state, 

competes with the Bck_Exp model, which attributes them to the background state (aka 

the context). The Kullback-Leibler divergence of a lower random rate, 𝜆! ,  (for context 

rate) from a higher random rate, 𝜆!, (for trial rate, i.e., rate during a CS) is 𝑙𝑜𝑔 𝜆! 𝜆! =

𝑙𝑜𝑔 𝐶 𝑇 , where C denotes the contextual US cycle period. This period is 1 𝜆! . It is the 

average wait time for USs in the experimental context (without regard to whatever 

transient CSs may or may not be present from time to time). T denotes the average wait 

time during a delay trial, that is, 1 𝜆!. From this and (5), we see that the difference in 

encoding cost between the CS_Exp model and the Bck_Exp model in excitatory CS 
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conditioning grows as a scalar function of the C/T ratio. The duty cycle is the inverse of 

this ratio. That is why trials to acquisition is proportionate to the duty cycle, as was first 

shown by Gibbon and Balsam (1981). In other words, this well-established quantitative 

result is predicted by simple information-theoretic considerations.  

Reinforcing only on average every n
th

 CS presentation increases the expected wait time 

in the CS state by a factor of n. However, it also increases the background wait time (the US 

cycle period) by that same factor. Thus, partial reinforcement does not alter the CS duty 

cycle, the factor by which CS onset reduces the expected wait time. Therefore, the fact that 

partial reinforcement does not increase the number of reinforced CS presentations required 

for the conditioned response to appear is another manifestation of the time-scale invariance 

of acquisition. 

An often-advanced intuitive explanation for the partial reinforcement extinction effect 

(Mowrer and Jones 1945, Kimble 1961, Baum 2012) is that partial reinforcement during 

training makes it harder to distinguish the training state (when CSs or responses are 

occasionally reinforced) from extinction state (when CSs or responses are never reinforced). 

The Kullback-Leibler divergence quantifies this intuition. When the experimenter stops 

delivering USs at the start of extinction, the subject continues for some while to encode its 

experiences using the CSon_
B
G model, with the estimate for the Bernoulli p parameter 

developed during training. In extinction, that parameter estimate is no longer valid. For the 

Bernoulli distribution, which is supported on [0,1], the divergence of Q, the data-encoding 

distribution appropriate during training, from P which is now, in extinction, the better 

encoding distribution, is 

 

     𝑃 1 log
! !

! !
+ 𝑃 0 log

! !

! !
.    (6) 

 

That is, in extinction, the poorer stochastic model, Q, is the Bernoulli distribution in which 

 p = ptr, the probability of reinforcement during acquisition (initial training), while the better 

model is Bernoulli for which p = 0. Substituting 0 for P(1) and 1 for P(0) in (6), yields after 

some algebra 

 

     −log 𝑄 0 = log
!

! !
, 

 

from which we see, in accord with intuition, that the discriminability of the extinction state 

from the training state decreases as the probability of non-reinforcement during training 

increases. 

The effect on trials to extinction of the probability of non-reinforcement during training 

has been assessed over the range .9 ≥ Q(0) ≥0, that is, from reinforcement of every CS 

presentation to reinforcement of as few as a randomly chosen 1 in 10 (Gibbon, Farrell et al. 

1980). Over that range, the log of trials to extinction is a linear function of –log(Q(0)) with a 

slope of 1; see Figure 6. Thus, the higher the proportion of unreinforced trials during 

training, the more slowly evidence of the change accumulates. As may be seen in Figure 6, 

quantitative results on the partial reinforcement extinction effect—trials to extinction 

increases in proportion to the probability of non-reinforcement during training (Gibbon, 
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Farrell et al. 1980)—are explained by TATAL. The explanation requires no new 

assumptions, and it depends on no free parameters. Like trials to acquisition, it is 

quantitatively predicted by simple, analytic information-theoretic considerations. 

 

Figure 6. Trials to extinction vs the probability of an unreinforced CS presentation, 

p(~R), during training. Logarithmic scales. 

The data points derive from the regression 

lines in the top 4 panels of Gibbon, Farrell 

et al (1980). The solid line with slope 1 was 

placed by eye. Its good agreement with the 

data implies that the number of trials to 

extinction is proportionate to 

trials/reinforcement during training, as 

predicted by Kullback-Leibler divergence of 

the training distribution from the extinction 

distribution. 

	  

Assessing	  Model	  Viability	  

There are theoretical and empirical reasons to believe that subjects do not update their 

stochastic models observation by observation. On our theory, updating the model entails 

re-encoding the data in memory. The cost of doing so cannot be negligible. Therefore, 

from a theoretical perspective, model revision should not be undertaken unless the 

current model is no longer viable. This consideration is in the basic spirit of the theory, 

which is to keep the experience-encoding model as simple as possible, but no simpler. 

