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Information transfer analysis �G. A. Miller and P. E. Nicely, J. Acoust. Soc. Am. 27, 338–352
�1955�� is a tool used to measure the extent to which speech features are transmitted to a listener,
e.g., duration or formant frequencies for vowels; voicing, place and manner of articulation for
consonants. An information transfer of 100% occurs when no confusions arise between phonemes
belonging to different feature categories, e.g., between voiced and voiceless consonants. Conversely,
an information transfer of 0% occurs when performance is purely random. As asserted by Miller and
Nicely, the maximum-likelihood estimate for information transfer is biased to overestimate its true
value when the number of stimulus presentations is small. This small-sample bias is examined here
for three cases: a model of random performance with pseudorandom data, a data set drawn from
Miller and Nicely, and reported data from three studies of speech perception by hearing impaired
listeners. The amount of overestimation can be substantial, depending on the number of samples, the
size of the confusion matrix analyzed, as well as the manner in which data are partitioned therein.
© 2008 Acoustical Society of America. �DOI: 10.1121/1.2897914�
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I. INTRODUCTION

Information transfer �IT� analysis, introduced by Miller
and Nicely �1955�, is an application of Shannon’s �1948�
information measure to data obtained from a speech identi-
fication task. The data are typically categorized into distinc-
tive features �e.g., voicing, nasality, affrication, manner and
place of articulation, etc.� and then organized into a confu-
sion matrix. An IT score is obtained from this matrix by
calculating the number of bits received by the listener and
dividing this result by the number of bits available in the
stimuli. When the listener has received all the bits available
in the stimuli, e.g., when no errors appear in the feature
confusion matrix, an IT score of 100% is obtained. When the
listener’s responses are independent of the stimuli, e.g., in a
case of random guessing, the listener receives no bits of in-
formation producing an IT score of 0%. With IT analysis,
one can construct a picture of how each speech feature con-
tributes to the intelligibility of the phonemes as a whole.
That is, when phonemes are viewed as a bundle of several
distinctive features �Stevens, 2002�, IT analysis tells us what
fraction of the original information has been transmitted for
each feature independently.

The IT metric is particularly advantageous over the per-
cent correct score in cases where a listener’s responses are
independent of the stimuli presented. For example, purely
chance performance can yield different percent correct, de-
pending on how speech stimuli are organized into features. If
out of 16 consonants, say, 9 are voiced and 7 are voiceless,
then purely chance performance produces an average percent
correct score of 51%. If out of 16 consonants, say, 2 are nasal
and 14 are non-nasal, then purely chance performance pro-
duces an average percent correct score of 78%. Even more
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anomalous is when a listener’s responses are biased even
though the responses are independent of the stimuli pre-
sented. In the case of nasality, for example, if the listener
always identified each consonant as non-nasal, the 2�2 ma-
trix for this feature will yield a percent correct score of
87.5%. Conversely, if the listener always identified each con-
sonant as nasal, the percent correct score in the 2�2 feature
matrix for nasality becomes 12.5%. In all these cases, input
and output are independent and the IT metric for these fea-
tures yields a score of 0%, regardless of the type of feature or
whether the listener’s responses are biased.

IT analysis is pertinent beyond the speech, language,
and hearing sciences, having been applied to areas such as
rehabilitation, acoustics, communication engineering, com-
puter science, psychology, and neuroscience. The ISI Web of
Science indicates more than 800 papers that have cited
Miller and Nicely �1955�. In IT analysis, the percent infor-
mation transfer is obtained by applying a maximum-
likelihood estimate �MLE� of the transmitted information to
a confusion matrix. In a parenthetical note of their 1955
study, Miller and Nicely state, “like most maximum likeli-
hood estimates, this estimate will be biased to overestimate
�IT� for small samples.” They also state that in their study the
bias can be safely ignored as each confusion matrix con-
tained a total of 4000 entries, obtained by pooling data across
subjects. Surprisingly few of the articles that cite Miller and
Nicely �1955� mention this bias, or, to our knowledge, have
provided a quantitative description of the overestimation, or
a guideline as to the number of confusion matrix entries
required to overcome the bias.

Previous efforts in other related fields have been made to
describe the bias in information estimates �e.g., Miller, 1955;
Rogers and Green, 1955; Carlton, 1969; Houtsma, 1983;
Rabinowitz et al., 1987; Wong and Norwich, 1997; Sagi and

Norwich, 2002�. However, to provide an accurate bias cor-
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rection for data sets with small numbers of samples, these
methods require at least some model of how data will be
distributed across confusion matrix elements. Such models
are available for the more simple sensory stimuli such as
pure tones varying in pitch or intensity. For speech stimuli,
predicting how data will distribute across confusion matrix
elements is a far more complicated affair.

The goal of this study is to examine the potential effect
of the bias in information estimates on IT analysis, and to
establish a rough guideline for avoiding this bias. First to be
discussed is the case of IT overestimation bias that occurs in
a situation of purely random performance, where IT should
be 0%. Second, some data from Miller and Nicely �1955�
will be used to demonstrate how the bias in IT estimates
could arise in actual data obtained from a standard speech
perception identification task. Finally, possible examples of
overestimation bias in IT estimates reported in the literature
shall be discussed.

