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Abstract

Information Transmission Using the Nonlinear Fourier Transform

Mansoor Isvand Yousefi

Doctor of Philosophy

Graduate Department of Electrical and Computer Enginering

University of Toronto

2013

The central objective of this thesis is to suggest and develop one simple, unified method

for communication over optical fiber networks, valid for all values of dispersion and

nonlinearity parameters, and for a single-user channel or a multiple-user network. The

method is based on the nonlinear Fourier transform (NFT), a powerful tool in soliton

theory and exactly solvable models for solving integrable partial differential equations

governing wave propagation in certain nonlinear media. The NFT decorrelates signal

degrees of freedom in such models, in much the same way that the Fourier transform

does for linear systems. In this thesis, this observation is exploited for data transmission

over integrable channels such as optical fibers, where pulse propagation is governed by the

nonlinear Schrödinger (NLS) equation. In this transmission scheme, which can be viewed

as a nonlinear analogue of orthogonal frequency-division multiplexing commonly used in

linear channels, information is encoded in the nonlinear spectrum of the signal. Just as

the (ordinary) Fourier transform converts a linear convolutional channel into a number of

parallel scalar channels, the nonlinear Fourier transform converts a nonlinear dispersive

channel described by a Lax convolution into a number of parallel scalar channels. Since,

in the spectral coordinates the NLS equation is multiplicative, users of a network can

operate in independent nonlinear frequency bands with no deterministic inter-channel

interference. Unlike most other fiber-optic transmission schemes, this technique deals

with both dispersion and nonlinearity directly and unconditionally without the need for

dispersion or nonlinearity compensation methods. This thesis lays the foundations of

such a nonlinear frequency-division multiplexing system.
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Chapter 1

Introduction

It can scarcely be denied that the

supreme goal of all theory is to make

the irreducible basic elements as

simple and as few as possible.

Albert Einstein

Optical fiber is a very convenient medium for high data rate information transmission.

A large bandwidth, on the order of THz, is available in silica fiber at only a modest

cost, allowing transmission of information over distances as long as 6000 km with only

0.2 dB/km loss and exceptionally small probability of error. This makes optical fiber an

ideal medium for high data rate communications.

It is a good thing that fibers have a large bandwidth, as demand for bandwidth

is also increasing rapidly. It is widely observed that data rate requirements for core

networking applications is doubling every 18 months, or every 24 months for I/O servers

and storage area networks [2,3]. Many observers predict that to support high bandwidth

applications such as video-on-demand, access to high-performance computing clusters,

and for information transfer between data centers, tera bits per second (bits/s) per

wavelength links will be needed by around 2015 [2, 3]. The conclusion is that, sooner

or later, we will exhaust most practical bandwidth available in optical fibers, even if

we use the whole 1-1.7 µm wavelength window in a wavelength-division multiplexing

(WDM) setup. It is therefore eminently important to study techniques that will improve

the spectral efficiency of fiber-optic communication systems.

Today is a promising time for research into increasing spectral efficiencies in optical

communication systems. Coherent optical systems are becoming a practical reality and it

is now possible to implement highly sophisticated signal processing algorithms involving

1
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tens of giga-operations per second. Sophisticated electronic precompensation methods at

the transmitter can potentially be be combined with sophisticated post-processing and

channel decoding algorithms.

The mathematical theory of communication systems was laid out by C. E. Shannon

in 1948. According to this theory, every communication channel has a capacity, beyond

which reliable communications is not possible.

Traditionally communication and information theory has been mostly developed for

linear Gaussian channels. While the majority of communication media can be modeled

as linear channels under Gaussian perturbations, there are a few important cases where

the channel is inherently nonlinear. An important example, and the one that motivates

this thesis, is the optical fiber channel, in which signal propagation is modeled by the

stochastic nonlinear Schrödinger (NLS) equation.

Although the capacity of many classical communication channels has been established,

determining the capacity of fiber-optic channels has remained an open and challenging

problem. The capacity of the optical fiber channel is difficult to evaluate because signal

propagation in optical fibers is governed by the stochastic nonlinear Schrödinger equation,

in which three effects simultaneously interact with one another: chromatic dispersion,

Kerr nonlinearity, and additive white Gaussian noise. This gives rise to a complicated

dynamic of pulse propagation in long-haul optical fibers.

In particular, what makes the optical fiber difficult to study is the presence of the

nonlinear term in the NLS equation. The underlying nonlinear dispersive partial differ-

ential equation waveform channel is difficult to analyze compared to, say, the classical

additive white Gaussian noise (AWGN) or wireless fading channels. In the NLS equation,

signal degrees of freedom couple together through dispersion and nonlinearity in a com-

plicated manner, making it difficult to establish the channel input output relationship,

even deterministically.

1.1 Related Work

Current approaches to the design of optical fiber communication systems often assume

a linearly-dominated regime of operation [4], consider the nonlinearity as a small per-

turbation [5], treat the effects of the nonlinearity as unknown or as noise [6] [7, and

references therein]. In these studies, the channel capacity C(P) increases with power P
until a certain power Pop, and decays to zero afterwards [8]. Thus according to these

studies, increasing the average input power beyond Pop deteriorates system performance,

in sharp contrast with linear channels.



Chapter 1. Introduction 3

While using coherent detection and wavelength-division multiplexing (WDM) spectral

efficiencies as high as 5 bits/s/Hz are achievable in a simulation experiment [7], the

limitation of the spectral efficiency in the prior work may well be due to the fact that

the nonlinearity is not treated in these works (see Chapter 3). These methods need to

compensate and manage the nonlinearity and dispersion by means of signal processing

and equalization. While these approaches have worked for many years now, with the

rapidly increasing demand for bandwidth, they may no longer be adequate as the spectral

efficiency is pushed. It is the main theme of this work that the nonlinearity needs to be

understood and treated properly if higher capacities are desired in the coming years.

Progress in better communication over partial differential equation (PDE) channels

is ultimately tied to progress made in nonlinear models in mathematics. Nonlinear dis-

persive waves are currently the subject of much research in mathematics, as many core

equations in various areas of applied mathematics and theoretical physics turn out to

be nonlinear (see, for instance, the literature on Yang-Mills equations, Navier-Stokes

equations, integrable PDEs, nonlinear waves, Einstein equations, Ricci flow, turbulence

problem, etc.). Even for well-structured PDEs such as the NLS equation, so far, it has

appeared to the optical fiber community that computing the information theoretic quan-

tities of the stochastic NLS equation, and for that matter all stochastic integrable PDEs,

is still challenging and likely to require the introduction of new ideas to our present

knowledge of the subject.

1.2 Contributions

The aim of this thesis is to suggest and develop one simple, unified method for com-

munication over optical fiber channels, valid for all values of dispersion and nonlinearity

parameters, and for a single user channel or a multiple user network. All determinis-

tic distortions such as dispersion, nonlinearity, inter-symbol interference, inter-channel

interference and in some cases polarization mode dispersion are zero for a single user

channel or all users of a multiple user channel. The new method has the potential to

offer significant improvements in the performance of optical fiber systems.

We adopt a different philosophy with regard to the previous work. Rather than

treating nonlinearity and dispersion as nuisances, we seek a transmission scheme that is

fundamentally compatible with these effects. We effectively “diagonalize” the nonlinear

Schrödinger channel with the help of the nonlinear Fourier transform (NFT), a powerful

tool for solving integrable nonlinear dispersive partial differential equations [9, 10]. The

NFT uncovers linear structure hidden in the one-dimensional cubic nonlinear Schrödinger
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equation, and can be viewed as a generalization of the (ordinary) Fourier transform to

certain nonlinear systems.

With the help of the nonlinear Fourier transform, we are able to represent a signal

by its discrete and continuous nonlinear spectra. While the signal propagates along the

fiber based on the complicated NLS equation, the action of the channel on its spectral

components is given by simple independent linear equations. Just as the (ordinary)

Fourier transform converts a linear convolutional channel y(t) = x(t)∗h(t) into a number

of parallel scalar channels, the nonlinear Fourier transform converts a nonlinear dispersive

channel described by a Lax convolution (see Sec. 4.2) into a number of parallel scalar

channels. This suggests that information can be encoded (in analogy with orthogonal

frequency-division multiplexing) in the nonlinear spectra.

The nonlinear Fourier transform is intertwined with the existence of soliton solutions

to the NLS equation. Solitons are pulses that retain their shape (or return periodically

to their initial shape) during propagation, and can be viewed as system eigenfunctions,

similar to the complex exponentials ejωt, which are eigenfunctions of linear systems.

An arbitrary waveform can be viewed as a combination of solitons, associated with the

discrete nonlinear spectrum, and a non-solitonic (radiation) component, associated with

the continuous nonlinear spectrum.

Motivated by the severe limitations that the nonlinearity imposes on the perfor-

mance of the optical fiber networks, this thesis takes the first steps towards a nonlinear

frequency-division multiplexing (NFDM) communication system operating based on the

NFT. We simplify the NFT to a great degree, highlighting the analogies with the ordinary

Fourier transform and orthogonal frequency-division multiplexing (OFDM). Numerical

methods for calculating the NFT are provided. We clarify the structure of the receiver,

which is able to estimate the nonlinear spectrum of the received signal rather efficiently.

Finally, we determine the task of the transmitter and provide illustrative examples of

how to use NFT for data transmission.

1.3 Thesis Outline

The subject of this research is inter-disciplinary, lying at the intersection of information

and communication theory, applied mathematics, and lightwave and photonic systems.

To assist in reading, Chapter 2 is dedicated to readers not familiar with some of these

subjects. Information theorists can skip Section 2.1, mathematicians do not need Sec-

tion 2.2, and Section 2.3 is not new to lightwave system engineers. In Chapter 3, the

origin of the capacity limitations when using transmission techniques traditionally suited
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for linear systems for communication over fiber-optic communications is explained. We

introduce the nonlinear Fourier transform and some of its properties in Chapter 4, and

numerical methods to compute the forward NFT in Chapter 5. Examples of using the

NFT for communications with performance evaluation can be found in Chapter 6.

1.4 Notation

When possible, we use upper-case letters to denote scalar random variables (RVs) taking

values on the real line R or in the complex plane C, and lower-case letters for their

realizations. Real and complex normal distributions are shown as NR and NC. We

use the shorthand notation Xk I.I.D. ∼ pX(x) to denote a sequence of independent,

identically-distributed random variables with common distribution pX(x). As customary,

the Landua’s big O notation f(n) = O(g(n)) is used to say that f(n) does not grow faster

than g(n) with n, i.e., ∃N,M <∞ � ∀n > N , |f(n)| ≤M |g(n)|. A sequence of numbers

(x1, · · · , xn) is occasionally denoted by xn. Convergence of random variables almost

surely, in probability, and in distribution are shown, respectively, by
a.s.→,

p→ and
d→. We

say p ∈ R is within f(µ± ǫ) if f(x− ǫ) ≤ p ≤ f(x+ ǫ).



Chapter 2

Preliminaries

It seems that if one is working from

the point of view of getting beauty in

one’s equations, and if one has really

a sound insight, one is on a sure line

of progress.

Paul A.M. Dirac

2.1 Origin of Information Theory

There is fundamentally one problem in communications theory: given a source and a

destination in relation with one another and a message at the source, to recover, as well

as possible, the message at the destination. Or more generally: given a set of messages

at a number of sources, to reconstruct these messages at their intended destinations.

The cause and effect relationship between the source and the destination is represented

by a communications channel. One can thus think of a communication channel as a black

box mapping an input message to an output message. The interesting case, motivated by

practice, is when the map has unknown parameters, reflecting disturbance, interference

or noise in the communication medium. In this case, the channel is described by a set of

transition probabilities between input and output messages.

In communications theory, information is modeled as a stochastic process [11]. The

input to a communications channel is therefore a realization of a stochastic process

{Xt, t ∈ T}, where Xt is a random variable on a sample space Ωx and T is the index set

of time t. The process can be discrete or continuous in time, and discrete or continuous

in state. A communication channel is just a conditional probability distribution between

6
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pY |X(y|x)

(X1, X2, X3, · · · ) (Y1, Y2, Y3, · · · )

Figure 2.1: Discrete memoryless channel.

an input and an output, as defined more precisely below.

Definition 1 (Communication channel). Let (Ωx,Fx) and (Ωy,Fy) be measurable spaces.

A communications channel C from an input alphabet Ωx to a set of measurements Fy

performed at the output is a conditional probability measure p(Fy|Ωx) : Ωx×Fy → [0, 1]

such that:

1. for any ωx ∈ Ωx, p(.|ωx) is a probability measure on (Ωy,Fy),

2. for any y ∈ Fy, p(y|.) is Fx− measurable.

The input and output alphabets Ωx and Ωy can take several forms. If Ωx is a set of

functions in L2(R), C is called a waveform channel. Roughly speaking, one can think

of a waveform channel as a set of transition probabilities from the sample functions of

a stochastic process {Xt, t ∈ T} to the sample functions of another stochastic process

{Yt, t ∈ T}. The discrete case where Ωx is a set of vectors in Rn is referred to as a discrete

channel (DC). A DC is described by a set of transition probabilities pY n|Xn(yn|xn) from
realizations of a random vector Xn to the realizations of another random vector Y n. A

discrete memoryless channel (DMC) is a DC where pY n|Xn(yn|xn) =
n∏

k=1

pY |X(yk|xk), ∀n,
and can be described by a conditional probability distribution p(y|x), x, y ∈ R. DCs and

DMCs can be considered as, respectively, n- and one-dimensional special cases of the

infinite-dimensional waveform channel. Thus the inputs of a DMC, a discrete channel

with memory, and a waveform channel can be considered as, respectively, a real number,

a vector, and a function. The actual output Ωy, corresponding to the “physical reality”,

may never be entirely observable; one only has access to the measurement events Fy.

The mathematical operator performing measurements is thus part of the channel.

Information transmission has been studied for a long time, dating back to the nine-

teenth century [12]. However, the formulation of the communication problem in its

modern mathematical form and its solution for one source and one destination is largely

due to Claude Shannon [11]. In his magnum opus published in 1948, Shannon laid down

the mathematical theory of communications, known as information theory [11].

Shannon makes a great deal of abstraction and introduces a number of new ideas when

formulating and solving the point to point communication problem. Below we briefly

review a few of the basic elements from information theory used in this thesis, for the
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benefit of a reader not familiar with this area. The interested reader can consult [11,13,14]

for a detailed discussion.

2.1.1 Statistical Regularity and the Concentration of Measure

We shall begin by examining the behavior of the sum Sn of n real random variables Xk

with mean µk and finite variance σ2
k,

Sn = X1 + · · ·+Xn.

In general, if |Xk| < c (almost surely), the probability distribution of Sn is supported

in [−nc, nc], and Sn is order of O(n) (almost surely). Let us square X1−µ1+· · ·+Xn−µn

and separate out the interaction terms

(Sn − ESn)
2 =

n∑

k=1

(Xk − µk)
2 +

n∑

k=1

n∑

l=1
l 6=k

(Xk − µk)(Xl − µl). (2.1)

There are only n self-terms in (2.1), while the overwhelming n2−n terms are interaction

terms. For a general sequence of random variables Xk, asymptotically (Sn − ESn)
2 a.s.∼

O(n2). However it is a remarkable phenomenon that when Xk are pairwise independent,

the interaction terms in (2.1), i.e., the overwhelming number of terms, vanish on average,

and E(Sn − ESn)
2 =

n∑
k=1

σ2
k = nσ̄2

n ∼ O(n), where σ̄2
n =

n∑
k=1

σ2
k/n <∞.

Observation 1 (Linearity of variance). A consequence of vanishing interaction terms on

average in (2.1), is the linearity of variance

Var

(
n∑

k=1

Xk

)
=

n∑

k=1

Var(Xk).

Thus in random quantities, unlike deterministic quantities, the linearity is on the vari-

ance, i.e., on the square of the quantity, and not on the standard deviation, which has

the units of the signal.

From the linearity of variance we obtain that

VAR (
1

n
Sn) =

1

n2
VAR (Sn) = σ̄2

n/n→ 0, as n→∞.

That is to say, the fluctuations of Mn = 1
n
Sn diminish in size as n→∞, and Mn = 1

n
Sn

would be highly concentrated around its mean. In particular, from the Chebyshev’s
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inequality,

Mn
p→ EMn. (2.2)

Observation 2 (Concentration of measure phenomenon [15]). Let Xk be a sequence of

bounded random variables. The assumption that Xk are pairwise independent would

make the probability distribution of the sum Sn highly concentrated around the mean

ESn in an interval of length O(√n), much smaller than O(n) expected from deterministic

quantities.