On the empirical side, the conditioning literature contains several examples of a 

paradoxical combination of behavioral stasis and abrupt change. For example, human 

subjects when estimating outcome-by-outcome the hidden parameter of a Bernoulli 

process do not change their estimate trial by trial. Despite the local variations in relative 

frequency inherent in a random sequence, they keep a constant estimate, sometimes for 

hundreds of successive trials—an example of behavioral stasis. However, when the 

hidden parameter does change, subjects respond quickly and abruptly (Gallistel, Krishan 

et al. 2014). 

There are similar results for non-human subjects: Given concurrent variable interval 

schedules, where rewards are delivered at two different locations at different random 

rates, animal and human subjects match the ratio of the average duration of their visits to 

the two locations to the ratio of the incomes flowing from those two sources. When 

computed reward-by-reward, the income flows are extremely noisy, because the intervals 

between the rewards at each location are distributed exponentially. The parameters of 

rats’ visits to these two locations are unaffected by these large, purely random reward-by-

reward fluctuations in the income flows—another example of behavioral stasis. However, 

when the rate parameters for the two exponentials change frequently, subjects (rats and 

mice) respond to each change in the income flows by changing the parameters of their 

visits quickly and abruptly (Mark and Gallistel 1994). These results and others of a 

Q(0) = p(~R)  (log scale)
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similar nature imply that stochastic models are updated only when the experiences they 

encode require an update. 

The stasis-vs-abruptness paradox led Gallistel et al (2014) to formulate a principle 

informally termed “if it ain’t broke, don’t fix it,” where ‘it’ refers to the current stochastic 

model. The reasoning behind the principle is that it is easier to determine whether the 

current stochastic model does justice to the data so far accumulated than to determine 

why it has failed and what needs to be done to fix or replace it. More often than not, the 

current model continues to be acceptable after an additional observation. Therefore, an 

efficient system should update its model (make new parameter estimates) only on those 

rare occasions when the latest experienced renders the current model no longer tenable. 

Implementing this principle requires a measure of the viability of the current model. 

The model-viability test proposed Gallistel et al (2014) relies on the surprisingly 

simple distributional properties of an easily computed information-theoretic statistic, 

𝑛D!" 𝑃||𝑄 , the product of the number of data encoded (n) and a Kullback-Leibler 

divergence,D!" 𝑃||𝑄 . The distributions whose divergence is measured (the P and Q 

distributions) both take the form of the current model for the encoded data vector D.  

They differ only as regards their estimates of values for its parameters. The P distribution 

uses estimates based on the entire vector. Therefore, its parameter estimates change, at 

least a little, almost every time a new datum is incorporated into D. The Q distribution 

uses the estimates that determine the current encoding of D, the estimates that will 

continue to determine the encoding as long as the current model continues viable. These 

estimates, the parameter estimates for the Q distribution, do not change as the data vector 

grows, unless the current encoding scheme is shown by the 𝑛D!" 𝑃||𝑄  statistic to be 

inefficient. 

For the Bernoulli model form, 

D!" 𝑃||𝑄 = 𝑃!log
𝑃!

𝑄!
+ 1− 𝑃! log

1− 𝑃!

1− 𝑄!
 

For the Gaussian model form, 

D!" 𝑃||𝑄 =

𝜎!
!
+ 𝜇! − 𝜇!

!

𝜎!
!

− 1+ log
𝜎!
!

𝜎
!

!

2
 

When the current model is correct, the distribution of the 𝑛D!" 𝑃||𝑄  statistic is 

gamma(.5,1) regardless of the sample size, n. This is proved to be the case for the 

Bernoulli distribution in Gallistel et al (2014). Because the exponential when discretized 

becomes the Bernoulli, this result also holds for the exponential. We have determined by 

simulation that this result also holds for the Gaussian. Therefore, a simple decision 

threshold on the nDKL statistic, can mediate the datum-by-datum decision whether or not 

to change the current model. This greatly reduces the computational burden on the 

system. It needs to evaluate alternatives to the current model only when the current model 

is no longer viable, which is rarely the case. 
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Finding Principles for Determining the On-Deck Models 

In the analytic theory, the minimum-description-length principle decides which is the best 

model from among the stochastic models that the system can generate. In practice, 

however, our system can generate a potentially infinite number of models. It can do so in 

response to parametric non-stationarities, that is, changes in the parameters of an 

otherwise viable model form, such as occur during extinction and reacquisition. Or, it can 

do so in response to changes in predictive cues. Or, it can do so in response to changes in 

the form of the encoding model. 