II. METHODS

IT is defined as the ratio of transmitted information, It,
to input entropy, Hx �Miller and Nicely, 1955�, and is com-
monly expressed as a percent. The true probabilities that
comprise the input entropy �denominator� are typically
known a priori. Conversely, the probabilities that comprise
the transmitted information �numerator� must be estimated
from the contents of a confusion matrix. The MLE for the
probability of a given event is obtained by dividing the num-
ber of times this event was observed by the number of times
all events were observed. If N is the total number of obser-
vations of all events, nx is the number of times input x was
presented, ny is the number of times output y was observed,
and nxy is the number of times x and y were observed to-

gether, then the MLE of the information transfer, IT̂ �the

caret on top of IT̂ means “estimate”�, is defined as
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where px in the denominator is the true probability that the
input x occurred. There are other ways to express the nu-
merator in Eq. �1�, but this form describes the MLE of the
transmitted information as a summation of the input entropy
plus the output entropy less the joint entropy. In a confusion
matrix, N is equal to the total number of times all stimuli
were presented, nx is the sum of row x, ny is the sum of
column y, and nxy is in the main body of the matrix at the
intersection of row x and column y.

It is important to differentiate between information
transfer as obtained from true probabilities and the estima-
tion of information transfer from an experimental confusion

matrix. The former will be depicted symbolically as IT, and
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the latter as IT̂. By definition, an estimator converges to its
true value after a large enough number of samples. That is,

IT̂=IT when N is large. However, to be considered an unbi-
ased estimator, this result would have to be true on average
for any value of N. That is, one calculates the estimate for a
given number of samples N, repeats this process many times,
and then computes the average of these estimates. If this
average estimate equals IT for any value of N, then the esti-
mator is considered unbiased. It will be shown that the aver-

age estimate of IT̂ is larger than IT when N is small, i.e. that

IT̂ is a biased estimator, and that in some cases this bias can
be large.

As a first step in demonstrating the bias in IT̂ we con-
sider a situation where the true information transfer is equal
to zero, i.e., IT=0%. This will occur whenever input and
output are independent, for example when listeners guess
their responses at random. Chance performance can be mod-
eled by assuming that responses are drawn from a uniform
distribution, i.e., when responses are equally likely given any
stimulus. Three cases were considered. In the first case, the

relationship between IT̂ and IT �i.e., the relationship between
sample estimates and true values of IT� was examined as a
function of two variables: the number of samples, N, and the
size of the confusion matrix m �i.e., m rows and m columns�.
In the second case, the relationship between IT̂ and IT from
the first case was reexamined as a function of the number of
samples per matrix category, i.e., N /m. In the third case the

relationship between IT̂ and IT was examined as a function
of N for matrices of equal size, but obtained using different
partitions of a larger matrix.

For the first case, IT̂ was applied to nine confusion ma-
trices ranging in size from 2�2 to 10�10 as each matrix
was progressively filled with data. Data samples were ob-
tained with a MATLAB subroutine instructed to generate two
numbers for each sample, one “input” and one “output.” The
input indicates the row and the output indicates the column
of the confusion matrix to be updated by this sample. Both
numbers are sampled pseudorandomly from a uniform distri-
bution, but with one important difference. In many experi-
ments, in addition to being presented in random order,
stimuli are also presented the same number of times. This
sampling constraint was employed strictly so that each input
was repeated the same number of times every number of
samples equal to the size of the confusion matrix. That is, for
the 10�10 matrix, each input was represented exactly once
every N=10 samples, whereas for the 5�5 matrix, each in-
put was represented exactly once every N=5 samples, etc. In
contrast to sampling of input, the uniform sampling of output

was left otherwise unconstrained. IT̂ was calculated every
cycle of samples for which all input were repeated until the
number of samples reached closest to N=1000. This process

was repeated 10 000 times so as to calculate the average IT̂
as a function of N. This average was then compared with the
true value for IT, which is 0% for each confusion matrix in
this case.

For the second case, the values of average IT̂ obtained in

the first case were analyzed as a function of the number of
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samples per matrix category, from 1 to 100 samples per cat-
egory. In the case of the 10�10 matrix, 100 samples per
category are obtained after N=1000 samples. For the 2�2
matrix, 100 samples per category are obtained after N=200
samples, and so on.

For the third case, five 2�2 matrices were constructed
from a 10�10 matrix as the latter matrix was filled with data
using the strict sampling constraint described above. Each
2�2 matrix was constructed by using a different partition of
the 10�10 matrix. For example, an equal partition of the
10�10 matrix would result in a 2�2 matrix with each cat-
egory consisting of five categories from the original 10
�10 matrix. Let us represent this partition as �5, 5�. The
other four 2�2 matrices were constructed using the follow-

ing partitions: �4, 6�, �3, 7�, �2, 8�, and �1, 9�. IT̂ was calcu-
lated from each 2�2 matrix every N=10 samples until N
=1000. This process was repeated 10 000 times to obtain an

average IT̂ as a function of N.
The next example we used to demonstrate the overesti-

mation bias employed data from Miller and Nicely �1955�.
Samples were drawn from the 16�16 consonant confusion
matrix in Fig. 1 �Table II in Miller and Nicely, 1955�. Nor-
mal hearing listeners were required to identify which of 16
consonants was heard in a stimulus that contained one of the
consonants followed by the vowel /a/. For this confusion
matrix, stimuli were presented in the presence of background
noise with a fairly low signal-to-noise ratio of −12 dB. From
this matrix, one can produce 4000 input–output pairs. For
example, consider the cell at the intersection of the first row
and third column of the consonant confusion matrix. One
observes that the number of times the consonant /p/ was
confused with consonant /k/ is 65. Hence, there are 65 input–
output pairs for the input /p/ and the output /k/. From the list
of 4000 pairs, 1600 were selected at random and updated
into a 16�16 consonant confusion matrix. The random se-

FIG. 1. 16-consonant confusion matrix �top� from Miller and Nicely �1955�
partitioned along gray lines into a 2�2 voicing feature matrix �bottom�. In
both matrices, correct responses are emphasized in bold.
lection of input–output pairs was constrained so that each
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input was represented exactly once every 16 samples. To
achieve this, all responses to each input were randomly per-
muted, and then the first 100 responses for each input were

entered into the matrix 16 at a time, once for each input. IT̂
was calculated from the matrix as each set of 16 samples

were entered to obtain a measure of IT̂ as a function of N, for
N=16,32,48, . . . ,1600. This was repeated 10 000 times us-
ing a different random permutation of the original data to

obtain a measure of the average IT̂ at each number of
samples. The standard deviation about the mean was also
calculated.