This remarkable phenomenon is a direct consequence of the independence of Xk.

Independent random variables tend to fall in the same region, and to push the sum Sn to

the extremes O(n), variables Xk need to somehow “work together”. This phenomenon

of the concentration of measure is in fact more general than stated above, and is the

cause of a variety of interesting results in the probability theory and statistics, including

information theory, the subject of this thesis.

The simplest concentration result is the Law of Large Numbers (LLN) (2.2). The next

in the hierarchy is the central limit theorem (CLT), stating that under further conditions,

e.g., when Xk are identically distributed,

Sn
d→ ESn +

√
nZn, (2.3)

where Zn ∼ NR(0, σ̄
2
n) is a zero mean Gaussian RV with a finite variance. The LLN and

the CLT, respectively, represent the zero-order and 1
2
-order asymptotic of the fluctuations

of Sn as a function of n. There also exist other limit theorems with regard to the

asymptotic behavior of Sn, notably the Law of Iterated Logarithm (LIL), sitting between

LLN and CLT.

Remark 1. The linearity of the variance has a number of other significant consequences.

It underlies the rules of the stochastic calculus, such as the form of the Taylor expansion

for random functions or Ito lemma, in which the second order quantities dX2 are no

longer negligible.

In general, a concentration of measure statement forMn is an estimate of the following

probability

p (|Mn − EMn| > λ) (2.4)

in terms of λ and n. From CLT, in the limit Mn − EMn ∼ NC

(
0, σ̄

2

n

)
. However, as

illustrated in Fig. 2.2, the CLT describes only the bulk of the distribution of Mn within
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1√
n
standard deviation from the mean (independent of the details of pXk

(x)), and it is not

valid for the description of the tail of pMn
(x) beyond this range (which generally depends

on the details of pXk
(x)). For a fixed λ, as n → ∞ we eventually encounter the tail of

the distribution, where the LLN and CLT are grossly ineffective.

To go beyond the LLN and CLT and estimate 2.4, concentration of measure inequal-

ities are needed. Weak inequalities include the Markov inequality

p (|Mn − EMn| > λ) <
1

nλ

n∑

k=1

E|Xk − µk|,

requiring no assumption on independence and giving no decay on n (linear decay in λ),

and, by squaring the arguments in the Markov inequality, the Chebyshev’s inequality

p (|Mn − EMn| > λ) <
1

n2λ2

n∑

k=1

σ2
k,

requiring pairwise independence and linear decay in n (quadratic decay in λ). Continuing

this process by incorporating all higher order k moments, one obtains exponential decays

exp(−nI(λ)) in n, using various large deviation theorems, such as Chernoff bounds. The

exponent I(λ) is called the Cramer rate function.

Theorem 1 (Large Deviation). 1. Let Xn be a sequence of real-valued random vari-

ables. If the scaled cumulant generating function

g(λ) = lim
n→∞

1

n
log EXn

enλXn

is differentiable in λ, then the probability density function of Xn for large n is

pXn
(x) = e−nI(x)+o(n),

where o(n)/n→ 0 and

I(x) = sup
λ∈R
{λx− g(λ)}. (2.5)

2. Let Xn be a sequence of I.I.D. bounded real-valued random variables with common

distribution pX(x) and EXn = µ. Then

p (Mn > x) = e−nI(x)+o(n) x > µ, p (Mn < x) = e−nI(x)+o(n) x < µ,
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where I(x) is given in (2.5) and g(λ) = logEXe
λX is the logarithmic moment

generating function.

Proof. Part 1) is the Gärtner-Ellis theorem. It says that the dependency of the distri-

bution of a sequence of random variables Xn, for which g(λ) exists and is differentiable,

must be exponential in n; see [16] for a proof. The utility of this theorem comes from

the fact that in many cases one can compute g(λ) without knowing pXn
(x) a priori. Part

2) is the Cramer’s theorem and follows by applying part 1) to the mean of the sequence

Xn,i.e., substituting Xn →Mn =
∑
Xn/n and simplifying g(λ).

Figs. 2.2 and 2.3 illustrate the concepts of the large deviation and rate functions

when Xk are Gaussian and Bernoulli RVs. The sum Sn of n I.I.D. Gaussian or Bernoulli

RVs seem to converge to a Gaussian distribution as n is increased. However looking at

rate functions, the exponent of the distribution is quadratic only when Xk are Gaussian.

For Bernoulli RVs, the rate function is only locally quadratic around the mean and

deviates from that as λ is increased. Indeed, by Taylor expansion one always has a

locally quadratic rate function and the resulting Gaussian approximation holds. These

figures illustrate that one needs a large deviation inequality to estimate (2.4).

As noted earlier, the concentration of measure is a more general phenomenon than

stated above. For instance, Talagrand concentration inequality asserts that it holds true

as well for a convex Lipschitz function of independent RVs F (X1, · · · , Xn), not necessarily

the sum function [15].

Definition 2. A sequence xn is λ−typical to a distribution pX(x) with respect to the

function F (x1, x2, · · · , xn) if it meets the concentration inequality |F (xn)− EF (Xn)| < λ,

where X1, X2, · · · are I.I.D. ∼ pX(x).

From Theorem 1 it follows that, with respect to F (xn) =
∑n

1 xk/n, chances that X
n

drawn I.I.D. from pX(x) is not ǫ−typical to pX(x) is within e−nI(µ±ǫ).

An immediate function of a random variable on a probability space is the probability

function pX(x). In the next section, we choose F to be the probability function, or

more conveniently, the logarithm of the probability F (x1, · · · , xn) = log p(x1, · · · , xn).
For simplicity, we consider a DMC and apply the simplest (zero-order) concentration

theorem: the law of large numbers.

2.1.2 Information Theory and Noise

The existence of the fundamental limits in communications is an application of the con-

centration of measure phenomenon to the sum of n independent random variables Sn.
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Figure 2.2: Distribution of Mn when (a) Xk I.I.D. ∼ NR(0, 1), (b) Xk I.I.D. ∼
Bernoulli(0, 0.6). (c) Rate function for part (a). (d) Rate function for part (b).
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Figure 2.3: (a) Distributions obtained from CLT and large deviation (LD) both well
describe the bulk of pMn

(x). Here Xk I.I.D. ∼ Bernoulli(0, 0.6). (b) Only large deviation
can approximate the tail of pMn

(x).

The LLN can be applied to see the existence of a capacity, while the concentration of

measure inequalities can be used to analyze the probability of error asymptotically and

make the argument precise. Below, we briefly re-derive the well-known channel coding

theorem for one source and one destination [11].

Consider the single-shot communication problem where a single symbol ωx ∈ Ωx is

sent and a symbol ωy ∈ Ωy is received. Given a measurement event y ∈ Fy obtained at

the output of the channel, the most probable ωx ∈ Ωx giving rise to y is a solution of

the maximum a posterior (MAP) estimation problem

ω̂x(y, pΩx
(ωx)) = max

ωx∈Ωx

pΩx|Fy
(ωx|y).

A receiver implementing a MAP estimator is therefore the rule y → ω̂x(y, pΩx
). The

the single-shot problem under a MAP receiver has an average probability of error Pe =

EpΩx
P (ω̂x 6= ωx), usually bounded away from zero. One can however obtain arbitrarily

small probability of error, as prescribed by Shannon [11]. To summarize Shannon’s result

below, for simplicity we assume Ωx = Fx = {x1, · · · , xnx
}, Ωy = Fy = {y1, · · · , yny

}, all
having finite cardinalities.

A mathematical probability theory refers to physical reality through a frequency in-

terpretation of the probability, i.e., by replacing a distribution pX(x) by its empirical

distribution, defined via a counting process. This motivates that in order to take advan-

tage of the statistics provided by the channel law, and to see what these statistics mean

in the first place, to consider the multiple-shot transmission problem, where a sequence
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xn drawn I.I.D. from pX(x) is transmitted. Since

p(x1, · · · , xn) =
n∏

k=1

pX(xk),

the logarithm function is used to enable the use of the law of large numbers

log p(x1, · · · , xn) =
n∑

k=1

log pX(xk)
p→ nEX log pX(x) = −nH(X),

where H(X) = −E log pX(x) = −
∑
x∈Ω

PX(x) log pX(x) > 0 is the entropy of the discrete

distribution pX(x). It follows that p(x1, x2, · · · , xn) p→ 2−nH , a constant value and inde-

pendent of the sequence. We thus obtain the following Asymptotic Equipartition (AEP)

Lemma, which is at the center of information theory.

Lemma 2 (AEP). In sampling a distribution pX(x) independently n → ∞ times, there

are about 2nH(X) typical sequences, all almost equiprobable with a constant probability

near 2−nH(X).

The AEP asserts that as n → ∞, as a result of the severe constraint imposed by

the LLN, only a few events are typically observed compared to the total number of

possibilities, all of them almost equally surprising. These are called typical sequences.

We say xn is ǫ−typical to pX(x) if it is ǫ−typical to that distribution with respect to

the probability function F (xn) = p(xn). The collection of ǫ−typical sequences is the

typical set An
ǫ . Theorem 1 ensures that if Xn I.I.D. ∼ pX(x), then p(xn /∈ An

ǫ ) =

exp
(
−nI(H(X)± ǫ) + o(n)

) p→ 0.

Example 1. Let X ∼ Bernoulli(p). Among 2n possible sequences, 2nH(X) are typical,

where H(X) = −p log p− (1− p) log(1− p). These are sequences of length n which have

about np ones.

AEP lemma can also be applied to a conditional distribution, leading to the concept

of joint typicality.

Corollary 3. Let PY |X(y|x) be a conditional distribution. For any input sequence Xn

I.I.D. ∼ pX(x), there are about 2nH(Y |X) output typical sequences as n→∞, where

H(Y |X) =
nx∑

k=1

PX(xi)H(Y |X = xi).
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Proof. Let zn be drawn I.I.D. from pX(x). Partition zn into nx sub-sequences, each

containing one xi ∈ Ωx and having length ni;
nx∑
i=1

ni = n. For each of these input sub-

sequences, there are about 2niH(Y |X=xi) output typical subsequences. The number of

output typical sequences of length n at the output is thus

nx∏

i=1

2niH(Y |X=xi) = 2

nx∑

i=1
niH(Y |X=xi)

= 2

nx∑

i=1
nPX(xi)H(Y |X=xi)

= 2nH(Y |X). (2.6)

Note that for each input typical sequence, the location of xi’s is fixed and that is what

makes H(Y |X) different from H(Y ). Allowing permutation in the counting process (2.6)

will turn H(Y |X) into (a larger quantity) H(Y ).

Remark 2 (Finding the typical sequences). Let X be a random variable with finite al-

phabet size and distribution pX(xi) = pi, i = 1, · · · , nx. The typical sequences of length

n are all those sequences which have about np1 symbol x1, about np2 symbols x2, etc. A

simple counting shows that the number of these sequences is

N =

(
n

np1, · · · , npn

)
=

n!

(np1)! · · · (npnx
)!
.

Taking the logN and approximating sums by integrals (or using Stirling’s formula), we

obtain N ≈ 2nH(X). Typical sequences are, asymptotically, permutations of one another,

and the typical set can be obtained from one typical sequence. Hence, a typical set can

simply be denoted by the notation (n1, · · · , nnx
).

The typical sequences obtained from a conditional distribution can also be similarly

described. Let [pij] be a nx×ny probability matrix, representing a finite alphabet channel

and assume that the channel input is drawn from a distribution pX(xi) = pi. Associated

with every (non-typical) input sequence xnpi = (xi, xi, · · · , xi) of length npi, there is a

typical set Si determined by the probabilities of the ith row of the channel matrix (i.e.,

2nH(Y |X=xi) output sequences having npipi1 symbols y1, npipi2 symbols y2, etc.). Let xn

be any input sequence, having symbols xi at the index set Ii. The conditional output

typical set arising from xn consists of 2

nx∑

i=1
niH(Y |X=xi)

output sequences obtained from the

Cartesian product S1× · · ·Snx
, keeping the index locations the same (thus permutations

are only locally inside Si). If xn is a realization of a distribution pX(x), then there are

2nH(X) input typical sequences, and associated with each, there is a conditional output

typical set of size 2nH(Y |X). The output typical set is the collection of all these conditional
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output typical sets, with the cardinality

2nH(X) × 2nH(Y |X) = 2nH(Y ),

where H(Y ) = H(X) +H(Y |X). The output typical set is thus the permutations of the

conditional output typical sets, obtained e.g., from one conditional output typical set

associated with a particular input typical sequence. The difference between H(Y ) and

H(Y |X) is a permutation in the underlying counting sequences. Fig. 2.4 and Fig. 2.5

illustrate these concepts pictorially.

Lemma 4. Let pY |X(y|x) be a conditional distribution with an input alphabet Ωx =

{a1, · · · , anx
}, xn drawn I.I.D. from pX(x) an input ǫ-typical sequence, and yn a resulting

output sequence.

1. The probability that yn obtained at the output is outside of the output typical set

associated with xn (yn is not jointly typical with xn) goes to zero as n→∞.

2. The probability that xn is ǫ-typical with another distribution qX(x), x ∈ Ωx, is

within 2−n(D(p||q)±ǫ)+o(n) for large n, where D(p(x)|q(x)) is the Kullback-Leibler

distance between distributions p and q

D(pX(x)|qX(x)) =
∑

x

pX(x) log
pX(x)

qX(x)
.

3. The probability that another randomly selected input sequence x̃n 6= xn is jointly

typical with yn (giving rise to yn) is within 2−n(I±ǫ), where I = D(pX,Y (x, y)|pX(x)
pY (y)).

Proof. 1) This probability vanishes following any concentration of measure theorem, e.g.,

from Theorem 1, or AEP lemma. 2) This is Sanov’s theorem. We can measure the

empirical distribution ofX by counting symbols in xn, as pi =
∑

k δ[xk−ai]/n, 1 ≤ i ≤ nx,

where δ[x] is the discrete Dirac function. By applying Part 2) of Theorem 1 in the vector

form to estimate p(p ≈ q), we obtain D(p||q) as the rate function I. 3) Given xn at the

input, any other input sequence is independent of yn and, from 2), the chance of another

input sequence giving rise to yn is within 2−n(D(pX,Y (x,y)||pX(x)pY (y))±ǫ) = 2−n(I±ǫ).

Remark 3. 1. Note that for input non-typical sequences, the size of the associated

output typical set can be input dependent. However, the size of output typical sets

associated with every input typical sequence is a constant 2nH(Y |X), independent

of the input.
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YX
2nH(Y )

2nH(Y |X)

(a) (b)

Figure 2.4: (a) For every input typical sequence (cause), there is a conditional output
typical set (possible effects) with size 2nH(Y |X). (b) Complete uniformization in the
n→∞ dimensional space at the output of a generic communication channel as a result
of the concentration of measure phenomenon (or AEP). The outermost big sphere has
size 2nH(Y ) and shows the output typical set Ay; the small spheres represent the noise
balls (conditional output typical sets) associated with an input typical sequence. The
number of small spheres is 2nH(X), each having size 2nH(Y |X). The (red) filled spheres
are a selection of the 2nI spheres out of 2nH(X) ones, packing the output space. The
probability of Rn − Ay goes to zero as n→∞ from AEP lemma.

2. Note that there is no distinction between linear channels and nonlinear channels

in the general argument made above. In high dimensions the “noise balls” (con-

ditional typical sets) have the same size for any set of transition probabilities,

regardless of where the statistics come from. This is simply because typical se-

quences are permutations of one another, essentially identical, and in any long

input sequence the effects of “good” and “bad” symbols are averaged out.

3. In an asymptotic analysis, one can think of “typical” sequences as the only ob-

servable sequences.

It follows from the phenomenon of the concentration of measure (or AEP lemma)

that a complete uniformization is achieved in the n→∞ dimensional space at the input

and output of a conditional distribution pY |X(y|x). That makes the the description of a

conditional distribution, when extended in high dimensions, a uniform distribution over

a finite set, i.e., essentially a deterministic problem. These input output uniform sets are

geometrically shown in Figs. 2.4 and 2.5.

