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Abstract

Many problems in complex dynamical systems involve metastable regimes despite nearly Gaussian statistics with under-
lying dynamics that is very different from the more familiar flows of molecular dynamics. There is significant theoretical
and applied interest in developing systematic coarse-grained descriptions of the dynamics, as well as assessing their skill
for both short- and long-range prediction. Clustering algorithms, combined with finite-state models for the regime tran-
sitions, are a natural way to build such models objectively from observed data in either the true model or an approximate
model. The main theme of this paper is the development of new practical criteria to assess the fidelity and predictive
skill of such coarse-grained approximations through empirical information theory in stationary and periodically-forced
models. These criteria are tested on instructive idealized stochastic models utilizing K-means clustering in conjunction
with running-average smoothing of the training data and initial conditions for forecasts. A perspective on these cluster-
ing algorithms is explored here with independent interest, where improvement in the information content of finite-state
partitions of phase space is a natural outcome of low-pass filtering through running averages. In applications with
time-periodic equilibrium statistics, recently developed finite-element, bounded-variation algorithms for nonstationary
autoregressive models are shown to strongly influence the fidelity and predictive skill, and substantially improve these
features beyond standard autoregressive models.

Keywords: Information theory, Predictability, Model error, Stochastic models, Clustering algorithms, Autoregressive
models

1. Introduction

Since the classical work of Lorenz [1–3] and Epstein [4],
predictability within dynamical systems has been the focus
of extensive study, involving disciplines as diverse as fluid
mechanics [5], dynamical-systems theory [6–8], materials
science [9–13], atmosphere-ocean science (AOS) [14–28],
molecular dynamics (MD) [29–33], econometrics [34, 35],
and time series analysis [36–38]. In these and other appli-
cations, the dynamics span multiple spatial and temporal
scales, take place in phase spaces of large dimension, and
are strongly mixing. Yet, despite the complex underly-
ing dynamics, several phenomena of interest are organized
around a relatively small number of persistent states (of-
ten described in terms of a small set of large-scale observ-
ables), which are predictable over timescales significantly
longer than suggested by decorrelation times or Lyapunov
exponents. Such phenomena often occur in these applica-
tions in variables with nearly Gaussian equilibrium statis-
tics [39, 40] and with dynamics that is very different [41]
from the more familiar gradient flows, where long-range
predictability also often occurs [29, 30]. In other examples,
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seasonal effects play an important role [23, 34, 42], result-
ing in time-periodic regime transitions. In either case, re-
vealing predictability in these systems is important both
from a practical and a theoretical standpoint. Another
issue of key importance is to quantify the fidelity of pre-
dictions made with imperfect models when (as is usually
the case) the true dynamics of nature cannot be feasibly
integrated, or are simply not known [17, 43].

The fundamental perspective adopted here is that pre-
dictions in dynamical systems correspond to transfer of in-
formation; specifically transfer of information between the
initial conditions (which in general are not known com-
pletely) and the state of the system at some future time.
This opens up the possibility of using the mathematical
framework of information theory to characterize both dy-
namical prediction skill and model error [16–19, 43–50].
The contribution of our work is to further develop and ap-
ply this body of knowledge in two important types of pre-
dictability problems, which are relevant in many of the dis-
ciplinary examples outlined above—namely (i) long-range
coarse-grained forecasts in multiscale stochastic dynamical
systems; (ii) short- and medium-range forecasts in dynam-
ical systems with time-periodic external forcing.

A major theme prevailing our analysis is to develop
techniques and intuition through comparisons of so-called
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“perfect” or “true” models (which play the role of the in-
accessible dynamical system governing the process of in-
terest) with approximate models reflecting our incomplete
and/or biased descriptions of the process under study. In
(i) the true model will be a three-mode prototype stochas-
tic model featuring physically-motivated dyad interactions
[51], and the approximate model will be a nonlinear stochas-
tic scalar model derived via the mode-elimination proce-
dure of Majda et al. [52] (hereafter, MTV). The latter non-
linear scalar model, augmented by suitable time-periodic
forcing, will play the role of the true model in (ii), and
will be approximated by stationary and non-stationary au-
toregressive models with external factors (hereafter, ARX
models) [23].

The principal results of our study, to our knowledge
novel and unanticipated, are that (i) the long-range pre-
dictive skill in complex dynamical systems can be revealed
through a suitable coarse-grained partition (via data clus-
tering) of the set of initial data, even when short train-
ing time series are used; (ii) long-range predictive skill
with imperfect models depends simultaneously on the fi-
delity of these models at asymptotic times, their fidelity
during dynamical relaxation to equilibrium, and the dis-
crepancy from equilibrium of forecast probabilities at fi-
nite lead times; (iii) nonstationary ARX models can sig-
nificantly outperform their stationary counterparts in the
fidelity of short- and medium-range predictions in chal-
lenging nonlinear systems featuring multiplicative noise;
(iv) optimal models in the sense of selection criteria based
on model complexity [53–55] are not necessarily the mod-
els with the highest predictive fidelity. More generally, we
demonstrate that information theory provides an objective
and unified framework to address these issues. The tech-
niques developed here have potential applications across
several disciplines.

In Sec. 2 we briefly review relevant concepts from in-
formation theory, and then lay out the general framework
for measuring dynamical prediction skill and model error.
This framework is applied in Sec. 3 to study long-range
coarse-grained forecasts in a time-stationary setting, and
in Sec. 4 to study short- and medium-range forecasts in
models with time-periodic external forcing. We present
our conclusions in Sec. 5.

2. Information theory, predictive skill, and model

error

2.1. Predictive skill in a perfect-model environment

We consider the general setting of a stochastic dynam-
ical system

d~z = F (~z, t) dt+G(~z, t) dW with ~z ∈ R
N , (1)

which is observed through (typically incomplete) observa-
tions

x(t) = H(~z(t)), x(t) ∈ R
n, n ≤ N. (2)

Below, ~z(t) will be given either by the three-mode dyad
model in Eq. (26) or the nonlinear scalar model in Eq. (28).
In other applications (e.g., when dealing with spatially-
extended systems [26, 27]), the dimension N of ~z(t) is
large. Nevertheless, a number of the essential nonlinear
interactions operating in high-dimensional systems are ex-
plicitly incorporated in the low-dimensional models stud-
ied here. Moreover, as reflected by the explicit dependence
of the deterministic and stochastic coefficients in Eq. (1)
on time and the state vector, the dynamics of ~z(t) will
in general be non-stationary and forced by non-additive
noise.

Let A(t) = A(~z(t)) be a prediction observable, i.e., a
function of the state vector that is of interest to be pre-
dicted. Broadly speaking, the question of dynamical pre-
dictability in the setting of Eqs. (1) and (2) may be posed
as follows: If we make a measurement x0 = x(0) = H(~z(0))
at time t = 0, how much information have we gained about
A(t) at time t > 0 in the future? Here, uncertainty in A(t)
arises because of both the incomplete nature of the ini-
tial data in Eq. (2) and the stochastic component of the
dynamical system in Eq. (1). Thus, it is appropriate to
describe A(t) via some time-dependent probability distri-
bution p(A(t) | x0) conditioned on the measurement x0.
As the forecast lead-time grows, p(A(t) | x0) will relax
towards the equilibrium measure,

peq
t = lim

t→∞
p(A(t) | x0) =

∫

dx0 p(A(t), x0), (3)

at which point x0 contributes no information about A(t).
Above, we have assumed that peq

t exists and is equal
to the marginal distribution of A(t) over all initial mea-
surements. This condition is satisfied by all of the systems
studied here (with peq

t either time-independent, or time-
periodic) and many of the applications mentioned in the
Introduction. An additional assumption made here when
peq

t is time-independent is that ~z is ergodic,

1

s

s−1
∑

i=0

A(~z(t− i δt)) ≈

∫

d~z peq(~z)A(~z) (4)

for a large-enough number of samples s. In general, pre-
dictability of A(t) may be thought of as the additional
information beyond equilibrium conveyed by knowledge of
the initial data [16, 18, 26].

