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In this paperwe study the transferof information betweencolliding solitary waves.By this we meanthe
following: Thestateof a solitarywaveis a setof parameters,suchasamplitude,width, velocity, or phase,that
canchangeduringcollisions.We sayinformationis transferredduringa collision of solitarywavesA andB if
thestateof B after thecollision dependson thestateof A beforethecollision. This is not thecasein thecubic
nonlinearSchrödinger,Korteweg–de Vries, andmanyotherintegrablesystems.We showby numericalsimu-
lation that information can be transferredduring collisions in the ~nonintegrable! saturablenonlinearSchrö-
dingerequation.A seeminglycomplementaryfeatureof collisions in this andsimilar systemsis radiationof
energy.We give resultsthatshowthatsignificantinformationcanbetransferredwith radiationno greaterthan
a few percent.We alsodiscussphysicalrealizationusing recentlydescribedspatialsolitary light wavesin a
saturableglassmedium.@S1063-651X~97!05812-1#

PACSnumber~s!: 42.65.Tg,42.81.Dp,89.80.1h

I. INTRODUCTION

A solitarywavecancarry informationin its envelopeam-
plitude, width, and position; its group and phasevelocities;
andits carrierphase;andthis informationcanbe exchanged
in collisionswith othersolitarywaves.This paperis devoted
to the questionof whethersuchinformationtransfercanoc-
cur in a way that is usefulasa basisfor computationwhile
still preservingparticle identities.If this is possible,it sug-
geststhatgeneralcomputationcanbeperformedvia interact-
ing wavesin a uniform medium,suchasa nonlinearoptical
material.

In the usualconceptionof optical computing,onebuilds
discretegatesbasedon the propagationof light and then
essentiallymimics the constructionof a conventionalcom-
puter.We describeherean alternativeapproachto building
an all-optical computer,using only solitary wavesin a ho-
mogeneousnonlinearoptical medium.In our approach,pro-
gramsand data are encodedas streamsof solitary waves,
which areinjectedinto the mediumat a boundaryandcom-
pute via the information transfereffectedby solitary-wave
collisions.

A generalTuring-equivalentmodel for such ‘‘gateless’’
computation,the particle machine, was introducedin @1,2#.
By exploiting the fine-grainparallelismof particle systems,
this modelsupportsfast andefficient executionof manyop-
erations,including arithmeticand convolution.Briefly, par-
ticle machinestreat solitary wavesas particleswhosecolli-
sions can change particle states, thus performing
computation. Such computation requires that if solitary
wavesA and B collide, then ~i! somepart of the resulting
stateof A dependson thestateof B and~ii ! ~this is essential!
the stateof B is changedby collisions. In a word, informa-
tion should be transferredfrom one wave to the other in
‘‘interesting’’ ways.

Thereis much alreadyknown aboutthe phenomenology
of collisions in nonintegrableversionsof nonlinearSchrö-

dingerequations~NLSEs! @3–8#. Generally,solitonsin these
systems,includingthesaturableNLSE ~SNLSE!, canchange
amplitudeand velocity after collisions. We emphasizethat
this is not in itself sufficientto meetour criterionof compu-
tationally ‘‘interesting.’’

The propertiesthat areuseful for our computationalpur-
posesare the oppositeof thoseusuallyconsidereduseful in
communicationoptics: At leastsomeof the collision prod-
uctsmusteffecta nontrivial transformationof informationin
the colliding waves.The reasonfor this is that generalcom-
putation requiresa transformationof information in basic
logic operations.Unfortunately, many commonly studied
systemsthat supportwavesdo not have this behavior.For
instance,becauseof linear superposition,colliding plane
wavesin a linearmediumdo not interact,i.e.,do not undergo
anystatechanges,andthereforecannothaveinformationin-
teractionamongcolliding waves.

An example of a system in which collisions causea
changeof statebut neverthelesscannottransforminforma-
tion in a nontrivial manner is the cubic nonlinear Schrö-
dingerequation~3NLSE!. In orderto performa computation,
solitary wavesmustcarry information from onecollision to
the next; suchinformationmustbe codedin parametersthat
are not constant.However,in the 3NLSE system,the state
parametersthatcausetheinformationtransferarethemselves
invariant:The only changeof stateoccursin the spatial~or
temporal! position and carrier phase,and this changede-
pendsonly on theamplitudesandvelocitiesof theenvelopes
of the incoming solitons. We conjecturein @9,10# that all
solitary-wavecollisionsin integrablesystemshavethis prop-
erty andwe showthat particlemachinesbasedon suchsys-
temsarevery limited in computationalpower.In particular,
theseparticlemachinesarenot Turing equivalent.We must
thereforelook to solitarywavesin nonintegrablesystemsfor
computationallyusefulcollisions.