This procedure for obtaining the curve of average IT̂
from the consonant confusion matrix in Fig. 1 was repeated
for the following four features: voicing, nasality, affrication,
and place of articulation. At the bottom of Fig. 1 is an illus-
tration of how a 2�2 voicing matrix is constructed from the
consonant matrix. The gray lines represent the partition of
the consonant matrix into feature categories of voiced and
voiceless consonants. The classification of consonants into
feature categories for each of the four features is summarized
in Table I, taken from Miller and Nicely �1955�. For a given
input–output consonant pair sampled from Figure 1, Table I
was used to reclassify the pair as an input and output for the
appropriate feature confusion matrix. For example, the con-
sonant pair /p/ and /k/ mentioned previously would yield a
feature input–output pair of �0, 0� for voicing and �0, 2� for
place. That is, both consonants are voiceless �i.e., 0�, but /p/
is produced with a constriction at the front of the oral cavity
�i.e., 0� whereas /k/ is produced with a constriction at the
back of the oral cavity �i.e., 2�. As with the 16�16 conso-

nant matrix, the average IT̂ was calculated from each feature
matrix at N=16,32, . . . ,1600. For each feature, the a priori
probabilities for the denominator of Eq. �1� were calculated

TABLE I. Miller and Nicely �1955� classification of feature categories for
16 consonants. Voicing: 0=voiceless and 1=voiced; nasality: 0=non-nasal
and 1=nasal; affrication: 0=nonaffricate and 1=affricate; and place of ar-
ticulation: 0=front, 1=middle, and 2=back.

Consonant

Features

Voicing Nasality Affrication Place

p 0 0 0 0
t 0 0 0 1
k 0 0 0 2
f 0 0 1 0
� 0 0 1 1
s 0 0 1 1
b 0 0 1 2
b 1 0 0 0
d 1 0 0 1
g 1 0 0 2
v 1 0 1 0
ð 1 0 1 1
z 1 0 1 1
c 1 0 1 2
m 1 1 0 0
n 1 1 0 1
from Table I. For example, one can see from Table I that the
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a priori probabilities for nasal and non-nasal consonants are
2 /16 and 14 /16, respectively. To compare with the 16�16

consonant matrix, the standard deviation about the mean IT̂
was calculated for the voicing feature. For each of the above
five cases, the consonant matrix in Fig. 1 as well as the four

features in Table I, the values of average IT̂ as a function of
the number of samples N are compared with the true values

for IT, approximated by the value of IT̂ at N=4000.
As an example of how bias in IT estimates appears in

the IT literature, data sets from three studies with cochlear
implant �CI� listeners are analyzed; Donaldson and Kreft
�2006�, van Wieringen and Wouters �1999�, and Tye-Murray

and Tyler �1989�. In each case, the average IT̂ was reported
for different speech features. In these investigations, the av-

erage was obtained by first calculating IT̂ from each listen-
er’s confusion matrix, and then averaging across the group of
listeners tested. Also reported in these studies was a confu-
sion matrix containing data pooled from all listeners as well
as a table depicting the classification of consonants into fea-

ture categories. We calculated IT̂ for each feature by apply-
ing their feature classification table to the pooled matrix, and

compared the result with the average IT̂ reported in the re-
spective papers. The difference between these two measures
is that the former was calculated from a large number of
samples, i.e., a confusion matrix with data pooled across
listeners, whereas the latter consists of measurements ob-
tained with far fewer samples, i.e., confusion matrices with
data from individual listeners. If no small-sample bias ex-
isted in IT estimation, the two measures should be close. As
IT estimates tend to overestimate the true value for smaller

samples, we expect that the average IT̂ values reported

would be larger than the IT̂ obtained from the pooled matrix.

In Donaldson and Kreft �2006�, IT̂ averaged from 20 CI
users was reported for the consonant features voicing, man-
ner and place of articulation. Stimuli were 19 consonants in
initial and medial position for three vowel contexts, pro-

duced by male and female talkers. Only the average IT̂ data
reported for the initial consonants in three vowel contexts
from female talkers was examined here. Each averaged esti-
mate was obtained from matrices consisting of N=285
samples per listener. Also reported for each testing condition
was a confusion matrix with data pooled across listeners.
Each of these matrices contained N=5700 samples. We con-
ducted IT analysis on the pooled matrices for the stimulus
conditions examined here, for the features voicing, manner,
and place of articulation using the feature table reported in