The natural mathematical framework to quantify pre-
dictability in this context is information theory [44, 48],
and, in particular, the concept of relative entropy. The
latter is defined as the functional

P(p′, p) =

∫

dAp′(A) log
p′(A)

p(A)
(5)

between two probability measures, p′ and p, and has the
attractive properties that (i) it vanishes if and only if p′ =
p, and is positive if p′ 6= p; (ii) is invariant under general
invertible transformations of A. For our purposes, of key
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importance is also the so-called Bayesian-update interpre-
tation of relative entropy. This states that if p′ is a poste-
rior distribution on A conditioned on some variable x0 and
p is the corresponding prior distribution [which is the case
for p = pt

eq in Eq. (3)], then P(p(A | x0), p(A)) measures
the additional information beyond p about A gained by
having observed x0. Thus, a natural information-theoretic
measure of predictive skill is

Dx0

t = P(p(A(t) | x0), p
eq
t (A)). (6)

As one may explicitly verify, the “super-ensemble” ex-
pectation value of Dx0

t over x0,

Dt =

∫

dx0 p(x0)D
x0

t , (7)

is also a relative entropy; here between the joint distribu-
tion of the prediction observable and the initial data and
the product of their marginal distributions. That is, we
have the relations

Dt = P(p(A(t), x0), p(A(t))p(x0)) = I(A(t);x0), (8)

where I(A(t), x0) is known as the mutual information be-
tween A(t) and x0 [15, 18, 26]. Because relative entropy
is unbounded from above, it is useful to convert Dt into a
skill score,

δt = 1 − exp(−2Dt), (9)

which lies in the unit interval. Joe [56] shows that the
above definition for δt is equivalent to a squared correlation
measure, at least in problems involving Gaussian variables.

One of the classical results in information theory is that
the mutual information between the source and output of
a channel measures the rate of information flow across the
channel [44, 48]. The maximum of I over the possible
source distributions corresponds to the channel capacity.
In this regard, an interesting parallel between prediction
in dynamical systems and communication across channels
is that the combination of dynamical system and measure-
ment apparatus [represented here by Eqs. (1) and (2)] can
be thought of as a communication channel with the initial
measurements x0 as input and the prediction observable
A(t) as output.

2.2. Quantifying the error in imperfect models

The analysis in Sec. 2.1 was performed in a perfect-
model environment. Frequently, however, instead of the
true forecast distributions p(A(t) | x0) one has access
to distributions pM (A(t) | x0) derived from an imperfect
model,

d~z(t) = FM (~z, t) dt+GM (~z, t) dW (10)

Such situations arise, for instance, when one cannot afford
to feasibly integrate the full dynamical system in Eq. (1)
(e.g., MD simulations of biomolecules dissolved in a large
number of water molecules), or the laws governing ~z(t)
are simply not known (e.g., condensation mechanisms in

atmospheric clouds). In other cases, the objective is to de-
velop reliable reduced models for ~z(t) to be used as compo-
nents of coupled models (e.g., parameterization schemes in
climate models [28, 57]). In this context, objective assess-
ments of the error in the model prediction distributions
are of key importance, but frequently not carried out in
practice [43].

Relative entropy again emerges here as the natural
information-theoretic functional for quantifying model er-
ror. Now, the analog between dynamical systems and cod-
ing theory is with suboptimal coding schemes. In coding
theory the expected penalty in the number of bits needed
to encode a string assuming that it is drawn from a proba-
bility distribution p′, when in reality the source probability
distribution is p, is given by P(p, p′) evaluated with base-2
logarithms. Similarly, an objective measure of the igno-
rance or error in an imperfect dynamical model relative to
the true model is given by [17, 43, 45, 47]

Ex0

t = P(p(A(t) | x0), p
M (A(t) | x0)). (11)

The above may be aggregated into a super-ensemble mea-
sure of model error,

Et =

∫

dx0 p(x0)E
x0

t , (12)

with corresponding error score

εt = 1 − exp(−2Et), εt ∈ [0, 1). (13)

Consider now a class of imperfect models, M = {M1,M2, . . .}
with the corresponding model errors EM

t = {E1
t , E

2
t , . . .}.

An objective criterion for selecting the least-biased model
in M at lead time t is to chose the model with the small-
est error in E∗

t [43]; a choice which will generally depend
on t. Alternatively, EM

t can be utilized to compute the
weights wi(t) of a mixture distribution p∗t =

∑

i wi(t)p
M
t

with minimal expected loss of information in the sense of
Et from Eq. (11) [58]. The latter approach shares certain
aspects in common with Bayesian model averaging [59–61],
where the weight values wi are determined by maximum
likelihood from the training data. Rather than making
multi-model forecasts, in this work our goal is to provide
measures to assess the skill and fidelity of a single model
given its time-dependent forecast distributions. In partic-
ular, one of the key points in the applications of Secs. 3
and 4 ahead is that model assessments should be based on
both Et and Dt from Eq. (7).

3. Long-range, coarse-grained forecasts

In our first application, we study long-range coarse-
grained predictions in stationary stochastic dynamical sys-
tems with metastable low-frequency dynamics. Such dy-
namical systems arise in applications of wide practical in-
terest (e.g., conformational transitions in MD [29, 30] and
climate-regimes in AOS [20, 21, 26, 27, 40]), and are dom-
inated on some coarse-grained scale by switching between
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distinct regimes in phase space. Here we demonstrate that
long-range predictability may be revealed in these mod-
els by employing a suitable partition Ξ of the set of ini-
tial data. In this picture, a regime is represented by the
integer-valued affiliation S of the initial-data vector x0 in
Eq. (2) to an element of the partition, and is not neces-
sarily related to local maxima in probability density func-
tions (PDFs) [39, 40, 62]. The main tenets here are that
(i) S embodies the coarse-grained information relevant to
long-range forecasting; (ii) Ξ may be constructed feasi-
bly by data-clustering realizations of the system in equi-
librium, thus avoiding the challenging task of ensemble-
initialization [63].

More specifically, our strategy is to use the information-
theoretic framework of §2 to assess the predictive informa-
tion associated with Ξ, as well as to quantify the dynam-
ical model error incurred by using imperfect models for
the low-frequency dynamics. We develop these techniques
in Secs. 3.1 and 3.2, which are followed by an instructive
application in Secs. 3.3–3.7 involving nonlinear stochastic
models with multiple timescales.

3.1. Coarse-graining phase space to reveal long-range pre-

dictability

Our method of phase-space partitioning, described also
in Ref. [26], proceeds in two stages: a training stage and
prediction stage. The training stage involves taking a
dataset

X = {x((s− 1) δt), x((s− 2) δt), . . . , x(0)}, (14)

of s samples x(t) from Eq. (2), and computing via data-
clustering a collection of K centroids,

Θ = {θ1, . . . , θK}, θk ∈ R
n. (15)

Used in conjunction with a rule for determining S given Θ,
the centroids above lead to a mutually-disjoint partition of
n-dimensional observation space,

Ξ = {ξ1, . . . , ξK}, ξk ⊂ R
n, (16)

such that S = k indicates that the affiliation of the system
at time t = 0 is with cluster ξk ∈ Ξ. In the prediction
stage, the cluster-conditional probabilities

pk
t (A) = p(A(t) | S = k) (17)

for observable A(t) are computed by bin-counting real-
izations of A(t) and S, which are independent from the
dataset in Eq. (14) employed in the training stage. The
predictive skill in the true model is then measured via the
relative entropy metrics in Eqs. (6) and (7), viz.,

Dk
t = P(pk

t , peq) and Dt =

K
∑

k=1

πkD
k
t , (18)

where πk = p(S = k) is the probability of affiliation with
cluster k in equilibrium.