For solitary wavesto carry information, they must also
preservetheir integrity aftera sequenceof collisionsandlose
negligibleenergythroughradiation.Theserequirementsare
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apparently antagonistic to the information-transform capabil-
ity necessary for computation, but our goal is to find systems
that meet all these requirements. The results shown here sug-
gest that the SNLSE describes such a system.

II. INFORMATION TRANSFER

To be more precise about the definition of information
transfer, suppose that a medium supports a set of solitary
waves. Then a selected set of properties that can change
during a collision define a state S(A) of a wave A , whereas
a set of constant wave properties that are unaffected by col-
lisions define an identity I(A) of A . Note that we may define
different types of states S and identities I for the same type
of wave. Denote by A8 the solitary wave A after a collision
with wave B . Then a collision of A with B supports the
transfer of information if S(A8) depends on S(B) for some
S(A) and S(B); otherwise, the collision transfers only trivial
information @if S(A8) depends on only I(B)# or no informa-
tion @if S(A8)5S(A)#.

We illustrate the above definition using the cubic NLSE
and the saturable NLSE systems. The cubic NLS equation
supports solitons whose variable states are phases and whose
constant identities are amplitudes and velocities. Collisions
of such solitons transfer only trivial information since the
phase shifts due to soliton collisions are a function of only
the amplitudes and velocities, i.e., the identities, of the col-
liding solitons. On the other hand, the saturable NLSE sys-
tem gives rise to solitary waves whose variable state includes
phases, amplitudes, and velocities. This system supports col-
lisions that transfer nontrivial information since the state
changes due to collisions are a function of the states of the
colliding waves.

III. COMPUTATIONAL POWER

To examine how information transfer relates to computa-
tional power, we briefly review the notion of Turing equiva-
lence, or computational universality. Informally, a Turing
machine is a computational model in which programs and
data are stored on an infinite tape of discrete cells. A read-
write head processes information by reading cell contents,
writing new cell contents, and moving back and forth along
the tape, all according to a transition function that considers
both the state of the head and the symbol read from under-
neath the head. The machine can enter a special ‘‘halt’’ state,
which signals the end of computation and the presence of the
machine’s final output on the tape.

It is generally accepted ~by virtue of Church’s thesis @11#!
that given enough time and space, a Turing machine can
implement any algorithm; that is, in terms of the results that
can be computed, a Turing machine is as powerful as any
computer. A computational system is Turing equivalent, or
computation universal, if it can simulate a Turing machine.
While this property is not absolutely necessary for a system
to perform useful computation, universality nevertheless
serves as a good measure of a system’s computational poten-
tial.

Intuitively, in order for a computation to take place in a
solitary-wave system, colliding waves should interact and
transfer information that is necessary to execute steps of an

algorithm. In @10# we show that only at most cubic-time
computation can be done on a particle machine that models a
system in which collisions transfer at most trivial informa-
tion. This upper bound on such a system’s computation time
proves that this system cannot be Turing equivalent since
universal computation can take an arbitrarily long time.
Moreover, solitary-wave interactions in this system are com-
putationally very limited, and designing algorithms based on
these interactions appears tedious and impractical. It is un-
clear whether or not collisions supporting only trivial infor-
mation transfer can encode any useful computation at all.

Solitary-wave systems in which collisions transfer non-
trivial information are more readily applicable to encoding
computation. We have shown in @10# that such a system can
be Turing equivalent provided the solitary-wave state
changes are sufficiently complex.

IV. THE NLS EQUATION AND ITS SOLUTIONS

To study the information-transfer capabilities of NLSE
solitary waves, we first review the one-dimensional NLS
equation and its solutions. We consider the following form
of the NLS equation @4,12#:

2i
]u

]t
5a

]2u

]x2 1N~ uuu!u . ~1!