Non-stationarity. Both real life and experimental associative learning protocols have 

non-stationarities. Often these are simply changes in parameter values, as, for example, in 

extinction and reacquisition protocols, where the probability of reinforcement goes to 0 

during extinction then returns to its training value during reacquisition.  Each such 

change requires a new and more complex stochastic model. The new model has to 

specify the parameters before the change, the parameters after the change, and the change 

point. The non-stationarity of model parameters generates the simplest kind of compound 

model—concatenations of the same primitive model form with the same predictor cues, 

but with intermittent changes in its parameters. 

Changes in predictive cues. Early in conditioning, there are often changes in model 

cues and/or model form. When the first US occurs during a transient CS, as in Figure 2, 

the simplest model is the CS_Exp model. However, the occurrence of the first US during 

a CS may be what is colloquially called “just a coincidence.” Subsequent occurrences 

may reveal no contingency between that CS and the US. In that case, a model in which 

the background is the predictive state will replace the model in which the CS is the 

predictive state. 

Changes in stochastic form. On the other hand, subsequent occurrences may reveal a 

fixed latency from CS onset to the US, in which case a CSon_
B
G model will replace the 

CS_Exp model. Because these replacement models are not excluded by early experience, 

they should be kept on deck, so to speak. The fact that they are not much more complex 

than the current model and still viable should place them among the alternative models 

that are the first to be evaluated when the initial model proves unsatisfactory. We call 

these likely replacements the “on-deck” models. 

An infinity of more complex models may remain viable more or less indefinitely. 

Thus, there is a question how many such alternative models should be on deck. While the 

minimum-description length principle will forestall any one of the much more complex 

models becoming the preferred model until simpler models have failed, it is a waste of 

computational effort to evaluate a host of alternatives every time the current model fails. 

It is also a waste of effort to evaluate those relatively simple models (ones that would 

otherwise be on deck) that may already be seen to be inadequate by the nDKL statistic. 

This statistic can be used not only to assess the continuing validity of the current model 

but also to prescreen more complex models. 
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 Still more complex models. Returning now to the infinity of more complex models: 

Subsequent experience may reveal that there is a CS-US rate contingency only in that 

context (that test box). In which case, the stochastic model will require ANDing that 

context and that CS. This situation is called occasion setting in the conditioning literature 

(Holland 1992). CSs can function as both negative and positive occasion setters. Negative 

occasion setting requires NANDing the occasion-setting cue and the cue for which it sets 

the occasion. 

Configural conditioning is also well established empirically (Rescorla 1973, Rescorla, 

Grau et al. 1985): In positive figural conditioning, CS1 and CS2 do not predict the US 

when presented alone but do predict it when presented “in compound.” Positive 

configural conditioning requires a model in which the cues are ANDed. In negative 

configural conditioning, CS1 and CS2 each predict the US when presented alone but not 

when presented “in compound.” This requires a model in which the cues are XORed. 

Subsequent experience may also reveal that a mixture distribution is required. For 

example, in the double-standard time-left protocol, pigeons learn to switch appropriately 

between a choice in which, on the one key (the time-left key), the initially very long 

latency to reward declines linearly as the trial progresses, while on the other key (the 

standard key), the latency will be either very short (15s) or very long (230s). These 

reinforcement latencies are measured from a randomly chosen moment of commitment. 

When that moment arrives, the pigeon is stuck with the latency programmed for the key it 

is pecking at that moment. The two latencies on the standard key require for their 

representation a mixture of two Gaussians, and that is what in fact the pigeon learns 

(Bruner, Gibbon et al 1994). 

In short, arbitrarily many more complex models can be built from the two primitive 

distributions in our theory. We are still exploring the issue of how best to order the 

models whose ability to represent the data is to be tested when the current model fails, 

that is, the on-deck models. We want to be confident that the principles for placing 

alternative models on deck are such as to guarantee that a better model does not fail to be 

discovered as soon as the data establish it as the best model because it does not make it 

on deck. Simply counting the parameters to be estimated together with the connectives to 

be used provides a good preliminary ordering of the possible models. A rule that puts on 

deck only those models with a count no greater than 2 higher than the count for the 

current model and that are not rejected by the nDKL statistic may prove acceptable. 