Besides the number of regimes K, our partitioning al-
gorithm has two free parameters. These are temporal
windows, ∆t and ∆τ , used to smooth x(t) via running-
averaging in the training and prediction stages, respec-
tively. This procedure, which is reminiscent of kernel den-
sity estimation methods [64], leads to a two-parameter
family of partitions as follows:

First, set an integer q′ ≥ 1, and replace x(t) in Eq. (14)
with the averages over a time window ∆t = (q′−1) δt, i.e.,

x∆t =

q′

∑

i=1

x(t− (i− 1) δt)/q′. (19)

Next, applyK-means clustering [65, 66] to the above coarse-
grained training data. This leads to set of coordinates in
Eq. (15). In the second, prediction stage, of the procedure,
initial data x(t) are collected over an interval [−∆τ, 0] with
∆τ = (q−1) δt, and their average x∆τ is computed via an
analogous formula to Eq. (19). It is important to note that
the initial data in the prediction stage are independent of
the the training dataset. The affiliation function S is then
given by

S = argmin
k

(‖x∆τ − θ∆t
k ‖2); (20)

i.e., S depends on both ∆t and ∆τ . By our ergodicity
assumption in Eq. (4), the pk

t from Eq. (17) may be esti-
mated by binning the cluster-conditional samples

Ak
t = {A(t) : S = k}. (21)

for each k ∈ {1, . . . ,K}, given samples of the doublet
{S,A(t)} over a long-enough time [27]. The key point here
is that optimal values for ∆t and ∆τ (as well as K) maxi-
mizing the predictive information content in the partition
can be determined a posteriori via the relative-entropy
measure in Eqs. (18).

3.2. Quantifying the model error in long-range forecasts

Suppose now that instead of the true model one has
access to an imperfect model that, as described in Sec. 2.2,
produces prediction probabilities

pMk
t (A) = pM (A(t) | S = k), lim

t→∞
pMk

t = pM
eq , (22)

which may be systematically biased away from pk
t in Eq. (22).

Here, an obvious candidate measure for predictive skill fol-
lows by writing down Eq. (18) with pk

t replaced by pMk
t ,

i.e.,

DMk
t = P(pMk

t , pM
eq), (23a)

DM
t =

K
∑

k=1

πM
k DMk

t , πM
k = pM (S = k). (23b)

The above measures the discrepancy from equilibrium of
the prediction probabilities in the model. A major defi-
ciency of the measures in Eqs. (23) is that by being based
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solely on PDFs internal to the model they fail to take into
account model error (or “ignorance” in the model relative
to the truth) [17, 27, 43].

Note, in particular, the distinguished role that the model
equilibrium distribution plays in Eq. (23a): If pM

eq differs

systematically from the truth, then DMk
t conveys false pre-

dictive skill at all times (including t = 0), irrespective of
the fidelity of pMk

t at finite times. This observation leads
naturally to the requirement that long-range forecasting
models must reproduce the equilibrium statistics of the
true model with high fidelity. In the information-theoretic
framework of Sec. 2.2, this is expressed as

Eeq ≪ 1, with Eeq = lim
t→∞

Et. (24)

Here, we refer to the criterion in Eq. (24) as equilibrium
consistency; an equivalent condition is called fidelity [67],
or climate consistency [27] in AOS work.

Even though equilibrium consistency is a necessary con-
dition for skillful long-range forecasts, it is not a sufficient
condition. In particular, the model error at finite lead-time
t, expressed from Eq. (12) as

Ek
t = P(pk

t , p
Mk
t ), (25)

may be large, despite eventually decaying to a small value
at asymptotic times. Thus, long-range forecasting models
must simultaneously satisfy Et ≪ 1 at the forecast lead-
time of interest, as well as Eq. (24) in equilibrium. If
both of these conditions are met, then the DM

t metric in
Eq. (23b) can be used to measure genuine gain of infor-
mation relative to the true equilibrium distribution. In
summary, our analysis indicates that assessments of long-
range predictions with imperfect models should take into
consideration all of Eeq, Et, and DM

t .

3.3. The three-mode dyad model

Here, we consider that the perfect model of Eq. (1)
is a three-mode nonlinear stochastic model in the fam-
ily of prototype models developed by Majda et al. [68],
which mimic the structure of non-linear interactions in
high-dimensional fluid-dynamical systems. Among the com-
ponents of the state vector ~z = (x, y1, y2), x is intended to
represent a slowly-evolving scalar variable accessible to ob-
servation, whereas the remaining modes, y1 and y2, act as
surrogate variables for the unresolved degrees of freedom.
The unresolved modes are coupled to x linearly and via a
dyad interaction between x and y1, and x is also driven by
external forcing (assumed, for the time being, constant).
Specifically, the governing stochastic differential equations
are

dx = (Ixy1 + L1y1 + L2y2 + F +Dx) dt (26a)

dy1 =
(

−Ix2 − L1x− γ1ǫ
−1y1

)

dt+ σ1ǫ
−1/2 dW1, (26b)

dy2 =
(

−L2x− γ2ǫ
−1y2

)

dt+ σ2ǫ
−1/2 dW2, (26c)

where where {W1,W2} are independent Wiener processes
[69, 70], and the parameters I, {D,L1, L2}, and F respec-
tively measure the the dyad interaction, the linear cou-
plings, and the external forcing. The parameter ǫ con-
trols the time-scale separation of the dynamics of the slow
and fast modes, with the fast modes evolving infinitely
fast relative to the slow mode in the limit ǫ → 0. This
model, as well as the associated reduced scalar model in
Eq. (28) ahead, have been used as prototype models to
develop methods based on the fluctuation-dissipation the-
orem (FDT) for assessing the low-frequency climate re-
sponse on external perturbations (e.g., CO2 forcing) [51].

Representing the imperfect model in Eq. (10) is a scalar
stochastic model associated with the three-mode model in
the limit ǫ → 0. This reduced version of the model is
particularly useful in exposing in a transparent manner
the influence of the unresolved modes when there exists a
clear separation of timescales in their respective dynamics
(i.e., when ǫ is small). As follows by applying the MTV
mode-reduction procedure [52, 71] to the coupled system in
Eqs. (26), the reduced model is governed by the nonlinear
stochastic differential equation

dx = (F +Dx) dt (27a)

+ ǫ

(

σ2
2IL1

2γ2
1

+

(

σ2
1I

2

2γ2
1

−

(

L2
1

γ1

+
L2

2

γ2

))

x

−
2IL1

γ1

x2 −
I2

γ1

x3

)

dt (27b)

+ ǫ1/2σ1

γ1

(Ix+ L1) dW1 (27c)

+ ǫ1/2σ2

γ2

L2 dW2. (27d)

The above may also be expressed in the form

dx = (F̃ +ax+bx2−cx3) dt+(α−βx) dW1 +σ dW2 (28)

with the parameter values

F̃ = F + ǫ
σ2

1IL1

2γ2
1

,

a = D + ǫ

(

σ2
1I

2

2γ2
1

−

(

L2
1

γ1

+
L2

2

γ2

))

,

b = −ǫ
2IL1

γ1

, c = ǫ
I2

γ1

,

α = ǫ1/2σ1L1

γ1

, β = −ǫ1/2σ1I

γ1

, σ = ǫ1/2σ2L2

γ2

.