Here x is space, t is time, u is the complex amplitude of
waves described by the equation, a is real, and N(uuu) is a
nonlinear function of uuu. For the 3NLSE, N(uuu)5kuuu2; for
the SNLSE, N(uuu)5m1kuuu2/(11uuu2), where k and m
are real constants.

The nonlinearity N(uuu) determines the integrability of
Eq. ~1! and the existence of closed-form solitary-wave solu-
tions. To find solitary waves, either analytically or numeri-
cally, we assume that each such wave consists of an enve-
lope modulating a sinusoidal carrier wave. Following @13#,
we make the ansatz

u~x ,t !5F~x2uet !e iu~x2uct !, ~2!

where F(x2uet) is the envelope, e iu(x2uct) is the carrier,
and ue and uc are the envelope and carrier velocities, respec-
tively. We find that the carrier function u is given by

u~x2uct !5

ue

2a
~x2uct !1f0 , ~3!

where f0 is an arbitrary constant. The envelope function F
can be found from

x2uet5E
F~0 !

F~x2uet ! dF

AaF2
22E N~ uFu!dF

, ~4!

where a5(ue
2
22ueuc)/(4a).

If the integral in Eq. ~4! can be evaluated analytically and
used to solve Eq. ~4! for the envelope function F(x2uet),
then Eq. ~2! gives an exact expression for a solitary wave, as
is the case with the 3NLSE. Otherwise, the integral and
F(x2uet) can be computed numerically, using boundary
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conditions chosen to yield solitary waves. We explain how to
do this to obtain the SNLSE solitary waves used in our nu-
merical simulations.

We consider the following form of the SNLSE:

2i
]u

]t
5

]2u

]x2 1S m1

kuuu2

11uuu2D u . ~5!

Here m and k are real constants. Solitary-wave solutions are
of the form of Eq. ~2!, where the carrier u is given by Eq.
~3!. The envelope F can be found from Eq. ~4!, which sim-
plifies to

x2uet5E
F~0 !

F~x2uet ! dF

AcF2
1k ln~11F2!

, ~6!

where c5a2m2k . We evaluate the above integral numeri-
cally using the boundary conditions F(0)5A and
F(6`)50, where A is the maximum amplitude of the en-
velope and is determined by uc and ue . The integration
yields x2uet as a function of the envelope F(x2uet). We
invert the result of the integration to compute the envelope
F(x2uet) as a function of x2uet . We multiply this numeri-
cal envelope by the exact carrier @Eq. ~3!# to plot solitary
waves on a discrete one-dimensional grid and use numerical
methods to study the behavior of propagating and colliding
waves.

Note that SNLSE solitary waves are characterized by four
parameters: amplitude (A), envelope velocity (ue), carrier
velocity (uc), and phase (f0). Using Eq. ~6!, it can be
shown that any two of A , ue , and uc determine the third. We
may choose f0 freely, so that there are three degrees of
freedom in choosing the initial state of a SNLSE solitary
wave.

V. INFORMATION TRANSFER IN COLLISIONS
OF NLSE SOLITARY WAVES

In the integrable 3NLSE system, solitary waves are true
solitons whose collisions can change only their envelope po-
sition and carrier phase; envelope amplitude and velocities
are conserved. In addition, the spatial and phase shifts of
colliding solitons depend only on their constant amplitudes
and velocities. Thus such collisions transmit only trivial in-
formation and are computationally very limited, as we dem-
onstrate in @10#. ~See Fig. 1.!

The nonintegrable SNLSE gives rise to solitary waves
whose collisions support nontrivial information transfer. ~See
Fig. 2.! In particular, phases, amplitudes, and velocities can
all change as a function of the parameters of the colliding
waves. We have observed that the most computationally use-
ful collisions occur when the solitary waves have a low rela-
tive speed ~approximately 4.0 and below!. The magnitude of
information transfer decreases gradually as the relative speed
of the waves increases. To estimate this magnitude, we mea-
sured the amplitude and velocity changes following colli-
sions of low-velocity waves at various initial phases. In Fig.
3, the normalized amplitude change is plotted as a function
of the relative phase of two colliding solitary waves.

In practice, it is reasonable to expect that the amplitudes

of two colliding solitons cannot be made precisely equal. To
test the robustness of the results in Fig. 3 we ran experiments
with unequal amplitudes ~amplitude ratios of 1.1, 1.3, and
2.0! and found the results to be quite similar, except that the
magnitude of the effect was even greater.