Donaldson and Kreft �2006�. The pooled IT̂ were compared

with the reported averaged IT̂.
In van Wieringen and Wouters �1999�, IT estimates were

reported for vowel and consonant features for 24 CI users
partitioned into three groups of better, intermediate, and poor
performers with 8 listeners in each group. The vowel features
analyzed were duration, first �F1� and second �F2� formant
frequencies. The consonant features analyzed were voicing,
burst, amplitude envelope, place, affrication, manner, and na-

sality. Two sets of IT estimates were reported for each group,
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an average score and a pooled score. The pooled confusion
matrices for each group were also reported. We compiled
three sets of IT estimates from the data of van Wieringen and
Wouters �1999� for all speech features analyzed. The first set

is the average of the 24 individual IT̂ values obtained by
averaging the averaged estimates reported for the three per-
formance groups. The matrices from which these estimates
were obtained consist of N=120 samples per matrix for vow-
els and N=192 samples per matrix for consonants. The sec-

ond set of estimates are the pooled IT̂ per group, averaged
over the three performance groups. The matrices for these
estimates contained N=960 samples per matrix for vowels
and N=1536 samples per matrix for consonants. The second
set of estimates is depicted as “Pool8” to indicate that each
estimate represents the pooling of data from 8 listeners,
pooled for each group, but averaged for the three groups. The

third set of estimates is IT̂ obtained by pooling all data into
one matrix of N=2880 for vowels and N=4608 for conso-
nants. These estimates were obtained by combining the
pooled matrices for the three performance groups into one
matrix. The third estimate is depicted as “Pool24.” We com-
pared the three sets of IT estimates, i.e., averaged, Pool8 and
Pool24, to examine how much overestimation, if any, occurs
as one moves from the Pool24 estimate to the averaged es-
timate.

In Tye-Murray and Tyler �1989� IT estimates were re-
ported for users of several CI devices for the consonant fea-
tures voicing, place, nasality, duration, frication and enve-
lope. We examined their IT estimates reported for 7 Nucleus
users and 10 Symbion users. The number of samples in the
matrices from which IT estimates were obtained for each
listener ranged from N=280 to N=630 samples per Nucleus
user and N=280 to N=350 samples per Symbion user. We
averaged the reported estimates for each feature across users
for each device group. Also reported was the pooled confu-
sion matrix for each device group, consisting of N=2940
samples for the Nucleus group and N=3430 samples for the
Symbion group. We performed IT analysis on the pooled

matrices to obtain IT̂ estimates for each feature and for each

device group. The averaged and pooled IT̂ estimates ob-
tained were compared to test for overestimation bias.

III. RESULTS

In a system where input and output are sampled inde-
pendently from a uniform distribution, it is known from the
outset that information transfer is zero, i.e., IT=0%. In Fig. 2
are values of the average estimate of information transfer as
a function of the number of samples for confusion matrices
ranging in size from 2�2 to 10�10 filled with uniformly
distributed pseudorandom data. Two observations are worth

noting. First, average IT̂ overestimates IT when the number
of samples N is small, and approaches IT=0% as N becomes

large. Hence, although IT̂ is an estimator for IT, it is a biased
estimator. Second, the size of the overestimation depends on

both the number of samples N and the size of the matrix.
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Larger matrices will tend to produce a larger overestimation

and require more samples before IT̂ estimates will asymptote
to their true value.

The sampling constraint we employed allowed us to ex-
amine the bias in another manner, as a function of the num-
ber of samples per matrix category. If an m�m matrix is
filled with N samples so that each of the m possible inputs
are presented the same number of times every cycle of m
samples, then the number of samples per matrix category
every m samples is N /m. Could the overestimation bias be
the same when examined on a per category basis, irrespec-
tive of matrix size? In Fig. 3, it is clear that this is not the
case. For the same number of samples per matrix category,
larger matrices will still tend to produce a larger overestima-
tion. The data depicted in Fig. 3 are also summarized in
Table II, for matrix sizes ranging from 2�2 to 10�10 using
up to 100 samples per matrix category. The overestimation in
the 2�2 matrix is nearly negligible, less than 2%, after as
few as 20 samples per category �N=40 samples�. In contrast,
the overestimation in the 10�10 matrix becomes less than
2% after as many as 100 samples per matrix category �N

FIG. 2. Average information transfer estimate as a function of the number of
samples for matrices filled with uniformly distributed pseudorandom data.
Average was obtained from 10 000 iterations. Size of matrices ranges from
2�2 to 10�10. In each case, the true value for IT is 0%.

TABLE II. Average estimated information transfer
m�m matrices of size m=2, . . . ,10. Matrices filled
strict sampling constraint described in the text. The t

IT̂ �%�
N /m

M

2�2 3�3 4�4 5�5

10 4.0 7.0 9.6 11.9
20 1.9 3.2 4.4 5.5
30 1.2 2.1 2.8 3.5
40 0.9 1.6 2.1 2.6
50 0.7 1.2 1.6 2.0

100 0.4 0.6 0.8 1.0
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=1000 samples�. Clearly, using too many feature categories
relative to the number of samples collected could give rise to
problematic estimates.

One must keep in mind that the matrices in Table II were
generated so that each category has the same number of
samples per matrix category. Very often in IT analysis, fea-
ture matrices are produced by partitioning a larger matrix
into feature categories where the numbers of samples per
feature category are not equal. The effect of unequal samples
per category on the overestimation bias is depicted in Fig. 4,
where five 2�2 matrices were constructed using different
partitions of a 10�10 matrix as the latter was filled with
uniformly distributed data using the strict sampling con-
straint. For purposes of comparison, the bias due to a 3�3
matrix with a uniform partition is also plotted in Fig. 4 in
gray �i.e., the same 3�3 data plotted in Fig. 2�. The different
2�2 partitions are represented as �5, 5�, �4, 6�, �3, 7�, �2, 8�,
and �1, 9�, where �1, 9� means that the first category of the
10�10 matrix became the first category in the 2�2 matrix
and the other 9 categories of the 10�10 matrix were com-
bined to produce the second category in the 2�2 matrix.
From Fig. 4, it is evident that a 2�2 matrix constructed from
a less uniform partition of the 10�10 matrix tends to pro-

