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ABSTRACT OF THE DISSERTATION

Information theory methods in communication

complexity

by Nikolaos Leonardos

Dissertation Director: Michael Saks

This dissertation is concerned with the application of notions and methods from

the field of information theory to the field of communication complexity. It con-

sists of two main parts.

In the first part of the dissertation, we prove lower bounds on the random-

ized two-party communication complexity of functions that arise from read-once

boolean formulae. A read-once boolean formula is a formula in propositional logic

with the property that every variable appears exactly once. Such a formula can

be represented by a tree, where the leaves correspond to variables, and the in-

ternal nodes are labeled by binary connectives. Under certain assumptions, this

representation is unique. Thus, one can define the depth of a formula as the

depth of the tree that represents it. The complexity of the evaluation of general

read-once formulae has attracted interest mainly in the decision tree model. In

the communication complexity model many interesting results deal with specific

read-once formulae, such as disjointness and tribes. In this dissertation we use

information theory methods to prove lower bounds that hold for any read-once
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formula. Our lower bounds are of the form n(f)/cd(f), where n(f) is the number

of variables and d(f) is the depth of the formula, and they are optimal up to the

constant in the base of the denominator.

In the second part of the dissertation, we explore the applicability of the

information-theoretic method in the number-on-the-forehead model. The work of

Bar-Yossef, Jayram, Kumar & Sivakumar [BYJKS04] revealed a beautiful con-

nection between Hellinger distance and two-party randomized communication

protocols. Inspired by their work and motivated by the open questions in the

number-on-the-forehead model, we introduce the notion of Hellinger volume. We

show that it lower bounds the information cost of multi-party protocols. We

provide a small toolbox that allows one to manipulate several Hellinger volume

terms and also to lower bound a Hellinger volume when the distributions involved

satisfy certain conditions. In doing so, we prove a new upper bound on the dif-

ference between the arithmetic mean and the geometric mean in terms of relative

entropy. Finally, we show how to apply the new tools to obtain a lower bound on

the informational complexity of the ANDk function.
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Chapter 1

Introduction

The communication complexity model was introduced in [Yao79]. The standard

variation involves two parties, Alice and Bob, who wish to compute a function

f : X × Y → Z, where X , Y , and Z are finite sets. Alice knows x ∈ X ,

but has no knowledge of Bob’s input. Similarly, Bob knows y ∈ Y , but has no

knowledge of x. To correctly determine f(x, y) they need to communicate. We

are interested in the minimum amount of communication needed. In the first

part of the dissertation, Chapter 3, we work with the randomized model, where

Alice and Bob are equipped with random strings and have the power of making

random choices. Furthermore, we only require to compute f(x, y) correctly with

probability 2/3. In the second part, Chapter 4, we consider the number-on-the-

forehead model, introduced in [CFL83]. In this variation, there are k players,

P1, . . . , Pk, that wish to compute a function f : X1 × · · · ×Xk → Z. The inputs

to the players are xi ∈ Xi for i ∈ {1, . . . , k}. In contrast to the previous model,

player Pi, knows all inputs except his own.

A landmark result in the theory of two-party communication complexity is

the linear lower bound on the randomized communication complexity of set-

disjointness proved by Kalyanasundaram & Schnitger [KS92]. Razborov [Raz92]

gave a simplified proof, and Bar-Yossef et al. [BYJKS04] gave an elegant in-

formation theory proof, building on the informational complexity framework of

Chakrabarti et al. [CSWY01]. The first application of information-theoretic

methods in communication complexity lower bounds can be traced to Ablayev

[Abl96].
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Let us define a two-party boolean function to be a boolean function f together

with a partition of its variables into two parts. We usually refer to the variables in

the two classes as x and y and write f(x, y) for the function. A two-party function

is associated with the following communication problem: given that Alice gets x

and Bob gets y, compute f(x, y).

If f is any n-variate boolean function and g is a 2-variate boolean function,

we define f g to be the two-party function taking two n bit strings x and y and de-

fined to be f g(x, y) = f(g(x1, y1), . . . , g(xn, yn)). The disjointness communication

problem can be reformulated as a boolean function computation problem: Alice

gets x ∈ {0, 1}n, Bob gets y ∈ {0, 1}n and they want to compute (ORn)
∧(x, y),

where ORn is the n-wise OR function.

Jayram, Kumar & Sivakumar [JKS03], extended the techniques for disjoint-

ness in order to prove a linear lower bound for the randomized complexity on the

function (TRIBESs,t)
∧ where TRIBESs,t is the function taking input (zi,j : 1 ≤

i ≤ s, 1 ≤ j ≤ t) and equal to TRIBESs,t(z) =
∧s

i=1

∨t
j=1 zi,j .

The functions ORn and TRIBESs,t are both examples of read-once boolean

functions. These are functions that can be represented by boolean formulae in-

volving ∨ and ∧, in which each variable appears (possibly negated) at most once.

Such a formula can be represented by a rooted ordered tree, with nodes labeled by

∨ and ∧, and the leaves labeled by variables. It is well known (see e.g. Heiman,

Newman & Wigderson [HNW93]) that for any read-once function f , f has a

unique representation (which we call the canonical representation of f) as a tree

in which the labels of nodes on each root-to-leaf path alternate between ∧ and

∨. The depth of f , d(f), is defined to be the maximum depth of a leaf in the

canonical representation, and n(f) is the number of variables.

We want to consider communication problems derived from arbitrary read-

once formulae. Based on the examples of ORn and TRIBESs,t mentioned above

it seems natural to consider the function f∧, but in the case that f is the n-wise
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AND, f∧ trivializes (and can be computed with a two-bit protocol), and the more

interesting function to consider is f∨.

Denote by Rδ(f) the δ-error randomized communication complexity of f (see

Section 2.2 and the paragraph on “communication complexity” in Section 3.1 for

more details). We prove that for any read-once function f , at least one of the

functions f∨ and f∧ has high δ-error communication complexity.

Theorem 1. For any read-once function f with d(f) ≥ 1,

max{Rδ(f
∧), Rδ(f

∨)} ≥ (1− 2
√
δ) · n(f)

8d(f)
.

This result is, in some sense, best possible (up to the constant 8 in the base

of d(f)). That is, there is a constant c > 1, such that if f is given by a t-

uniform tree of depth d (in which each non-leaf node has t children and all leaves

are at the same depth, and so n = td), then f∧ and f∨ both have randomized

communication protocols using O(n(f)/cd(f)) bits. This follows from the fact (see

Saks & Wigderson [SW86]) that f has a randomized decision tree algorithm using

an expected number O(n(f)/cd(f)) of queries, and any decision tree algorithm for

f is easily converted to a communication protocol for f∨ or f∧ having comparable

complexity. In fact, for t-uniform trees, we can improve the lower bound.

Theorem 2. For any read-once function f that can be represented by a t-uniform

AND/OR tree of depth d ≥ 1,

max{Rδ(f
∧), Rδ(f

∨)} ≥ (1− 2
√
δ) · t(t− 1)d−1

4d
.

Independently, Jayram, Kopparty & Raghavendra [JKR09], also using the

informational complexity approach, obtained the weaker bound (1−2
√
δ)·n(f)

d(f)!16d(f)
.

As a simple corollary of Theorem 1 we obtain a similar lower bound for the

more general class of read-once threshold functions. Recall that a t-out-of-k

threshold gate is the boolean function with k inputs that is one if the sum of

the inputs is at least t. A threshold tree is a rooted tree whose internal nodes are
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labeled by threshold gates and whose leaves are labeled by distinct variables (or

their negations). A read-once threshold function is a function representable by a

threshold tree. We prove the following bound.

Theorem 3. For any read-once threshold function f with d(f) ≥ 1,

max{Rδ(f
∧), Rδ(f

∨)} ≥ (1− 2
√
δ) · n(f)

16d(f)
.

This result should be compared with the result of Heiman, Newman &Wigder-

son [HNW93] that every read-once threshold function f has randomized decision

tree complexity at least n(f)/2d(f). A lower bound on communication complexity

of f∨ or f∧ gives the same lower bound on decision tree complexity for f , however,

the implication goes only one way, since communication protocols for f∨ and f∧

do not have to come from a decision tree algorithm for f , and can be much faster.

(For example, (ANDn)
n is equal to AND2n that has randomized decision tree

complexity Θ(n) but communication complexity 2.) Thus, up to the constant in

the base of the denominator, our result can be viewed as a strengthening of the

decision tree lower bound.

Our results are interesting only for formulae of small depth. For example, for

f that is represented by a binary uniform tree n(f)/8d(f) < 1, while there is a

simple
√
n(f) lower bound that follows by embedding either a

√
n(f)-wise OR or

a
√
n(f)-wise AND. Binary uniform trees require Ω(

√
n(f)) communication even

for quantum protocols. This is because
√
n(f)-wise PARITY can be embedded

in such a tree (see Farhi, Goldstone & Gutmann [FGG08]), and then the bound

follows from the lower bound for the generalized inner product function (see Cleve,

Dam, Nielsen & Tapp [CDNT98] and Kremer [Kre95]). This can also be shown

by methods of Lee, Shraibman & Zhang [LSZ09], which seem more promising

towards a lower bound on the quantum communication complexity of arbitrary

AND/OR trees.

Finally, we consider the more general setting, where f(x, y) is a two-party
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read-once formula with its variables partitioned arbitrarily between Alice and

Bob. This situation includes the case where the function is of the form f∨ or

f∧ and the variable partition is the natural one indicated earlier. As the case

f = ANDn shows, we don’t have a lower bound on Rδ(f) of the form n(f)/cd(f).

However we can get an interesting general lower bound.

Consider the deterministic simultaneous message model, which is perhaps the

weakest non-trivial communication complexity model. In this model Alice and

Bob are trying to communicate f(x, y) to a third party, the referee. Alice an-

nounces some function valuemA(x) and simultaneously Bob announces a function

value mB(y), and together mA(x) and mB(y) are enough for the referee to de-

termine f(x, y). The deterministic simultaneous message complexity, denoted

D||(f), is the minimum number of bits (in worst case) that must be sent by Alice

and Bob so that the referee can evaluate f . As a consequence of Theorem 15 we

prove the following.

Theorem 4. For any two-party read-once function f with d(f) ≥ 1,

Rδ(f) ≥ (1− 2
√
δ) · D||(f)

d(f) · 8d(f)−1
.

In the second part of the dissertation, Chapter 4, we consider the number-on-

the-forehead (NOF) model. Proving lower bounds on the number-on-the-forehead

(NOF) communication complexity of functions, is one of the most important re-

search areas in the theory of communication complexity, The NOF model was

introduced in [CFL83], where it was used to prove lower bounds for branching

programs. Subsequent papers revealed connections of this model to circuit com-

plexity [BT94, HG90, Nis94, NW91] and proof complexity [BPS05]. In particular,

an explicit function which requires super-polylogarithmic complexity in the NOF

model with polylogarithmically many players would give an explicit function out-

side of the circuit complexity class ACC
0. Regarding proof complexity, it was

shown in [BPS05], that nΩ(1) lower bounds for k-party NOF disjointness imply
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2n
Ω(1)

proof-size lower bounds for tree-like, degree k− 1, threshold systems. Also,

ω(log4 n) lower bounds for 3-party NOF disjointness imply nω(1) proof-size lower

bounds for tree-like Lovász-Schrijver proof systems.

There are explicit functions known with NOF complexity in Ω(n/2k) [BNS92,

CT93, Raz00, FG05], which become trivial for logarithmic number of players.

For disjointness, the general known lower bounds for k-players are of the form

n1/k/22
k

[LS09a, CA08] and 2Ω(
√
logn/

√
k)−k [BHN09]. It is interesting to note that

the NOF complexity of disjointness is bounded above by O(k2n/2k), as follows

from the work of Grolmusz [Gro94].

Most of the lower bounds are obtained by an upper bound on discrepancy,

in a manner that was first shown in [BNS92]. In this dissertation we are inter-

ested in how information-theoretic methods might be applied to the NOF model.