This observation suggests transmitting a long block of data over a communication

channel, so long that the statistical regularity is nearly achieved. There are about 2nH(X)

input typical sequences. For each received sequence yn, there is a conditional input typical

set of size 2nH(X|Y ). If each conditional input typical sets contains only one “signal”, the
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2nH(Y |X)

2nH(Y )

2nH(X,Y )

2n
H
(X

|Y
)

2n
H
(X

)
2nH(X) 2nH(Y )

dx = 2nH(Y |X)

dy = 2nH(X|Y )

probability of each edge=2−nI

xn1

xn2

xn3

xn4

xn5

xn6

xn7

xn8

xn9

xn10

yn1

yn2

yn3

yn4

yn5

(a) (b)

Figure 2.5: (a) Input, output, and jointly typical sequences. (b) A channel in n-
dimensional space can be described on a regular bipartite graph. Left and right nodes
represent, respectively, input and output typical (observable) sequences with degrees
2nH(Y |X) and 2nH(X|Y ). The edges represent the cause and effect relationship between
the input and output sequences; they indicate pairs (xn, yn) drawn I.I.D. from the joint
distribution pX,Y (x, y). The input output nodes not connected are not in probabilistic
relation with each other as n → ∞. These are independent sequences drawn from the
distribution pX(x)pY (y). There are total 2n(H(X)+H(Y )) possible pairs (xn, yn), but only
2nH(X,Y ) jointly typical pairs (edges). Thus in random selection of the nodes, the proba-
bility of getting an edge is 2−nI . The white circles show 2nR randomly selected codewords
out of 2nH(X) inputs. The received sequence yn1 cannot be decoded unambiguously since
it is connected to two codewords, while yn3 can be decoded unambiguously. The decoder
also fails if an output is connected to no codeword.
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inverse map is unambiguous. The number of distinguishable input sequences is upper-

bounded by

N ≤ 2nH(X)

2nH(X|Y )
= 2n(H(X)−H(X|Y )) = 2nI(pX(x)).

The exponent I(pX(x)) := I
(
pX(x), pY |X(y|x)

)
is called the mutual information func-

tional

I (pX(x)) = H(X)−H(X|Y ) = D(pX,Y (x, y)|pX(x)pY (y)).

Channel capacity, representing the maximum achievable information rate, is defined as

C = max
pX(x)

I (pX(x)) , bits per channel use. (2.7)

Below we show that one can indeed achieve rates arbitrary close to the above upper

bound.

The set of input typical sequences form the rows of a 2nH(x)×n matrix, with elements

that we draw from the capacity achieving input distribution. We select 2nR ր 2nC

input sequences from rows of this matrix, as our codewords. The set of codewords, a

2nR × n matrix, is the codebook M . This codebook is revealed to the receiver before

communication starts. The encoder maps nR bits of the input data to a codeword of

length n. Parameter R is thus the communication rate, R = log |M |/n. The decoder

receives a sequence yn and lists its conditional input typical sequences according to the

algorithm mentioned in Remark 2. If there is a unique codeword in this list, it is declared

as the transmitted sequence, otherwise a failure is announced.

Since input typical sequences are equi-probable, it seems plausible that choosing code-

words randomly (uniformly) likely leads to a well separated ensemble. The probability

of error of a randomly selected codebook M can easily be estimated. Fig. 2.5 represents

the input output sequences of a channel on a regular bipartite graph in the n → ∞
dimensional space. Edges emerging from xn are connected to nodes yn which are statisti-

cally related to xn, i.e., pairs (xn, yn) are drawn from the joint distribution pX,Y (x
n, yn).

Suppose that codeword cn1 has been transmitted, e.g., xn4 in Fig. 2.5. An error occurs if 1)

yn is not connected to c1 (either there is no codeword at all, or there are codewords other

than c1 connected to yn), or 2) some other codeword is connected to the yn in addition

to c1. Events in case 1) mean that the received sequence is not jointly typical with c1.

The probability of this event p
(1)
e (cn1 ) vanishes from Lemma 4(1). For case 2), the proba-

bility that a randomly selected input node is connected to yn is 2nH(X|Y )/2nH(X) = 2−nI .
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Hence the probability that in choosing 2nR codewords randomly one or more wrong

codewords is also connected to yn is upper bounded by (2nR − 1)2−nI , using the union

bound. Clearly if R < I, p
(2)
e (cn1 ) → 0. From the symmetry indicated by AEP lemma

and random code construction, the probability of error averaged over all codewords is

p̄e = pe(c
n
1 ) = p

(1)
e (cn1 ) + p

(2)
e (cn1 ) and hence vanishes as n→∞. Since this holds true for

a random code, evidently there must exist at least one good code where p̄e → 0.

The converse is also true: if R = I+ǫ, in the limit there are infinitely many codeword

nodes connected to any output node, and pe → 1. We thus get the following theorem

indicating the significance of the capacity as the fundamental limit of information.

Theorem 5 (Channel Coding Theorem). In a DMC, all rates below capacity are achiev-

able, i.e., for every R < C there exists an encoder and decoder with pe → 0. Conversely

no rate above capacity is achievable, i.e. if pe → 0 for any (n, k) code, then R ≤ C.

Proof. The proof of the forward part was outlined above. It essentially follows from the

fact that in sampling a joint distribution pX,Y (x, y), X and Y are statistically related,

and the chance that the distribution pX(x)pY (y) generates a pair (Xn, Y n) obtained

from pX,Y (x, y) is as small as 2−nD(pX,Y (x,y)||pX(x)pY (y)) = 2−nI . In other words, a received

sequence Y n (drawn from pY (y)), “generates” input sequences according to pX|Y (x|y).
The chances that a sequences statistically unrelated to Y n, drawn from pX(x), generates

Y n, from the large deviation Theorem 1, is 2−nEpY
D(pX|Y (x|y)||pX(x)) = 2−nI . Thus one

can choose up to 2nI signals before a decoder operating based on the joint typicality

encounters a significant error. See [13] for details of the proof, specially the converse.

Remark 4. While the sphere packing picture shown in Fig. 2.4 is a helpful visualization

aid to illustrate the concept of the capacity, it is useful only in the limit n → ∞. In

practice when n is finite, at rates close to the capacity these spheres indeed intersect

with each other significantly, allowing higher number of packed spheres. The hard sphere

packing picture of Fig. 2.4, typically pursued in algebraic coding, is not usually suitable

for operation at rates close to the capacity.

The task of the communication over a given channel consists of finding the capacity

C, as well as devising coding methods to achieve this limit. Although random block

codes have good minimum distance properties, due to the lack of the structure, their

decoding is complex. To manage complexity, modern capacity achieving codes enforce a

sparsity structure on the codebook for efficient decoding, while still maintaining pseudo-

randomness for good performance.
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Remark 5 (Assumptions of information theory). Information theory is a consequence of

the concentration of measure phenomenon. It thus relies on

1. the definition of the “probability”; and

2. assumptions of the concentration (e.g., LLN), such as a sufficient independence.

There are various interpretations of “probability” such as, among others, notably the

Kolmogorov axiomatization in mathematics and frequency interpretation in physics and

engineering. The later, or a similar interpretation, is ultimately needed in order to refer

to physical reality. In this case, the law of large numbers, and thus the channel coding

theorem, emerges from the very definition of the probability as a statistically regulated

counting process. However, modern probability theory uses the abstract mathematical

definition of probability, encompassing many of these interpretations, as used earlier to

illustrate the origin of the LLN. Here, too, one assumes a sufficient degree of indepen-

dence between random variables and derives various notions of convergence for which

pne → 0, such as the convergence in probability obtained from the weak LLN (leading to

weak typicality), and almost sure convergence obtained from the strong LLN (leading to

strong typicality). One can also consider information transmission under other notions

of probability, different assumptions of concentration (though sufficient independence or

its equivalent is needed), or physical models reflecting disturbance in different ways. In

engineering, the independence assumption means that one can generate truly random

data and one has the freedom to send blocks of data.

2.1.3 Communication Theory and Interference

The above discussion was largely in the context of the discrete memoryless channels.

Information theory, however, can apply to all channels, including waveform channels.

For waveform channels, first we try to discretize the channel if possible.

Let L2
W (R) denote the signal space of the functions with finite norm and bandlimited

to W , with the inner product

〈f, g〉 =
ˆ

R

f(t)g∗(t)dt.

The waveform additive white Gaussian noise channel is

Y (t) = X(t) +N(t), X(t), Y (t)
a.s.∈ L2

W (R), (2.8)

s.t. E
1

T

ˆ T

0

|X(t)|2dt ≤ P0,
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where X(t) and Y (t) are processes whose realizations are respectively the input output

signals, N(t) is a stationary zero-mean white Gaussian noise with nonzero power spectral

density N0/2 in the frequency band |f | < W , P0 is the average signal power at the

transmitter, and T is the communication time.

Let {en}n∈N be an orthonormal basis for L2
W (R), for instance the set of sinc (Nyquist)

functions en = sinc(2Wt− n). We can expand functions in (2.8) in this basis

X(t) =
∑

k

Xkek, Y (t) =
∑

k

Ykek, N(t) =
∑

k

Nkek,

where {Xk} are signal degrees of freedom and Nk is I.I.D. ∼ NR(0, N0/2). Hence the

waveform AWGN channel (2.8) is reduced to the discrete AWGN channel

Yk = Xk +Nk, k = 1, 2, · · · , (2.9)

EX2
k ≤

P0

2W
.

Thus instead of working with waveforms, one works with the set of scalar signal degrees

of freedom {Xk}k∈N, i.e., X(t)↔ {Xk}k∈N. That is to say, the waveform channel (2.8) is

discretized to a set of independent scalar parallel channels (2.9). Evaluating the capacity

(2.7) (by replacing sums in the entropies with integrals), we obtain C = W log(1+SNR )

bits/s, where SNR = P0/N0W .

Now consider the linear inter-symbol interference (ISI) channel

Y (t) = h(t)∗X(t) +N(t), (2.10)

where h(t) is the channel filter and ∗ denotes convolution. If we proceed in a similar way

as before, the dispersive effect of the channel filter h(t) causes the degrees of freedom to

couple together in the time domain, giving rise to ISI

Yk = 〈ek, h∗Xk〉+
∑

i 6=k

〈ek, h∗Xi〉
︸ ︷︷ ︸

ISI

+Nk.

However it is evident that the degrees of freedom in linear systems are essentially decou-

pled. For instance by taking the Fourier transform of (2.10), one obtains

Ŷ (f) = ĥ(f) · X̂(f) + N̂(f), |f | < W, (2.11)

where noise remains white Gaussian in the frequency domain. The Fourier transform
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{Xk}
S/P IDFT P/S D/A LPF

P/S DFT S/P A/D LPF
{Yk}

...
...

...
...

Channel

Figure 2.6: Orthogonal frequency-division channel model.

thus transforms the action of the convolution ∗ into a simple memoryless multiplication

operator LH in the frequency domain Ŷ (f) = (LHX̂)(f) + N̂(f) (see Appendix A). The

multiplication operator implies that all frequency components are independent of one

another. The channel thus decomposes to a set of independent parallel scalar channels

in the frequency domain.

Orthogonal frequency-division multiplexing works based on this idea, by discretizing

(2.11) and encoding information in the spectrum of the signal X̂(f) rather than X(t).

The block diagram of a typical OFDM system is shown in Fig. 2.6.

In general, a conditional probability measure may not factorize into the product of

the simpler conditional measures, such as scalar channels
∏

k pY |X(yk|xk), under any

transformation of the input output probability spaces. For waveform channels not fac-

torizable, one can consider input functions x(t) on a time mesh with size n on the interval

[−T /2, T /2] and replace the entropy in the definition of the capacity with the entropy

rate

H(X(t)) = lim
T →∞

lim
n→∞

1

n
H(X1, · · · , Xn),

to obtain the capacity in bits per second. This approach is however generally difficult [17].

2.2 Evolution Equations

An evolution equation is a partial differential equation for an unknown function q(t, z)

of the form

qz = K(q), (2.12)
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where K(q) is an expression involving q and its derivatives with respect to t. In (2.12)

and throughout this thesis, subscripts are used to denote partial derivatives with respect

to the corresponding variable.

The evolution equation (2.12) is a PDE in 1 + 1 dimensions, i.e., one variable t ∈ R

represents a temporal dimension and one variable z ≥ 0 represents a spatial dimension.

In most mathematical literature, the roles of z and t are interchanged, so rather than a

spatial evolution as in (2.12), mathematicians study temporal evolution.

Evolution equations can be linear or nonlinear and dispersive or non-dispersive. Below

we define these terminologies, frequently used in this thesis.

2.2.1 Dispersion Relations

Linear dispersion relation

Consider the evolution equation (2.12) when K(q) is linear in q, i.e.,

qz = p(
∂

∂t
)q, (2.13)

where p(x) is a univariate polynomial p(x) =
∑n

k=0 akx
k.

A significant tool in the analysis of linear time-invariant systems is the Fourier trans-

form. In this method variables are expressed as a linear combination of natural harmonics,

q(t, z) =

ˆ ˆ

Q(ω, β)ej(ωt−βz)dωdβ, (2.14)

where ω is the signal frequency and β is the wavenumber.

Substituting (2.14) into (2.13), we obtain that β and ω depend on each other

β = jp(jω), (2.15)

and (2.14) simplifies to

q(t, z) =

ˆ

Q(ω)ej(ωt−β(ω)z)dω. (2.16)

The relationship (2.15) between β, ω is called a linear dispersion relation and is often

expressed as β = β(ω). Dispersion relations give valuable information about the character

of the underlying equations. They illustrate how a medium responds to harmonics with

various frequencies and wavenumbers.

The one-dimensional Fourier transform (2.16) shows that the solution of the linear
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evolution equations is the superposition of plane waves,

q(t, z) = Aej(ωt−β(ω)z). (2.17)

In what follows, we consider the exponential (2.17) primarily a function of time t. Each

plane wave is then a single tone frequency traveling in time with a speed β(ω)/ω [sec/km],

as z is increased. Hence, the speed of each frequency component depends on the frequency

ω.

A simple way to find the dispersion relation of a linear evolution equation is to

substitute the plane wave ansatz (2.17) into that equation and determine the β, ω binding.

Example 2 (heat equation). Consider the one-dimensional heat equation qz = c2qtt, where

c is the diffusion coefficient and q(t, z) represents the heat profile across a rod extending

in space t, as time z goes on. Substituting the plane wave ansatz (2.17), we obtain the

dispersion relation

jβ = c2ω2.

This is of course a special case of the dispersion relation for the linear constant coefficient

evolution equation (2.13) given in (2.15).

One can also derive the original equation (2.13) from its dispersion relation (2.13) by

the replacing β and ω by their corresponding derivatives

β → j
∂

∂z
ω → −j ∂

∂t
. (2.18)

Thus linear constant coefficient equations are in one-to-one correspondence with their

dispersion relations.

In many applications q(t, z) is a passband signal with a spectrum centered at a carrier

frequency ω0 and a wavenumber β0, and confined to a narrow bandwidth W ≪ ω0, ∀z.
In such cases, we often remove the carrier from the signal in (2.16) in order to describe

the complex envelope of the signal

q(t, z) = ej(ω0t−β0z)

ˆ

Q(ω)ej{(ω−ω0)t−(β−β0)z}dω.

Expanding the wavenumber in the frequency

β(ω) = β0 + β1(ω − ω0) +
β2
2
(ω − ω0)

2 + · · · , βk =
dkβ

dωk
[seck/km], k ≥ 1,



Chapter 2. Preliminaries 26

we get

q(t, z) = ej(ω0t−β0z)

ˆ

Q(ω)ej(ω−ω0)
{
(t−β1z)−

(
β2(ω−ω0)+···

)
z

}
dω. (2.19)

If we introduce a retarded time t′ = t− β1z, (2.19) is simplified to

q(t, z) = ejω0(t′−vp(ω0)z)

ˆ

Q(ω)ej(ω−ω0)
{
t′−vg(ω)z

}
dω.

where

vp =
β0
ω0

− β1 [sec/km]

is the phase velocity or the speed of the carrier, and

vg(ω) = β2(ω − ω0)/2 + · · · [sec/km], (2.20)

is the group (envelope) velocity or the speed of the slowly varying envelope. These speeds

are measured in a frame of reference co-propagating with signal with the velocity β1.

In a stationary frame of reference, β1 is added to these two speeds. Thus β0, β1, β2, · · ·
respectively give carrier speed, envelope velocity (group velocity), the speed of the en-

velope of the envelope (group velocity dispersion), etc. Usually we are interested in the

overall group velocity (2.20) depending on all βk, k ≥ 1.