(29)

Among the terms in the right-hand side of Eq. (27) we
identify (i) the bare truncation (27a); (ii) a nonlinear de-
terministic driving (27b) of the climate mode mediated
by the linear and dyad interactions with the unresolved
modes; (iii) correlated additive-multiplicative (CAM) noise
(27c); (iv) additive noise (27d). Moreover, note the pa-
rameter interdependence β/α = c/2b = −I/L1. This is a
manifestation of the fact that in scalar models of the form
in Eq. (27), whose origin lies in multivariate models with
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multiplicative dyad interactions, a nonzero multiplicative-
noise parameter β is accompanied by a nonzero cubic damp-
ing c [68].

A useful property of the reduced scalar model is that its
equilibrium PDF, pM

eq(x), may be determined analytically
by solving the corresponding time-independent Fokker-Planck
equation [40]. Specifically, for the governing stochastic dif-
ferential equation (27) we have the result

pM
eq(x) =

N

((βx− α)2 + σ2)ã
exp

(

d̃ atan

(

βx− α

σ

))

× exp

(

b̃x− c̃x2

B4

)

, (30)

expressed in terms of the parameters

ã = 1 −
−3α2c+ aβ2 + 2αbβ + cσ2

β4
,

b̃ = 2bβ2 − 4cαβ, c̃ = cβ2

d̃ =
d′

σ
+ d′′σ, d′ =

2α2bβ − 2α3c+ 2αaβ2 + 2β3F̃

β4
,

d′′ =
6cα− 2bβ

β4
.

(31)
Eq. (30) reveals that cubic damping has the important
role of suppressing the power-law tails of the PDF arising
when CAM noise acts alone, which are not compatible
with climate data [39, 40].

3.4. Parameter selection and equilibrium statistics

We adopt the model-parameter values chosen in Ref. [51]
in work on the FDT, where the three-mode dyad model
and the reduced scalar model were used as test models
mimicking the dynamics of large-scale global circulation
models. Specifically, we set I = 1, σ1 = 1.2, σ2 = 0.8,
D = −2, L1 = 0.2, L2 = 0.1, F = 0, γ1 = 0.1, γ2 = 0.6,
and ǫ equal to either 0.1 or 1. The corresponding param-
eters of the reduced scalar model are listed in Table 1.
The b̃ and c̃ parameters, which govern the transition from
exponential to Gaussian tails of the equilibrium PDF in
Eq. (30), have the values (b̃, c̃) = (−0.0089, 0.0667) and
(b̃, c̃) = (−0.8889, 6.6667) respectively for ǫ = 0.1 and
ǫ = 1. For the numerical integrations of the models, we
used an RK4 scheme for the deterministic part of the gov-
erning equations and a forward-Euler or Milstein scheme
for the stochastic part [70], respectively for the three-mode
and reduced models. Throughout, we use a timestep equal
to 10−4 natural time units and an initial equilibration time
equal to 2000 natural time units [cf. the O(1) decorrelation
times in Table 2].

As shown in Fig. 1, with this choice of parameter values
the equilibrium PDFs for x are unimodal and positively
skewed in both the three-mode and scalar models. For
positive values of x the distributions decay exponentially
(the exponential decay persists at least until the 6σ level),

Table 1: Parameters of the scalar stochastic model in Eq. (28) for
ǫ = 0.1 and ǫ = 1
ǫ F̃ a b c α β σ

0.1 0.04 −1.809 −0.067 0.167 0.105 −0.634 0.063
1 0.4 −0.092 −0.667 1.667 0.333 −2 0.2

0

0.2

0.4

0.6

0.8

1

ρ(
t)

ε = 0.1

 

 

 

 

3−mode

scalar

0 2 4 6 8 10

0

0.2

0.4

0.6

0.8

1

ρ(
t)

ε = 1

t

Figure 2: Normalized autocorrelation function, ρ(t) =
R T
0

dt′ x(t)x(t′ + t)/(T var(x)), of mode x in the three-mode
and reduced scalar models with ǫ = 0.1 and 1. The values of the
corresponding correlation time, τc =

R T
0

dt ρ(t), are listed in Table 2.

but, as indicated by the positive c̃ parameter in Eq. (30),
cubic damping causes the tail distributions to eventually
become Gaussian. The positive skewness of the distribu-
tions is due to CAM noise with negative β parameter (see
Table 1), which tends to amplify excursions of x towards
large positive values. In all of the considered cases, the au-
tocorrelation function exhibits a nearly monotonic decay
to zero, as shown in Fig. 2.

The marginal equilibrium statistics of the models are
summarized in Table 2. According to the information in
that table, approximately 99.5% of the total variance of
the ǫ = 0.1 three-mode model is carried by the unresolved
modes, y1 and y2; a typical scenario in AOS applications.
Moreover, the equilibrium statistical properties of the re-
duced model are in good agreement with the three-mode
model. As expected, that level of agreement does not hold
in the case of the ǫ = 1 models, but, intriguingly, the
probability distributions appear to be related by similar-
ity transformations [51].
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Table 2: Equilibrium statistics of the three-mode and reduced scalar models for ǫ ∈ {0.1, 1}. Here, the skewness and kurtosis are defined
respectively as skew(x) = (〈x3〉 − 3〈x2〉x̄ + 2x̄3)/ var(x)3/2 and kurt(x) = (〈x4〉 − 4〈x3〉x̄ + 6〈x2〉x̄2 − 3x̄4)/ var(x)2; for a Gaussian variable
with zero mean and unit variance they take the values skew(x) = 0 and kurt(x) = 3/4. The quantity τc is the decorrelation time defined in
the caption of Fig. 2.

ǫ = 0.1 ǫ = 1

x (three-mode) x (scalar) x (three-mode) x (scalar)
x̄ 0.0165 0.0219 0.0461 0.163
var(x) 0.00514 0.00561 0.0278 0.128
skew(x) 1.4 1.38 3.01 2.22
kurt(x) 7.3 7.16 18.2 10.4
τc 0.727 0.552 1.65 0.366

y1 y2 y1 y2

ȳi −4.22E− 05 0.000355 −0.0671 −0.0141
var(yi) 1.2 0.801 1.1 0.788
skew(yi) −0.000593 −0.000135 −0.0803 0.0011
kurt(yi) 3 3 2.96 3
τc 0.17 0.254 1.41 2.45
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Figure 1: Equilibrium PDFs of the resolved mode x of the three-mode (thick solid lines) and scalar models (dashed lines) for ǫ = 0.1 (left-hand
panels) and ǫ = 1 (right-hand panels). Shown here is the marginal PDF of the standardized variable x′ = (x − x̄)/ stdev(x) in linear (top
panels) and logarithmic scales (bottom-row panels). The Gaussian distribution with zero mean and unit variance is also plotted for reference
in a thin solid line.
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3.5. Revealing predictability beyond correlation times

First, we study long-range predictability in a perfect
model environment. As remarked earlier, we consider that
only mode x of the three-mode system in Eq. (26) is ac-
cessible to observations, and therefore carry out the clus-
tering procedure in Sec. 3.1 using that mode alone. For
each of the three-mode and scalar models with ǫ = 0.1
and 1, we took a training time series of length T = 400,
sampled every δt = 0.01 time units (i.e., T = s δt with
s = 40,000), and coarse-grained using a running-average
interval ∆t = 1.6 = 160 δt. Thus, we have T ≃ 550τc
and ∆t ≃ 2.2τc for ǫ = 0.1; and T ≃ 250τc and ∆t ≃ τc
for ǫ = 1 (see Table 2). In each case, the length of the
time series used to estimate the cluster-conditional PDFs
in the prediction stage was T ′ = 6400, and the running-
average window ∆τ = δt = 0.01; i.e., no coarse-graining is
performed in the prediction stage.