The first use of information theory in communication complexity lower bounds

can be traced to [Abl96]. In [CSWY01] the notions of information cost and in-

formational complexity were defined explicitly. Building on their work, a very

elegant information-theoretic framework for proving lower bounds in randomized

number-in-hand (NIH) communication complexity was established in [BYJKS04].

In [BYJKS04] a proof of the linear lower bound for two-party disjointness is

given. The proof has two main stages. In the first stage, a direct-sum theorem for

informational complexity is shown, which says that the informational complexity

of disjointness, DISJn,2(x, y) =
∨n

j=1 AND2(xj , yj), is lower bounded by n times the

informational complexity of the binary AND2 function. Although it is not known

how to prove such a direct-sum theorem directly for the classical randomized

complexity, Bar-Yossef et al. prove it for the informational complexity with respect

to a suitable distribution. A crucial property of the distribution is that it is

over the zeroes of disjointness. At this point we should point out a remarkable

characteristic of the method: even though the information cost of a protocol is

analyzed with respect to a distribution over zeroes only, the protocol is required
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to be correct over all inputs. This requirement is essential in the second stage,

where a constant lower bound is proved on the informational complexity of AND2.

This is achieved using properties of the Hellinger distance for distributions. Bar-

Yossef et al. reveal a beautiful connection between Hellinger distance and NIH

communication protocols. (More properties of Hellinger distance relative to the

NIH model have been established in [Jay09].)

In this work we provide tools for accomplishing the second stage in the NOF

model. We introduce the notion of Hellinger volume of m ≥ 2 distributions and

show that it can be useful for proving lower bounds on informational complexity

in the NOF model, just as Hellinger distance is useful in the NIH model. However,

as we point out in the last section, there are fundamental difficulties in proving a

direct-sum theorem for informational complexity in the NOFmodel. Nevertheless,

we believe that Hellinger volume and the related tools we prove, could be useful

in an information-theoretic attack at NOF complexity.

The work in both parts of the dissertation is closely related to the work of

Bar-Yossef, Jayram, Kumar & Sivakumar [BYJKS04]. In particular, we use their

definition of information cost and conditional information cost. In more recent

work by Barak, Braverman, Chen & Rao [BBCR10], the terms external informa-

tion cost and internal information cost were introduced. External information

cost quantifies the amount of information learned by an outside observer of the

communication about the inputs, and it coincides with the definition of informa-

tion cost in [BYJKS04]. Internal information cost was employed in [BBCR10]

to establish direct-sum theorems for randomized communication complexity. It

quantifies the amount of information the players learn about the other player’s

input upon execution of the protocol. In subsequent work by Braverman & Rao

[BR11], the internal information cost of computing a function f according to a

fixed distribution, was shown to be exactly equal to the amortized communication

complexity of computing many copies of f .
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The results in the first part of this dissertation (Chapter 3) have been pre-

sented in 2009, in the 24th IEEE Conference on Computational Complexity

[LS09b], and invited in the issue entitled “Selected papers from the 24th Annual

IEEE Conference on Computational Complexity (CCC 2009)” of Computational

Complexity Journal [LS10]. The results in the second part (Chapter 4) have been

submitted for publication.
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Chapter 2

Preliminaries and previous work

In this chapter we state the basic definitions and facts of information theory that

we will make use of and define the communication complexity models that we

will be working with. Also, we discuss why information theory is relevant in the

study of communication complexity and we provide the results from the work of

Bar-Yossef, Jayram, Kumar & Sivakumar [BYJKS04] on which we build.

2.1 Information theory

The following definitions and facts can be found in the textbook by Cover &

Thomas [CT06, Chapter 2],

Random variables and distributions. We consider discrete probability spaces

(Ω, ζ), where Ω is a finite set and ζ is a nonnegative-valued function on Ω sum-

ming to 1. Let (Ω1, ζ1), . . . , (Ωn, ζn) be such spaces, their product is the space

(Λ, ν), where Λ = Ω1 × · · · × Ωn is the Cartesian product of sets, and for

ω = (ω1, . . . , ωn) ∈ Λ, ν(ω) =
∏n

j=1 ζj(ωj). In the case that all of the (Ωi, ζi)

are equal to a common space (Ω, ζ) we write Λ = Ωn and ν = ζn.

We use uppercase for random variables, as in X, Y,D, and write in bold those

that represent vectors of random variables. For a variable X with range X that

is distributed according to a probability distribution µ, i.e. Pr[X = x] = µ(x), we

write X ∼ µ. If X is uniformly distributed in X , we write X ∈R X .

Unless otherwise stated, all random variables take on values from finite sets.
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Entropy and mutual information. Let X, Y, Z be random variables on a

common probability space, taking on values, respectively, from finite sets X ,Y ,Z.

Let A be any event. The entropy of X , the conditional entropy of X given A, and

the conditional entropy of X given Y are respectively (we use log for log2)

H(X) = −
∑

x∈X
Pr[X = x] · log Pr[X = x],

H(X |A) = −
∑

x∈X
Pr[X = x |A] · log Pr[X = x |A],

H(X | Y ) =
∑

y∈X
Pr[Y = y] · H(X | Y = y).

The mutual information between X and Y is

I(X ; Y ) = H(X)−H(X | Y ) = H(Y )− H(Y |X)

and the conditional mutual information of X and Y given Z is

I(X ; Y |Z) = H(X |Z)− H(X | Y, Z)

= H(Y |Z)−H(Y |X,Z)

=
∑

z∈Z
Pr[Z = z] · I(X ; Y |Z = z).

The relative entropy or divergence of distributions P and Q over Ω is

D(P ||Q) =
∑

x∈Ω
P (x) log

P (x)

Q(x)
.

We will need the following facts about the entropy. (See Cover & Thomas

[CT06, Chapter 2], for proofs and more details.)

Proposition 5. Let X, Y, Z be random variables.

1. H(X) ≥ H(X | Y ) ≥ 0.

2. If X is the range of X, then H(X) ≤ log |X |.
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3. H(X, Y ) ≤ H(X) + H(Y ) with equality if and only if X and Y are in-

dependent. This holds for conditional entropy as well. H(X, Y |Z) ≤

H(X |Z) + H(Y |Z) with equality if and only if X and Y are independent

given Z.

The following proposition makes mutual information useful in proving direct-

sum theorems.

Proposition 6 ([BYJKS04]). Let Z = 〈Z1, . . . ,Zn〉,Π,D be random variables.

If the Zj’s are independent given D, then I(Z ; Π |D) ≥ ∑n
j=1 I(Zj ; Π |D).

Proof. By the definition of mutual conditional information

I(Z ; Π |D) = H(Z |D)−H(Z |Π,D).

By Proposition 5(3),

H(Z |D) =
∑

j

H(Zj |D)

and

H(Z |Π,D) ≤
∑

j

H(Zj |Π,D).

The result follows.

2.2 Communication complexity

For a proper introduction to the subject of communication complexity the reader

should consult the textbook by Kushilevitz & Nisan [KN06].

Two-party private-coin model. The two-party private-coin randomized com-

munication model was introduced by Yao [Yao79]. Alice is given x ∈ X and Bob

y ∈ Y . They wish to compute a function f : X × Y → {0, 1} by exchanging

messages according to a protocol Π. Let the random variable Π(x, y) denote the

transcript of the communication on input 〈x, y〉 (where the probability is over the
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random coins of Alice and Bob) and Πout(x, y) the outcome of the protocol. We

call Π a δ-error protocol for f if, for all 〈x, y〉, Pr[Πout(x, y) = f(x, y)] ≥ 1 − δ.

The communication cost of Π is max |Π(x, y)|, where the maximum is over all

input pairs 〈x, y〉 and over all coin tosses of Alice and Bob. The δ-error random-

ized communication complexity of f , denoted Rδ(f), is the cost of the best δ-error

protocol for f .

The number-on-the-forehead model. The multi-party private-coin random-

ized number-on-the-forehead communication model was introduced by Chandra,

Furst & Lipton [CFL83]. There are k players, numbered 1, . . . , k, trying to com-

pute a function f : Z → {0, 1}, where Z = Z1 × · · · × Zk. On input z ∈ Z,

player j receives input zj (conceptually, placed on his forehead), but he has ac-

cess only to z−j = (z1, . . . , zj−1, zj+1, . . . , zk). They wish to determine f(z), by

broadcasting messages according to a protocol Π. Let the random variable Π(z)

denote the transcript of the communication on input z (where the probability is

over the random coins of the players) and Πout(z) the outcome of the protocol.

We call Π a δ-error protocol for f if, for all z, Pr[Πout(z) = f(z)] ≥ 1 − δ. The

communication cost of Π is max |Π(z)|, where the maximum is over all inputs z

and over all coin tosses of the players. The δ-error randomized communication

complexity of f , denoted Rδ(f), is the cost of the best δ-error protocol for f .

2.3 Communication complexity lower bounds via informa-

tion theory

The informational complexity paradigm, introduced by Chakrabarti, Shi, Wirth

& Yao [CSWY01], and used in [SS02, BYJKS02, CKS03, BYJKS04, JKS03], pro-

vides a way to prove lower bounds on communication complexity via information

theory. We are given a two-party function f and we want to show that any δ-

error randomized communication protocol Π for f requires high communication.
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We introduce a probability distribution over the inputs to Alice and Bob. We

then analyze the behavior of Π when run on inputs chosen randomly according to

the distribution. The informational complexity is the mutual information of the

string of communicated bits (the transcript of Π) with Alice and Bob’s inputs,

and provides a lower bound on the amount of communication.

More precisely, let Ω = (Ω, ζ) be a probability space over which are defined

random variables X = 〈X1, . . . , Xn〉 and Y = 〈Y1, . . . , Yn〉 representing Alice and

Bob’s inputs respectively. The information cost of a protocol Π with respect to ζ

is defined to be I(X,Y ; Π(X,Y)), where Π(X,Y) is a random variable following

the distribution of the communication transcripts when the protocol Π runs on

input 〈X,Y〉 ∼ ζ . The δ-error informational complexity of f with respect to

ζ , denoted ICζ,δ(f), is minΠ I(X,Y ; Π(X,Y)), where the minimum is over all

δ-error randomized protocols for f . The relevance of informational complexity

comes from the following proposition.

Proposition 7. ICζ,δ(f) ≥ Rδ(f).

Proof. For any protocol Π,

ICζ,δ(f) ≤ I(X,Y ; Π(X,Y)) = H(Π(X,Y))−H(Π(X,Y)|X,Y).

Applying in turn parts (1) and (2) of Proposition 5 gives

ICζ,δ(f) ≤ H(Π(X,Y)) ≤ Rδ(f).

Mutual information may be easier to handle if one conditions on the appropri-

ate random variables. To that end, Bar-Yossef et al. [BYJKS04] introduced the

notion of conditional information cost of a protocol Π with respect to an auxiliary

random variable. Let (Ω, ζ) be as above, and let D be an additional random vari-

able defined on Ω. The conditional information cost of Π conditioned on D with

respect to ζ is defined to be I(X,Y ; Π(X,Y) |D), where Π(X,Y) is as above and
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(〈X,Y〉,D) ∼ ζ . The δ-error conditional informational complexity of f condi-

tioned onD with respect to ζ , denoted ICζ,δ(f |D), is minΠ I(X,Y ; Π(X,Y) |D),

where the minimum is over all δ-error randomized protocols for f . Conditional

informational complexity also provides a lower bound on randomized communi-

cation complexity.

We now give an alternate definition for informational complexity that we will

use when considering the number-on-the-forehead model. It is not hard to see

that conditional informational complexity as defined in the previous paragraph is

essentially equivalent to the following definition of informational complexity with

respect to a collection of distributions.

For a collection of distributions η = {ζ1, . . . , ζk}, we define the δ-error infor-

mational complexity of f with respect to η, denoted ICη,δ(f), to be Ej[ ICζj ,δ(f) ],

where j is a random variable uniformly distributed over [k].

Remark. As discussed in the introduction, the authors of [BBCR10] define the

external information cost to be I(X,Y ; Π(X,Y)) and they introduce the internal

information cost which they define as I(X ; Π(X,Y) |Y) + I(Y ; Π(X,Y) |X).