The group velocity is a more significant concept than carrier velocity. Many evolution

equations represent the complex envelope of the signal. One can simply think of group

velocity as the signal velocity, or speed at which the energy propagates. While the carrier

velocity is constant, group velocity is generally a function of the frequency.

Clearly, if β2 = β3 = · · · = 0, all frequency components travel at the same speed.

An equation is said to be dispersive if βk 6= 0, for some k ≥ 2. Since vg(ω) ∝ ω, high

frequencies (blue) travel faster than low frequencies (red) and thus arrive at different

times at a distance z = L. Dispersion therefore can give rise to pulse broadening.

Nonlinear dispersion relations

The concept of the dispersion relation is difficult to extend to nonlinear evolution equa-

tions equally successfully. Nonlinear equations generally do not have plane wave solu-

tions. Even if they do, the lack of a superposition principle does not allow generalizing

a dispersion relation obtained from a plane wave ansatz to a general one.

For the nonlinear equations admitting plane wave solutions, dispersion relations still

give important (partial) information about the behavior of the equation.
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Example 3. Consider the evolution equation

jqz = qtt + 2q|q|2, (2.21)

where q(t, z) is a complex function. Trying the ansatz (2.17), we obtain that plane wave

solutions exist with the following dispersion relation and group velocity

β = 2|A|2 − ω2, vg(ω,A) = 2|A|2/ω − ω. (2.22)

As a result, a plane wave solution of (2.21) travel with a speed depending on both the

wave frequency and amplitude. This, of course, does not mean that frequency components

travels according to (2.22) in any solution of (2.21).

2.2.2 Classification of Evolution Equations

The evolution equation (2.12) can be linear or nonlinear and dispersive or nondispersive.

A dispersion relation, if exists, can help to identify the type of the evolution equation.

The wavenumber of a medium can in general depend on both the frequency ω and

signal q

β(ω, q) =

travelling wave envelope︷ ︸︸ ︷
β0 + β1ω +

dispersion︷ ︸︸ ︷
β2ω

2 + · · ·+
nonlinearity︷ ︸︸ ︷
f(q, ω) , f(0, ω) = 0. (2.23)

An evolution equation is linear if its wavenumber does not depend on the signal i.e.,

f = 0 in (2.23). In this case, substituting q(t, z) =
´

Q(ω, z)ejωtdω into (2.12), we get

Qz = −jβ(ω)Q. As a result, q(t, z) =
´

Q(ω)ej(ωt−β(ω)z), consistent with (2.16).

An evolution equation is dispersive if βk 6= 0 in (2.23) for some k ≥ 2. Thus the

group velocity has a component depending on the frequency, leading to the group velocity

dispersion. The equation has solutions whose frequency components travel at different

speeds, leading due to changes in the the signal envelope during the evolution.

Below we give examples of various classes of evolution equations and discuss their

pulse propagation behavior.

Linear Nondispersive Equations

An evolution equation is linear and nondispersive if its dispersion relation is

β = β0 + β1ω.
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In this case, from (2.16) the signal envelope is expressed as the superposition of the

plane waves exp(jω(t− cz)), all traveling with the same speed c = β1. Thus the overall

solution is f(t − cz), where f(t) is the initial data at z = 0. As a result the solution of

linear nondispersive equations are traveling waves, i.e., waveforms that keep their shape,

traveling at a constant speed c (stationary in the co-propagating reference). Fig. 2.7(a)

shows a traveling wave propagating in a linear nondispersive medium.

Example 4 (One-dimensional wave equation in free space). Consider the one-dimensional

wave equation qzz = c2qtt, where q(t, z) represents a wave in time t (e.g., an electromag-

netic field) propagating in the free space in the direction z with velocity c. Plugging in

the plane wave ansatz (2.17), we obtain the dispersion relation

β = ±cω.

As expected, the solution is the sum of the forward and backward traveling waves

(f(t− cz) + g(t+ cz)) /2 and experiences no dispersion.

Linear Dispersive Equations

The dispersion relation of the linear dispersive equations is independent of the signal and

at least quadratic in ω

β(ω) = β0 + β1ω + β2ω
2 + · · · ,

where βk 6= 0 for some k ≥ 2.

The dispersion coefficient β2 can be positive or negative. Since the group velocity

dispersion is β2(ω − ω0) to the leading order, high frequencies travel faster than low

frequencies if β2 < 0 or slower if β2 > 0. In both cases, this can lead to pulse broadening

or pulse contraction in the time domain, depending on the input signal1.

Fig. 2.7(b) shows an example of the wave propagation in a dispersive medium when

β2 < 0. Here a pulse initially at z = 0 disperses to zero in the evolution, experiencing

pulse broadening. While the signal energy (and perhaps additional conserved quantities)

can be preserved in a dispersive equation, it can spread over a large time so that locally

the signal energy is negligible in any finite time interval.

1In the frequency domain, a linear system could represent a low pass or a high pass filter, potentially
leading to spectral broadening or contraction, depending on the definition of the bandwidth (e.g., 99%
bandwidth). However spectral broadening in the sense of creation of new frequencies does not occur.
See also the footnote in page 44.
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An example of a linear dispersive equation is the heat equation mentioned in Exam-

ple 2. Solving the equation,

q(t, z) = h(t, z)∗ q(t, 0) =
ˆ

Q(ω, 0)ejω(t−c2ωz)dω, (2.24)

where the impulse h(t, z) is a Gaussian function

h(t, z) =
1√

4πc2z
e−

t2

4c2z .

It follows that q(t, z) is the sum of the single tone frequencies traveling at speeds propor-

tional to their frequencies. Integral (2.24) is a special case of (2.16).

Nonlinear Nondispersive Equations

Nonlinear nondispersive equations have solutions whose components in time travel with

speeds depending on the signal in that time instance. The shape of the signal generally

changes, but due to the nonlinearity not the dispersion. If the nonlinearity is set to zero,

solutions are traveling waves. If a dispersion relation from a plane wave is obtained, it is

linear in ω and depends on the signal

β = β0 + β1ω + f(A, ω).

Example 5. Consider the following nonlinear equation

qz + αqt + βqqt = 0. (2.25)

The dispersion relation and the group velocity are

β = ω(α + βA), vg = α + βA.

That is to say, samples of the signal with high amplitudes travel faster than those parts

with small amplitudes. Note that a derivative term ∂kq/∂tk contributes to the dispersion

only if k ≥ 2.

In many cases nonlinearity is memoryless and is best understood in the time domain.

Fig. 2.7(c) shows the qualitative features of the pulse propagation in a nonlinear nondis-

persive equation where vq = q, i.e., q(t, z) = q(t − q(t, z)z, 0). The top of the signal

travels faster than the base of the signal, causing the initial pulse to tilt to the right.

Pulse center t = 0 is mapped to a time t′ at z = 1 satisfying q(t′) = t′. It can be verified
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Figure 2.7: Wave propagation in a (a) linear nondispersive, (b) linear dispersive, (c)
nonlinear nondispersive, and (d) nonlinear dispersive medium.

that (e.g., in the case that z is small), the effect of the signal dependent shift is not

simply titling the pulse, but distorting the waveform.

Example 6. In cases that q(t, z) is complex, signal distortions may occur in the phase of

the signal. Consider the following nonlinear equation

jqz = 2|q|2q. (2.26)

A dispersion relation exists, given by

β = 2|A|2, vg = 2|A|2/ω.

Thus the speed of a single tone frequency depends on the intensity of that component.
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It can be verified that the solution of (2.26) is

q(t, z) = q(t, 0)e2j|q(t,0)|
2z.

Although the signal amplitude is preserved during the propagation, its phase is distorted

according to the nonlinearity. There is no dispersion since βk = 0, k ≥ 0, although vg

depends on the frequency as well, due to the nonlinearity.

Nonlinear Dispersive Equations

These equations generally have both elements of the nonlinearity and dispersion in the

wavenumber expansion (2.23).

An example is (2.21), where the equation allows a plane wave solution, and the

resulting wavenumber depends on the signal amplitude and frequency.

Example 7. Consider the nonlinear equation

qz + qttt + qqt = 0.

Unlike Example 2.21, a plane wave solution does not exist. However, it is evident that

by setting the nonlinear term to zero, the equation is dispersive with dispersion relation

β = −ω3.

A nonlinear dispersive equation can be in the anomalous (focusing) or normal (defo-

cusing) regime, depending on the signs of the dispersion and nonlinearity. In the anoma-

lous regime, β2 < 0 and the nonlinearity acts against the pulse broadening effects of the

dispersion ( see Fig. 2.7(d)). In this case, in the frequency domain plot, all frequencies

travel towards the carrier, leading to pulse broadening in time. Since the wavenumber is

a function of the signal intensity as well, if one has a signal whose shape in time is peaked

at the center and decays at other times, like a Gaussian, there is a possibility that the

entire wave packet travels at a constant speed. This corresponds to the formation of a

certain traveling wave packets in the anomalous regime called solitons, similar to that

in Fig. 2.7(a). In the normal regime, β2 > 0 and all frequencies travel away from the

carrier, leading to pulse compression in time. Thus if one has an inverted soliton signal,

there is a possibility of obtaining a traveling wave packet (dark soliton).

Remark 6. Dispersion is best understood in the frequency domain, where its action is

memoryless and multiplicative. The nonlinearity is usually memoryless and multiplica-

tive in the time and is best understood in this domain. Nonlinear dispersive waves are
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Figure 2.8: Fiber-optic communication system.

challenging to analyze because the degrees of freedom are coupled both in time and fre-

quency. These equations often do not take simple forms in either time or usual frequency

domains.

2.3 Lightwave Communications

The amount of information that can be transmitted on a signal is proportional to the

carrier frequency (bandwidth ∼ carrier frequency). With the introduction of lasers in

1960s, it was speculated that a shift from the radio and microwave spectrum to optical

frequencies near the infrared spectrum can significantly increase data rates. At wave-

lengths close to the visible light wavelengths, elements of the atmosphere contribute to

a significant signal loss and random refractive index. This makes transmission of light-

waves over long distances in the exposed atmosphere nearly impractical. In search for a

medium for the newly invented laser, optical fiber was suggested in 1966 [18].

Early fibers had significant loss and low-loss fibers were not made available until the

1970s. Fiber-optic communication systems initially used expensive repeaters in the 1980s

to regenerate the signal. The advent of the optical amplifiers in 1987 [19, 20] and the

wavelength-division multiplexing in mid 1990s subsequently revolutionized the fiber-optic

communications.

Fig. 2.8 shows the block diagram of a typical optical communications system. Im-

portant components of such a system include laser sources, optical modulators, fiber

segments, amplifiers, reconfigurable add-drop multiplexers (ROADMs), filters, and de-

modulators.

A laser source generates a coherent beam of light which is then modulated by the

optical modulator. The transmitted signal is amplified in a lumped or distributed manner

to keep the signal level constant over a fiber segment. At the receiver, a coherent detector

measures signal quadratures of the channel of interest, which are subsequently used

for the statistical detection. An important element in WDM optical fiber networks is
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the ROADM. In these networks a fiber link has to be shared among many users, each

operating at a distinct wavelength. The signals of the users are added or dropped by

ROADMs. A WDM signal may be accessible at the transmitter only, receiver only,

both or neither one. In the later case the signal enters and leaves the fiber link in an

intermediate distance without even being noticed by the transmitter or the receiver.

Below, we very briefly explain the function of the components of the Fig. 2.8.

2.3.1 Components of a Fiber-optic System

Optical Fiber

Optical fiber used in the long-haul communications consists of a cylindrical core sur-

rounded by a cladding, both usually made of the silica glass SiO2. Silica glass has

numerous desirable transmission, environmental, and mechanical properties, making it

perfect for data communications. The fiber glass is so transparent that today it can be

manufactured to carry a laser signal more than 15 km while maintaining half of its power.

Lightwave communications systems have bandwidths of the order of THz, ideal for the

core networking applications. Silica glass is as strong as steel and can be fabricated in

µm diameters with high precision, and yet remarkably sturdy and flexible. It is hard to

imagine a medium better suited to high data rate transmission than optical fiber.

In the communication systems considered in this thesis, the typical launched powers

correspond to a large number of photons, and the classical theory of Maxwell equations

would suffice to describe the light propagation, instead of the quantum mechanics. Indeed

light transmission in optical fibers can be qualitatively explained via the total internal

reflection phenomenon in geometric optics: the silica glass is doped to shape the refractive

index so that the refractive index of the fiber core is higher than that of the cladding,

either in a step wise manner or smoothly. If the angle of the incidental ray with the

fiber axis is smaller than a critical angle, the total internal reflection occurs in the core

cladding surface, confining the light inside the fiber [21].

In the following, we review two important parameters of the optical fiber.

Fiber Loss Until the 1970s, the fiber loss was so substantial (α > 20 dB/km) that

a lightwave signal could not be sent in the fiber more than a few kilometers. Traces of

OH ions and heavy metal impurities left in the silica glass can contribute to a significant

loss. Fig. 2.9 shows the graph of the fiber loss versus wavelength. Causes of the loss

are either intrinsic, due to the infrared (7.4µm < λ < 300µm) and ultraviolet (10 nm <

λ < 0.4 µm) absorptions occurring in the fused silica, or extrinsic due to impurities.
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Figure 2.9: Fiber loss and dispersion versus wavelength (Courtesy of [1]).

A significant source of loss is the OH ions from water vapors left in the glass, whose

harmonics contribute to the peak of the Fig. 2.9. At a wavelength close to λ = 1.55 µm

loss has a minimum of about 0.2 dB /km.

To compensate for the power loss, fiber-optic communications systems use optical

amplifiers. However, as we will see, these amplifiers introduce noise into the system.

Thus one can trade perturbations caused by the loss with the fluctuations caused by the

amplifiers.

Chromatic Dispersion As noted in Section 2.2.1, the dispersion (wavenumber) of a

medium is generally frequency dependent. The first coefficient β1 is a constant term in

the speed and can be removed by introducing a retarded time. The second coefficient

β2 [sec2/km] gives rise to the velocity of the envelope (2.20) and is called the dispersion

coefficient. In the context of the optical fiber, it is often convenient to express β2 in terms

of the dispersion parameter

D = −2πc

λ20
β2 ps/(nm.km),

where c is the speed of light and λ0 is the carrier wavelength. That is to say, in analogy

with a horse race, there is a delay of D picoseconds after 1 km between two wavelengths

of 1 nm apart. Positive and negative D correspond, respectively, to the anomalous

(focusing) and normal (defocusing) regimes.

Fig. 2.9 shows the graph of the dispersion versus wavelength for a standard single
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mode fiber. In addition to the coefficient β2,, usually the third-order coefficient β3 is also

specified by the fiber manufacturers, expressed in terms of the dispersion slope

S =
dD

dλ
=

4πcβ2
λ3

−
(
2πc

λ2

)2

β3.

The amount of the pulse broadening as a result of the dispersion is roughly DL∆λ,
where ∆λ is the wavelength resolution set by the laser spectral width [21]. For a standard

single mode fiber with D = 17 ps/(nm.km), and a laser source with ∆λ = 0.1 nm (i.e.,

∆f ≈ 12.5 GHz), the amount of the pulse broadening is 1700 ps in 1000 km, an ISI of

∼ 21 symbols for pulses with ∼ 80 ps duration.

To suppress the effects of the dispersion, optical or electrical dispersion management

(DM) is used. In optical dispersion management, segments of the fiber with positive and

negative dispersion are used in cascade so that the signal is confined to its initial time

window. In the electrical dispersion management, dispersion is compensated using digital

signal processing at the transmitter, receiver or both. It has been demonstrated that

optical systems greatly benefit from dispersion management in several ways. However,

although the effects of the dispersion can be removed in the frequency domain, dispersion

is coupled to the nonlinearity, and performing DM does not alleviate the impacts of the

nonlinearity.

The wavenumber β(ω), loss coefficient α(ω), refractive index n(ω), and material rel-

ative permittivity ǫr(ω,E) can all be obtained from the susceptibility parameter χ

n(ω,E) = 1 +
1

2
ℜχ(ω,E),

β(ω,E) = ωn(ω,E)/c,

α(ω) =
ω

nc
ℑχ(ω, 0),

ǫr(ω,E) = 1 + χ(ω,E),

where E is the electric field.