FIG. 3. Average information transfer estimate as a function of the number of
samples per matrix category �N /m� for m�m matrices of size m
=2, . . . ,10 filled with uniformly distributed pseudorandom data.

function of samples per matrix category �N /m� for
data sampled from a uniform distribution using the
alue for information transfer should be 0%.

size �m�m�

�6 7�7 8�8 9�9 10�10

14.1 15.9 17.7 19.3 20.8
6.5 7.5 8.4 9.4 10.2
4.2 4.8 5.4 6.0 6.5
3.1 3.5 3.9 4.4 4.8
2.4 2.8 3.1 3.4 3.7
1.2 1.3 1.5 1.7 1.8
as a
with
rue v

atrix
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duce greater overestimation than a more uniform partition.
That is, a less uniform partition will tend to require more
samples than a more uniform partition before the bias be-
comes negligible. Indeed, after N=200 samples, the bias in
the 2�2 matrix with the �1, 9� partition becomes very nearly
equal to the bias in the 3�3 matrix with a uniform partition.
Hence, a very extreme non-uniform partition in a smaller
matrix can increase the bias, as if it came from a larger
matrix size.

To understand the difference between the curves in Fig.
4, it is useful to refer to Table II. For example, in Fig. 4, the

average IT̂ for the �1, 9� 2�2 matrix at N=100 samples is
1.6%. In this matrix, the first input category consists of 10
samples whereas the second input category consists of 90
samples. In Table II, 10 samples per category for a 2�2

matrix will result in an average IT̂ of 4% whereas 90

samples per category will result in an average IT̂ of 0.4%.

The average IT̂ in the �1, 9� 2�2 matrix with 10 samples in
one category and 90 samples in the other category falls in
between these two extremes, and is largely determined by the
input category with fewer samples per category.

Turning now to the data of Miller and Nicely �1955�, the

average IT̂ for the 16-consonant confusion matrix and 2
�2 voicing matrix in Fig. 1 are plotted in Fig. 5 as a func-
tion of the number of samples �filled and empty circles re-

spectively�. When applying IT̂ to the 16�16 consonant ma-
trix, each consonant is treated as a separate feature category.
Although this is not the most common way of conducting IT
analysis, it is presented here as a contrast to the 2�2 voicing
matrix. Because each consonant stimulus was selected once

every 16 samples, the average IT̂ are also plotted as a func-
tion of the number of stimulus repetitions �abscissa on top�,
i.e., the number of times all stimuli were repeated. Each

value of average IT̂ includes an error bar �black for the 16-

FIG. 4. Average information transfer as a function of the number of samples
for five 2�2 matrices obtained from different partitions of a larger 10
�10 matrix filled with pseudorandom data. For comparison, the bias due to
a 3�3 matrix with a uniform partition filled with pseudorandom data is
plotted in gray.
consonant matrix and gray for the voicing feature matrix�
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that represents �2 standard deviations about the mean. The

horizontal lines represent the value of IT̂ after 4000 samples
in each case �24% for the 16-consonant matrix and 52% for
the 2�2 voicing matrix�. Although a small amount of bias
may still exist after 4000 samples it is negligible at this point
and the horizontal lines can be considered close enough to
the actual asymptote, i.e., the true value of IT for each ma-

trix. In both matrices, the average IT̂ is not equal to its true
value for all numbers of samples �or stimulus repetitions�
showing again that IT̂ is a biased estimator. Although in both

matrices, the average IT̂ overestimates its true value for
small numbers of samples, the bias is clearly different be-

tween the two cases. The average IT̂ for the voicing feature
matrix approaches to within 1% of its true value after only 7
stimulus repetitions �112 samples�, whereas even after 50

stimulus repetitions not only does the average IT̂ for the
16-consonant matrix overestimate its true value by 4%, but
the true value remains lower than 2 standard deviations be-

low the mean IT̂. Of course, the average IT̂ for the 16-
consonant matrix will eventually approach the “true value”
depicted in Fig. 5 as the latter was estimated from the same
matrix filled with N=4000 samples.

Another difference in IT̂ values between the two matri-
ces is that the 2�2 voicing feature matrix produces a larger

standard deviation about the mean IT̂ than the 16-consonant
matrix. Hence, for the voicing matrix, even though the aver-

age IT̂ reaches to within 1% of its true value after 7 stimulus
repetitions, the amount of variability about this mean is
�9%. At the same number of stimulus repetitions the

amount of variability about the mean IT̂ for the 16-consonant

FIG. 5. Average information transfer estimate as a function of the number of
samples for the 16-consonant matrix �filled circles� and 2�2 voicing matrix
�empty circles� depicted in Fig. 1. Averages were obtained from 10 000
iterations of randomly selecting samples from the consonant matrix using
the strict sampling constraint. Black and gray error bars depict 2 standard
deviations above and below the average for the 16-consonant and 2�2
matrices respectively. Horizontal lines depict approximate true value for IT.
matrix is �5%, though this mean overestimates the true
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value by 23%. The error bars for both matrices demonstrate

that in addition to being a biased estimator IT̂ will also yield
estimates that can vary considerably above and below the
expected value, and that this variability will diminish as one
uses a greater number of samples. This variability, due to the
type of sampling error one encounters with any statistical
estimator, is not explored further here.