2.4 The methodology of Bar-Yossef, Jayram, Kumar &

Sivakumar

Bar-Yossef, Jayram, Kumar & Sivakumar [BYJKS04] introduced new techniques

for proving lower bounds on information cost. In this section we summarize their

method and list the results and definitions from Bar-Yossef et al. [BYJKS04] that

we will use.

Their methodology has two main parts. In the first part they make use of

Proposition 6 to obtain a direct-sum theorem for the informational complexity of

the function. This works particularly well with functions of the form

fh(x,y) = f(h(x1, y1), . . . , h(xn, yn)).
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Before stating the direct-sum theorem, we need some definitions.

Definition 8 (Sensitive input). Consider f : S1 × · · · × Sn → R, a family of

functions H = 〈hj : Zj → Sj〉j∈[n], and z = 〈z1, . . . , zn〉 ∈ Z1 × · · · × Zn. For

j ∈ [n], u ∈ Zj, let z[j, u] = 〈z1, . . . , zj−1, u, zj+1, . . . , zn〉. We say that z is

sensitive for fH if (∀j ∈ [n])(∀u ∈ Zj)(f
H(z[j, u]) = hj(u)).

For an example, consider the function DISJn(x,y) =
∨n

j=1(xj∧yj). Any input

〈x,y〉 such that, for all j ∈ [n], xj ∧ yj = 0, is sensitive.

Definition 9 (Collapsing distribution, Bar-Yossef et al. [BYJKS04]). Let f,H be

as in Definition 8. Call a distribution µ over Z1 × · · · × Zn collapsing for fH, if

every z in the support of µ is sensitive.

Theorem 10 (Bar-Yossef et al. [BYJKS04]). Let f : Sn → {0, 1}, and h : X ×

Y → S. Consider random variables X = 〈X1, . . . , Xn〉 ∈ X n,Y = 〈Y1, . . . , Yn〉 ∈
Yn,D = 〈D1, . . . , Dn〉, and Z = 〈Z1, . . . , Zn〉, where Zj = 〈Xj, Yj, Dj〉 for j ∈ [n].

Assume that {Zj}j∈[n] is a set of mutually independent variables, and Zj ∼ ζ

for all j ∈ [n] (thus, Z ∼ ζn). If, for all j ∈ [n], Xj and Yj are independent given

Dj, and the marginal distribution of (X,Y) is a collapsing distribution for fh,

then ICζn,δ(f
h |D) ≥ n · ICζ,δ(h |D).

Defining a distribution ζ satisfying the two requirements asked in Theorem 10,

moves the attention from ICζn,δ(f
h |D) to ICζ,δ(h |D). For example, in Bar-

Yossef et al. [BYJKS04] it is shown how to define ζ when fh is DISJn(x,y) =
∨n

j=1(xj ∧ yj). Then one only has to deal with ICζ,δ(h |D), where h(x, y) = x∧ y.

The second part of the method is a framework for proving lower bounds on

information cost. The first step consists of a passage from mutual information to

Hellinger distance.

Definition 11. (Hellinger distance.) The Hellinger distance between probability

distributions P and Q on a domain Ω is defined by

h(P,Q) =

√
1
2

∑
ω∈Ω

(√
Pω −√

Qω

)2
.
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We write h2(P,Q) for (h(P,Q))2.

Lemma 12 (Bar-Yossef et al. [BYJKS04]). Let Φ(z1), Φ(z2), and Z ∈R {z1, z2}
be random variables. If Φ(z) is independent of Z for each z ∈ {z1, z2}, then

I(Z ; Φ(Z)) ≥ h2(Φ(z1),Φ(z2)).

The following proposition states useful properties of Hellinger distance. They

reveal why Hellinger distance is better to work with than mutual information.

Proposition 13 (Properties of Hellinger distance, Bar-Yossef et al. [BYJKS04]).

1. (Triangle inequality.) Let P,Q, and R be probability distributions over do-

main Ω; then h(P,Q) + h(Q,R) ≥ h(P,R). It follows that the square of the

Hellinger distance satisfies a weak triangle inequality:

h2(P,Q) + h2(Q,R) ≥ 1
2
h2(P,R).

2. (Cut-and-paste property.) For any randomized protocol Π, and for any

x, x′ ∈ X and y, y′ ∈ Y,

h(Π(x, y),Π(x′, y′)) = h(Π(x, y′),Π(x′, y)).

3. (Pythagorean property.) For any randomized protocol Π, and for any x, x′ ∈

X and y, y′ ∈ Y,

h2(Π(x, y),Π(x′, y)) + h2(Π(x, y′),Π(x′, y′)) ≤ 2h2(Π(x, y),Π(x′, y′)).

4. For any δ-error randomized protocol Π for a function f , and for any two

input pairs (x, y) and (x′, y′) for which f(x, y) 6= f(x′, y′),

h2(Π(x, y),Π(x′, y′)) ≥ 1− 2
√
δ.

After an application of Lemma 12 we are left with a sum of Hellinger distance

terms, which we need to lower bound. Applying properties 1 and 3 several times

we can arrive at a sum of terms different than the ones we started with. To obtain

a lower bound we would like the final terms to include terms to which Property

4 can be applied.
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Chapter 3

Read-once functions

In this chapter we prove our main theorem, Theorem 15, from which the theo-

rems 2, 3, and 4 that were stated in the introduction follow.

3.1 Notation, terminology, and preliminaries

In the first section we establish notation and terms that we will use to describe

the basic objects that we will be dealing with.

Definitions pertaining to rooted trees. All trees in this work are rooted. For

a tree T we write VT for the set of vertices, LT for the set of leaves, NT = |LT |

for the number of leaves, and dT for the depth of T . For a vertex u, path(u) is

the set of vertices on a path from u to the root (including both the root and u).

We write T = T1 ◦ · · · ◦ Tk when, for each j ∈ {1, . . . , k}, Tj is the subtree

rooted at the j-th child of the root of T .

A tree is called t-uniform if all its leaves are at the same depth d, and every

non-leaf node has exactly t children.

A tree is in standard form if there are no nodes with exactly one child. For

example, a standard binary tree is one where every internal node has exactly two

children.

A full binary subtree of a tree T is a binary tree in standard form that is

contained in T , contains the root of T , and whose leaf-set is a subset of the

leaf-set of T . Denote by FBST the set of full binary subtrees of T .



18

Definitions pertaining to boolean functions. We denote by [n] the set

{1, . . . , n} of integers. Let f : S1 × · · ·× Sn → R be a function and suppose that,

for i ∈ [n], hi : Zi → Si. For H = 〈h1, . . . , hn〉, let fH : Z1×· · ·×Zn → R denote

the function defined by fH(z1, . . . , zn) = f(h1(z1), . . . , hn(zn)). When hj = h for

all j ∈ [n], we write fh = fH.

A tree circuit is a rooted tree in which every leaf corresponds to an input

variable (or its negation), and each gate comes from the set {AND,OR,NAND,

NOR}. We write fC for the function represented by a tree circuit C. An AND/OR

tree is a tree circuit with gates AND and OR. The tree circuit is read-once if the

variables occurring at leaves are distinct; all tree circuits in this work are assumed

to be read-once. A Boolean function f is read-once if it can be represented by a

read-once tree circuit. The depth of a read-once function f , denoted d(f), is the

minimum depth of a read-once tree circuit that computes it. As mentioned in

the introduction, it is well-known that every read-once function f has a unique

representation, called the canonical representation of f , whose tree is in standard

form and such that the gates along any root to leaf path alternate between ∧

and ∨. It is easy to show that the depth of the canonical representation is d(f),

that is, the canonical representation has minimum depth over all read-once tree

circuits that represent f .

If T is any rooted tree, we write fT for the boolean function obtained by

associating a distinct variable xj to each leaf j and labeling each gate by a NAND

gate. We use symbol ‘⊼’ for NAND.

Communication problems associated with boolean functions. If f is an

arbitrary n-variate boolean function, and g is a 2-variate boolean function, we

denote by f g the two-party boolean function given by

f g(x, y) = f(g(x1, y1), . . . , g(xn, yn)).

Our goal is to prove Theorems 1 and 2, which say that for any read-once boolean
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function f , either f∨ or f∧ has high randomized communication cost. To do this

it will be more convenient to consider f⊼ for functions f that come from trees

using only NAND gates. We first prove the following lemma.

For f1, f2 : {0, 1}n → {0, 1}, we write f1 ≡ f2 when

(∃σ ∈ {0, 1}n)(∀x ∈ {0, 1}n)(f1(x) = f2(σ ⊕ x)),

where σ ⊕ x is the bitwise XOR of σ and x.

Lemma 14. Let C be an AND/OR tree in canonical form and let T be the

underlying tree. Then, fC ≡ fT when the root of C is labeled by an OR gate, and

fC ≡ ¬fT when the root of C is labeled by an AND gate.

Proof. We proceed by induction on dT . When dT = 1, the case with an AND at

the root is trivial. For OR we observe that fC(x) =
∨

j xj = ¬∧n
j ¬xj = fT (¬x).

Now suppose dT > 1. Let C = C1 ∧ · · · ∧ Ck and recall that C is in canonical

form; thus, each Cj has an OR at the root. It follows by induction that fC(x) ≡
∧

j fTj
= ¬fT (x). If C = C1 ∨ · · · ∨Ck, then we have fC =

∨
j fCj

= ¬∧
j ¬fCj

≡

¬∧
j fTj

= fT .

Our lower bounds follow from the following main theorem.

Theorem 15. 1. Let T be a tree in standard form with dT ≥ 1.

Rδ(f
⊼

T ) ≥ (2− 4
√
δ) · NT

8dT
.

2. If T is, in addition, a t-uniform tree of depth dT ≥ 1, then

Rδ(f
⊼

T ) ≥ (1− 2
√
δ) · t(t− 1)dT−1

4dT
.

To deduce Theorems 1 and 2 we use the following proposition.

Proposition 16. Let f be a read-once formula. Then there is a tree T in standard

form such that (1) Rδ(f
⊼

T ) ≤ max{Rδ(f
∧), Rδ(f

∨)}, (2) NT ≥ n(f)/2, (3) dT ≤

d(f). Moreover, if the canonical representation of f is a uniform tree, NT = n(f).
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Proof. Let C be the representation of f in canonical form. Define tree circuits

C1 and C2 as follows. To obtain C1 delete all leaves that feed into ∧ gates, and

introduce a new variable for any node that becomes a leaf. Let C1 be the canonical

form of the resulting tree. Let C2 be obtained similarly by deleting all leaves that

feed into ∨ gates. Let f1 and f2, respectively, be the functions computed by C1

and C2. Let T1 and T2 be the trees underlying C1 and C2 respectively. We take

T to be whichever of T1 and T2 has more leaves. Clearly conditions (2) and (3)

above will hold. If the underlying tree of C is uniform, then one of C1, C2 will

have n(f) leaves; so in the uniform case we have NT = n(f). Condition (1) follows

immediately from the following claim.

Claim 17. (1) Rδ(f
∧) ≥ Rδ(f

∧
1 ), (2) Rδ(f

∧
1 ) = Rδ(f

⊼

T1
), (3) Rδ(f

∨) ≥ Rδ(f
∨
2 ),

(4) Rδ(f
∨
2 ) = Rδ(f

⊼

T2
).

To prove the first part of the claim, it suffices to observe that any communi-

cation protocol for f∧ can be used as a protocol for f∧
1 . In particular, given an

input (x, y) to f∧
1 Alice and Bob can—without any communication—construct

input (x′, y′) to f∧ such that f∧(x′, y′) = f∧
1 (x, y). This is done as follows. If

j is a leaf of C that is also a leaf of C1, then Alice sets x′j = xj and Bob sets

y′j = yj. Suppose j is a leaf of C that is not a leaf of C1. If the parent p(j) of j

is a leaf of C1, then Alice sets x′j = xp(j) and Bob sets y′j = yp(j). If p(j) is not a

leaf of C1, then Alice sets x′j = 1 and Bob sets y′j = 1. It is easy to verify that

f∧(x′, y′) = f∧
1 (x, y). The second part of the claim follows from Lemma 14. Parts

(3) and (4) follow similarly.