Optical Amplifiers

Optical amplifiers work as a result of the process of the stimulated emission, occurring

e.g., in a p−n junction, due to the interaction of the light with matter. The same process

also underlies the operation of the lasers, transistors, diodes, and integrated circuits.

Consider an n-type semiconductor, having excess electrons in the conduction band

with excited state energy E2, in contact with a p-type semiconductor, having holes in
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Figure 2.10: (a) Spontaneous emission. (b) Stimulated emission.

the valance band with ground state energy E1. The p− n junction is forward biased to

reduce the width of the built-in voltage and establish a current. When an electron is

absorbed from the excited state E2 in a nearby hole at the lower state E1, a photon with

the frequency ω = (E2 − E1)/h is emitted. This can happen either spontaneously, in

which photons are emitted with no external trigger and in random phases and directions,

or stimulated by an external light source with frequency ω = (E2 − E1)/h, in which

the emitted photons are identical in phase, frequency and direction with the external

photons.

Since in the stimulated emission the external and emitted photons are coherent, op-

tical amplification can be realized. The amplification can be done in a discrete manner

at several locations in the optical link using the erbium-doped fiber amplifiers (EDFAs)

or continuously along the fiber using the Raman amplification.

Erbium-doped fiber amplifiers An EDFA consists of a short piece of fiber (a few

tens of meters) doped with erbium ions or a similar dopant and optically pumped at

1.48 µm or 0.98 µm. While the amplification is achieved via the stimulated emission,

some erbium ions move from the excited state to the ground state “spontaneously” as

well, giving rise to the amplified spontaneous emission (ASE) noise.

The input output relationships of the signal before and after an EDFA located at

distance z is

q(t, z+) = Gq(t, z−) + V (t)

where G = eαLsp is the amplifier gain in a span of fiber with length Lsp and loss coefficient

α and V (t) is the ASE noise. It has been demonstrated that the ASE noise is well modeled

as additive white Gaussian with the power spectral density [22]

PSD = nsphω0(G− 1). (2.27)

Here nsp ≥ 1 is the spontaneous emission efficiency factor, h is the Planck’s constant, ω0
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Table 2.1: Fiber Parameters.
nsp 1 spontaneous emission factor

h 6.626× 10−34J · s Planck’s constant

ω0 193.55 THz carrier frequency

α 0.046 km−1
fiber loss (0.2 dB/km)

γ 1.27 W−1km−1
nonlinearity parameter

is the optical carrier frequency, and G is the amplifier gain. Typical fiber parameters are

given in Table 2.1.

The efficiency of an EDFA is usually described by its noise figure, defined as the ratio

of the SNRs at the amplifier input and output. It can be shown that

NF = 2nsp −
1

G
(2nsp − 1) < 2nsp.

When G ≫ 1, NF ≈ 2nsp and the noise figure becomes a measure of nsp. In general

NF ≥ 0 dB , and for amplifiers where G≫ 1 and nsp = 1, NF ≈ 3 dB .

The graph of the gain of an EDFA versus wavelength is peaked around 1.53 µm, and

maintains a large gain in the optical C band 1.53 µm ≤ λ ≤ 1.565 µm (a window of

35 nm). Thus EDFAs can conveniently operate near the 1.55 µm system wavelength,

where the fiber loss is minimum. The EDFA gain depends on the pumped power and

can be as high as 30 − 50 dB , with a noise figure NF ≈ 3 − 5 dB and output power

10− 25 dBm.

Raman amplification In the distributed Raman amplification, the fiber itself, without

doping, is used as a gain medium. Amplification is achieved thorough the process of

stimulated Raman scattering (SRS). Raman pump units, placed at several locations in

the optical link, inject high power fields in forward and backward directions. The incident

field at frequency ωin is absorbed by the silica glass, turning electrons in silica into

oscillating dipoles, which in turn emit light at a lower frequency ω < ωin. As before, the

scattering process can be stimulated by an external light source of frequency ω, giving

rise to distributed optical amplification . This keeps the signal power slightly varying

around a constant mean along the fiber. The resulting ASE noise is Gaussian and white

in space time

E{N(t, z)N∗(t′, z′)} = σ2
0δ(t− t′, z − z′).

The noise power spectral density is obtained by taking the limit Lsp → 0 of (2.27),

obtaining

σ2
0 = nsphω0αL,
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where L is the total fiber length. The graph of the Raman gain versus frequency has a

peak around 13.2 THz with a broad bandwidth as large as 8 THz. The pumped fields

have high powers of a few watts, making the commercial development of distributed

amplification challenging.

Optical Lasers

The optical source in long-haul high data rate systems is typically a semiconductor laser.

A laser source is essentially an optical amplifier, operating based on the same principle

of the stimulated emission, together with a feedback mechanism, to produce a powerful

coherent beam of light. The output of a semiconductor laser source used in optical com-

munications can have powers typically as high as few hundred milliwatts, concentrated

around the signal frequency with a small linewidth (laser ∆f before modulator due to

phase noise, typically of order of MHz). We ignore the effects of the laser ASE noise and

the non-zero laser linewidth in this thesis.

The bandwidth of a lightwave communications system, while depending on the band-

width of all system components such as the laser source, fiber, amplifiers and network

equipments, is usually limited by the bandwidth of the electronic circuits at the receiver.

2.3.2 Simplified Derivation of the NLS Equation

Derivation of the pulse propagation equation in optical fibers may be found in the stan-

dard text [21] or published papers. It is however useful to sketch a simplified derivation

here to see the essence of the various terms in our channel model.

As mentioned earlier, pulse propagation in optical fibers is described by the classical

theory of Maxwell equations. Canceling the magnetic fields in these equations, we obtain

the well-known wave equation in the frequency domain

∇×∇× Ê = −µ0ω
2D̂, (2.28)

where E and D are the electric field and displacement vectors, µ0 and ǫ0 are, respectively,

vacuum permittivity and permeability, and the hat symbol̂denotes the operation of the

Fourier transform.

The displacement vector D depends on E. Expanding D in terms of E in a vector
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Volterra series (like a Taylor expansion for functionals)

D = ǫ0

∞̂

−∞

ǫ(1)r (τ)E(t− τ)dτ

+

∞̂

−∞

∞̂

−∞

∞̂

−∞

ǫ(3)r (τ1, τ2, τ3) : E(t− τ1)E(t− τ2)E(t− τ2)dτ1τ2τ3 + · · · , (2.29)

where ǫ
(k)
r (τ1, · · · , τk) is the kth-order permittivity kernel and following the inversion

symmetry (centro-symmetry) of the SIO2 crystal, the second-order kernel is zero. The

notation ǫkr : E · · ·E means a 3× 1 vector whose each component is a product Ei1 · · ·Eik ,

1 ≤ i1, · · · , ik ≤ 6, capturing interactions between the x, y, z components of the electric

field and its conjugate at all times. For k = 1, the kernel ǫ1r is simply a 3× 3 matrix.

Assuming an isotropic wave propagation and ignoring the polarization birefringence,

the tensors are diagonal and the wave propagation in each spatial coordinate is described

independently by a scalar equation. The vector Volterra series (2.29) then reduces to a

scalar Volterra series for each component, e.g., D := D.x̂ and E := E.x̂

D = ǫ0

∞̂

−∞

ǫ(1)r (τ)E(t− τ)dτ

+

∞̂

−∞

∞̂

−∞

∞̂

−∞

ǫ(3)r (τ1, τ2, τ3)E(t− τ1)E∗(t− τ2)E(t− τ2)dτ1τ2τ3 + · · · . (2.30)

We remove the carrier exp(j(ω − ω0)t) and assume that the envelope is slowly-

varying so that the kernel ǫ
(3)
r (τ1, τ2, τ3) appears to be a delta function ǫ

(3)
r (τ1, τ2, τ3) =

ǫ
(3)
r δ(τ1, τ2, τ3) with a constant coefficient ǫ

(3)
r . This simplifies the nonlinear term to

ǫ
(3)
r |E(t)|2E(t). We then take the Fourier transform of the resulting equation. Given the

small perturbative nature of the nonlinearity, we further assume that |E(t)|2 is almost

constant, so that Ê3(ω) ≈ |E|2Ê(ω). As a result, in the frequency domain we obtain the

simple relation D̂ = ǫ0ǫrÊ, where

ǫr(ω, |E|2) = ǫ(1)r (ω) + ǫ(3)r |E|2. (2.31)

The wave equation (2.28) can be solved under (2.31). Assuming the separation of

variables, we can express components of the envelope of E as F (x, y)q(z, t) exp(j(ω0t −
β0z)). The cross section function F is separated out as in the linear cases. The space
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derivatives ∂/∂x2 + ∂/∂y2 from ∇×∇×E give F in terms of the Bessel functions. The

second derivative of the remaining term q(z, t) exp(j(ω0t − β0z)) involves qzz, qz and q.

For the slowly varying function q (in z), the curvature qzz is ignored, and we obtain a

dispersion relation for q

β(ω, |q|) = β0 + β1(ω − ω0) +
1

2
β2(ω − ω0)

2 + · · ·+ γ|q|2, (2.32)

where γ = ω0n2/(cAeff ) is the Kerr nonlinearity coefficient and n2 is the refractive index.

The constant factor Aeff is the effective cross section and depends on F (x, y) [21]. The

terms β − β0 and (ω− ω0)
k in the frequency represent, respectively, −jα/2− j∂/∂z and

and j∂/∂t in the time. Multiplying (2.32) by q and making these substitutions, we obtain

the nonlinear Schrödinger equation

qz +
α

2
q + β1qt +

jβ2
2
qtt = jγ|q|2q.

Note that the NLS equation is valid under the following assumptions:

• Signal bandwidth is much smaller than the carrier so that the higher order terms

(ω−ω0)
k in the dispersion expansion are negligible at some k. This corresponds to

a slowly varying envelope and is generally valid for pulses with duration T > 1ps.

• The medium is weakly nonlinear so that the cubic nonlinearity is a perturbation

around the linear dispersion and the higher order nonlinear terms are negligible.

• The signal power is not too large so that other nonlinear phenomena, such as

certain scattering processes not discussed here, can be ignored.

The NLS equation has been tested and used for many years now and it generally

describes the experimental results very well.

Remark 7. Dispersion is due to the memory property of a dielectric and is reflected in

the fact p(t) depends on E(t) in past and future, in the form of a convolution. This

memory in turn, through the wave equation, implies nonuniform speeds across frequen-

cies. Nonlinearity on the other hand is largely instantaneous, due to the dependency of

the susceptibility to the intensity of the light.

Remark 8. Note that although the nonlinearity is locally a small perturbation around

the dispersion, its effects are gradually accumulated with z.
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2.4 Summary

Due to the inter-disciplinary subject of this thesis, we provided some of the necessary

background in information theory, evolution equations and fiber-optic communications

for the audience not familiar with some of these areas. Further details may be found in

references made throughout this chapter.



Chapter 3

Origin of Capacity Limitations in

Fiber-optic Networks

It is a capital mistake to theorize

before one has data.

Sir Arthur Conan Doyle, A Study in

Scarlet.

Recent studies on the information capacity of WDM optical fiber networks suggest

that the spectral efficiency of such networks is ultimately limited by the inter-channel and

intra-channel nonlinear interactions [7]. These interference distortions are deterministic

and signal-dependent stochastic effects and grow with the input signal power, diminishing

the capacity and the spectral efficiency at high signal-to-noise ratios. In these studies,

the capacity, C, increases with input power power, P , reaching a peak at a certain critical

input power, and then asymptotically vanishes as P → ∞ (see e.g., [7] and references

therein).

In this chapter, we briefly review the WDM model that is commonly used in these

studies, as well as in the practical optical fiber systems. We briefly identify the origin

of the capacity limitations in this model and explain that this method and similar ones,

which are borrowed from linear system theories, are inappropriate for the communication

over optical fiber networks. In particular the limitation of the capacity in the prior

work is an artifact of these methods and some of the factors commonly believed to

limit the achievable information rates are not indeed fundamental. In the subsequent

chapters, we present a method that is able to fix these limitations and is fundamentally

compatible with the structure of the nonlinear fiber optic channel, promising a higher

spectral efficiency that keeps increasing beyond the critical input signal power associated

42
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with linear transmission methods.

3.1 Capacity of WDM Optical Fiber Networks

Fiber-optic communication systems use wavelength-division multiplexing to transmit in-

formation. Similar to frequency-division multiplexing (FDM), in this method information

is multiplexed in distinct wavelengths. This helps to separate the signal of the indepen-

dent users in a network, where they have to share the same links between different nodes

of the network.

Fig. 3.1 shows the system model for the part of an optical fiber network between

a source and a destination. There are N fiber spans between multiple users at the

transmitter (TX) and multiple users at the receiver (RX). The signal of some of these

users is destined to a receiver other than the RX shown in Fig.3.1. As a result, at the

end of each span there is a ROADM that may drop the signal of the some of the users

or, if there are free frequency bands, add the signal of the potential external users. We

are interested in evaluating the spectral efficiency of the fiber link from the TX to the

RX.

Recall that the propagation of the complex envelope of a narrowband signal in each

span of the fiber with distributed amplification is described by the stochastic nonlinear

Schrödinger (NLS) equation [21,23]

∂Q(τ, ℓ)

∂ℓ
+
jβ2
2

∂2Q(τ, ℓ)

∂τ 2
= jγQ(τ, ℓ)|Q(τ, ℓ)|2 + V (τ, ℓ), 0 ≤ ℓ ≤< L. (3.1)

Here ℓ denotes distance (in km) along the fiber; the transmitter is located at ℓ = 0,

and the receiver is located at ℓ = L = NLsp. The symbol τ represents retarded time,

measured in seconds, i.e., τ = t− β1ℓ where t is ordinary time and β1 is a constant, and

Q(τ, ℓ) is the complex envelope of the signal propagating in the fiber. The coefficient β2,

measured in s2/km, is called the chromatic dispersion coefficient, while γ, measured in

W−1km−1, is the nonlinearity parameter. Finally, V (τ, ℓ) is bandlimited white Gaussian

noise with in-band spectral density σ2
0 (W/(km · Hz)) and autocorrelation

E {V (τ, ℓ)V ∗(τ ′, ℓ′)} = σ2
0δW (τ − τ ′)δ(ℓ− ℓ′),

where δW (x) = 2W sinc(2Wx). It is assumed that the transmitter is bandlimited to W
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for all ℓ, 0 ≤ ℓ ≤ L, and power limited to P0

E
1

T

ˆ T

0

|Q0(t)|2dt = P0.

The stochastic NLS equation (3.1) models both chromatic dispersion (captured by

the jβ2∂
2Q/∂τ 2 term), which is responsible for temporal broadening, and the Kerr non-

linearity (captured by the γ|Q|2Q term), which is responsible for spectral broadening.

Pulse propagation is governed by the tension between these effects and can be linearly

dominated, nonlinearly dominated, or solitonic (in which case the two effects are bal-

anced).1 The NLS equation defines a nonlinear dispersive waveform channel from Q(τ, 0)

at the transmitter to Q(τ,L) at the receiver.

We will find it convenient to work with the nonlinear Schrödinger equation (3.1) in a

normalized form. By changing variables

q =
Q√
P
, z =

l

L , t =
τ

T0
, (3.2)

with T0 =
√

|β2|L
2

and P = 2
γL , we get the normalized stochastic NLS equation

jqz(t, z) = qtt + 2|q(t, z)|2q(t, z) + v(t, z), (3.3)

where

E {v(t, z)v∗(t′, z′)} = σ2
0

PT0
δW (t− t′)δ(z − z′).

Throughout this thesis, we primarily work with the normalized equation (3.3).