In Fig. 3(a,b) we display the dependence of the su-
perensemble skill score δt from Eq. (9) for mode x of the
three-mode model on the prediction lead-time t, for par-
titions with K ∈ {2, . . . , 5}. Also shown in those pan-
els are the exponentials δc

t = − exp(−2t/τc), decaying at
a rate twice as fast than the decorrelation time of mode
x. Because the δt skill score is associated with squared
correlations [56], a weaker decay of δt compared with δc

t

signals predictability in mode x beyond its decorrelation
time. This is evident in Fig. 3(a,b), especially for ǫ = 1.
The fact that decorrelation times are frequently poor in-
dicators of predictability (or lack thereof) has been noted
elsewhere in the literature [25, 26].

Turning now to the reduced scalar model, in Fig. 3(c,d)
we show the unit-normalized skill score δM

t = 1−exp(−2DM
t )

determined from the relative entropy metric in Eq. (23b).
According to the analysis in Sec. 3.2, when the reduced
scalar model is used to make predictions of mode x in
the three-mode model, δM

t may convey false predictive
skill. Deferring that discussion to Sec. 3.7, here we use δM

t

to point out a prominent difference between the model-
intrinsic predictability in the scalar model compared to
the three-mode model: As manifested by the rate of decay
of the δM

t in Fig. 3(c,d), which is faster than δc
t , the scalar

model lacks predictability beyond correlation time. This
is because the deterministic driving of mode x in Eq. (26a)
by the unresolved modes, y1 and y2, is replaced in Eq. (27)
governing the scalar model with a forcing that contains a
deterministic component [Eq. (27b)], as well as stochastic
contributions [Eqs. (27c) and (27d)]. Evidently, some loss
of information takes place in the stochastic description of
the x–y interaction, which is reflected in the stronger decay
of the δM

t metric compared with δt.
The significant difference in predictability between the

three-mode and scalar model despite their similarities in
low-frequency variability (as measured, for instance, by
the autocorrelation function in Fig. 2), is a clear example
that low-frequency variability does not necessarily trans-
late to predictability. The information-theoretic metrics

developed here allow one to identify when low-frequency
variability is due to noise or deterministic dynamics.

3.6. Length of the training time series

In the idealized case of an infinitely-long training time
series, T → ∞, the cluster coordinatesΘ are T -independent
for ergodic dynamical systems. However, for finite T the
computed values of Θ differ between independent realiza-
tions of the training time series. As T becomes small (pos-
sibly, but not necessarily, comparable to the decorrelation
time of the training time series), one would generally ex-
pect the information content of the phase-space partition
associated with Θ to decrease. An understanding of the
relationship between T and model skill is particularly im-
portant in practical applications, where one is frequently
motivated and/or constrained to work with short training
time series.

Here, we study the influence of T on model skill through
the superensemble score δt in Eq. (9), evaluated for mode
x of the three-model model at prediction time t = 0. Effec-
tively, this measures the skill of the clustersΘ in classifying
observations of x in equilibrium. Even though the behav-
ior of δt for t > 0 is not necessarily predetermined by δ0, at
a minimum, if δ0 becomes small as a result of decreasing
T , then it is highly likely that δt will be correspondingly
influenced.

In Fig. 4 we display δ0 for representative values of
T spaced logarithmically in the interval 0.32 ≈ 0.4τc to
800 ≈ 1100τc and cluster number K in the range 2–4.
Throughout, the running-average intervals in the training
and prediction stages are ∆t = 160 δt = 1.6 ≈ 2.5τc and
∆τ = δt (note that δ0 is a decreasing function of ∆τ for
mode x, but may be non-monotonic in other applications;
see, e.g., Ref. [26]). Model skill remains fairly independent
of the training time series length down to values of T be-
tween 2–3 multiples of the correlation time τc, at which
point δ0 begins to decrease rapidly with decreasing T .

The results in Fig. 4 demonstrate that informative par-
titions of phase space can be computed using training
data spanning only a few multiples of the correlation time.
This does not mean, however, that such small datasets
are sufficient to produce a practical predictive model. In
particular, making predictions assumes knowledge of the
cluster-conditional probabilities pk

t (x) in Eq. (17), and es-
timating those probabilities without significant sampling
error generally requires longer time series. Here we do
not examine this source of model error, and, as stated
above, use throughout an independent time series of length
T ′ = 6400 ≫ T to compute the cluster-conditional PDFs
empirically.

3.7. Dynamical error in the reduced scalar model

In this section, we assess the model error incurred by
using the reduced scalar model to approximate mode x
in the three-mode model. This error is measured in su-
perensemble forecasts by the relative entropy Et in Eq. (12),
or, equivalently by the unit-normalized “score” εt in Eq. (13).
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Figure 3: Predictive skill in the three-mode model and model error in the reduced scalar model for phase-space partitions with K ∈ {2, . . . , 5}.
Shown here are (a,b) the predictive skill score δt for mode x of the three-mode model; (c,d) the discrepancy from equilibrium δM

t in the scalar
model; (e,f) the normalized error εt in the scalar model. The dotted lines in Panels (a–d) are exponential decays δc

t = exp(−2t/τc) based on
half of the correlation time τc of mode x in the corresponding model. A weaker decay of δt compared to δc

t indicates predictability beyond
correlation time. Because εt in Panel (f) is large at late times, the scalar model with ǫ = 1 fails to meet the equilibrium consistency criterion
in Eq. (24). Thus, the δM

t score in Panel (d) measures false predictive skill.
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In Figs. 3(e,f) and 5 we display εt, and example PDF
pairs (pk

τ , p
Mk
τ ) for ǫ ∈ {0.1, 1} and representative values of

the forecast lead-time t ∈ {0, 0.02, 0.09}. Broadly speak-
ing, εt has relatively small value at t = 0, but, because
the dynamics of the reduced model differ systematically
from those of the three-mode model, that value rapidly in-
creases with t, until it reaches a maximum. At late times,
εt decays to a K-independent equilibrium εeq. Accord-
ing to the equilibrium consistency condition in Eq. (24) is
required to be small for skillful long-range forecasts.

As expected, εeq is an increasing function of ǫ. In the
results of Fig. 3 we have εeq = 0.008 and 0.39, respectively
for ǫ = 0.1 and 1. That is, the ǫ = 0.1 scalar reduced
model is able to reproduce the equilibrium statistics of x
accurately, but clearly the ǫ = 1 reduced scalar model fails
to be equilibrium consistent.

In all cases reported here, the maximum value of εt in-
creases with the cluster number K. As illustrated in Fig. 5
the primary source of discrepancy is in the clusters con-
taining large and positive values of x. The time-dependent
PDFs conditioned on these clusters exhibit a significantly
larger discrepancy as they relax to equilibrium compared
to the clusters associated with small x, especially when ǫ
is large.

4. Short- and medium-range forecasts in a non-

stationary autoregressive model

We now relax the stationarity assumption of Sec. 3,
and study predictability in stochastic dynamical systems
with time-periodic equilibrium statistics. Such dynami-
cal systems arise naturally in applications where seasonal
effects are important; e.g., in AOS [23, 42, 72] and econo-
metrics [34]. Here, a major challenge is to make high-

fidelity forecasts given very short and noisy training time
series [23]. A traditional, purely data-driven, approach
to model-building in this context is to treat any time-
dependent processes that are thought to be driving the
observed time-periodic behavior as external factors, which
are linearly coupled to a stationary autoregressive model
of the dynamics. This leads to the so-called autoregressive
factor models (ARX) [34], which are used widely in the
aforementioned geophysical and financial applications.

Recently, Horenko [23] has developed an extension of
the standard ARX methodology, in which the stationary
ARX description is replaced by a convex combination of K
locally-stationary ARX models. A key advantage of this
approach is that it allows for distinct autoregressive dy-
namics to operate at a given time, depending on the affili-
ation of the system to one of K locally stationary models.