It might appear that in the perfectly symmetric case, when
the relative phase is zero, there should be no amplitude
change. That is, a nonzero value of the amplitude change at
zero relative phase shift would imply that energy is trans-
ferred from one wave to another, thereby spontaneously
breaking the symmetry. To explain this apparent problem,
we first note that what is plotted is a change in amplitude, not
energy. A nonzero value of the amplitude change at zero
relative phase ~which is indeed a symmetric situation! then
means that the amplitudes of both solitons change. There are
three ways that this can happen: ~i! Radiation can decrease
the energy of both solitons, ~ii! the amplitudes can change,
but a change in width can compensate to preserve energy,
and ~iii! the collision products can breathe, which in fact
makes the amplitude poorly defined.

VI. RADIATION AND REUSABILITY

In general, computation encoded in a NLSE system must
reuse solitons after they have been involved in multiple col-
lisions. To behave like the particles of a particle machine,
these solitary waves should be stable; more specifically, col-
lisions should preserve the identities of solitary waves and
generate negligible radiation.

FIG. 1. Trivial information transfer in collisions of 3NLSE soli-
tons. The initial relative phases of the solitons in the left and right
graphs are 0.25p and 20.45p , respectively; velocities are 60.2.
Phase and spatial shifts, though not apparent from these graphs, are
a function of only the constant amplitudes and velocities.

FIG. 2. Nontrivial information transfer in collisions of SNLSE
solitary waves. The initial relative phases of the waves in the left
and right graphs are 0.25p and 20.45p , respectively; velocities are
60.2.
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Numerical results reveal that information transfer and ra-
diation often go hand in hand. Soliton collisions in the
3NLSE system are perfectly elastic and generate no radia-
tion, but such collisions support only trivial information
transfer, as we have seen. In the SNLSE system, large
amounts of radiation tend to accompany large magnitudes of
information transfer. However, much like other known non-
integrable NLSE systems @4#, the SNLSE system supports
collisions that transfer information and yet generate only
small amounts of radiation. More specifically, our numerical
studies have revealed the following.

~i! When at least one of the solitary waves is moving at a
high speed ~approximately 4.0 and above!, their collision
generates negligible radiation and supports no measurable
information transfer. ~This phenomenon in generalized
NLSE systems was mentioned by Snyder and Sheppard @5#.!

~ii! When the relative phase f05p , the collision is the
same as in the above case, regardless of the value of the
relative speed v0.

~iii! When both waves have low speeds ~below 4.0) and
0<f0,p , the collision is accompanied by larger amounts
of radiation and information transfer. However, as f0 tends
towards p , both radiation and the magnitude of information
transfer decrease. For f0.p/2, very little or no measurable
radiation is generated.

The solitary waves that emerge from collisions in the
SNLSE system may or may not be of the form given by Eq.
~2!, depending on the initial wave parameters. As observed

early in a variety of nonintegrable systems @4,3#, and pre-
dicted theoretically for a wide range of non-Kerr materials
by Snyder and Sheppard @5#, certain regimes of operation
can lead to breathers and more dramatically to the fusion of
colliding waves and the birth of new waves. We show ex-
amples of fusion in the saturable NLSE in Fig. 4.

Breathers, fusion, and the birth of new particles may be
useful for computation in our context, but are more difficult
to study and characterize than collisions that conserve the
shape and number of particles, especially because they often
seem to be accompanied by more radiation. In fact, our defi-
nition of information transfer is not applicable to these situ-
ations. However, the idea of information transfer may be
generalizable to all interactions in a wide class of noninte-
grable systems.

When wave velocities are very low (,1.0) and relative
phases are approximately in the range 0.0–0.3, collisions
produce breathers, or waves whose amplitude pulsates regu-
larly, that cannot arise from Eq. ~2!. However, we observed
that other collisions result in waves that can be specified by
Eq. ~2!.

To test the hypothesis that collision products are of the
same form as the original waves, we measured the ampli-
tudes, envelope velocities, and phases at the peaks of waves
after collisions; we then used these parameters to plot
‘‘fresh’’ waves and to compare their characteristics with
those of the postcollision waves. In particular, we compared
the carrier velocities of the fresh and postcollision waves and
observed what happens in collisions between two fresh
waves and between two postcollision waves. The results do
suggest that the postcollision waves have the form of Eq. ~2!.