Stochastic partial differential equations (SPDEs) are usually interpreted via their

equivalent integral representations. Integrating a function with unbounded variation is

problematic, since e.g., a Riemann approximation
´ z+dz

z
g(z)dB(z) ≈ g(l)(B(z + dz) −

B(z)), l ∈ [z, z + dz], where B is the Wiener process, would depend on the choice of l

1The action of a linear time-invariant system in the frequency domain is a multiplication by a fil-
ter H. This gives rise to separate amplitude and phase relations between input X and output Y

(e.g., |Y | = |X||H|). In contrast, the cubic nonlinearity in (3.3) is a triple convolution in the fre-
quency domain, i.e., an integral in which spectrum samples at various frequencies are (vectorially)
added up with different angles (phases) controlled by dispersion. It follows that the nonlinearity con-
verts phase modulations made by the dispersion to the amplitude modulations, leading to a constant
exchange of information between amplitude and phase during the evolution. As a result, although the
all-pass dispersion filter in (3.3) individually does not lead to any spectral broadening or narrowing,
in the presence of a nonlinearity it can lead to such effects, thereby countering or amplifying the ef-
fects of the nonlinearity. The interaction between nonlinearity and dispersion can be understood via
q(t, z) = e−jz∂ttq(t, 0)− j

´ z

0
e−j(z−z′)∂tt

(
2|q(t, z′)|2q(t, z′) + v(t, z′)

)
dz′, or its simplified (frequency do-

main) version (3.6).
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(this ultimately comes from the linearity of variance stated in Observation 1). This leads

to various interpretations for a SPDE, notably Ito and Stratonovich representations in

which, respectively, l = z and l = z + dz/2 [24]. Due to conclusions made in this work,

noise is treated only briefly in Section 6.5, where these conventions do not influence

our results. Note that in the case that noise is bandlimited in time, the stochastic

PDE is essentially a finite dimensional system and there is no difficulty in the rigorous

interpretation of the stochastic NLS equation.

In a WDM optical system, the following signal is transmitted over the channel

q(t, 0) =
N∑

k=1

(
WT∑

l=1

slkφl(t)

)
ejk2πWt, 0 ≤ t ≤ T, (3.4)

where sk are the transmitted symbols, φl(t) are pulse shapes, W ≥ 1/T is the per

channel bandwidth and N is the number of WDM channels. For illustration pur-

pose, we can assume that each user sends an isolated pulse in the time interval [0, T ].

Thus each user operates at a single frequency in a bandwidth W = 1/T and q(t, 0) =∑N

1 qk(0) exp(jk2πt/T ), where {qk(0)} are the Fourier series coefficients at z = 0. When

this signal is subject to an evolution, we have a Fourier series with variable coefficients

q(t, z) =
N∑

k=1

qk(z)e
j k2πt

T . (3.5)

Substituting the periodic solution (3.5) into (3.1), we get the NLS equation in the

discrete frequency domain

j
∂qk(z)

∂z
= −4π2W 2k2qk(z)︸ ︷︷ ︸

dispersion

+2|qk(z)|2qk(z)︸ ︷︷ ︸
SPM

+2qk(z)
∑

l 6=k

|ql(z)|2

︸ ︷︷ ︸
XPM

+2
∑

m 6=k
l 6=k

qm(z)ql(z)q
∗
m+l−k(z)

︸ ︷︷ ︸
FWM

+vk(z), (3.6)

in which vk are the noise coordinates in frequency and we have identified the disper-

sion, self-phase modulation (SPM), cross-phase modulation (XPM) and four-wave mixing

(FWM) terms in the frequency domain.

It is important to note that the optical WDM channel model is a (nonlinear) multi-
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user interference channel [25]. The (inter-channel) interference terms are the XPM and

FWM. There is no inter-symbol interference (ISI) in the isolated pulse transmission

model (3.6) with one degree of freedom per user. However in a pulse train transmission

model where WT > 1, replacing {qk} by {sk} via the inverse transform shows that the

other two effects, the dispersion and SPM, cause inter-symbol interference (intra-channel

interaction). Performance of a WDM transmission system depends on how interference

and ISI are treated, and in particular the availability of the interference signals at the

receiver. Several cases can be considered.

The SPM term of each user is available at the receiver for that user. Its deterministic

part, if needed, can be removed, e.g., by back propagation and its (signal-dependent)

stochastic effects are handled by coding and optimal detection over a long block of data

(e.g., maximum likelihood sequence detection). ISI is therefore not a limitation to the

capacity.

In contrast, a serious limitation to the capacity of optical fiber networks is the inter-

channel interference. In optical fiber networks many users have to share the same optical

fiber link. Each user has access to the signal in its own frequency band, and the signal of

the users ql, l 6= k, is generally unknown to the kth user. In linear Gaussian channels there

is no interference between users operating in disjoint frequency bands. In a nonlinear

channel where, by definition, additively is not preserved under the action of the channel,

multiplexing signals in a linear fashion, e.g., by adding them in time or in frequency,

leads to inter-channel interference.

In WDM optical systems, such linear frequency multiplexing is performed in ROADMs

located in several locations throughout the fiber link. If multiplexing and demultiplexing

is done only at the transmitter and receiver, one has access to the XPM and FWM

interference terms. In this case interference is handled optimally by joint transmission

and statistical detection, e.g., using multiuser detection techniques. Such channel is

essentially akin to a single user channel. Here one is expected to get an overall capacity

similar to that of linear systems by joint transmission and detection.

Unfortunately in optical fiber networks it is not generally possible to perform joint

transmission and detection. Many signals join and leave the optical link in intermediate

distances without even being noticed by any user, leaving behind a residual nonlinear

impact. The interference resulting from these signals is unavoidably treated as noise and

ultimately limits the capacity of optical fiber networks.

Assuming the coefficients qk(z) remain independent in (3.6) during the evolution, the
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XPM term is statistically regulated as N →∞
∑

l 6=k

|ql(z)|2 →
N − 1

N
P0 → P0.

Thus the XPM does not influence the capacity of optical fibers significantly. The FWM

on the other hand is cubic in signal and is not averaged out as XPM [26]. It is obvious that

this interference will explode when increasing the common average power P , ultimately

overwhelming the signal and reducing the capacity to zero. The per degree of freedom

capacity versus power curve C(P) is noise-limited in low SNRs following log(1 + SNR )

and interference-limited in high SNRs, decreasing to zero [7, 26, 27]; see Fig. 3.2.

It follows that the information capacity of the nonlinear Schrödinger channel depends

on the model assumed on this equation. One can assume a single-user or multiple-user

channel with or without memory modeling. Below, we briefly elaborate on each case,

essentially repeating the above argument.

Single-user discrete channels Capacity (bits/channel use) of a single user discrete

channel (one complex degree of freedom) is a concave and non-decreasing function of

the input average power (equality- or inequality-constraint). For a discrete memoryless

channel this follows from the concavity of the mutual information as a function of the

input distribution and the linearity of the cost constraint [28]. This, of course, holds true

for any set of transition probabilities, including that obtained from nonlinear channels.

Consider for instance the nonlinear channel

Y = X +X2N, EX2 = P ,

where random variables X, Y and N are, respectively, input, output, and noise. The

power of the signal dependent additive noise term X2N increases at a faster rate com-

pared to the power of the signal term X. This, however, does not mean that the signal-

dependent noise diminishes the capacity at high powers. In Shannon’s argument, one is

only concerned with typical sequences, in which the “good” and “bad” input symbols are

averaged out. Nontypical sequences such as (x1, · · · , x1) may have variable output “noise

balls”, potentially large and increasing with x1, but the noise balls associated with all

input typical sequences have the same size in the sphere packing picture. In this sense,

there is no distinction between linear and nonlinear channels when they are extended in

time.
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ISI in channels with memory Capacity of a single-user waveform channel is mea-

sured in bits per degree of freedom (equivalent to bits/s/Hz). Sending a large sinc

wavetrain, as in (3.4) with N = 1, over the stochastic NLS equation, performing back

propagation and maximum likelihood sequence detection at the receiver, one is expected

to obtain a capacity that is nondecreasing with average input power. Thus the determin-

istic or stochastic intra-channel effects do not limit the capacity when joint transmission

and detection of the degrees of freedom in time is computationally feasible. However

assuming a discrete memoryless model for a nonlinear channel with memory such as the

optical fiber, as often done in the literature, can potentially limit the capacity. This is

explained below.

Note that, while the ISI is deterministic in traditional linear channels, for a nonlinear

waveform channel, ISI can have a stochastic component as well. Even if a deterministic

channel is a set of parallel non-interacting channels, noise addition, which usually becomes

signal-dependent in the presence of a nonlinearity, can correlate these channels and bring

the interference signals to the location of the channel of interest. Just as deterministic

interference, this stochastic interference can limit the capacity of a nonlinear channel.

This occurs only if the projection of the noise on the induced degrees-of-freedom is

signal-dependent.

As a result if one sends the wavetrain (3.4) over the NLS channel and performs back

propagation over the entire received block of data to remove the deterministic ISI, a net

signal dependent noise is left over for each symbol

srl = sil + f(si1, · · · , siWT , v), l = 1, · · · ,WT,

where sil and s
r
l are transmitted and received symbols and v is the noise. It is clear that

performing isolated symbol detection, e.g., per-symbol nearest neighbor mapping, has a

capacity vanishing at high powers. This is in contrast to the application of the OFDM

to linear ISI channels. The C(P) curve is, of course, similar to that of the linear systems

if a maximum likelihood sequence detector (MLSD) is employed in which the sequence

(si1, · · · , siWT ) is jointly detected. The gains of using a MLSD are thus more pronounced

in the nonlinear optical channel where the isolated detection poses a severe limitation to

the capacity.

Interference in multi-user channels Here we are interested in the per user capacity

and the sum rate of the multi-user channel. The per degree of freedom capacity of a

continuous or discrete multi-user channel can potentially be decreasing with common
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average power P if users interfere with one another and do not cooperate to manage this

inter-channel interference. This can be an issue for linear channels as well; it is just a

more serious issue for a strongly nonlinear channel such as the cubic NLS channel. The

inter-channel interference is just the dual of the intra-channel ISI; the only difference

is that cooperation and joint transmission and detection may not be physically possible

among users. With users cooperating, one expects a nondecreasing per degree of freedom

capacity similar to that of the linear systems. As we will see in this thesis, sometimes

it is also possible to identify a set of non-interacting degrees-of-freedom for a nonlinear

channel, giving rise to a transmission scheme in which the inter-channel interference does

not limit the capacity.

Spectral broadening in nonlinear channels When a signal propagates in a nonlin-

ear evolution equation, its spectrum can spread continuously. The amount of spectrum

broadening depends on the pulse shape and generally is proportional to the signal power.

While bits/symbol may increase with power, bit/sec/Hz may asymptotically vanish. Here

we should divide bits/symbol to the maximum signal dimensions that admissible input

signals occupy during the entire evolution. Spectral broadening is a serious issue in zero-

dispersion fibers where the channel is strongly nonlinear [29]. In dispersive channels,

it has been observed that pseudo-linear transmission does not suffer from a significant

spectral broadening and this effect is not as significant [7]. Here one can simply divide

the capacity by input bandwidth to obtain spectral efficiency.

3.2 The Importance of the Inter-channel Interfer-

ence

From the above discussion it follows that while the intra-channel interference can be

handled by memory modeling, the inter-channel interference ultimately limits the capac-

ity of optical fiber networks. The current practice in fiber-optic communications is to

send a linear sum of signals in time (pulse train) and in frequency (wavelength-division

multiplexing) in the form of (3.4), both of which are poor ideas for the nonlinear fiber

channel. Thus we identify ROADMs as the main culprit for the capacity limitation in

optical fiber networks. These devices perform linear multiplexing of signals which is not

consistent with the structure of the NLS equation, resulting in a severe interference that

is subsequently treated as noise. A modification of these devices is needed so that the

incoming signals are multiplexed in a nonlinear fashion, exciting noninteracting degrees
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of freedom of the NLS equation. Note that the noise or intra-channel effects are not

the primary reasons for the limitations of the capacity in the optical fiber networks and

cannot bring down the C(P) curve.
The effect of the interference when using the traditional frequency-division multiplex-

ing in the nonlinear fiber channel is shown in Figs. 3.1 and 3.2. Here we have simulated

transmission of 5 WDM channels over 2000 km of standard single-mode fiber with 100

spans. At the end of each span, a ROADM filters the channel of interest (COI) in the

middle at 40 GHz bandwidth, and adds four side-band signals randomly from a common

constellation (brown curves). At the output, the COI is filtered and back-propagated

according to the inverse NLS equation. It can be seen that the nonlinear inter-channel

interference is stronger at higher powers. Since this simulation is performed for isolated

pulses per channel due to speed considerations, the per-channel power is increased by

a factor of 5 to mimic the high energy nature of the pulse trains. Under a pulse train

transmission, inter-channel interference effects are more significant.

It is clear from the Figs. 3.1-3.2 that as the average transmitted power is increased,

the signal-to-noise ratio in the COI, and as a result the information rate, vanishes to

zero. Note that this effect can simply be described by a SNR analysis at the receiver and

one does not need a sophisticated information-theoretic analysis to illustrate it, unless

exact numbers for the spectral efficiency are of interest. As it can seen from Fig. 3.1, the

quality of the received signal in the COI degrades with power and taking the logarithm

of the SNR gives the intended result fairly closely. The degradation of the capacity is

simply because the real SNR is actually lower than the perceived SNR .

In the subsequent chapters it is shown that it is possible to exploit the integrability of

the nonlinear Schrödinger equation and induce a k-user interference channel on the NLS

equation so that both the deterministic inter-channel and inter-symbol interferences are

zero for all users. This is done using the nonlinear Fourier transform and, in a special case,

via a direct time domain approach. Such interference cancellation is a direct product of

the integrability of the cubic nonlinear Schrodinger equation in 1 + 1 dimensions, and is

generally not doable for other types of nonlinearity (even if the nonlinearity is weaker!).

The capacity or the spectral efficiency of the suggested method does not decline at the

critical power associated with the linear methods. The scheme also has numerous other

advantageous, desired in the communications networks.

Remark 9. Note that for the calculation of the capacity or the design of the optimal

receiver it is not necessary to perform deterministic signal processing such as back prop-

agation. For a communication study one is only concerned with transition probabilities,

which include effects such as rotations or other deterministic transformations. Backprop-
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Figure 3.1: (a) 5 WDM channels in the frequency, with the channel of interest (COI)
at the center. Neighbor channels are dropped and added at the end of the each span,
creating a leftover interference for the COI. (b) Channel of interest at the input (dotted
rectangle) and at the output after back propagation (solid curve). The mismatch is due
to the fact that the back propagation is performed only on the channel of interest and the
interference signals cannot be backpropagated. (c) Inter-channel interference is increased
with signal level.

agation just aids the system engineer to simplify the task of the signal recovery, and it

is likely suboptimal.

3.3 Summary

We reviewed important features of the WDM optical fiber networks pertinent to the

capacity calculation. The achievable rates in such networks depend on the model assumed

on the NLS equation, the method of the communication and how the noise, intra-channel

interactions (ISI) and inter-channel interference are treated. Among these factors only

the inter-channel interference can potentially bring down the C(P) due to the loss of

the SNR. The signal-dependent noise (stochastic intra-channel effect) is handled by

coding just as in linear systems, and the deterministic intra-channel interactions are

not a fundamental limitation to the capacity either. We observed that the practice of

using pulse trains and wavelength-division multiplexing both are ideas suitable for the

traditional linear channels and are not necessarily appropriate for the nonlinear fiber

channel. In particular, the decline of the capacity at high powers in the prior work is

an artifact of using such methods incompatible with the structure of the NLS equation.

The main culprit to the capacity limitation, when all other factors are addressed, are

ROADMs which multiplex signals in a way not suitable for the NLS equation.
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Chapter 4

The Nonlinear Fourier Transform

If people do not believe that

mathematics is simple, it is only

because they do not realize how

complicated life is.

John von Neumann

We shall begin developing the proposed nonlinear frequency-division multiplexing

(NFDM) method mentioned earlier for communication over optical fiber networks. We

consider a class of the evolution equations of the form (2.12), though throughout this

thesis, the stochastic nonlinear Schrödinger equation (3.3) will be our primary and mo-

tivating illustrative example.

A nonlinear dispersive waveform channel such as (3.1) is a major departure from the

classical additive white Gaussian noise and wireless fading channels in terms of analyt-

ical difficulty. Here the signal degrees-of-freedom couple together via the nonlinearity

and dispersion in a complicated manner, making it difficult to establish the channel

input-output map, even deterministically. Most current approaches assume a linearly-

dominated regime of operation, or consider the nonlinearity as a small perturbation, and

are geared towards managing and suppressing the (detrimental) effects of the nonlin-

ear and dispersive terms. Inline dispersion management, digital backpropagation, and

other forms of electronic pre-and post-compensation belong to this class of methods

(see [7, 30–36] and references therein).