3.2 Read-once boolean formulae

Let T = T1 ◦ · · · ◦ Tn be a tree in standard form computing a function fT . A first

step towards simplifying the informational complexity of f⊼

T would be to apply

the following straightforward generalization of Theorem 10.
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Theorem 18. Consider a function f : S1 × · · · × Sn → {0, 1}, a family of func-

tions H = 〈hj : Xj ×Yj → Sj〉j∈[n], and random variables X = 〈X1, . . . , Xn〉 ∈

X1 × · · · × Xn,Y = 〈Y1, . . . , Yn〉 ∈ Y1 × · · · × Yn,D = 〈D1, . . . , Dn〉, and Z =

〈Z1, . . . , Zn〉, where Zj = 〈Xj , Yj, Dj〉 for j ∈ [n].

Assume that {Zj}j∈[n] is a set of mutually independent variables, and Zj ∼ ζj

for all j ∈ [n] (thus, Z ∼ ζ1 · · · ζn). If, for all j ∈ [n], Xj and Yj are independent

given Dj, and the marginal distribution of (X,Y) is a collapsing distribution for

fH, then ICζ1···ζn,δ(f
H |D) ≥ ∑n

j=1 ICζj ,δ(hj |Dj).

One can apply Theorem 18 to the function f⊼

T , with f the n-bit NAND and

hj = fTj
, for j ∈ [n]. However, this won’t take us very far. The problem is that if

µ—the marginal distribution of 〈X,Y〉—is collapsing for fT , then the support of µ

is a subset of (fH)−1(0). Therefore, we will inherit for each subtree a distribution

µj with a support inside h−1
j (1). But the support of a collapsing distribution

should lie inside h−1
j (0). This means that we cannot apply Theorem 18 repeatedly.

This problem arose in Jayram, Kumar & Sivakumar [JKS03] when studying the

function TRIBESm,n(x,y) =
∧m

k=1DISJn(xk,yk) =
∧m

k=1

∨n
j=1(xkj∧ykj). Jayram

et al. [JKS03] managed to overcome this problem by proving a more complicated

direct-sum theorem for a non-collapsing distribution for DISJ. Inspired by their

idea, we show how to do the same for arbitrary read-once boolean functions.

The information cost of a protocol Π that we will employ for our proof will

have the form I(X,Y ; Π(X,Y) |Γ,D), where random variables Γ and D are

auxiliary variables that will be used to define the distribution over the inputs.

3.2.1 Further definitions on trees

We proceed with definitions of objects that will be needed to finally define a

distribution ζ for (〈X,Y〉, 〈Γ,D〉), which will give meaning to

ICζ,δ(f
⊼

T |Γ,D) = min
Π

I(X,Y ; Π(X,Y) |Γ,D).
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Definition 19. (Valid coloring.) For our purposes, a coloring of a tree T is a

partition of VT into two sets γ = 〈Wγ ,Rγ〉. The vertices of Wγ are said to be

white and the vertices of Rγ are said to be red. A coloring is valid if it satisfies

the following conditions.

1. The root is white.

2. A white node is either a leaf or exactly one of its children is red.

3. A red node is either a leaf or exactly two of its children are red.

Example. For a standard binary tree, a valid coloring paints all nodes on some

root-to-leaf path white and all the rest red. Thus, the number of valid colorings

equals the number of leaves.

Consider now a t-uniform tree T , colored properly by γ. Each white node has

exactly one red child that is the root of a red binary subtree. For t > 2 there

will be two kinds of white leaves: those that have no red nodes on the path that

connects them to the root, and those that have at least one red node on that

path. Notice that the union of a white leaf of the first kind, the corresponding

root-to-leaf path, and the red binary subtrees that are “hanging” from the white

nodes on the path, form a full binary subtree S of T . Furthermore, the restriction

of γ on S, denoted γS, is a valid coloring for S.

Definitions related to colorings. We note some properties of valid colorings

and give further definitions of related objects. Consider a tree T and a valid

coloring γ = 〈Wγ,Rγ〉.

(1) The red nodes induce a forest of binary trees in standard form called the

red forest.

(2) We can define a one-to-one correspondence between the trees in the red

forest and internal white nodes of T as follows. For each white node w, its unique

red child is the root of one of the full binary trees. We let RT(w) = RTγ,T (w)
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denote the set of vertices in the red binary tree rooted at the red child of w. (For

convenience, if w is a leaf, RT(w) is empty.)

(3) The principal component of γ is the set of white nodes whose path to the

root consists only of white nodes. A principal leaf of γ is a leaf belonging to the

principal component. Let PLT (γ) denote the set of principal leaves of γ.

(4) A full binary subtree S of T (i.e. S ∈ FBST ) is said to be compatible with

γ, written S ∝ γ, if S has exactly one white leaf. (Notice that, since γ is valid,

this leaf would have to be a principal leaf. Thus, S ∝ γ is equivalent to saying

that the restriction of γ on VS is a valid coloring for S.)

(5) Define FBST (γ) = {S ∈ FBST |S ∝ γ}. This set is in one-to-one corre-

spondence with the set PLT (γ) of principal leaves. If u is a principal leaf, then

the set path(u)∪⋃
w∈path(u)RT(w) induces a tree Fγ(u) that belongs to FBST (γ),

and conversely if S is in FBST (γ), then its unique white leaf u is principal and

S = Fγ(u).

(6) Define the positive integersmγ,T = |FBST (γ)| = |PLT (γ)|,mT =
∑

γ mγ,T ,

and ρT = minγ mγ,T , where the min is over all valid colorings γ. (Notice that, if

T = T1 ◦ · · · ◦ Tn, then ρT =
∑

j ρTj
−maxj ρTj

.)

On notation. Consider a tree T , u ∈ VT , and a coloring γ of T . We write Tu for

the subtree of T rooted at u. Consider a vector z ∈ ΣNT , where each coordinate

corresponds to a leaf. We write zu for the part of z that corresponds to the leaves

of Tu. For S ∈ FBST we write zS for the part of z that corresponds to the leaves of

S. We treat colorings similarly. For example, γS stands for 〈Wγ ∩ VS,Rγ ∩ VS〉.

3.2.2 The input distribution

Our proof will have two main components, analogous to the ones in Jayram et al.

[JKS03]. The distribution over the inputs that we shall define is carefully chosen

so that each component of the proof can be carried out.
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In the first part (Section 3.2.3) we prove a direct-sum theorem for arbitrary

trees. Given an arbitrary tree T in standard form, we show how the information

cost of a protocol for f⊼

T can be decomposed into a sum of information costs

that correspond to full binary subtrees of T . In the second part of the proof

(Section 3.2.4) we provide a lower bound on the informational complexity of f⊼

S ,

where S is an arbitrary binary tree in standard form.

For a uniform binary tree with NS leaves, there is a natural distribution for

which one can prove an Ω(
√
NS) lower bound on information cost. However, this

distribution is not useful for us because it does not seem to be compatible with

the first part of the proof. It turns out that for our purposes it is sufficient to

prove a much weaker lower bound on the information cost for binary trees, of the

form Ω(1/cd) for some fixed c > 0, which will be enough to give a lower bound of

Ω(n/cd) on the communication complexity for general trees. The distribution for

binary trees that we choose gives such a bound and is also compatible with the

first part of the proof. This allows us to show that the information cost of a tree

of depth d is at least n
2d
B(d), where B(d) is a lower bound on the information

cost of (a communication protocol on) a depth-d binary tree.

Given an arbitrary tree T in standard form, we now define a distribution over

inputs to Alice and Bob for f⊼

T .

First, we associate to each standard binary tree S a special input 〈αS, βS〉.

We will be interested in the value f⊼

S (αS, βS). These inputs, which now seem

arbitrary, introduce structure in the final distribution. This structure is crucial

for the effectiveness of the second part of our proof.

Definition 20. We define input 〈αS, βS〉 to f⊼

S for a standard binary tree S. The

definition is recursive on the depth dS of the tree.

〈αS, βS〉 =





〈1, 1〉 if dS = 0,

〈αS1αS2 , βS1
βS2〉 if S = S1 ◦ S2.
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We will need the following property of 〈αS, βS〉.

Proposition 21. For a standard binary tree S with dS > 0, f⊼

S (αS, βS) =

f⊼

S (αS, βS) = 0 and f⊼

S (αS, βS) = f⊼

S (αS, βS) = 1.

Proof. The proof is by induction on dS.

For dS = 1 the (unique) tree results in the function f⊼

S (x1x2, y1y2) = (x1 ⊼

y1) ⊼ (x2 ⊼ y2). Clearly,

f⊼

S (αS, βS) = f⊼

S (10, 01) = 0, f⊼

S (αS, βS) = f⊼

S (01, 10) = 0 ;

f⊼

S (αS, βS) = f⊼

S (10, 10) = 1, f⊼

S (αS, βS) = f⊼

S (01, 01) = 1.

Suppose dS > 1 and let S = S1 ◦ S2. We have fS(αS, βS) = f⊼

S1
(αS1 , βS1

) ⊼

f⊼

S2
(αS2 , βS2) = 1 ⊼ 1 = 0 (where we applied the inductive hypothesis on S1 and

S2). The other cases can be verified in a similar manner.

An input will be determined by three independent random variables Γ,D,R,

which are defined as follows.

(i) Γ ranges over valid colorings γ for T , according to a distribution that weights

each γ by the number of principal leaves it has. More precisely, Pr[Γ = γ] =

mγ,T/mT .

(ii) D = 〈D1, . . . , DN〉 ∈R {Alice,Bob}N . Thus, for any d ∈ {Alice,Bob}N ,

we have Pr[D = d] = 2−N .

(iii) R = 〈R1, . . . , RN〉 ∈R {0, 1}N . Thus, for any r ∈ {0, 1}N , we have Pr[R =

r] = 2−N .

The inputs X = 〈X1, . . . , XN〉 and Y = 〈Y1, . . . , YN〉 are determined by values

γ, d = 〈d1, . . . , dN〉, and r = 〈r1, . . . , rN〉 for Γ, D, and R as follows.

(i) Let F1, . . . , Fk be the trees in the red forest determined by γ. The input to

Fj , for j ∈ [k], is 〈αFj
, βFj

〉.
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(ii) For a white leaf j, the corresponding input 〈Xj, Yj〉 is determined as follows.

If dj = Alice, set 〈Xj, Yj〉 = 〈0, rj〉. If dj = Bob, set 〈Xj, Yj〉 = 〈rj, 0〉.

The reader may think of the random variables D and R as labeling the leaves

of the tree T . For a leaf j ∈ [N ], the corresponding variable Dj chooses the player

whose j-th bit will be fixed to 0. The j-th bit of the other player is then set to

be equal to the random bit Rj .

Example. At this point it might be useful for the reader to see how the input

for a binary tree S is distributed. As remarked earlier, a coloring γ for S paints

a root-to-leaf path white and all the other nodes red. For any such γ we have

Pr[Γ = γ] = 1/NS. All the other input bits, besides the ones that correspond

to the single white leaf, are fixed according to Definition 20 and the red forest

determined by γ. Thus, the only entropy in the input (given a coloring γ) comes

from the single white leaf. The mutual information of the transcript and this leaf

is what we lower bound in Section 3.2.4.

Let ζT be the resulting distribution on (〈X,Y〉, 〈Γ,D〉). Let µT (resp. νT ) be the

marginal distribution of 〈X,Y〉 (resp. 〈Γ,D〉). We often drop subscript T and

write ζ, µ, and ν.

Proposition 22. Consider a tree T and let 〈x,y, γ,d〉 be in the support of ζ. If

u is a red node with a white parent, then f⊼

Tu
(xu,yu) = 0. If u is a white node,

then f⊼

Tu
(xu,yu) = 1.

Proof. The proof is by induction on dTu
.