 

Discussion 

The basic idea behind TATAL is simple: the brain encodes its experiences with the aid of 

the simplest adequate stochastic model. That same model enables it to anticipate future 

occurrences of the encoded events. The brain encodes the durations of experienced 

intervals (latencies, wait times) using two maximally simple, innately specified stochastic 

distributions: the exponential and the BernoulliGauss. The first of these applies when the 

encoded events are randomly distributed in time; the second applies when the events 

occur with a predictable probability at predictable times. 
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 The brain’s most basic preliminary assumption is that events are randomly 

distributed in time. Thus, it always computes the rates associated with the different 

experienced states. This computation enables it to anticipate the increases and decreases 

in expected wait times concomitant with changes in the mix of superposed state cues. 

Because rates are additive, the computation is simple; it requires only basic matrix 

algebra (the solving of simultaneous equations) to determine which rates must be 

attributed to which states. 

It tests the viability of its basic model (the exponential) using the 𝑛D!" 𝑃||𝑄  

statistic. If the events are clustered in time within a state rather than distributed randomly, 

that statistic will reveal the inadequacy of the exponential model. The brain will then redo 

its encoding of the experienced intervals using the 
B
G function. This function is a 

Bernoulli distribution that unfolds as a Gaussian function of the time elapsed since a 

point cue. A point cue is a temporal landmark that makes it possible to predict the time 

and probability of events that follow at a predictable latencies. 

The computation that enables the brain to decide on the appropriate model takes 

account of the differing complexities of the competing models; the exponential has only 

one parameter to be estimated from experience; the 
B
G has three. An insight of 

fundamental importance in the theory of probabilistic inference is that a process for 

choosing between competing stochastic models that fails to take account of model 

complexity overfits the data. Overfitting data already seen with a needlessly complex 

model worsens the accuracy with which the data not yet seen (future events) are 

predicted. In other words, our intuitive sense that simpler models are better provided they 

are not too simple—Occam’s razor—is a mathematically provable truth about stochastic 

models. We suggest that Occam’s razor appeals to our intuition because it is implicit in 

the brain’s machinery for stochastic model selection and stochastic model selection is at 

the core of the brain’s capacity to represent its experience. The analytic theory identifies 

the selective pressures that would drive the evolution of machinery that embodies 

Occam’s razor; machinery that minimizes memory load and maximizes predictive 

accuracy. 

The theory is more powerful than the other computational theories of associative 

learning known to us. The computational realization of these simple ideas—which is 

achieved entirely with closed-form computations—explains a wider range of well-

established results in the vast associative-conditioning literatures than any other theory 

known to us. The same assumptions explain cue competition, conditioned inhibition, the 

timing of conditioned responses, and the parametric invariances. The theory is naturally 

extendable to configural conditioning, occasion setting and protocols involving mixture 

distributions. None of the explanations depends on assumptions about the values of free 

parameters, such as learning rates, the widths of windows of associability, and/or the 

rates at which stimulus traces decay. The theory is fully specified; it does not depend on 

an ad hoc, pre-theoretical parsing of the continuous flow of experience into discrete trials. 

Most associative models of associative learning are not fully specified; their use requires 

an ad hoc parsing of the continuous flow of experience into discrete trials. 
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Insofar as one takes greater power, greater simplicity and full specification as 

indications that one theory approaches closer to the underlying reality than another, the 

success of TATAL has implications for our understanding of the neurobiology of 

cognition. TATAL brings to the center of attention the coding question: how are the facts 

the brain derives from a subject’s experience of its environment encoded in the brain’s 

memory medium (Gallistel and Matzel 2013)? TATAL’s most basic assumption is that 

the brain encodes the durations of experienced intervals into an information-preserving 

medium with the aid of simple stochastic models. 

Most experimental psychologists, computational neuroscientists and neurobiologists 

interested in the neurobiology of learning and memory assume that experience-produced 

alterations in synaptic conductances are the medium of enduring memories. This 

conviction drives most research and theorizing in this centrally important area of 

cognitive neuroscience. Yet, there is no attempt to state how in theory—or to discover 

how in fact—changes in synaptic conductances encode the elementary quantitative facts 

of experience. The question is rarely addressed with anything more specific than 

allusions to distributed codes in vast networks of synaptic connections (Martin and 

Morris 2002). How facts such as the durations of several hundred inter-event intervals, 

demarcated by different events, and spread out in experience over weeks or months could 

be so encoded and then read out into the computations required for stochastic model 

selection remains an undiscussed mystery. 

From an information theoretic perspective, the durations of intervals are numbers 

pure and simple. Any medium for encoding information should transparently be able to 

encode them. The only biological entities whose structure transparently enables the 

encoding of numbers are the polynucleotides that swarm within every neuron. We know 

how to encode numbers in polynucleotides, because we do it when we use bar-coding to 

elucidate neuronal connectivity and intracellular in vivo neurochemistry (Rosenthal 2001, 

Peikon, Gizatullina et al. 2014). 