In this thesis we adopt a different philosophy. Rather than treating nonlinearity and

dispersion as nuisances, we seek a transmission scheme that is fundamentally compatible

with these effects. We effectively “diagonalize” the nonlinear Schrödinger channel with

the help of the nonlinear Fourier transform, a powerful tool for solving integrable nonlinear

53
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dispersive partial differential equations [9,10]. The NFT uncovers linear structure hidden

in the one-dimensional cubic nonlinear Schrödinger equation, and can be viewed as a

generalization of the (ordinary) Fourier transform to certain nonlinear systems.

With the help of the nonlinear Fourier transform, we are able to represent a signal

by its discrete and continuous nonlinear spectra. While the signal propagates along the

fiber based on the complicated NLS equation, the action of the channel on its spectral

components is given by simple independent linear equations. Just as the (ordinary)

Fourier transform converts a linear convolutional channel y(t) = x(t)∗h(t) into a number

of parallel scalar channels, the nonlinear Fourier transform converts a nonlinear dispersive

channel described by a Lax convolution (see Sec. 4.2) into a number of parallel scalar

channels. This suggests that information can be encoded (in analogy with orthogonal

frequency-division multiplexing) in the nonlinear spectra.

The nonlinear Fourier transform is intertwined with the existence of soliton solutions

to the NLS equation. Solitons are pulses that retain their shape (or return periodically

to their initial shape) during propagation, and can be viewed as system eigenfunctions,

similar to the complex exponentials ejωt, which are eigenfunctions of linear systems.

An arbitrary waveform can be viewed as a combination of solitons, associated with the

discrete nonlinear spectrum, and a non-solitonic (radiation) component, associated with

the continuous nonlinear spectrum.

The goal of this chapter is to introduce the mathematical tools that underlie this ap-

proach to information transmission. These tools are sufficiently general to encompass not

only the nonlinear Schrödinger equation, but also other completely integrable nonlinear

dispersive PDEs. Thus, the transmission scheme described here can also be applied to

any channel model in this general class. These tools are also described in mathematics

and physics (see, e.g., [9, 10,37]); here we attempt to extract those aspects of the theory

that are relevant to the engineering aspects of the information transmission problem. In

subsequent chapters, we will describe useful numerical methods and give performance

results for actual fiber-optic systems.

The basic idea underlying this thesis has also been anticipated in [38]. Here the au-

thors adopt a similar philosophy and use the inverse scattering transform (IST) to decode

the amplitude of an isolated soliton-like pulse Asech(t). There is however very limited

development in [38] towards an optical system operating based on the IST. Motivated

by the recent results in optical fiber networks showing that the spectral efficiency di-

minishes at high SNRs [39] and anticipating availability of high-performance computing

devices and sophisticated receivers, in this thesis we conceive and develop an OFDM-type

multi-user transmission technique by considering the IST as a nonlinear Fourier trans-
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form. Note that, as mentioned earlier and will be clarified later on, the advantages of

the IST method in point to point channels are limited to the stability and robustness of

the spectral invariants and few other desirable properties. The important advantage of

using the IST for communications, or insights drawn from that, occurs in a multi-user

scenario where the underlying interference is severe and cannot be addressed, at least in

a straightforward manner, using the techniques already in place.

4.1 A Brief History of the Nonlinear Fourier Trans-

form

The nonlinear Fourier transform (also known as the inverse scattering transform or IST) is

a method for solving certain nonlinear dispersive partial differential equations. These are

integrable PDEs, i.e., nonlinear differential equations exhibiting certain hidden linearity.

There are several integrable equations having physical significance, among which is the

NLS equation. The IST method was a result of extensive efforts in theoretical physics

and applied mathematics in the 1960s, closely associated with the notion of solitons and

is often used to predict their existence and properties in integrable models [9, 10].

In the 1950s, in one of the first dynamical-systems simulations performed on a com-

puter [40], Fermi, Pasta and Ulam performed a numerical experiment to understand why

solids have finite heat conductivity. They modeled the solid as a lattice with point masses

at the lattice points coupled with springs each having a quadratic nonlinearity. To their

surprise, rather than observing an equipartition of energy among all modes, energy cy-

cled periodically among a few low-order modes. Such behavior implies that the nonlinear

oscillator behaves somehow linearly.

In the 1960s, Zabusky and Kruskal showed that the equations of motion for the Fermi-

Pasta-Ulam lattice in the continuum limit is a remarkable PDE called the Korteweg-

de Vries (KdV) equation [41], known in the study of water waves. The KdV equation for

the evolution of a real-valued pulse q(t, z) as a function of time t and distance z is

qz = qqt + qttt. (4.1)

Zabusky and Kruskal found that (4.1) has pulse-like solutions whose shape is preserved

(or varies periodically) during propagation. Furthermore, they made the surprising obser-

vation that when two such pulses are launched towards each other, despite their nonlinear

interaction, they pass through each other without changing their shape. Zabusky and

Kruskal coined the term soliton for such solutions, in recognition of their particle-like
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properties [41].

The spectacular properties of these solutions greatly excited the mathematics and

physics communities and many researchers started to study solitons. In a celebrated

paper [42], Gardner, Greene, Kruskal and Miura uncovered some of the deep structure

underlying the KdV equation which is responsible for solitons and their unusual proper-

ties. The authors of [42] were studying the celebrated linear Schrödinger equation from

quantum mechanics, given by

ψz(t, z) = ψtt(t, z) + g(t, z)ψ(t, z)/3, (4.2)

where ψ(t, z) is the wave-function and g(t, z) is an external potential. They found that

if one takes the solution q(t, z) of the KdV equation (4.1) as the external potential in

(4.2), then the eigenvalues of the Schrödinger operator

H =
∂2

∂t2
+ g(t, z)/3 (4.3)

remain invariant during the evolution in z! Based on this critical observation, they

developed a method to recover the external potential g(t, z) = q(t, z) by solving an

inverse problem for (4.2). The method analytically predicts soliton solutions for the KdV

equation, as observed earlier by Zabusky and Kruskal through numerical computations.

They had in fact found the IST for the special case of the KdV equation.

It was not immediately clear if the method developed in [42] could be generalized to

other nonlinear PDEs, since it is not obvious if there exists a certain auxiliary operator,

like the Schrödinger operator H, whose eigenvalues are preserved during the evolution.

In a landmark paper published in 1968 [43], Lax put the theory on a firm mathematical

footing. In particular, he established the mathematical relationship between the auxiliary

operators with invariant eigenvalues (now called Lax pairs) and the original nonlinear

equation. Once a Lax pair for a nonlinear PDE is found, a method along the lines of [42]

can be applied to solve that PDE.

Shortly afterwards, in 1972, Zakharov and Shabat found a Lax pair for the NLS

equation in one spatial dimension [23], and thus established that this equation, too,

could be solved in the same manner. Details of this method for the NLS equation were

subsequently developed by Ablowitz and others (see [9] and references therein), who also

referred to this scheme as the “nonlinear Fourier transform”. After these discoveries from

the 1960s and 70s, research into solitons became an established area of research, lying at

the intersection of applied mathematics and nonlinear physics.
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Nonlinear PDEs solvable by the NFT are called integrable equations or exactly solv-

able models [44]. These are usually Hamiltonian systems having an infinite number

of conserved quantities, and include the KdV, NLS, modified KdV, and sine-Gordon

equations, the Toda lattice, among others [9, 10]. These equations all exhibit similar

properties, including the existence of soliton solutions. Signal processing problems (e.g.,

detection and estimation) involving soliton signals in the Toda lattice and similar models

have been considered by Singer [45].

4.2 Canonical Lax Form for Exactly Solvable Models

4.2.1 Lax Pairs and Evolution Equations

We wish to consider linear differential operators whose eigenvalues are invariant during

an evolution [43]. More precisely, we consider such operators defined in terms of a signal

q(t, z) where the eigenvalues of the operator remain constant even as q evolves (in z)

according to some evolution equation.

To facilitate the discussion, it is useful to imagine a linear operator represented as

a matrix; however, we must keep in mind that, when moving from finite-dimensional

spaces to infinite-dimensional spaces (of e.g., functions and operators), some results do

not carry over necessarily. The relevant properties of linear operators needed for this

thesis are reviewed in Appendix A.

Let L(z) be a square matrix whose entries are functions of z. Clearly, the eigenvalues

of this matrix are in general functions of z too. However, for some matrices, it might

be the case that while the entries of the matrix change with z, the eigenvalues remain

constant (independent of z). Such a matrix, if diagonalizable, should be similar to a

constant diagonal matrix Λ, i.e., L(z) = G(z)ΛG−1(z), for some similarity transformation

G(z).

This idea generalizes to operators. Let H be a Hilbert space, let D be some domain

that is dense in H, and let L(z) : D → H be a family of linear operators indexed by a

parameter z [46]. If the eigenvalues of L(z) do not depend on z, then we refer to L(z)

as an isospectral family of operators. If diagonalizable, it follows that for each z, L(z) is

similar to a multiplication operator Λ (the operator equivalent of a diagonal matrix; see

Appendix A), i.e., L(z) = G(z)ΛG−1(z), for some operator G(z).

Assuming that L(z) varies smoothly with z, we can consider the rate of the change
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(with respect to z) of L(z). We have

dL(z)

dz
= G′ΛG−1 +GΛ

(
−G−1G′G−1

)

= G′G−1
(
GΛG−1

)
−
(
GΛG−1

)
G′G−1

=M(z)L(z)− L(z)M(z) = [M,L] , (4.4)

where G′ = dG(z)/dz, M = G′G−1, and [M,L]
∆
=ML−LM is the commutator bracket.

In other words, every diagonalizable isospectral operator L(z) satisfies the differential

equation (4.4).

Conversely, suppose M(z) is given and the (unknown) diagonalizable operator L(z)

evolves according to (4.4) with initial condition L(0) = G0Λ0G
−1
0 . Let G(z) be the

(unique invertible) solution to G′ = MG with G(0) = G0. One can easily verify that

L(z) = G(z)Λ0G(z)
−1 satisfies (4.4). Since the solution to a first-order differential equa-

tion is unique [47], we see that L(z) is an isospectral family.

The characterization of isospectral operators is therefore summarized in the following

lemma [43].

Lemma 6. Let L(z) be a diagonalizable operator. Then L(z) is isospectral if and only if

it satisfies

dL

dz
= [M,L], (4.5)

for some operator M . If L is self-adjoint (so that L is unitarily equivalent to a multipli-

cation operator, i.e., L = GΛG∗), then M must be skew-Hermitian, i.e., M∗ = −M .

Proof. The proof was outlined above. The skew-Hermitian property of M can be shown

by differentiating GG∗ = I.

It is important to note that L and M do not have to be independent and can depend

on a common parameter, e.g., a function q(t, z), as illustrated in Fig. 4.1. The isospectral

property of the solution is unchanged. The commutator bracket [M,L] in (4.5) can create

nonlinear evolution equations for q(t, z) in the form

∂q

∂z
= K(q),

where K(q) is some, in general nonlinear, function of q(t, z) and its time derivatives. An

example of this is the KdV equation.
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L(q(t, 0)) L(q(t, z)) L(q, (t,L))

0

q(t, 0) q(t, z)

L

q(t,L)

z· · · · · ·

· · ·· · ·

· · · · · ·

Constant Spectrum

Figure 4.1: An isospectral flow: the spectrum of L is held invariant even as q(t, z) evolves.

Example 8 (KdV equation). Let D = ∂
∂t

denote the time-derivative operator, and let

q(t, z) be a real-valued function. Finally, let

L = D2 +
1

3
q, and let

M = 4

(
D3 +

1

4
Dq +

1

4
qD

)
. (4.6)

The Lax equation Lz = [M,L] is easily simplified to

1

3
qz −

1

3
(qttt + qqt) + (some terms)D ≡ 0, (4.7)

where 0 is the zero operator. The zero-order term of this equation as a polynomial in D,

which must be zero, produces the KdV equation qz = qttt + qqt. Using (Dk)∗ = (−1)kD
(provable by integration by parts), it is easy to see that L and M are self-adjoint and

skew-Hermitian, respectively, since they are real valued and involve even and odd powers

of D, respectively. The eigenvalues of L are thus preserved from Lemma 6. Note that

the L operator in this example is precisely the (linear) Schrödinger operator H given in

(4.3).

Definition 3. A pair of operators L and M , depending on z, are called a Lax pair

(L,M) if they satisfy (4.5). Following Lemma 6, the eigenvalues of the L operator are

independent of z.
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4.2.2 The Zero-Curvature Condition

The eigenvalues of the operator L, which are constant in an isospectral flow, are defined

via

Lv = λv. (4.8)

Taking the z derivative of (4.8) and using the Lax equation Lz = [M,L], we obtain

(L− λI) (vz −Mv) = 0. Since L − λI vanishes only on eigenvectors of L, it must be

that vz −Mv is proportional to an eigenvector, i.e., vz −Mv = αv, α ∈ C. The choice

of α does not influence the results of future sections; thus for simplicity we set α = 0. It

follows that an eigenfunction v(t, z) evolves based on the linear equation

vz =Mv. (4.9)

Furthermore, it is often more convenient to re-write (4.8) as

vt = Pv, (4.10)

for some operator P . The relationship between P and L can be derived (if necessary) by

combining (DI − P ) v = 0 with (L− λI) v = 0, obtaining

P = Σ(L− λI) +DI, (4.11)

where Σ is some invertible operator, and D = ∂
∂t

as in Example 8.

Combining equations (4.9) and (4.10) by using the equality of mixed derivatives, i.e.,

vtz = vzt, the Lax equation (4.5) is reduced to the zero-curvature condition [10]

Pz −Mt + [P,M ] = 0. (4.12)

Note that the nonlinear equation derived from (4.12) results as a compatibility condition

between the two linear equations (4.9) and (4.10). This shows that certain nonlinear

equations possess a “hidden linearity” in the form of (4.9) and (4.10).

Following the work of Zakharov and Shabat on the NLS equation [23], Ablowitz et

al. [48] suggested that for many equations of practical significance, the operator P can

be fixed as

P =

(
−jλ r(t, z)

s(t, z) jλ

)
, (4.13)

where r(t, z) and s(t, z) are functions—depending on q(t, z)—to be determined to produce
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a given nonlinear evolution equation. From (4.11) this corresponds to the L operator

L = j

(
D −r(t, z)

s(t, z) −D

)
, (4.14)

with Σ = diag(j,−j). In this case, both L and P operate on 2× 1 vector functions.

Equation (4.10), with P as in (4.13), is known as the AKNS system (after the authors

of [48]) and is central in the study of the nonlinear Fourier transform [10]. The important

special case where r(t, z) = q(t, z) and s(t, z) = −q∗(t, z) is generally known as the

Zakharov-Shabat system. We will refer to (4.8), (4.9) and (4.10) as the L-, M -, and

P -equations, respectively. Throughout this thesis, we will assume that the domain of L,

P , and M are subsets of the Hilbert space L2(R), denoted here by H, depending on the

particular structure of that operator.

Example 9 (sine-Gordon equations). Let r(t, z) = −s(t, z) = 1
2
qt(t, z) in (4.13) and let

M =
j

4λ

(
cos(q) − sin(q)

− sin(q) − cos(q)

)
. (4.15)

Then the zero-curvature equation is simplified to qtz = sin(q). Taking r = s = 1
2
qt and

M as

M =
j

4λ

(
cosh(q) − sinh(q)

sinh(q) − cosh(q)

)
. (4.16)

gives qtz = sinh(q).

Example 10 (Nonlinear Schrödinger equation). Take r = q, s = −q∗ and

M =

(
2jλ2 − j|q(t, z)|2 −2λq(t, z)− jqt(t, z)

2λq∗(t, z)− jq∗t (t, z) −2jλ2 + j|q(t, z)|2

)
.

The zero-curvature equation is simplified to jqz(t, z) = qtt(t, z) + 2|q(t, z)|2q(t, z).

Example 11 (KdV equation revisited). Let r = 2√
3
q, s = − 1

4
√
3
and

M =

(
4jλ3 − jλq

3
+ qt

6
−8λ2q√

3
− 4√

3
jλqt +

2q2

3
√
3
+ 2qtt√

3
λ2√
3
− q

12
√
3

−4jλ3 + jλq

3
− qt

6

)
. (4.17)

The zero-curvature equation leads to qz = qqt + qttt.