We estimated radiation for the collisions of Fig. 3 by
finding the fixed-size section of the numerical-solution grid
with the lowest root-mean-squared ~rms! norm of the grid
points. ~We use circular boundary conditions in our numeri-
cal simulations, so that any radiation generated by collisions
remains in the system.! Ideally, this rms norm should be very
close to zero for solitary waves. Numerical error caused by
the discrete nature of time and space in the grid contributes
some noise, which we measured for the analytically solvable
case of the 3NLSE by comparing numerical results with ex-
act solutions. Based on these investigations, it appears that
our simple measure of radiation gives a good general idea of
the usefulness of various collisions for computation. In Fig.

FIG. 3. Information transfer for collisions of two SNLSE soli-
tary waves. Here information transfer is defined as the fractional
change in the amplitude of one solitary wave; that is, the transfer is
equal to DA1 /A1, where A1 is the initial amplitude of the right-
moving wave and DA1 is the amplitude change due to collisions.
The solid, dashed, and dotted curves show information transfer for
collisions of two waves with amplitudes 1.0 and velocities 60.5,
61.5, and 610.0, respectively. The relative phase is in multiples of
p . Note that in the low-velocity case ~solid line! near zero relative
phase there is significant radiation and breathing in the collision
products, making the amplitude poorly defined. What is shown is
the result of measuring the amplitude peak at a fixed time.

FIG. 4. Fusion of two solitons after collision. In the case shown,
the two solitons approach each other with velocities 60.2 and their
amplitudes are both 1.0.
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5, radiation is plotted as a function of the relative phase of
two colliding waves.

The SNLSE solitary waves that appear to hold promise
for encoding computation have relative speeds from about
0.2 to 4.0 and relative phases whose absolute values range
from about 0.2p to 0.8p . Frauenkron et al. report @7# nu-
merical studies of a quintic perturbation of the cubic NLSE
and show that radiation in that system is O(e2), while energy
exchange is first order, a general indication that the phenom-
ena involved in information transfer can dominate radiation
in nonintegrable variations of the NLSE.

VII. PHYSICAL REALIZATION

In this section we mention some physical systems that we
might expect to be described by the saturable Schrödinger
equation. We are continuing research in this direction, with
the hope that computationally useful information-transferring
collisions will be observed experimentally.

The integrable 3NLSE describes soliton propagation in
so-called Kerr materials: materials in which the operative
nonlinearity is due to the Kerr effect. In such materials

x (2)
50 and the dominant nonlinearity in the dependence of

refractive index on electric field intensity is due to x (3)Þ0.
This is the case for centrosymmetric and isotropic materials
@14# and includes optical fibers in which soliton transmission
has been demonstrated over long distances @15,16#.

The nonintegrable SNLSE is applicable to simulating
various physical phenomena, including the nonlinear effects
of laser beam propagation in various media @4#. The SNLSE
also describes the recently discovered (111)-dimensional
photorefractive optical spatial solitons in steady state @12,17#
and the optical spatial solitons in atomic media in the prox-
imity of an electronic resonance @18#.

Both the 3NLSE and the SNLSE describe temporal soli-
tons; with the transformation t→z , both equations also de-
scribe spatial solitons, with x and z being the transverse and
longitudinal directions @19,20#. In practice, spatial solitons
appear better suited for computation because temporal soli-
tons require long distances to propagate. In addition, spatial
solitons also exist in 211 dimensions @17,18#, offering an
additional degree of freedom and suggesting the possibility
of implementing two-dimensional universal systems such as
the billiard-ball model of computation @21#.

VIII. CONCLUSIONS

The analytically solvable 3NLSE supports only soliton
interactions that transfer only trivial information and is thus
unlikely to support a useful computational system such as the
particle machine @1,2#. The nonintegrable SNLSE supports
solitary-wave collisions that transfer nontrivial information
and generate acceptable radiation and offers promise for en-
coding general computation through the particle-machine
model.

The next step in this line of work will likely involve
searching for configurations of collisions that can be used for
simple computations, such as ripple-carry addition. Such an
algorithm was implemented using the solitons of a filter au-
tomaton @22# and we believe that spatial SNLSE solitary
waves support sufficiently general interactions to implement
this algorithm in systems of 111 dimensions. Spatial
solitary-wave systems of 211 dimensions also offer possi-
bilities for encoding computation.
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