In Fig. 6 are plots of average IT̂ for the features voicing,
nasality, affrication, and place using the data of Miller and
Nicely �1955�. The data are plotted both as a function of the
number of samples N �abscissa on bottom� as well as the
number of stimulus repetitions �abscissa on top�, where each

stimulus repetition occurs every 16 samples. The average IT̂
for the voicing feature is the same as in Fig. 5. The horizon-
tal gray lines represent, approximately, the true value of IT
for each feature. To reach within 1% of the true value, the

average IT̂ required 7 stimulus repetitions �112 samples� for
the voicing feature, 5 stimulus repetitions �80 samples� for
the affrication feature, and 13 stimulus repetitions �208
samples� for the place feature. For nasality, even after 50

stimulus repetitions �800 samples� the average IT̂ failed to
reach within 1% of its true value, though it did reach 3% of
this value after 9 stimulus repetitions �144 samples�.

FIG. 6. Average information transfer estimate as a function of the number of
samples for the features voicing, nasality, affrication, and place of articula-
tion. For each curve, average was obtained from 10 000 iterations of ran-
domly selecting samples from the 16-consonant matrix depicted in Fig. 1
using the strict sampling constraint, and categorizing samples into features
according to Table I. For each feature, horizontal gray lines depict approxi-
mate true value for IT.

TABLE III. Information transfer estimates for conson
and Kreft �2006�. Next to each feature in parentheses
per user, N=285 samples per matrix; Pool: estimate
samples; and diff=Avg-Pool. Without the small-sam

IT̂ �%�

/Ca/

Avg Pool diff A

Voicing �2� 59 56 3 6
Place �3� 35 33 2 2

Manner �4� 60 54 6 5
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In Tables III–VI are examples of averaged and pooled IT
estimates taken from three representative studies. The pooled
estimate is obtained from one aggregate confusion matrix
that includes the trial-by-trial data of all test subjects. Con-
versely, with the averaged estimate, each test subject’s con-
fusion matrix is considered separately. As the number of
samples in the aggregate matrix is much larger than the num-
ber of samples in each subject’s confusion matrix, we would
expect that the pooled estimate would provide a less biased
estimate of the true value for the average IT among all the
subjects, whereas the averaged estimate of this true value
would incur a larger overestimation. The number of samples
per matrix for the pooled and averaged IT estimates and the
number of feature categories per feature are specified in
Tables III–VI. In Table III are averaged and pooled IT esti-
mates for three consonant features from the data of Donald-

son and Kreft �2006�. In each case the average IT̂ is larger

than the pooled IT̂, but not by a large amount. The overesti-
mation ranged from 2% to 6% with the largest overestima-
tion coming from the manner feature with 4 categories. In
Tables IV and V are averaged, Pool8 and Pool24 IT esti-
mates from data reported in van Wieringen and Wouters
�1999� for vowel �Table IV� and consonant �Table V� fea-

tures. In Tables IV and V there is a consistent drop in IT̂
between the average estimates and those pooled for 8 listen-
ers, and between those pooled for 8 listeners and those

pooled for 24 listeners. Overall, the average IT̂ overestimates

the pooled IT̂ for 24 listeners by 9%–12% for the vowel
features in Table IV, and by 6%–9% for the consonant fea-
tures in Table V. In Table VI are averaged and pooled IT

eatures in 20 cochlear implant users from Donaldson
number of feature categories. Avg: average estimate

ined from data pooled in one matrix with N=5700
as, diff should be close to zero.

/Ci/ /Cu/

Pool diff Avg Pool diff

60 3 67 65 2
21 2 27 25 2
54 5 56 52 4

TABLE IV. Information transfer estimates for vowel features in 24 cochlear
implant users from van Wieringen and Wouters �1999�. Next to each feature
in parentheses is the number of feature categories. Avg: average estimate per
user, N=120 samples per matrix; Pool8: estimate obtained by averaging the
pooled estimate between better, intermediate, and poorer performers �8 lis-
teners per group with N=960 samples per matrix�; and Pool24: estimate
obtained by pooling data from all 24 listeners into one matrix with N
=2880 samples. Without the small-sample bias, numbers in a given row
should be similar.

IT̂ �%�

Vowels

Avg Pool8 Pool24

Duration �2� 34 28 23
F1 �3� 28 24 19
F2 �3� 31 24 19
ant f
is the
obta

ple bi

vg

3
3
9
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estimates from data reported in Tye-Murray and Tyler �1989�
for six consonant features for users of the Nucleus and Sym-
bion CI devices. The difference between the average and
pooled estimates, i.e., average minus pooled, ranges between
−2% and 9% with the largest overestimation occurring for
the place and envelope features which comprise 4 feature
categories; the other features consist of 2 feature categories.
Differences in how phonemes were partitioned among the
various features did not appear to play a large role in the
amounts of bias reported in Tables III–VI.

IV. DISCUSSION

Miller and Nicely �1955� stated that the MLE for the
information transfer will be biased to overestimate its true
value for small samples. This study clarifies their assertion.
Three approaches were followed to examine the small-
sample bias in information transfer estimates. The first ap-
proach was to examine a case in which the bias is very clear
and easy to interpret, where input and output are independent
and drawn from a uniform distribution and the true value for
the information transfer is 0%. The second approach was to
reconstruct the bias in the original data set of Miller and
Nicely �1955� by sampling data from one of the confusion

TABLE V. Information transfer estimates for consonant features in 24 co-
chlear implant users from van Wieringen and Wouters �1999�. Next to each
feature in parentheses is the number of feature categories. Avg: average
estimate per user, N=192 samples per matrix; Pool8: estimate obtained by
averaging the pooled estimate between better, intermediate, and poorer per-
formers �8 listeners per group with N=1536 samples per matrix�; and
Pool24: estimate obtained by pooling data from all 24 listeners into one
matrix with N=4608 samples. Without the small-sample bias, numbers in a
given row should be similar.