When dTu
= 0, u is a leaf. If u is red and its parent is white, then Tu is a

(one-vertex) tree in the red forest determined by γ. Definition 20 then implies

that 〈xu,yu〉 = 〈1, 1〉 and so f⊼

Tu
(xu,yu) = 0. If u is white, notice that either

xu = 0 or yu = 0 (see item (ii) above).
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When dTu
> 0 and u is white, then u has a red child v. By induction

f⊼

Tv
(xv,yv) = 0, and it follows that f⊼

Tu
(xu,yu) = 1. If u is red and its par-

ent is white, then there is a tree F rooted at u in the red forest. We claim

that f⊼

Tu
(xu,yu) = f⊼

F (xF ,yF ). The statement then follows by Proposition 21,

because, according to the definition of ζT , 〈xF ,yF 〉 = 〈αF , βF 〉. The claim holds

because every v ∈ VF has only white children outside F , and—by the induction

hypothesis—their values do not affect the value of v (since the inputs to a ⊼-gate

that are equal to ‘1’ are, in some sense, irrelevant to the output).

3.2.3 A direct-sum theorem for read-once boolean formu-

lae

Let T be an arbitrary tree in standard form and S ∈ FBST . Suppose we have

a communication protocol Π for f⊼

T and we want a protocol for f⊼

S . One natural

way to do this is to have Alice extend her input xS for S to an input x for T

and Bob extend his input yS for S to an input y for T , in such a way that

f⊼

T (x,y) = f⊼

S (xS,yS). Then by running Π on 〈x,y〉 they obtain the desired

output.

Let Π be any protocol for f⊼

T . For any S ∈ FBST we will construct a

family of protocols for f⊼

S . Each protocol in the family will be specified by

a pair 〈γ,d〉 where γ is a valid coloring of T that is compatible with S, and

d ∈ {Alice,Bob}NT

Alice and Bob plug their inputs in T , exactly where S is embedded. To

generate the rest of the input bits for T , they first use γ to paint the nodes of T

not in S. For a red leaf j, the values of Xj and Yj are determined by the coloring

γ, so Alice and Bob can each determine xj and yj without communication. For

a white leaf j outside S, they have to look at the value of dj. If dj = Alice,

Alice sets xj = 0, and Bob uses a random bit of his own to (independently) set
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his input bit yj. If dj = Bob, Bob sets yj = 0, and Alice uses a random bit to set

xj . After this preprocessing, they simulate Π. Denote this protocol by ΠS[γ,d].

To argue the correctness of ΠS[γ,d] for any S, γ, and d, notice that any node

in S has only white children outside S (this follows from the conditions that a

coloring satisfies). From Proposition 22 we know that a white node does not affect

the value of its parent.

We now define a distribution over the triples 〈S, γ,d〉 so that the average of

the information cost of ΠS[γ,d] will be related to the information cost of Π. Recall

that NT is the number of leaves, and that mT and ρT are integers related to the

tree T defined in part (6) of the paragraph on “definitions related to colorings”

in Paragraph 3.2.1. The distribution ξT for triples 〈S, γ,d〉 is as follows,

ξT (S, γ,d) =





1
mT 2NT

if S ∝ γ,

0 otherwise.

This is indeed a distribution since

∑

S,γ,d

ξT (S, γ,d) =
∑

S∝γ

∑

d

1
mT 2NT

=
∑

S∝γ

1
mT

= 1.

Lemma 23. Consider any protocol Π for a tree T . Suppose (〈X,Y〉, 〈Γ,D〉) ∼ ζT

and (〈X′,Y′〉, 〈Γ′,D′〉) ∼ ζS; then

I(X,Y ; Π |Γ,D) ≥ ρT · E〈S,γ,d〉∼ξT [I(X
′,Y′ ; ΠS[γ,d] |Γ′,D′)].

Proof. We start by evaluating the right-hand side. (Recall that for γ and d we

write γS and dS for their restrictions in S ∈ FBST .)

E〈S,γ,d〉∼ξT [I(X
′,Y′ ; ΠS[γ,d] |Γ′,D′)]

=
∑

S,γ,d

ξT (S, γ,d)
∑

γ′,d′

νS(γ
′,d′) · I(X′,Y′ ; ΠS[γ,d] |Γ′ = γ′,D′ = d′)]

=
∑

S,γ′,d′

∑

γ:S∝γ

∑

d

1
mT 2NT

· 1
NS2

NS
· I(X′,Y′ ; ΠS[γ,d] |Γ′ = γ′,D′ = d′)] (3.1)

=
∑

S,γ:
S∝γ

∑

d

1
mγ,T

· mγ,T

mT 2NT
· I(X′,Y′ ; ΠS[γ,d] |Γ′ = γS,D

′ = dS). (3.2)
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The transition from (3.1) to (3.2) needs to be justified. Look first at equa-

tion (3.2). Fix values Ŝ, γ̂, and d̂ for the summation indices S, γ, and d respec-

tively. Consider the corresponding term A = I(X′,Y′ ; ΠŜ[γ̂, d̂] |Γ′ = γ̂S,D
′ =

d̂S) in the sum. Now look at (3.1). Fix indices S, γ′, and d′ to Ŝ, γ̂S, and d̂S

respectively. We claim that there are NS2
NS values 〈γ,d〉, for which we have

I(X′,Y′ ; ΠŜ[γ,d] |Γ′ = γ̂S,D
′ = d̂S) = A. Indeed, any 〈γ,d〉 such that γ agrees

with γ̂ outside S, and d agrees with d̂ outside S, contributes A to the sum in

equation (3.1). There are NS such γ and 2NS such d.

Let us define j(γ, S) to be the white leaf of S which is colored white by γ.

Recalling the definition of ρT (Definition 3.2.1), the last equation gives

E〈S,γ,d〉∼ξT [I(X
′,Y′ ; ΠS[γ,d] |Γ′,D′)]

≤ 1
ρT

∑

S,γ:
S∝γ

∑

d

mγ,T

mT 2NT
· I(X ′

j(γ,S), Y
′
j(γ,S) ; ΠS[γ,d] |Γ′ = γS,D

′ = dS).
(3.3)

For the left-hand side we have

I(X,Y ; Π |Γ,D)

=
∑

γ,d

νT (γ,d) · I(X,Y ; Π |Γ = γ,D = d)

≥
∑

γ,d

mγ,T

mT 2NT

∑

j∈PLT (γ)

I(Xj , Yj ; Π |Γ = γ,D = d)

=
∑

S,γ:
S∝γ

∑

d

mγ,T

mT 2NT
· I(Xj(γ,S), Yj(γ,S) ; Π |Γ = γ,D = d). (3.4)

The inequality follows from Proposition 6, ignoring terms that correspond to

nonprincipal leaves. The last equality follows from the bijection between FBST (γ)

and PLT (γ) as discussed in Definition 3.2.1.

In view of equations (3.3) and (3.4), to finish the proof one only needs to

verify that the two distributions

(X ′
j(γ,S), Y

′
j(γ,S),ΠS[γ,d] |Γ′ = γS,D

′ = dS), (Xj(γ,S), Yj(γ,S),Π |Γ = γ,D = d)
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are identical. To see this, notice first that Pr[X ′
j(γ,S) = bx |Γ′ = γS,D

′ = dS] =

Pr[Xj(γ,S) = bx |Γ = γ,D = d], because S is colored the same in both cases

and j(γ, S) is the white leaf of S. Similarly for Y ′
j(γ,S) and Yj(γ,S). Finally, it

follows immediately from the definition of ΠS[γ,d], that Pr[ΠS[γ,d](X
′,Y′) =

τ |X ′
j(γ,S) = bx, Y

′
j(γ,S) = by,Γ

′ = γS,D
′ = dS] = Pr[Π(X,Y) = τ |Xj(γ,S) =

bx, Yj(γ,S) = by,Γ = γ,D = d].

To obtain a lower bound from this lemma, we want to lower bound ρT and

the informational complexity of standard binary trees. The later is done in the

next section. The following lemma shows that we can assume ρT ≥ NT/2
dT .

Lemma 24. For any tree T with N leaves and depth d, there is a tree T̂ with

the following properties. (1) T̂ is in standard form, (2) Rδ(f
⊼

T ) ≥ Rδ(f
⊼

T̂
), (3)

ρT̂ ≥ N/2d.

Proof. First, we describe the procedure which applied on T produces T̂ . If T is

a single node we set T̂ = T . Otherwise, assume T = T1 ◦ · · · ◦ Tn and denote Nj

the number of leaves in each Tj . We consider two cases.

A. If there is a j such that Nj ≥ N/2, then we apply the procedure to Tj to

obtain T̂j , set T̂ = T̂j , and remove the remaining subtrees.

B. Otherwise, for each j ∈ [n] apply the procedure on Tj to get T̂j , and set

T̂ = T̂1 ◦ · · · ◦ T̂n.

Now we prove by induction on d that T̂ has properties (1) and (3). When

d = 0 and T is a single node, ρT = 1 and all properties are easily seen to be

true. Otherwise, if T̂ is created as in case A, then clearly property (1) holds.

For property (3) assume T̂ = T̂j . By induction, ρT̂j
≥ Nj/2

d−1. It follows that

ρT̂ = ρT̂j
≥ N/2d (since Nj ≥ N/2). Now suppose case B applies and T̂ is created

from T̂1, . . . , T̂n. The restructuring described in case B preserves property (1). For



31

property (3) assume—without loss of generality—that ρT̂1
≤ · · · ≤ ρT̂n

. By the

definition of ρT (Definition 3.2.1, part (6) in “definitions related to colorings”),

ρT̂ =

n−1∑

j=1

ρT̂j
≥

n−1∑

j=1

Nj/2
d−1 = (N −Nn)/2

d−1 > (N −N/2)/2d−1 = N/2d.

Finally, property (2) is true because Alice and Bob can simulate the protocol for

fT after they set their bits below a truncated tree to ‘1’.

3.2.4 Bounding the informational complexity of binary

trees

In this section we concentrate on standard binary trees. Our goal is to prove a

lower bound of the form I(X,Y ; Π |Γ,D) ≥ 2−Θ(dT ). We prove such an inequality

using induction on dT . The following statement provides the needed strengthening

for the inductive hypothesis.

Proposition 25. Let T be a standard binary tree, and let Tu be a subtree rooted

at an internal node u of T . Assume that (〈Xu,Yu〉, 〈Γu,Du〉) ∼ ζTu
and 〈X,Y〉 =

〈aXub, cYud〉, where a, b, c, d are fixed bit-strings. Then, for any protocol Π, we

have

I(Xu,Yu ; Π(X,Y) |Γu,Du) ≥
h2(Π(aαTu

b, cβTu
d),Π(aαTu

b, cβTu
d))

2NTu
2dTu+1

.

Proof. The proof is by induction on the depth dTu
of Tu.

When dTu
= 0 we have fTu

(x, y) = x⊼y. This case was shown in Bar-Yossef et

al. [BYJKS04, Section 6], but we redo it here for completeness. First, notice that

Γu is constant and thus the left-hand side simplifies to I(Xu, Yu ; Π(X, Y ) |Du).

Expanding on values of Du this is equal to

1
2

(
I(Yu ; Π(a0b, cYud) |Du = Alice) + I(Xu ; Π(aXub, c0d) |Du = Bob)

)
,

because given Du = Alice we have Xu = 0 and given Du = Bob we have Yu = 0.

Also, given Du = Alice we have Yu ∈R {0, 1} and thus the first term in the
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expression above can be written as I(Z ; Π(a0b, cZd)), where Z ∈R {0, 1}. Now

we apply Lemma 12 to bound this from below by h2(Π(a0b, c0d),Π(a0b, c1d)).

Bounding the other term similarly and putting it all together we get

I(Xu, Yu ; Π(X, Y ) |Du)

≥ 1
2

(
h2(Π(a0b, c0d),Π(a0b, c1d)) + h2(Π(a0b, c0d),Π(a1b, c0d))

)

≥ 1
4
· h2(Π(a0b, c1d),Π(a1b, c0d)).