There are no suggestions about how to encode numbers (durations, distances, 

directions, probabilities, intensities, etc) in altered synaptic conductances. None of the 

neurally oriented theories of interval timing known to us proposes a scheme for encoding 

durations in patterns of altered synaptic conductance. In all of them, the information 

about the experienced duration resides not in the altered synaptic conductances 

themselves but rather in the innate dynamics of the presynaptic neurons or in the ongoing 

activity state of a recurrent circuit or sometimes in a tacitly assumed memory whose 

physical realization is unspecified. They all assume, as associative theories always have 

assumed (Hull 1930), that a complex circuit involving many neurons has been rewired by 

experience so that it behaves as if the average duration of a repeatedly experienced 

interval were encoded, but that average interval is not encoded in the transparent way in 

which it would be if the data were stored in computer memory or in a polynucleotide 

sequence. Information about facts as simple as the durations of intervals is said to be 

distributed throughout a neural network in such an opaque way that we must abandon 

hope of ever putting our experimental fingers on it. It is in there only implicitly, not 

explicitly, because the nets are sub-symbolic computing machines (Smolensky 1986). 
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Recent results on the neurobiology of the timing of the conditioned eye blink by 

cerebellar Purkinje cells (Johansson, Jirenhed et al. 2014, Wetmore, Jirenhed et al. 2014, 

Johansson, Carlsson et al. 2015) open a radically different perspective on the 

neurobiology of memory and computation, a perspective consistent with the implications 

of the analytic theory. These recent results show that the memory for the duration of the 

CSon–>US interval is stored inside the Purkinje cell itself, not in the altered conductances 

of the synapses that the parallel fibers make on the Purkinje cell, nor in the innate 

dynamics of the granule cell responses to the CS, nor in the innate dynamics of the 

Purkinje cell itself. The same Purkinje same cell can learn different intervals. The cell’s 

read-out of the interval it has most recently learned is independent of the firing pattern in 

the parallel fibers that carry the CS-generated signal to it. 

Other recent results from very different learning protocols using different species 

(both vertebrate and invertebrate) suggest the same conclusion, although not so directly 

as the results just cited. Results from fear conditioning in mice (Ryan, Roy et al. 2015) 

and gill-withdrawal conditioning in Aplysia (Chen, Cai et al. 2014) suggest that the 

acquired information in fear conditioning is not encoded in the altered synaptic 

conductances themselves but rather within the postsynaptic neurons. Results from 

olfactory fear conditioning in mice show that the learned predictive power of one odor 

versus other non-predictive odors is manifest in differential transmitter release in the 

olfactory glomeruli from first-order olfactory neurons (Kass, Rosenthal et al. 2013). 

When we look for the medium of memory inside neurons rather than in synapses or 

circuits, we look for a molecular medium. The medium most obviously suited to this 

purpose is the polynucleotide; it can store 2 bits per nucleotide. Moreover, we know that 

every cell contains elaborate machinery for reading and editing and rearranging the 

information in polynucleotides. There are, however, many other possibilities, so we do 

not here champion the polynucleotide.  We champion only the more cautious hypothesis 

that there is a molecular medium within neurons, which stores information in much the 

way a computer does, and which makes that information accessible to computation, in 

much the way that DNA makes inherited information accessible to computation. To store 

information in the way a computer does, which is also the way DNA does (Gallistel 

2016, in press), one needs addressable banks of thermodynamically stable switches. 

Many different molecules may plausibly be imagined to serve in this capacity. 

The savings in space and energy expenditure from storing information at the 

molecular level rather than at the circuit level are measured in orders of magnitude 

(Gallistel 2016, in press). If the information on which computations operate is stored in 

molecular media inside neurons, then much of the computational machinery that operates 

on that information is likely to be implemented there, too, rather than at the circuit level. 

In other words, many computations now thought to be mediated by circuit level structures 

requiring spatially extensive and energetically expensive signaling may in fact be 

implemented by intracellular neurochemistry. Here again, the savings to be realized in the 

energy required to effect the computations and the space required for the requisite 

machinery are measured in orders of magnitude.  In this regard, Sterling and Laughlin 

write (Sterling and Laughlin 2015, p.124),  "These advantages—compactness, energy 

efficiency, and ability to adapt and match—all suggest the principle compute with 
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chemistry. It is cheaper." To that we would add the further principle, Store information in 

molecular media; it’s energetically cheaper, it takes up vastly less space, and it enables 

molecular level computation. 
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