IT̂�%�

Consonants

Avg Pool8 Pool24

Voicing �2� 41 35 33
Burst �2� 57 53 51

Amp Env �2� 63 59 56
Nasal �2� 43 41 37

Affrication �2� 52 46 43
Manner �3� 58 53 49
Place �4� 15 10 8

TABLE VI. Information transfer estimates for con
implant users from Tye-Murray and Tyler �1989�. Ne
categories. Avg: average estimate per user, about N
Symbion users, respectively; Pool: estimate obtaine
=3430 samples for Nucleus and Symbion users, res
bias, diff should be close to zero.

IT̂ �%�

Nucleus

Avg Pool

Voicing �2� 22 22
Nasality �2� 24 23
Frication �2� 17 19
Duration �2� 14 12

Place �4� 18 13
Envelope �4� 29 24
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matrices reported therein and calculating the amount of over-
estimation as a function of the number of samples for differ-
ent speech features. Information transfer analysis was born
out of this classic study and though the authors mentioned
the small sample bias parenthetically, no indications or
guidelines were presented about the magnitude of the bias or
how to overcome it other than a statement to the effect that
the bias is very small after a very large number of samples on
the order of N=4000. Hence, the Miller and Nicely data set
was included here to provide an explicit description of the
bias referred to in their study. The third approach was to
ascertain whether the problem of overestimation bias is rel-
evant in a practical sense by examining the tendency of over-
estimation bias in information transfer estimates reported in
three contemporary studies representative of how IT analysis
is commonly used. Each of these approaches provides insight
into the magnitude of the overestimation and a rough picture
on the requirements to reasonably overcome this bias.

The case where input–output pairs are independent and
drawn from a uniform distribution is a model of chance per-
formance and demonstrates how the overestimation bias de-
pends on the number of samples relative to the size of the
confusion matrix, as well as how these samples are parti-
tioned among the input categories of the matrix. In Fig. 2,
the peak overestimation ranges from 50% to 76% depending
on whether the confusion matrix was from 2�2 to 10�10.

As for the number of samples before IT̂ drops below 2%, 40
samples were sufficient for the 2�2 case, whereas 1000
samples were required for the 10�10 case. Hence, larger
matrices will tend to produce a larger overestimation and
require more samples to reach the true information transfer.
Figure 3 and Table II show how the effect of matrix size
persists when the bias is examined as a function of the num-
ber of samples per matrix category. For example, at 10
samples per category, the bias ranges from 4% to 21% de-
pending on whether the confusion matrix was 2�2 to 10
�10. Figure 4 shows the effect on the bias when the number
of samples per category is unequal among the matrix input
categories. This occurs when a matrix is constructed from a
non-uniform partition of a larger matrix. In such a case, the
bias will be dominated by the input category with fewest
samples and require more samples to be overcome relative to
a matrix constructed from a uniform partition of a larger

t features in 7 Nucleus and 10 Symbion cochlear
each feature in parentheses is the number of feature

and N=343 samples per matrix for Nucleus and
m pooled data in one matrix with N=2940 and N
vely; and diff: Avg-Pool. Without the small-sample

Symbion

diff Avg Pool diff

0 49 43 6
1 56 51 5

−2 34 36 −2
2 33 31 2
5 20 11 9
5 54 46 8
sonan
xt to
=420

d fro
pecti
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matrix. These model systems demonstrate how chance per-
formance could yield a nonzero information transfer estimate
depending on the number of samples, the size of the confu-
sion matrix, and how samples are partitioned amongst the
input categories of the matrix.

These three effects on the overestimation bias are also

demonstrated in the curves of average IT̂ in Figs. 5 and 6,
resampled from Miller and Nicely �1955�. In Fig. 5, the bias
in information transfer estimates for a 16-consonant matrix is
contrasted with the bias when the consonants are partitioned
into a 2�2 voicing matrix. Whereas the bias is fairly large
for the 16�16 matrix and requires over 50 stimulus repeti-
tions for the average information transfer to reach within 3%
of its true value, the average bias in the 2�2 voicing matrix
falls below 3% after just 3 stimulus repetitions, though con-
siderable variability about the mean does exist ��15% �.
That is, although the average IT̂ in a small feature matrix can
converge to its true value after relatively few stimulus rep-
etitions, one should not expect the same from a single esti-
mate of IT as considerable variability can remain even after a
much larger number of stimulus repetitions. As depicted in

Fig. 6, similar results for the average IT̂ were obtained for
the other feature matrices. After a relatively small number of
stimulus repetitions, the overestimation in the average infor-
mation transfer became quite small. Even nasality, for which
the bias persisted the most relative to the other features,
reached within 3% of its true value using less than 10 stimu-
lus repetitions �160 samples�. This many stimulus repetitions
is well within the number typically obtained in the speech
and hearing fields and may be sufficient to overcome the bias
when dealing with a small number of feature categories on
the order of 2 or 3.

Some differences do exist amongst the curves of average

IT̂ in Fig. 6. The order of features from least to greatest in
terms of the number of stimulus repetitions required before

the average IT̂ approached its true value was affrication,
voicing, place, and then nasality. As one can observe in Table
I, the affrication and voicing features result in 2�2 matrices
with partitions �8, 8� and �7, 9�, respectively. The small ma-
trix size accompanied by a fairly uniform partition of conso-
nant stimuli results in a small bias that converges to its true
value after relatively few stimulus repetitions. The place fea-
ture results in a relatively larger matrix �3�3� and hence
requires more stimulus repetitions to converge to its true
value. Finally, although the nasality feature results in a small
matrix �2�2�, its partition is highly skewed �14, 2� and so
its bias is predominantly determined by the nasal category
which accrues samples only twice every 16 samples. Hence,
the effects of numbers of samples, matrix size, and how the
samples are distributed among the feature categories com-
bine to provide an account for the differences in small
sample bias among the features in Fig. 6.