For the last inequality we used the triangle inequality of Hellinger distance (Propo-

sition 13(1)). Since 〈αTu
, βTu

〉 = 〈1, 1〉 this is the desired result.

Now suppose dTu
> 0 and let Tu = Tu1 ◦ Tu2 . Either u1 ∈ WΓu

(i.e. u1 is

white), or u2 ∈ WΓu
. Thus, expanding on Γu, the left-hand side can be written

as follows.

NTu1

NTu
· I(Xu,Yu ; Π(aXub, cYud) |Γu, u1 ∈ WΓu

,Du)

+
NTu2

NTu
· I(Xu,Yu ; Π(aXub, cYud) |Γu, u2 ∈ WΓu

,Du).

When u1 is white, 〈Xu2,Yu2〉 = 〈αTu2
, βTu2

〉, and (〈Xu1,Yu1〉, 〈Γu1,Du1〉) is dis-

tributed according to ζTu1
. Similarly, given that u2 is white, we have 〈Xu1,Yu1〉 =

〈αTu1
, βTu1

〉, and (〈Xu2,Yu2〉, 〈Γu2,Du2〉) is distributed according to ζTu2
. Thus,

the above sum simplifies to

NTu1

NTu
· I(Xu1 ,Yu1; Π(aXu1αTu2

b, cYu1βTu2
d)|Γu1 ,Du1)

+
NTu2

NTu
· I(Xu2,Yu2; Π(aαTu1

Xu2b, cβTu1
Yu2d)|Γu2,Du2).

By induction, this is bounded from below by

NTu1

NTu ·2NTu1
2dTu

· h2(Π(aαTu1
αTu2

b, cβTu1
βTu2

d),Π(aαTu1
αTu2

b, cβTu1
βTu2

d))

+
NTu2

NTu ·2NTu2
2dTu

· h2(Π(aαTu1
αTu2

b, cβTu1
βTu2

d),Π(aαTu1
αTu2

b, cβTu1
βTu2

d)).
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Applying the cut-and-paste property (Proposition 13(2)) of Hellinger distance

this becomes

NTu1

NTu ·2NTu1
2dTu

· h2(Π(aαTu1
αTu2

b, cβTu1
βTu2

d),Π(aαTu1
αTu2

b, cβTu1
βTu2

d))

+
NTu2

NTu ·2NTu2
2dTu

· h2(Π(aαTu1
αTu2

b, cβTu1
βTu2

d),Π(aαTu1
αTu2

b, cβTu1
βTu2

d)).

Now, since the square of Hellinger distance satisfies the (weak) triangle inequality

(see Proposition 13), we have

≥ 1

2NTu2
dTu

+1 · h2(Π(aαTu1
αTu2

b, cβTu1
βTu2

d),Π(aαTu1
αTu2

b, cβTu1
βTu2

d)).

Recalling the definition of 〈αT , βT 〉, Definition 20, we get

= 1

2NTu2
dTu

+1 · h2(Π(aαT b, cβTd),Π(aαT b, cβTd)).

This completes the inductive proof.

Corollary 26. For any binary tree T in standard form

ICζT ,δ(f
⊼

T |Γ,D) ≥ (1− 2
√
δ) · 1

4dT+1
.

Proof. First apply Proposition 25 with the root of T as u and empty a, b, c, d.

ICζT ,δ(f
⊼

T |Γ,D) ≥ 1
4dT +1 · h2(Π(αT , βT ),Π(αT , βT ))

≥ 1
4dT +1 ·

(
1
2
h2(Π(αT , βT ),Π(αT , βT )) +

1
2
h2(Π(αT , βT ),Π(αT , βT ))

)

≥ 1
4dT +1 · (1− 2

√
δ).

The second inequality is an application of the Pythagorean property of Hellinger

distance, Proposition 13(3). The last inequality follows from Propositions 21 and

13(4).

3.2.5 Lower bounds for read-once boolean functions

In this section we use the main lemmas we have proved to obtain bounds for

read-once boolean functions.
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Corollary 27. 1. For any tree T in standard form,

ICζT ,δ(f
⊼

T |Γ,D) ≥ (1− 2
√
δ) · ρT

4dT+1
.

2. If, in addition, T is t-uniform,

ICζT ,δ(f
⊼

T |Γ,D) ≥ (1− 2
√
δ) · (t− 1)dT

4dT+1
.

Proof. Let Π be a δ-error protocol for f⊼

T . Lemma 23 holds for any Π, therefore

ICζT ,δ(f
⊼

T |Γ,D) ≥ ρT · min
S∈FBST

ICζS ,δ(f
⊼

S |Γ,D).

We now use the bound from Corollary 26 to obtain (1). For (2), we can compute

ρT exactly to be (t− 1)dT .

Corollary 28. 1. For any tree T in standard form,

Rδ(f
⊼

T ) ≥ (2− 4
√
δ) · NT

8dT+1
.

2. If, in addition, T is t-uniform,

Rδ(f
⊼

T ) ≥ (1− 2
√
δ) · (t− 1)dT

4dT+1
.

Proof. Recalling that informational complexity is a lower bound for randomized

complexity, (2) is immediate from Corollary 27(2). For (1), we apply Corol-

lary 27(1) to fT̂ , where T̂ is as in Lemma 24.

The constants do not match the ones in Theorem 15. Let T = T1◦· · ·◦Tt. The

slight improvements can be obtained by applying Theorem 18 with f being the

t-variate NAND, and, for each j ∈ [t], hj and ζj being fTj
and ζTj

, respectively.

Applying Corollary 28(1) to each of the trees Tj gives part (1); similarly for part

(2).
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3.3 Lower bound for read-once threshold functions

In this section we prove Theorem 3, stated in the introduction.

A threshold gate, denoted T n
k for n > 1 and 1 ≤ k ≤ n, receives n boolean

inputs and outputs ‘1’ if and only if at least k of them are ‘1’. A threshold tree is a

rooted tree in which every leaf corresponds to a distinct input variable and every

gate is a threshold gate. A read-once threshold function fE is a function that can

be represented by a threshold tree E. As before, we define f∧
E and f∨

E and we

want to lower bound max{Rδ(f
∧
E), Rδ(f

∨
E)}. The following proposition shows that

Alice and Bob can reduce a problem defined by an AND/OR tree to one defined

by a threshold tree. Theorem 3 will then follow as a corollary of Theorem 1.

Proposition 29. For any threshold tree E, there is an AND/OR tree T such

that, for g ∈ {∧,∨}, (1) Rδ(f
g
T ) ≤ Rδ(f

g
E), (2) NT ≥ NE/2

dE , and (3) dT = dE.

Proof. We define T by recursion on dE. When dE = 0 we set T = E. Otherwise,

let E = E1 ◦ · · ·◦En, and assume NE1 ≥ · · · ≥ NEn
. Suppose the gate on the root

is T n
k . We consider cases on k. (1) If 1 < k ≤ n/2, build T1, . . . , Tn−k+1 recursively,

set T = T1 ◦ · · ·◦Tn−k+1, and put an ∨-gate on the root. (2) If n/2 < k < n, build

T1, . . . , Tk recursively, set T = T1 ◦ · · · ◦ Tk, and put an ∧-gate on the root. (3)

Otherwise, if k = 1 or k = n, the threshold gate is equivalent to an ∨ or ∧-gate

respectively. We build T1, . . . , Tn recursively and we set T = T1 ◦ · · · ◦ Tn. The

gate on the root remains as is.

Properties (2) and (3) are easily seen to hold. For (1), it is not hard to show

that a protocol for f g
E can be used to compute f g

T . Alice and Bob need only to fix

appropriately their inputs in the subtrees that where cut of from E. If an input

bit belongs to a subtree Tj that was cut of in case (1), then Alice and Bob set

their inputs in Tj to ‘0’. If Tj was cut of in case (2), then Alice and Bob set their

inputs in Tj to ‘1’. Afterwards, they simulate the protocol for f g
E.
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The tree T in the above proposition may not be a canonical representation

of some function. However, transforming to the canonical representation will

only decrease its depth, and thus strengthen our lower bound. Thus, by this

Proposition and Theorem 1 we obtain Theorem 3 as a corollary.

3.4 General form of main theorem

The lower bounds we obtained apply to functions of the (restricted) form f∧ and

f∨. In this section we consider arbitrary two-party read-once functions, and prove

Theorem 4, stated in the introduction. Theorems 1 and 2 are deduced from our

main result, Theorem 15. We also use Theorem 15 to deduce, communication

complexity lower bounds for two-party read-once functions.

Consider an AND/OR tree-circuit C in canonical form, and suppose that its

leaf-set is partitioned into two sets XC = {x1, . . . , xs} and YC = {y1, . . . , yt} (thus,
fC is a two-party read-once function). We show that C can be transformed to a

tree T in standard form, such that Alice and Bob can decide the value of fT using

any protocol for fC . (The reader may have expected f⊼

T in the place of fT . To

avoid confusion we note that fT will already be a two-party read-once function.

In particular, for some tree T ′ with dT ′ = dT − 1 and NT ′ = NT/2, fT = f⊼

T ′ .)

Lemma 30. For any two-party read-once function f , there is a tree T in standard

form, such that (1) Rδ(fT ) ≤ Rδ(f), (2) NT ≥ D||(f)/d(f), and (3) dT ≤ d(f).

Proof. We use notation from the paragraph before the statement of the lemma.

The transformation of C proceeds in three stages.

In the first stage we collapse subtrees to single variables. For a node w let

Aw = {u ∈ VC | u is a child of w and LCu
⊆ XC}. Define Bw with Y in the place

of X . Let WX = {w ∈ VC | LCw
* XC and Aw 6= ∅}. Define WY similarly. For

each w ∈ WX , collapse {Cu | u ∈ Aw} to a single variable xw. That is, we remove

all Cu with u ∈ Aw from the tree, and add a new leaf xw as a child of w. Similarly
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with Y in the place of X and Bw in the place of Aw. Name the resulting tree C1.

We claim that Rδ(fC) = Rδ(fC1) and D||(fC) = D||(fC1). It is easy to see that

Rδ(fC) ≥ Rδ(fC1) and D
||(fC) ≥ D||(fC1). Alice, for each w ∈ WX , can set each

x ∈ XAw
equal to xw. Bob, for each w ∈ WY , can set each y ∈ YBw

equal to yw.

After this preprocessing that requires no communication, they run a protocol for

fC . For the other direction, suppose w ∈ WX is labeled by an AND gate. Alice

sets xw equal to
∧

u∈Aw
fCu

(xu) (for an OR gate, replace
∧

with
∨
). Bob acts

similarly and afterwords they run a protocol for fC1 . Clearly, NC ≥ NC1 and

dC ≥ dC1. Notice also that in C1 each node has at most one leaf in XC1 and at

most one in YC1 (where the partition for LC1 is the obvious one).

In the second stage, we remove every leaf of C1 that has a non-leaf sibling. If

after these two stages some nodes are left with only one child, we collapse them

with their unique child and label the new node with the gate of the child. Name

the resulting tree C2. We have Rδ(fC1) ≥ Rδ(fC2) and D
||(fC1) ≥ D||(fC2), since

Alice and Bob can generate values (‘1’/‘0’) for the truncated leaves according

to the gate of the parent (AND/OR). Clearly, dC1 ≥ dC2. Observe also that

NC2 ≥ NC1/dC1 . This is because for every pair of leaves in C1 that remain in C2,

there can be at most 2(dC1 − 1) leaves that will be removed—one pair for each

of the dC1 − 1 nodes along the path to the root (see last sentence of previous

paragraph).

For the final stage, let T be the tree-circuit that is otherwise identical to

C2, but every gate of C2 has been replaced by a NAND gate. It follows from

Lemma 14 that fT ≡ fC2 or fT ≡ ¬fC2 . Thus, for the models of interest, the

complexity of fC2 is equal to that of fT . Also, NT = NC2 and dT = dC2 .