In this section, following a brief review of the nonsta-
tionary ARX formulation in Sec. 4.1, we apply the information-
theoretic framework of Sec. 2 to assess the performance of
nonstationary ARX models relative to the perfect model
and globally-stationary ARX models. Throughout, we
consider that the perfect model is a periodically-forced
variant of the nonlinear scalar model in Eq. (28) with
the parameter values listed in the ǫ = 0.1 row of Ta-
ble 1. Because of the presence of the quadratic and cu-
bic nonlinearities and (more importantly) multiplicative
noise, this is a particularly challenging application for both
of the globally-stationary and nonstationary variants of
ARX models. Thus, it should come as no surprise that in
Sec. 4.3 we observe significant errors relative to the perfect
model, especially when the effects of multiplicative noise
are strong. Nevertheless, we find that the nonstationary
ARX models can significantly outperform their globally-
stationary counterparts, at least in the fidelity of time-
dependent equilibrium statistics for these short training
time series.

4.1. Constructing nonstationary autoregressive models via

finite-element clustering

In the nonstationary ARX formalism [23], the true sig-
nal x(t) in Eq. (1) (assumed here scalar for simplicity) is
approximated by a system [23] of the form

x(t) =

K
∑

k=1

γk(t)

(

µk +

q
∑

i=1

Akix(t− i δt) +Bku(t) + Ckǫ(t)

)

,

(32)

In the above, µk are model means; δt is a uniform sampling
interval; Ak1, . . . , Akq are autoregressive coefficients with
memory depth q; Bk are couplings to the external factor
u(t); ǫ(t) is a Gaussian noise process with zero expecta-
tion and unit variance; and Ck are parameters coupling
the noise to the observed time series. Moreover, γk(t) are
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Figure 5: Time-dependent prediction probabilities for mode x in the perfect model [the three-mode model in Eq. (26)] and the imperfect
model [the reduced scalar model in Eq. (28)] for ǫ = 0.1 and ǫ = 1. Plotted here in solid lines are the cluster-conditional PDFs pk

t (x) in the
perfect model from Eq. (17) for clusters k = 1 and 4, ordered in order of increasing cluster coordinate θk in Eq. (15). The corresponding
PDFs in the imperfect model, pMk

t (x) from Eq. (22), are plotted in dashed lines. The forecast lead time t increases from top to bottom. As
manifested by the discrepancy between pk

t and pMk
t , the error in the imperfect model is significantly higher for ǫ = 1 than 0.1. In both cases,

a prominent source of error is that the scalar model relaxes to equilibrium at a faster rate than the true model, in the sense that the width of
pMk

t increases more rapidly than the width of pk
t (see also the correlation functions in Fig. 2). Moreover, the error in the imperfect models is

more significant for large and positive values of x at the tails of the distributions in Fig. 1.
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model weights satisfying the convexity conditions

γk(t) ≥ 0 and

K
∑

k=1

γk(t) = 1 for all t. (33)

In principle, given a training time series consisting of s
samples of x(t) in Eq. (14), the parameters θk = {µk, Ak, Bk, Ck}
for each model and the model weights in Eq. (33) are to
be determined by minimizing the error functional

L(Θ,Γ ) =
K
∑

k=1

s
∑

i=1

g(x(t− (i− 1) δt), θk), (34)

with

g(x(t), θk) =

∥

∥

∥

∥

∥

x(t) − µk −

q
∑

i=1

Akix(t− i δt) −Bku(t)

∥

∥

∥

∥

∥

2

,

Θ = {θ1, . . . , θK}, and Γ = {γ1(t), . . . , γK(t)}.
(35)

In practice, however, direct minimization of L(Θ,Γ ) in
Eq. (34) is generally an ill-posed problem [22–24], be-
cause of (i) non-uniqueness of {Θ,Γ} [due to the freedom
in choosing γk(t)]; or (ii) lack of regularity of the model
weights in Eq. (33) as a function of time, resulting in high-
frequency, unphysical oscillations in γk(t).

As demonstrated in Refs. [22–24], an effective strat-
egy of dealing with the ill-posedness of the minimization
of L(Θ,Γ ) is to restrict the model weights γk(t) to lie
in a function space of sufficient regularity, such as the
Sobolev space W1,2((0, T )), or the space of functions of
bounded variation BV((0, T )) [73]. Here, we adopt the
latter choice, since BV functions include functions with
well-behaved jumps, and thus are suitable for describing
sharp regime transitions.

As described in detail in Refs. [23, 28, 74], BV regu-
larity may be enforced by augmenting the clustering min-
imization problem with a set of persistence constraints,

|γk|BV ≤ C for all k ∈ {1, . . . ,K}, (36)

where

|γk|BV =

s−2
∑

i=0

|γk(i δt) − γk((i− 1) δt)|, C ≥ 0. (37)

The above leads to a constrained linear optimization prob-
lem that can be solved by iteratively updating Θ and Γ .
The special case with K = 1 reduces the problem to stan-
dard ARX models. In practical implementations of the
scheme, the model affiliations γk(t) are projected onto
a suitable basis of finite element (FEM) basis functions
[37], such as piecewise-constant functions. This reduces
the number of degrees of freedom in the subspace of the
optimization problem involving Γ , resulting in significant
gains in computational efficiency.

In the applications below, we further require that the
model affiliations are pure, i.e.,

γk(t) =

{

1, if k = S(t),

0, otherwise,
(38)

where
S(t) = argmin

j
g(x(t), θj). (39)

This assumption is not necessary in general, but it facili-
tates the interpretation of results and time-integration of
x(t) in Eq. (32). Under the condition in Eq. (38), the
BV seminorm in (36) measures the number of jumps in
γk(t). Thus, persistence in the BV sense here corresponds
to placing an upper bound C on the number of jumps in
the affiliation functions.

4.2. Making predictions in a time-periodic environment

In order to make predictions in the nonstationary ARX
formalism, one must first advance the affiliation functions
γk(t) in Eq. (33) to times beyond the training time in-
terval. One way of doing this is to construct a Markov
model for the affiliation functions in Eq. (38) by fitting
a K-state Markov generator matrix to the switching pro-
cess Γ determined in the clustering optimization problem
[23, 24], possibly incorporating time-dependent statistics
associated with external factors [23]. However, this re-
quires the availability of sufficiently-long training data to
ensure convergence of the employed Markov generator al-
gorithm [28, 75–77]. Because our objective here is to
make predictions using very short training time series [23],
we have opted to follow an alternative simple procedure,
which directly exploits the time-periodicity in our appli-
cations of interest as follows.

Assume that the external factor u(t) in Eq. (32) has
period T , and that the length T = (s− 1) δt of the train-
ing time series in Eq. (14) is at least T . Then, for t ≥
T , determine γk(t) by periodic replication of γk(t′) with
t′ ∈ [T − T , T ]. This provides a mechanism for creating
realizations of Eq. (32) given the value x0 = x(T ) at the
end of the training time series, leading in turn to a forecast
probability distribution for x in the ARX model,

pMx0

t = p(x(t) | x0), (40)

with x(t) given by Eq. (32). The information theoretic er-
ror measures of Sec. 2 can then be computed by evaluating
the entropy of the forecast distribution px0

t in the perfect
model relative to the model distribution in Eq. (40). Note
that, in accordance with Eq. (7) and Ref. [42], predictabil-
ity in the perfect model is measured here relative to its
time-dependent equilibrium measure and not relative to
the (time-independent) distribution of period-averages of
x.
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4.3. Results and discussion

We consider that the true signal from nature (the per-
fect model) is given by the nonlinear scalar system in
Eq. (28), forced with a periodic forcing of the form F (t) =
F0 cos(2πt/T + φ) of amplitude F0 = 0.5, period T = 5,
and phase φ = 3π/4 or π/4. As mentioned earlier, we
adopt the parameter values in the row of Table 1 with ǫ =
0.1. As illustrated in Figs. 6(a) and 7(a), with this choice of
forcing and parameter values, the equilibrium PDF peq

t of
the model is characterized by smooth transitions between
low-variance, small-skewness phases when F (t) is large and
negative and high-variance positive-skewness phases when
F (t) is large and positive. The skewness of the distribu-
tions is a direct consequence of the multiplicative nature
of the noise parameter β in Eq. (28), and poses a particu-
larly high challenge for the ARX models in Eq. (32), where
noise is additive and Gaussian.