The three CI studies that were examined in this study,
whose results are analyzed in Tables III–VI, were chosen
specifically because they published sufficient data to illus-
trate two different ways of calculating information transfer
from a population of CI users. Each method can result in

different amounts of overestimation bias. First, one can cal-

2856 J. Acoust. Soc. Am., Vol. 123, No. 5, May 2008
culate the information transfer from each user’s confusion
matrix and average the results. Second, one can pool data
from all subjects into one aggregate confusion matrix and
then calculate the information transfer. In general, the infor-
mation transfer estimate obtained by averaging individual IT
estimates from individual subject matrices will incur a larger
overestimation than the information transfer estimate ob-
tained from the pooled matrix. The averaging approach uti-
lizes confusion matrices with a relatively smaller number of
samples per matrix, whereas the pooled approach utilizes a
confusion matrix with a relatively large number of samples.
In addition to the number of samples, the amount of overes-
timation also depends on the size of the feature matrices
analyzed.

In Table III and Table VI, one observes how the differ-
ence between averaged and pooled information transfer can
be relatively small �3% or less� for feature matrices of 2
�2 or 3�3 when the number of samples per matrix in the
averaged estimate is larger than N=250. However, this dif-
ference becomes more substantial once the size of the feature
matrix analyzed becomes 4�4. In Tables IV and V, the in-
dividual matrices contained less than 200 samples resulting
in a larger discrepancy between the averaged and pooled
information transfer, even for features with 2 or 3 categories.
For these matrices, an intermediate category between aver-
aged and pooled results was included, showing a steady de-
crease in information transfer estimates between the aver-
aged matrices and the pooled matrix, as the number of
samples per matrix for each category was increased.

Some overestimation remained between features in the
intermediate Pool8 category and features in the Pool24 cat-
egory in Tables IV and V, between 2% and 5%, even though
the pooled matrices for the intermediate category consisted
of about 1000 samples. Some overestimation also remained
between the average and pooled estimates in Table VI for the
voicing and nasality features among Symbion patients, 5%
and 6% respectively, even though the averaged estimates in-
volved 2�2 feature matrices with more than 250 samples
per matrix. These results may be attributed to the variability
in information transfer estimates in addition to the bias, as
depicted by the confidence intervals for the curves in Fig. 5.
Indeed, the curves of Fig. 6 would suggest that the bias is
nearly overcome after 200 samples for features with 2 or 3
categories. However, these curves were obtained from an
average of 10 000 iterations. Hence, one should not presume
that a number of samples on the order of N=250 will guar-
antee an information transfer estimate equal to its true value
for small matrices since sometimes N=1000 might not be
enough due to the randomness involved.

Both the averaged and pooled approaches to obtaining
IT estimates have a disadvantage and an advantage. With the
averaged approach, one is likely to obtain a result that over-
estimates the true value, whereas the pooled approach will
likely yield an unbiased result. However, the averaged ap-
proach also yields confidence intervals with which one can
conduct statistical analyses to test for differences between

experimental groups. The pooled approach only yields one
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estimate for each condition, obviating any statistical com-
parisons between groups. So which approach should one fol-
low?

If one is not interested in the absolute value of the in-
formation transfer for a given feature, but rather in relative
differences between groups, then the averaged approach is a
viable option and statistical differences thus obtained are
valid. However, using a small number of samples per matrix
will increase the inherent variability of IT estimates, in ad-
dition to inter-individual differences within the group, and
thus make it more difficult to demonstrate significant differ-
ences between groups. Furthermore, if one decides to imple-
ment the averaged approach it is important to ensure that
each confusion matrix, both between and within experimen-
tal groups, contains the same number of samples. Although
the amount of bias in a group of IT estimates may differ
within the group even when the number of samples obtained
for each matrix within the group are the same, there is less
chance of confounding the bias in the average IT for the
group than if the number of samples per matrix is not fixed.
Also, caution is required when comparing IT estimates be-
tween features with different numbers of feature categories
or with very different partitions of the same phoneme matrix,
because the bias becomes more prevalent as the number of
feature categories increases and when the feature categories
consist of very nonuniform partitions of phoneme stimuli.

If one is interested in the absolute value of the informa-
tion transfer for the group, then one needs to ensure that the
matrices to be analyzed have a sufficient number of samples.
This can be achieved by pooling several matrices, or by en-
suring that each individual matrix has an adequate number of
samples. An example of when the absolute value of the in-
formation transfer is required is in sequential information
transfer analysis �Wang and Bilger, 1973�, where larger IT
estimates determine the order for which features are sequen-
tially partialed out of the confusion matrix. The effect of the
small-sample bias on sequential IT analysis has not been
explored here, and is yet to be determined.

V. CONCLUDING REMARKS

Until more sophisticated techniques are developed to
correct for small-sample bias in IT estimates, it is important
to keep the bias in mind when planning one’s experimental
paradigm. For example, based on the results of this study, we
J. Acoust. Soc. Am., Vol. 123, No. 5, May 2008 E. S
would suggest obtaining at least 250 samples per subject
when examining information transfer for features with 2 or 3
categories. For features with 4 or 5 categories, we would
suggest obtaining at least 500 samples. This number of
samples should yield an average IT estimate that is within
3% of its true value. However, this suggestion is more of a
rough guideline than a hard rule, because the actual sample
estimate may be higher or lower than the average. To assess
the amount of overestimation bias, it may be useful to report
the pooled IT estimate in addition to the average IT estimate
for each group, and compare the two results.
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