For part (2), observe that D||(fC1) ≤ NC1 . Tracing the inequalities from each

stage,

NT = NC2 ≥ NC1/dC1 ≥ D||(fC1)/dC1 = D||(f)/dC1 ≥ D||(f)/d(f).
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Parts (1) and (3) are immediate.

The tree-circuit T is in standard form, and Theorem 15 can be applied, yield-

ing Rδ(fT ) ≥ 4(2− 4
√
δ) ·NT/8

dT . (For the constants involved, recall the paren-

thetic remark before the statement of the lemma.) Then, Theorem 4,

Rδ(f) ≥ (8− 16
√
δ) · D||(f)

d(f) · 8d(f) ,

follows from the lemma.
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Chapter 4

The number-on-the-forehead model

In this chapter we present a set of tools that could be useful in an information-

theoretic attack at the number-on-the-forehead complexity of disjointness.

4.1 Notation, terminology, and preliminaries

We introduce the notion of Hellinger volume of m distributions. In the next

section we show that it has properties similar in flavor to the ones of Hellinger

distance.

Definition 31. The m-dimensional Hellinger volume of distributions p1, . . . , pm

over Ω is

hm(p1, . . . , pm) = 1−
∑

ω∈Ω

m
√
p1(ω) · · ·pm(ω).

Notice that in the case m = 2, h2(p1, p2) is the square of the Hellinger distance

between distributions p1 and p2.

The following fact follows from the arithmetic-geometric mean inequality.

Fact 32. For any distributions p1, . . . , pm over Ω, hm(p1, . . . , pm) ≥ 0.

We write [n] = {1, 2, . . . , n}. For a sequence 〈a1, . . . , an〉 we let, for j ∈

[n], a<j = 〈a1, . . . , aj−1〉, and a−j = (a1, . . . , aj−1, aj+1, . . . , ak). We will denote

subsets of {0, 1}k as follows: I = {0, 1}k; for j ∈ [k], Ij is the set of points in I

such that the j-th coordinate is set to zero, i.e. Ij = {z ∈ I | zj = 0}; IOZ (resp.

IEZ) is the set of points in I with an odd (resp. even) number of zeros.
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4.2 An upper bound on the difference between the arith-

metic and geometric mean.

For a nonnegative real sequence α = (α1, . . . , αm), let A(α) and G(α) denote its

arithmetic and geometric mean respectively. That is

A(α) =
∑

αj

/
m and G(α) = m

√∏
αj.

Theorem 33. For any distribution p over [m],

A(p)−G(p) ≤ ln 2 ·D(p||u),

where u is the uniform distribution over [m].

Proof. Let xj = mp(j), x = 〈x1, . . . , xn〉, and define

f(x) =
∑

xj ln xj + m

√∏
xj .

Theorem 33 is equivalent to showing that, for x1, . . . , xn ≥ 0, if
∑
xj = m, then

f(x) ≥ 1.

We proceed using Lagrange multipliers. We first need to check that f(x) ≥ 1

when x is on the boundary, i.e. xj = 0 for some j ∈ [n]. Without loss of generality,

assume x1 = 0. By the convexity of t ln t, the minimum is attained when x2 =

· · · = xm = m/(m− 1). Thus,

f(x) ≥ (m− 1)
m

m− 1
ln

m

m− 1
> m

(
1− m− 1

m

)
= 1.

According to [Lue03, Theorem on page 300], it suffices to show that f(x) ≥ 1 for

any x that satisfies the following system of equations.

∂f/∂xj = 1 + lnxj + σ/(mxj) = λ, for j ∈ [m], (L)

where σ = m
√
x1 · · ·xm 6= 0. Without loss of generality, since

∑
xj = m, we may
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assume xm ≤ 1. The system (L) implies

m−1∑

j=1

xj(∂f/∂xj) = m− xm +

m−1∑

j=1

xj ln xj + σ(m− 1)/m = λ(m− xm),

(m− 1)xm(∂f/∂xm) = (m− 1)(xm + xm ln xm + σ/m) = (m− 1)λxm.

Subtracting the second from the first we get

m−1∑

j=1

xj ln xj − (m− 1)xm ln xm = m(λ− 1)(1− xm).

We also have
∑

xj(∂f/∂xj) = m+ f(x) = mλ.

Suppose x = (x1, . . . , xm) satisfies the system (L). Since xm ≤ 1, we have

xm ln xm ≤ 0, and using the last two equations we have

f(x) = m(λ− 1) ≥
∑m−1

j=1 xj lnxj

1− xm
≥

∑m−1
j=1 xj(1− 1/xj)

1− xm
= 1.

This completes the proof.

Corollary 34. For any nonnegative real sequence α = (α1, . . . , αm),

A(α)−G(α) ≤
∑

αj ln
αj

A(α)
.

Proof. Apply Theorem 33 with p(j) = αj

/∑
j αj .

Remark. Let α̂ to be a normalized version of α, with α̂j = αj

/∑
αj . Let also u

denote the uniform distribution on [m]. Then, the right-hand side takes the form
∑
αj ln(mα̂j) = mA(α)

∑
α̂j ln(α̂j/uj), and the above inequality becomes

A(α)−G(α)

A(α)
≤ m ln 2 ·D(α̂||u).

4.3 Properties of Hellinger volume

Hellinger volume lower bounds mutual information. The next lemma

shows that Hellinger volume can be used to lower bound mutual information.
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Lemma 35. Consider random variables Z ∈R [m], Φ(Z) ∈ Ω, and distributions

Φz, for z ∈ [m], over Ω. Suppose that given Z = z, the distribution of Φ(Z) is

Φz. Then

I(Z ; Φ(Z)) ≥ hm(Φ1, . . . ,Φm)

m ln 2
.

Proof. The left-hand side can be expressed as follows (see [CT06, page 20]),

I(Z ; Φ(Z)) =
∑

j,ω

Pr[Z = j ] ·Pr[Φ(Z) = ω |Z = j ] · log Pr[Φ(Z) = ω |Z = j ]

Pr[Φ(Z) = ω ]

=
∑

j,ω

1

m
Φj(ω) log

Φj(ω)
1
m

∑
j Φj(ω)

,

and the right-hand side

hm(Φ1, . . . ,Φm) =
∑

ω

(
1

m

∑

j

Φj(ω)−
(∏

j

Φj(ω)
) 1

m

)
.

It suffices to show that for each ω ∈ Ω,

∑

j

1

m
Φj(ω) log

Φj(ω)
1
m

∑
j Φj(ω)

≥ 1

m ln 2

(
1

m

∑

j

Φj(ω)−
(∏

j

Φj(ω)
) 1

m

)
.

Let s =
∑

j Φj(ω), and ρ(j) = Φj(ω)/s, for j ∈ [m]; thus, for all j, ρ(j) ∈ [0, 1],

and
∑

j ρ(j) = 1. Under this renaming of variables, the left-hand side becomes

ln 2 · s
m

∑
j ρ(j) log(mρ(j)) and the right one s

m
· ( 1

m
− m

√∏
ρ(j)). Thus, we need

to show

ln 2 ·
∑

j

ρ(j) log(mρ(j)) ≥ 1

m
−

(∏

j

ρ(j)
) 1

m

.

Observe that the left-hand side is ln 2 ·D(ρ||u), and the inequality holds by The-

orem 33.

Symmetric-difference lemma. Let P = {Pz}z∈Z be a collection of distribu-

tions over a common space Ω. For A ⊆ Z, the Hellinger volume of A with respect

to P , denoted by ψ(P ;A), is

ψ(A;P ) = 1−
∑

ω∈Ω

(∏

z∈A
Pz(ω)

)1/|A|
.
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The collection P will be understood from the context and we’ll say that the

Hellinger volume of A is ψ(A). Note that, from Fact 32, ψ(A;P ) ≥ 0.

The following lemma can be seen as an analog to the weak triangle inequality

that is satisfied by the square of the Hellinger distance.

Lemma 36 (Symmetric-difference lemma). If A,B satisfy |A| = |B| = |A∆B|,

where A∆B = (A \B) ∪ (B \ A). Then

ψ(A) + ψ(B) ≥ 1

2
· ψ(A∆B).

Proof. By our hypothesis, it follows that A \ B, B \ A and A ∩ B all have size

|A|/2. Define u, v, w to be the vectors in RΩ defined by

u(ω) =
(∏

z∈A\B
Pz(ω)

)1/|A|
,

v(ω) =
(∏

z∈B\A
Pz(ω)

)1/|A|
,

w(ω) =
(∏

z∈A∩B
Pz(ω)

)1/|A|
.

By the definition of Hellinger volume,

ψ(A) = 1− u · w,

ψ(B) = 1− v · w,

ψ(A∆B) = 1− u · v.

Thus the desired inequality is

2− (u+ v) · w ≥ (1− u · v)/2,

which is equivalent to

3 + u · v ≥ 2(u+ v) · w. (4.1)
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Since

ψ(A \B) = 1− u · u,

ψ(B \ A) = 1− v · v,

ψ(A ∩ B) = 1− w · w,

it follows that ‖u‖, ‖v‖ and ‖w‖ are all at most 1. Thus 2(u+ v) ·w ≤ 2‖u+ v‖,

and so (4.1) follows from

3 + u · v ≥ 2‖u+ v‖.

Squaring both sides, it suffices to show

9 + 6u · v + (u · v)2 ≥ 4(‖u‖2 + ‖v‖2 + 2u · v)

Using the fact that ‖u‖ ≤ 1 and ‖v‖ ≤ 1 this reduces to

(1− u · v)2 ≥ 0,

which holds for all u, v.

Let sl, sr be two disjoint subsets of [k]. Let Il ⊆ I (resp., Ir) be the set of

strings with odd number of zeros in the coordinates indexed by sl (resp., sr). Let

sp = sl ∪ sr and Ip = Il∆Ir. It is not hard to see that Ip is the set of strings

with odd number of zeros in the coordinates indexed by sp. By the symmetric-

difference lemma,

ψ(Il) + ψ(Ir) ≥
ψ(Ip)

2
. (4.2)

For each j ∈ [k], let Ij ⊆ I be the set of strings where the j-th coordinate

is set to zero. Applying the above observation inductively, we can obtain the

following lemma.

Lemma 37. Let s ⊆ [k] be an arbitrary non-empty set and let Is ⊆ I be the set

of strings with odd number of zeros in the coordinates indexed by s. Then,

∑

j∈s
ψ(Ij) ≥

ψ(Is)

2⌈log |s|⌉
.
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Proof. We prove the claim via induction on the size of s. If s is a singleton set, it

trivially holds. Otherwise, assume that for any subset of [k] of size less than |s|,

the claim is true.

Partition s into two non-empty subsets sl, sr with the property that |sl| =
⌈|s|/2⌉ and |sl| = ⌊|s|/2⌋. Then ⌈log |s|⌉ = 1 +max{⌈log |sl|⌉, ⌈log |sr|⌉}. By the

inductive hypothesis,

∑

j∈sl

ψ(Isl) ≥
ψ(Isl)

2⌈log |sl|⌉
and

∑

j∈sr
ψ(Isr) ≥

ψ(Isr)

2⌈log |sr|⌉
.

Thus,

∑

j∈s
ψ(Isl) =

∑

j∈sl

ψ(Isl) +
∑

j∈sr
ψ(Isr)

≥ ψ(Isl)

2⌈log |sl|
+

ψ(Isr)

2⌈log |sr|⌉
by the Inductive Hypothesis,

≥ 1

2⌈log |s|⌉−1
[ψ(Isl) + ψ(Isr)] by the choice of sl and sr,

≥ 1

2⌈log |s|⌉
ψ(Is) by Equation (4.2).

Let IOZ ⊆ I be the set of strings which have odd number of zeros. The next

corollary is an immediate consequence of Lemma 37 when s = [k].

Lemma 38.
k∑

j=1

ψ(Ij) ≥
ψ(IOZ)

2⌈log k⌉
.

NOF communication complexity and Hellinger volume. It was shown in

Bar-Yossef, Jayram, Kumar & Sivakumar [BYJKS04], that the distribution of

transcripts of a two-party protocol on a fixed input, is a product distribution.