We built stationary and nonstationary ARX models
using as training data realizations of the perfect model of
length T = 2T , sampled uniformly every δt = 0.01 units
(i.e., the total number of samples is s = 1000). To evaluate
the nonstationary models we reduced the dimensionality
of the γk(t) affiliation functions by projecting them to an
FEM basis consisting of m = 200 piecewise-constant func-
tions of uniform width δtFEM = T ′/l = 5 δt. We solved the
optimization problem in Eqs. (34)–(38) forK ∈ {2, 3}, sys-
tematically increasing the persistence parameter C from 1
to 40. In each case, we repeated the iterative optimiza-
tion procedure 400 times, initializing (when possible) the
first iteration with the solution determined at the previous
value of C and the remaining 399 iterations with random
initial data. The parameters m and C do not enter in the
evaluation of the stationary models, since in that case the
model parameters Θ can be determined analytically [23].

Following the method outlined in Sec. 4.2, we evalu-
ated the ARX prediction probabilities pMx0

t in Eq. (40)
up to lead time t = T by replicating the model affiliation
functions γk(t) determined in the final portion of the train-
ing series with length T , and bin-counting realizations of
x̃(t) in Eq. (32) conditioned on the value at the end of
the training time series. In the calculations reported here
the initial conditions are x0 = 0.41 and x0 = −0.098, re-
spectively for φ = π/4 and 3π/4. To estimate pMx0

t , we
nominally used r = 1.2 × 107 realizations of x(t) in the
scalar and ARX models, which we binned over b = 50
uniform bins in the interval [−0.5, 0.6]. The same proce-
dure was used to estimate the finite-time and equilibrium
prediction probabilities in the perfect model, px0

t and peq
t ,

respectively. All relative-entropy calculations required to
evaluate the skill and error metrics of Sec. 2 (Dx0

t and Ex0

t )
were then carried out using the standard trapezoidal rule
with the histograms for px0

t , pMx0

t , and peq
t . We checked for

robustness of our entropy calculations by halving r and/or
b. Neither of these imparted significant changes on our re-
sults.

In separate calculations, we have studied nonstation-
ary ARX models where, instead of a periodic continua-

tion of the model affiliation sequence fitted in the training
data, a nonstationary K-state Markov process was em-
ployed to evolve the integer-valued affiliation function S(t)
dynamically. Here, to incorporate the effects of the exter-
nal forcing in the switching process, the Markov process
was constructed by fitting a transition matrix of the form
P (t) = P0 + P1F (t) in the S(t) sequence obtained in the
training stage [28]. However, the small number of jumps
in the training data precluded a reliable estimation of P0

and P1, resulting in no improvement of skill compared to
models based on periodic continuation of S(t).

Hereafter, we restrict attention to nonstationary ARX
models with K = 3 and C = 8, and their stationary (K =
1) counterparts. These models, displayed in Table 3 and
Figs. 6–8, exhibit the representative types of behavior that
are of interest to us here, and are also robust with respect
to changes in C and/or the number of FEMs.

To begin, note an important qualitative difference be-
tween the systems with forcing phase φ = 3π/4 and π/4,
which can be seen in Figs. 6,7(a): The variance of the
φ = π/4 system at the beginning of the prediction period
is significantly higher than the corresponding variance ob-
served for φ = 3π/4. As a result, the perfect-model pre-
dictability, as measured by the δt skill score from Eq. (9),
drops more rapidly in the former model. In both cases,
however, predictability beyond the time-periodic equilib-
rium becomes negligible beyond t ≃ 1.5 time units, or
0.3T , as manifested by the small value of the δt skill score
in Figs. 6,7(e). Thus, even though predictions in the model
with φ = π/4 are inherently less skillful at early times than
in the φ = 3π/4 model, the best that one can expect in
either model of forecasts with lead times beyond about
t = 1.5 is to reproduce the equilibrium statistics with high
fidelity. Given the short length of the training series this is
a challenging problem for any predictive model, including
the stationary and nonstationary ARX models employed
here.

A second key point is that all models in Table 3 have
the property

|Ak| < 1 for all k ∈ [1, . . . ,K], (41)

which here is sufficient to guarantee the existence of a time-
periodic statistical equilibrium state. The existence of a
statistical equilibrium state is a property of many com-
plex dynamical systems arising in applications. Therefore,
if one is interested in making predictions over lead times
approaching or exceeding the equilibration time of the per-
fect model, it is natural to require at a minimum that
the ARX models have a well-behaved equilibrium distribu-
tion pM,eq

t [the imperfect-model analog of Eq. (3)]. In the
globally-stationary ARX models studied here, Eq. (41) is

also a necessary condition for the existence of pM,eq
t . On

the other hand, nonstationary ARX models can contain
locally-stationary unstable components (i.e., some autore-
gressive couplings with |Ak| > 1), and remain bounded
in equilibrium. As has been noted elsewhere [78], high fi-
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Figure 6: Time-dependent PDFs, predictive skill in the perfect model, and ARX model error for the system in Table 3 with forcing phase
φ = π/4. Shown here are (a) contours of the equilibrium distribution peq

t of mode x in the true model as a function of x and time; (b)
contours of the time-dependent PDF px0

t (x) in the perfect model, conditioned on initial data x0 = 0.41; (c,d) contours of the time-dependent

PDF pMx0

t in the globally-stationary and nonstationary ARX models (K = 3); (e) the predictive skill score δt in the perfect model; (f) the
normalized error εt in the ARX models; (f) the time-periodic forcing F (t); (g) the cluster-affiliation sequence k(t) in the nonstationary ARX
model, determined by replicating the portion of the affiliation sequence in the training time series with t ∈ [T , 2T ] (see Fig. 8). The contour
levels in Panels (a)–(d) span the interval [0.1, 15], and are spaced by 0.92.

Table 3: Properties of non-stationary (K = 3) and stationary ARX models of the nonlinear scalar stochastic with time-periodic forcing.

φ = π/4 φ = 3π/4
State µk Ak σk Bk µk Ak σk Bk

1 0.1568 0.8721 0.0370 -0.2204 0.0583 0.7710 0.0230 0.0269
2 -0.0022 0.9581 0.0122 0.0115 -0.0021 0.9672 0.0120 0.0117
3 0.0607 0.8327 0.0326 -0.0444 0.0527 0.7165 0.0205 -0.0198

Stationary 6 × 10−4 0.9836 0.0217 0.0107 −5 × 10−4 0.9785 0.0150 0.0106
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Figure 7: Time-dependent PDFs, predictive skill in the perfect model, and ARX model error for the system in Table 3 with forcing phase
φ = 3π/4. Shown here are (a) contours of the equilibrium distribution peq

t of mode x in the true model as a function of x and time; (b) contours
of the time-dependent PDF px0

t (x) in the perfect model, conditioned on initial data x0 = −0.098; (c,d) contours of the time-dependent PDF

pMx0

t in the globally-stationary and nonstationary ARX models (K = 3); (e) the predictive skill score δt in the perfect model; (f) the
normalized error εt in the ARX models; (f) the time-periodic forcing F (t); (g) the cluster-affiliation sequence k(t) in the nonstationary ARX
model, determined by replicating the portion of the affiliation sequence in the training time series with t ∈ [T , 2T ] (see Fig. 8). The contour
levels in Panels (a)–(d) span the interval [0.1, 15] and are spaced by 0.92.
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delity and/or skill can exist despite structural instability
of this type.