The same is true for a multi-party NOF protocol.

Lemma 39. Let Π be a k-player NOF communication protocol with input set

Z = Z1 × · · · × Zk and let Ω be the set of possible transcripts. For each j ∈ [k],
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there is a mapping qj : Ω × Z−j → R, such that for every z = (z1, . . . , zk) ∈ Z
and ω ∈ Ω,

Pr[Π(z) = ω ] =

k∏

j=1

qj(ω; z
−j).

Proof. Suppose |Π(z)| ≤ l. For i = 1, . . . , l, let Πi(z) denote the i-th bit sent in

an execution of the protocol. Let σi ∈ [k] denote the player that sent the i-th bit.

Then

Pr[Π(z) = ω ] = Pr[Π1(z) = ω1, . . . ,Πl(z) = ωl ]

=

l∏

i=1

Pr[Πi(z) = ωi |Π<i(z) = ω<i ],

=

l∏

i=1

Pr[Πi(z
−σi ;ω<i) = ωi ],

because every bit send by player j depends only on z−j and the transcript up to

that point. We set

qj(ω; z
−j) =

∏

i:σi=j

Pr[Πi(z
−j ;ω<i) = ωi ]

to obtain the expression of the lemma.

As a corollary, we have the following cut-and-paste property for Hellinger

volume.

Lemma 40. Let IOZ ⊆ I be the set of inputs which have odd number of zeros,

and let IEZ = I \ IOZ. Then

ψ(IOZ) = ψ(IEZ).

Proof. Using the expression of the previous lemma, we have that for any ω ∈ Ω,

∏

v∈IOZ

Pv(ω) =
∏

v∈IOZ

k∏

j=1

qj(ω; v
−j) =

∏

u∈IEZ

k∏

j=1

qj(ω; u
−j) =

∏

u∈IEZ

Pu(ω).

The middle equality holds, because for each j ∈ [k] and v ∈ IOZ there is a unique

u ∈ IEZ such that v−j = u−j.



47

Lower bounding Hellinger volume. Eventually, we will need to provide a

lower bound for the Hellinger volume of several distributions over protocol tran-

scripts. In the two-party case, one lower bounds the Hellinger distance between

the distribution of the transcripts on an accepting input and the distribution of

the transcripts on a rejecting input. The following lemma will allow for similar

conclusions in the multi-party case.

Lemma 41. Let A ⊆ I be of size t ≥ 2. Suppose there is an event T ⊆ Ω, a

constant 0 ≤ δ ≤ 1 and an element v in A such that Pv(T ) ≥ 1− δ and that for

all u ∈ A with u 6= v, Pu(T ) ≤ δ. Then

ψ(A) ≥
(
2− 4

√
δ(1− δ)

)
· 1
t
.

Proof. We need to show

1−
∑

ω∈Ω

∏

u∈A
Pu(ω)

1
t ≥

(
2− 4

√
δ(1− δ)

)
· 1
t
.

Let a = Pv(T ) =
∑

ω∈T Pv(ω) and b =
∑

ω∈T
1

t−1

∑
u 6=v Pu(ω). Notice that by

assumption a ≥ 1− δ and b ≤ δ.

Recall Hölder’s inequality: for any nonnegative xk, yk, k ∈ m,

m∑

k=1

xkyk ≤
( m∑

k=1

xtk

) 1
t
( m∑

k=1

y
t

t−1

k

) t−1
t

.

We first treat the sum over ω ∈ T .

∑

ω∈T

∏

u∈A
Pu(ω)

1
t =

∑

ω∈T
Pv(ω)

1
t

∏

u 6=v

Pu(ω)
1
t

≤
(∑

ω∈T
Pv(ω)

) 1
t
(∑

ω∈T

∏

u 6=v

Pu(ω)
1

t−1

) t−1
t

≤
(∑

ω∈T
Pv(ω)

) 1
t
(∑

ω∈T

1

t− 1

∑

u 6=v

Pu(ω)
) t−1

t

= a
1
t b

t−1
t ,
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where we first used Hölder’s inequality and then the arithmetic-geometric mean

inequality. We do the same steps for the sum over ω 6∈ T to find

∑

ω 6∈T

∏

u∈A
Pu(ω)

1
t ≤ (1− a)

1
t (1− b)

t−1
t .

Hence,
∑

ω∈Ω

∏

u∈A
Pu(ω)

1
t ≤ a

1
t b

t−1
t + (1− a)

1
t (1− b)

t−1
t .

Let g(a, b, x) = axb1−x + (1 − a)x(1 − b)1−x. We will show that under the

constraints a ≥ 1 − δ and b ≤ δ where δ < 1/2, for any fixed 0 ≤ x ≤ 1/2,

g(a, b, x) is maximized for a = 1 − δ and b = δ. The partial derivatives for

g(a, b, x) with respect to a and b are

ga(a, b, x) = x[ax−1b1−x − (1− a)x−1(1− b)1−x] = x
[( b
a

)1−x

−
(1− b

1− a

)1−x]

gb(a, b, x) = (1− x)[axb−x − (1− a)x(1− b)−x] = (1− x)
[( b
a

)−x

−
( 1− b

1− a

)−x]

Under our constraints, b
a
< 1 < 1−b

1−a
, 1− x > 0 and −x ≤ 0, thus, ga(a, b, x) < 0

and gb(a, b, x) ≥ 0 for any such a, b, and x. This implies that for any fixed b,

g(a, b, x) is maximized when a = 1 − δ and similarly for any fixed a, g(a, b, x)

is maximized when b = δ. Therefore, for all a, b, and 0 ≤ x ≤ 1, g(a, b, x) ≤
g(1− δ, δ, x).

For 0 ≤ x ≤ 1/2, let

f(δ, x) = 1− g(1− δ, δ, x) = 1− (1− δ)xδ1−x − δx(1− δ)1−x.

Since f(δ, x) is convex for any constant 0 ≤ δ ≤ 1,

f(δ, x) ≥ f(δ, 1/2)− f(δ, 0)

1/2− 0
· x = 2

(
1− 2

√
δ(1− δ)

)
· x.
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4.4 An application

In this section we show how to derive a lower bound for the informational com-

plexity of the ANDk function. Define a collection of distributions η = {ζ1, . . . , ζk},
where, for each j ∈ [k], ζj is the uniform distribution over Ij = {0, 1}k (recall that

Ij ⊆ I, j ∈ [k], is the set of k-bit strings with the j-th bit set to 0). We prove

the following lower bound on the δ-error informational complexity of ANDk with

respect to η.

Remark. The choice of the collection η is not arbitrary, but is suggested by the

way the direct-sum theorem for informational complexity is proved in [BYJKS04]

for the two-party setting. In particular, two properties of η seem crucial for such

a purpose. First, for each j ∈ [k], ζj is a distribution with support only on the

zeroes of ANDk. Second, under any ζj, the input of each player is independent of

any other input.

Theorem 42.

ICη,δ(ANDk) ≥ log e ·
(
1− 2

√
δ(1− δ)

)
· 1

k2 4k−1
.

Proof. Let Π be a δ-error protocol for ANDk. By Lemma 35 we have that,

I(Z; Π(Z)) ≥ 1

2k−1 ln 2
· ψ(Ij),

where Z ∼ ζj, for any j ∈ [k], Thus, by the definition of ICη,δ(ANDk),

ICη,δ(ANDk) ≥
k∑

j=1

1

k 2k−1 ln 2
· ψ(Ij).

Applying in turn Lemmas 38, 40, and 41 we have

ICη,δ(ANDk) >
ψ(IOZ)

k2 2k ln 2
=

ψ(IEZ)

k2 2k ln 2
≥ log e ·

(
1− 2

√
δ(1− δ)

)
· 1

k2 4k−1
,

where the application of Lemma 41 is with A = IEZ , t = 2k−1, T the set of

transcripts that output “1”, and v the all-one vector in I.
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It is of interest to note, that

ICη,δ(ANDk) ≤
1

k
·H(1/2k−1) = O(1/2k).

This is achieved by the following protocol. The players, one by one, reveal with

one bit whether they see a 0 or not. The communication ends with the first player

that sees a 0. The amount of information revealed is H(1/2k−1) under ζ1 and 0

otherwise.
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Chapter 5

Conclusions and future work

In this chapter we discuss related open problems regarding the two-party random-

ized communication complexity, and some difficulties in applying the information-

theoretic framework to the number-on-the-forehead model.

5.1 Two-party randomized communication complexity

A problem that stands out after the lower bound presented in Chapter 3 for

read-once formulae, is to determine the communication complexity of fUd
, where

Ud is the uniform binary tree of depth d. It is not hard to see, by embedding

DISJ√
2
d
,2
, that Rδ(fUd

) = Ω(
√
2
d
). The corresponding question for the decision

tree model was answered in the work of Saks & Wigderson [SW86], where it

was shown that the randomized decision tree complexity of fUd
is Θ

((
1+

√
33

4

)d)
.

The randomized decision tree for fUd
can be transformed into a communication

protocol with only doubling the length, showing that Rδ(fUd
) = O

((
1+

√
33

4

)d)
.

We believe that the lower bound can be improved and it would be interesting if

an information-theoretic approach could yield the improvements.

Progress in the complexity of the uniform binary tree would probably yield

improvements on the bounds for the general trees. Note the Ω(
√
n) bound, where

n is the number of variables, which is trivial for uniform trees, was shown to hold

also for arbitrary trees by Jain, Klauck & Zhang [JKZ10].

Another direction for future research would be to prove lower bounds on

Rδ(f
∧) and Rδ(f

∨), in the case where f is an arbitrary boolean function. This
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question has been considered before as intermediate step in understanding the

relationship between randomized and quantum communication complexity. For

example, Sherstov [She10]), shows that max{R1/3(f
∧), R1/3(f

∨)} ≥ Ω(bs(f)1/4),

where bs(f) is the block-sensitivity of f (see [BdW02]).

5.2 Number-on-the-forehead communication complexity

Proving lower bounds in the number-on-the-forehead model is a major research di-

rection. Until now, the only method that has successfully been extended from the

two-party to the multi-party NOF model is discrepancy. An interesting question

is if the information-theoretic framework can be useful in proving lower bounds

for the NOF model. However, there seem to be fundamental difficulties in prov-

ing a direct-sum theorem on informational complexity in the NOF model. The

reader familiar with the techniques of Bar-Yossef, Jayram, Kumar & Sivakumar

[BYJKS04], should recall that in the first part of the method a direct-sum for

informational complexity of disjointness is proved. In particular, it is shown that

with respect to suitable collections of distributions η and ζ for DISJn,2 and AND2

respectively, the information cost of DISJn,2 is at least n times the informational

complexity of AND2 : ICη,δ(DISJn,2) ≥ n · ICζ,δ(AND2). This is achieved via a

simulation argument in which the players, to decide the AND2 function, use a

protocol for disjointness by substituting their inputs in a special copy of AND2

and using their random bits to generate the inputs for the rest n − 1 copies of

AND2. In the NOF model the players can no longer perform such a simulation.

This is because, with private random bits, they cannot agree on what the input on

the rest of the copies should be without additional communication. This problem

can be overcome if we think of their random bits as being not private, but on

each player’s forehead, just like the input. However, In such a case, although the

direct-sum theorem holds, it is useless. This is because ICζ,δ(ANDk) = 0, as is
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shown by the protocol we describe in the next paragraph.

We describe a protocol that computes ANDk on every input, with one-sided

error. It has the property that for any distribution over the zeroes of ANDk,

no player learns anything about his own input. We give the details for three

players. Let x1, x2, x3 denote the input. Each player has two random bits on his

forehead, denoted a1, a2, a3 and b1, b2, b3. The first player does the following: if

x2 = x3 = 1, he sends a2 ⊕ a3, otherwise he sends a2 ⊕ b3. The other two players

behave analogously. If the XOR of the three messages is ‘0’, they answer ‘1’,

otherwise they know that the answer is ‘0’. Notice that any player learns nothing

from another player’s message. This is because the one-bit message is XOR-ed

with one of his own random bits, which he cannot see.
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