We now discuss model fidelity, first in the context of
globally stationary ARX models. As shown in Figs. 6,7(c),
these models tend to overestimate the variance of the true
model during periods of negative forcing. Evidently, these
“K = 1” models do not have sufficient flexibility to ac-
commodate the changes in variance due to multiplicative
noise in the true model. These ARX models also fail to re-
produce the skewness towards large and positive x values
in the true model, but this deficiency is shared in common
with the locally-stationary models, due to the structure of
the noise term in Eq. (32).

Consider now the nonstationary ARX models withK =
3. As expected intuitively, in both of the φ = 3π/4 and
π/4 cases the model-affiliation function is constant in low-
variance periods, and switches more frequently in high-
variance periods [see Figs. 6,7(h)]. Here, a prominent as-
pect of behavior is that periods of high variance in the true
model are replaced by rapid transitions between locally-
stationary models, which generally underestimate the vari-
ance in the true model. For this reason, the model error εt

in the non-stationary ARX models generally exceeds the
error in the stationary models in these regimes. In the
system with φ = 3π/4 this occurs at late times [t & 2.2
in Fig. 7(f)], but the error is large for both early and late
times, t ∈ [0, 1.5] ∪ [3.5, 5], in the more challenging case
with φ = π/4 in Fig. 6(f).

The main strength, however, of the nonstationary ARX
models is that they are able to predict with significantly
higher fidelity during low-variance periods in the true model.
The improvement in performance is especially noticeable
in the system with φ = 3π/4, where the K = 3 model
outperforms the globally stationary ARX model at early
times (t . 1.5), as well as in the the regime with t ∈
[1.5, 2.5], where no significant predictability exists beyond
the time-periodic equilibrium measure. The fidelity of the
non-stationary ARX model in reproducing the equilibrium
statistics in this case is remarkable given that only two pe-
riods of the forcing were used as training data. In the ex-
ample with φ = π/4 the gain in fidelity is less impressive.
Nevertheless, the K = 3 model significantly outperforms
the globally-stationary model. In both φ = π/4 and 3π/4
cases the coupling Bk to the external factor is positive in
the low-variance phase with k = 2 (see Table 3).

It therefore follows from this analysis that nonstation-
ary models exploit the additional flexibility beyond the
globally stationary models to preferentially bring down
the value of the integrand in the clustering functional in
Eq. (34) (i.e., the “error density”) over certain sub-intervals
of training series. This entails significant improvements to
predictive fidelity over those subintervals. Intriguingly, the
reduction of model error arises out of global optimization
over the training time interval, i.e., through a non-causal
process.

It is also interesting to note that the K = 3 models
with high predictive fidelity would actually be ruled out if

Table 4: The Akaike information criterion AIC from Eq. (42) for the
models in Table 3

AIC (φ = π/4) AIC (φ = 3π/4)
K = 3 −1.204 × 104 −1.24 × 104

Stationary −1.33 × 104 −1.48 × 104

assessed by means of model discrimination analysis based
on the AIC [53]. According to this criterion, the optimal
model in a class of competing models is the one with the
smallest value of

AIC = −2L + 2N , (42)

where L is a log-likelihood function measuring the close-
ness of fit of the training data by the model, and N the
number of free parameters in the model. Thus, AIC penal-
izes models that tend to overfit the data by employing un-
duly large numbers of parameters. Given parametric dis-
tributions ψk describing the residuals rk(t) = g(x(t), θk)
from Eq. (35) [the rk(t) are assumed to be statistically
independent], the likelihood and penalty components of
the AIC functional for the nonstationary ARX models in
Eq. (32) are [28]

L =
s
∑

i=1

log

(

K
∑

k=1

γk((i− 1) δt)ψk(rk((i− 1) δt))

)

,

N = KNARX +

K−1
∑

k=1

|γk|BV,

(43)

with NARX the number of parameters in each locally sta-
tionary ARX model (NARX = 3 for µk, Ak, Bk; the σk

noise intensity is determined using the latter three param-
eters [23]), and |γk|BV the number of jumps in γk(t) [see
Eq. (37)].

Here, we set ψk to the exponential distribution, ψk(r) =
λke

−λkr, with λk determined empirically from the mean of
rk(t). The exponential distribution yielded higher values
of log-likelihood than the χ2 distribution for our datasets,
and also has an intuitive interpretation as the least biased
(maximum entropy) distribution given the observed λk.
According to the AIC functional in Eq. (42), whose val-
ues are listed in Table 4, the globally stationary models are
favored over their nonstationary counterparts for both val-
ues of the external-forcing phase φ considered here. Thus,
the optimal models in the sense of AIC are not necessarily
the highest-performing models in the sense of predictive
fidelity.

5. Conclusions

In this paper we have developed information-theoretic
strategies to quantify predictive skill and assess the fidelity
of predictions with imperfect models in (i) long-range,
coarse grained forecasts in complex nonlinear systems; (ii)
short- and medium-range forecasts in systems with time-
periodic external forcing. We have demonstrated these
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strategies using instructive prototype models, which are
of widespread applicability in applied mathematics, phys-
ical sciences, engineering, and social sciences.

Using as an example a three-mode stochastic model
with dyad interactions, observed through a scalar slow
mode carrying about 0.5% of the total variance, we demon-
strated that suitable coarse-grained partitions of the set
of initial data reveal long-range predictability, and pro-
vided a clustering-algorithm to evaluate these partitions
from ergodic trajectories in equilibrium. This algorithm
requires no detailed treatment of initial data and does not
impose parametric forms on the probability distributions
for ensemble forecasts. As a result, objective measures of
predictability based on relative entropy can be evaluated
practically in this framework.

The same information-theoretic framework can be used
to quantify objectively the error in imperfect models; an
issue of strong contemporary interest in science and en-
gineering. Here, we have put forward a scheme which as-
sesses the skill of imperfect models based on three relative-
entropy metrics: (i) the lack of information (or ignorance)
Eeq of the imperfect model in equilibrium; (ii) the lack of
information Et during model relaxation from equilibrium;
(iii) the discrepancy of prediction distributions DM

t in the
imperfect model relative to its equilibrium. In this scheme
Eeq ≪ 1, is a necessary, but not sufficient, condition for
long-range forecasting skill. If a model meets that con-
dition (called here equilibrium consistency) and the anal-
ogous condition at finite lead times, Et ≪ 1 then DM

t is
a meaningful measure of predictive skill. Otherwise, DM

t

conveys false skill. We have illustrated how this scheme
works in an application where the three-mode dyad model
is treated as the true model, and the role of imperfect
model is played by a cubic scalar stochastic model with
multiplicative noise (which is formally accurate in the limit
of infinite timescale separation between the slow and fast
modes).

In the context of time-periodic models our analysis
has revealed that recently proposed nonstationary autore-
gressive models [23], based on bounded-variation finite-
element clustering can significantly outperform their sta-
tionary counterparts in the fidelity of short- and medium-
range predictions in challenging nonlinear systems with
multiplicative noise. In particular, we found high fidelity
in a three-state autoregressive model at short times and in
reproducing the equilibrium statistics at later lead times,
despite the fact that only two periods of the forcing were
used as training data.

In future work we plan to extend the nonstationary
ARX formalism to explicitly incorporate physically-motivated
nonlinearities in the autoregressive model.
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Boston, 2007, pp. 121–137.

[32] S. Haider, G. N. Parkinson, S. Neidle, Molecular dynamics and
principal components analysis of human telomeric quadruplex
multimers, Biophys. J. 95 (2008) 296–311.
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