It should be noted from Examples 8 and 11 that the choice of L andM giving rise to a

given nonlinear equation is not unique. Obviously one can scale L, or add a constant to L
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Lz(q) = [M(q), L(q)]
x(t) = q(t, 0) y(t) = q(t,L)

Figure 4.2: A system defined by Lax convolution.

orM . In addition, both the Lax equation (4.5) and (4.8) are unchanged under orthogonal

transformations, i.e., replacing L and M with ΣLΣT and ΣMΣT , respectively, where Σ

is a (constant) orthogonal matrix, i.e., ΣTΣ = I. Note further that it may be possible

to choose two Lax pairs (L1,M1) and (L2,M2) for a given equation such that L1 is self-

adjoint and L2 is not self-adjoint. The eigenvalues of L1 and L2 are, respectively, real

and complex; see Appendix A.

4.2.3 Lax Convolution and Integrable Communication Chan-

nels

Linear systems traditionally have been described by linear constant coefficient differential

equations. An example is the one-dimensional heat equation qz = c2qtt, where c is the

diffusion coefficient and q(t, z) represents the heat profile across a rod extending in space

t, as time z goes on. From a systems point of view, this defines a linear time-invariant

system from input x(t) = q(t, 0) at z = 0 to the output y(t) = q(t,L) at some z = L. The
role of z is therefore just a parameter and once fixed (to z = L), the system is described

by an impulse response (or a Green function) h(t;L), representing the underlying (linear)

convolution.

Following this analogy, we wish to define a system in terms of a Lax pair (L,M). Here,

L and M are parametrized by a waveform q(t, z). Such a system accepts a waveform

x(t) = q(t, 0) at its input and produces a waveform y(t) = q(t,L) at its output, according
to the evolution equation induced by Lz = [M,L]. The time-domain input-output map

is thus given by an evolution equation of the form qz = K(q), obtainable from the Lax

equation (4.5) (or its equivalent (4.12)). We refer to such a system as an integrable

system. Note that an integrable system is completely characterized by the two operators

(L,M) and the parameter z = L, independent of the signals. We denote such a system

using the triple (L,M ;L).

Definition 4 (Lax Convolution). We refer to the action of an integrable system S =

(L,M ;L) on the input q(t, 0) as the Lax convolution of q with S. We write the system

output as q(t,L) = q(t, 0) ∗ (L,M ;L). See Fig. 4.2.
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Definition 5 (Integrable communication channels). A waveform communication chan-

nel C : x(t) × v(t, z) → y(t) with inputs x(t) ∈ L1(R) and space-time noise v(t, z) ∈
L2(R,R+), and output y(t) ∈ L1(R), is said to be integrable if the noise-free channel is

an integrable system.

Note that noise can be introduced into an integrable system in a variety of ways.

In what follows, we assume that the signal-to-noise ratio is not too small, so that the

stochastic system may justifiably be considered as a perturbation of the deterministic

system. Furthermore, in this thesis we limit ourselves to integrable channels with additive

noise, i.e.,

qz = K(q) + v(t, z), q(t, 0) = x(t), q(t,L) = y(t),

where v(t, z) is distributed band-limited noise. Note that this model is not in general

equivalent to one in which noise is added (in lumped fashion) at the channel output.

Here, the noise is distributed in space, and so interacts with the signal (in a potentially

very complicated manner) according to the given evolution equation.

In this thesis, we develop a scheme for communication over integrable channels. By

various choices of Lax pair (L,M), one can construct a variety of interesting channel

models, mostly nonlinear, which go beyond the linear channel models typically studied

in data communications. Interestingly, some linear channels can also be analyzed us-

ing this nonlinear spectral approach advocated here [49]. The central application (and

motivation) for this work is fiber-optic communication, in which the channel model is

given by the nonlinear Schrödinger equation (3.1), and for which a Lax pair was given

in Example 10. In what follows, we first discuss the deterministic (noise-free) case and

later treat noise as a perturbation of the deterministic system.

4.3 Nonlinear Fourier Transform

In this section, we assume that a function q(t, ·) ∈ L1(R) is given, and we define its

nonlinear Fourier transform with respect to a given Lax operator L. As the notation

q(t, ·) implies, in this and the next section, the variable z can take on any value in the

range [0,L] and is irrelevant in the forward and inverse transforms. We shall therefore

omit the index z in what follows.

As previously noted, for concreteness we carry through the development of the NFT
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for the case of the NLS equation (3.3), for which the P - and M -equations are given by

vt = P (λ, q)v =

(
−jλ q(t, z)

−q∗(t, z) jλ

)
v, (4.18)

vz =M(λ, q)v

=

(
2jλ2 − j|q(t, z)|2 −2λq(t, z)− jqt(t, z)

2λq∗(t, z)− jq∗t (t, z) −2jλ2 + j|q(t, z)|2

)
v, (4.19)

respectively. Here the P -equation is the Zakharov-Shabat system.

The nonlinear Fourier transform (and its inverse) are defined solely in terms of the

temporal P -equation (4.18). The spatialM -equation (4.19) is used in a brief, and critical,

propagation step, but plays no role in the definition of the nonlinear Fourier transform.

If for a given λ ∈ C, the operator L−λI, here equivalent toDI−P representing (4.18),

is not invertible, we say that λ belongs to the spectrum of L and v(t, λ) represents its

associated eigenfunction. In finite-dimensional Hilbert spaces of matrices the spectrum is

a discrete finite set, called eigenvalues. This may no longer be true in infinite-dimensional

spaces of operators, where the eigenvalues (if they exist) may only be one part of the

spectrum. See Appendix A.

The nonlinear Fourier transform of a signal x(t) with respect to an operator L in a

Lax pair is defined via the spectral analysis of the L operator, which we consider next.

4.3.1 Canonical Eigenvectors and Spectral Coefficients

We wish to study solutions of (4.18), in which vectors v(t) are considered as elements of

the vector space H. We begin by equipping the vector space H with a symplectic bilinear

form H×H 7→ C, which, for any fixed value of t ∈ R, is defined as

〈v(t), w(t)〉s = v1(t)w2(t)− v2(t)w1(t). (4.20)

Let us also define the adjoint of any vector v in H as

ṽ(t) =

(
v∗2(t)

−v∗1(t)

)
.

The following properties hold true for all v and w in H:

• ˜̃v = −v;
• 〈v, v〉s = 0;

• 〈v, w〉s = −〈w, v〉s;
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• 〈ṽ, v〉s = −〈v, ṽ〉s = |v1|2 + |v2|2;
• d

dt
〈v, w〉s = 〈vt, w〉s + 〈v, wt〉s;

• for every 2× 2 matrix A, 〈Av,w〉s + 〈v, Aw〉s = tr(A)〈v, w〉s.
There are generally infinitely many solutions v of (4.18) for a given λ ∈ C, parametrized

by the set of all possible boundary conditions. These solutions form a subspace Eλ of

continuously differentiable 2× 1 vector functions (an eigenspace).

Lemma 7. For all vectors v(t) and w(t) in Eλ,

1. ṽ ∈ Eλ∗, i.e., ṽt = P (λ∗, q)ṽ;

2. 〈v(t), w(t)〉s is a constant, independent of t;

3. If 〈v(t), w(t)〉s 6= 0, then v and w are linearly independent and form a basis for

Eλ;

4. dim(Eλ) = 2.

Proof : Property 1) follows directly from (4.18). To see 2), note that d
dt
〈v, w〉s =

〈vt, w〉s + 〈v, wt〉s = 〈Pv, w〉s + 〈v, Pw〉s = tr(P )〈v, w〉s = 0. To see 3), fix t and let

u(t) ∈ Eλ, then u(t) = a(t)v(t) + b(t)w(t) for some a(t) and b(t). Taking the symplectic

inner product of both sides with w and v, we get a(t) = 〈u, w〉s/〈v, w〉s and b(t) =

〈u, v〉s/〈w, v〉s. From Property 2, 〈u, w〉s, 〈v, w〉s, 〈u, v〉s, and 〈w, v〉s are all independent
of t. It follows that a and b are also independent of t. Finally, 4) follows from 3).

An important conclusion of Lemma 7 is that any two linearly independent solutions

u and w of (4.18) provide a basis for the solution space. To choose two such solutions, we

examine the behavior of the equation at large values of |t|. If we assume that q(t, ·)→ 0

as |t| → ∞, then, as |t| → ∞ (4.18) is reduced to

vt →
(
−jλ 0

0 jλ

)
v, for large |t|,

which has a general solution

v(t, λ)→
[
αe−jλt, βejλt

]T
, α, β ∈ C.

Two possible boundary conditions, bounded in the upper half complex plane (ℑ(λ) >
0), are

v1(t, λ)→
(
0

1

)
ejλt, t→ +∞ (4.21)

v2(t, λ)→
(
1

0

)
e−jλt, t→ −∞. (4.22)
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t = ∞

v1(t, λ∗) →
(

0

1

)

ejλ
∗t

t = −∞

v2(t, λ∗) →
(

−1

0

)

e−jλ∗t

ṽ2(t, λ∗)

v2(t, λ) →
(

1

0

)

e−jλt v1(t, λ) →
(

0

1

)

ejλt

ṽ1(t, λ∗)

Figure 4.3: Boundary conditions for the canonical eigenvectors.

We solve (4.18) for a given λ under the boundary conditions (4.21)-(4.22), and denote

the resulting solutions for all t ∈ R as v1(t, λ) and v2(t, λ). We can also solve (4.18) for

λ∗ under the adjoint boundary conditions

v1(t, λ∗)→
(
0

1

)
ejλ

∗t, t→ +∞, (4.23)

v2(t, λ∗)→
(
−1
0

)
e−jλ∗t, t→ −∞,

giving rise to two solutions v1(t, λ∗) and v2(t, λ∗). From Lemma 7 we have that ṽ1(t, λ∗)

and ṽ2(t, λ∗) are elements of Eλ. These four eigenfunctions v
1(t, λ), v2(t, λ), ṽ1(t, λ∗), and

ṽ2(t, λ∗), all of them elements of Eλ, are called canonical eigenvectors. Fig. 4.3 illustrates

the canonical eigenvectors at their boundaries.

Lemma 8. Canonical eigenvectors satisfy:

1. 〈ṽ1(t, λ∗), v1(t, λ〉s = 〈ṽ2(t, λ∗), v2(t, λ)〉s = 1;

2. {v1(t, λ), ṽ1(t, λ∗)} and {v2(t, λ), ṽ2(t, λ∗)} are independent sets in Eλ.

Proof : 1) Since 〈ṽ1, v1〉s is independent of t, using (4.21) and (4.23), 〈ṽ1(t, λ∗), v1(t, λ)〉s =
〈ṽ1(+∞, λ∗), v1(+∞, λ)〉s = 1. 2) Follows from 1) and Lemma 7.

Choosing ṽ1(t, λ∗) and v1(t, λ) as a basis of Eλ, one can project v2(t, λ), ṽ2(t, λ∗) ∈ Eλ

on this basis to obtain

v2(t, λ) = a(λ)ṽ1(t, λ∗) + b(λ)v1(t, λ), (4.24)

ṽ2(t, λ∗) = b∗(λ∗)ṽ1(t, λ∗)− a∗(λ∗)v1(t, λ), (4.25)

where a(λ) = 〈v2, v1〉s and b(λ) = 〈ṽ1, v2〉s. A crucial property, following from Lemma 7,

is that a(λ) and b(λ) are time-independent. The time-independent complex scalars a(λ)

and b(λ) are called the nonlinear Fourier coefficients [9, 10].
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Since the nonlinear Fourier coefficients are time independent, to facilitate computing

them, for simplicity we can send t to, e.g., +∞ where v1(+∞, λ) and ṽ1(+∞, λ∗) are

known. The other two canonical eigenvectors v2 and ṽ2 are then propagated from their

boundary values v2(−∞, λ) and ṽ2(−∞, λ∗) at t = −∞ according to v2t = P (λ, q)v2 and

ṽ2t = P (λ∗, q)ṽ2 to obtain v2(∞, λ) and ṽ2(∞, λ∗). At this stage, we have available all

four canonical eigenvectors at one time, namely,

{
v2(+∞, λ), ṽ2(+∞, λ), v1(+∞, λ), ṽ1(+∞, λ)

}
.

We can now project v2(+∞, λ) and ṽ2(+∞, λ) onto the basis v1(+∞, λ) and ṽ1(+∞, λ)
according to (4.24)-(4.25) to obtain

[
v2(+∞, λ), ṽ2(+∞, λ)

]
=
[
ṽ1(+∞, λ), v1(+∞, λ)

]
S, (4.26)

where

S =

(
a(λ) b∗(λ∗)

b(λ) −a∗(λ∗)

)
. (4.27)

The matrix S is called the scattering matrix and contains the nonlinear Fourier coef-

ficients [9, 10]. It is a function of q(t, ·) and says how the solution to (4.18) is scattered

from t = −∞ to t = +∞. More precisely, the field v2(−∞, λ) = [1, 0]T e−jλt is applied

at t = −∞, where q is absent. This field evolves forward in time according to (4.18),

interacts with the signal (which can be viewed as an “obstacle”) at finite values of t,

and subsequently propagates towards t = +∞, where again q is absent. The field at

t = +∞ is measured and gives information about the “obstacle” as seen from a distance.

Although not obvious from the development so far, we shall see in Section 4.6 that the

information measured at t = +∞, captured by a(λ) and b(λ), is complete, in the sense

that from this information we can retrieve q(t, ·) entirely. In view of this interpreta-

tion, the nonlinear Fourier transform was historically referred to as the inverse scattering

transform.

4.3.2 The Nonlinear Fourier Transform

The projection equations (4.24) and (4.25) that give a(λ) and b(λ) are well-defined if

λ ∈ R. From Lemma 7, Property 1), we observe that the eigenspace is symmetric in

λ, i.e., if λ is an eigenvalue then so is λ∗. Thus it is sufficient to consider the upper

half complex plane C+ = {λ|ℑ(λ) > 0}. In this region, the boundary conditions on the
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basis vectors v1 and ṽ1 at t = ∞ decay and blow up, respectively. As a result, (4.24) is

consistent in C+ only if a(λ) = 0. Eigenvalues in C+ are therefore identified as the zeros

of the complex function a(λ) and they form the discrete (point) spectrum of the signal.

We will see in the next section that the discrete spectrum corresponds to soliton pulses.

Lemma 9. If q(t) ∈ L1(R), a(λ) is an analytic function of λ on C+.

Proof : From Lemma 10 in Section 4.6, if q(t) ∈ L1(R) the scaled canonical eigenvec-

tors v1(t, λ)e−jλt and v2(t, λ)ejλt are analytic functions of λ in C+. Since

a(λ) = 〈v2, v1〉s = 〈v2ejλt, v1e−jλt〉s,

is a combination of two analytic functions in C+, it is analytic in the same region. (Note,

however, that b(λ), which is a combination of functions analytic in disjoint regions in C,

may not be analytic in either of those regions.)

A consequence of Lemma 9 is that the zeros of a(λ) in C+ are isolated points [50]. It

follows that the Zakharov-Shabat operator for the NLS equation has two types of spectra.

The discrete (or point) spectrum, which occurs in C+, is characterized by those λj ∈ C+

satisfying

a(λj) = 0, j = 1, 2, . . . , N.

The discrete spectrum corresponds to solitons, and in this case (4.24) reduces to

v2(t, λj) = b(λj)v
1(t, λj).

The continuous spectrum, which in general includes the whole real line ℑ(λ) = 0, cor-

responds to the non-solitonic (or radiation) component of the signal. The continuous

spectrum is the component of the NFT which corresponds to the ordinary Fourier trans-

form, whereas the discrete spectrum has no analogue in linear systems theory. The reader

is referred to Appendix A for a number of examples illustrating various notions of the

spectrum associated with bounded linear operators; Example 18 is particularly relevant

to the discussion here.

To distinguish between the discrete and continuous spectra, we find it convenient to

refer to discrete spectral values of λ using the symbol λj (with a subscript). Continuous

spectral values are denoted as λ (without a subscript). In general, λj ∈ C+, whereas

λ ∈ R.

For the purpose of developing the inverse transform, we find it sufficient to work with
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the ratios

q̂(λ) =
b(λ)

a(λ)
, q̃(λj) =

b(λj)

a′(λj)
,

where a′(λj) denotes the derivative da(λ)
dλ

∣∣∣
λ=λj

.

We can now formally define the nonlinear Fourier transform of a signal with respect

to a given Lax operator L as follows.

Definition 6 (Nonlinear Fourier transform [9, 37]). Let q(t) be a sufficiently smooth

function in L1(R). The nonlinear Fourier transform of q(t) with respect to a given Lax

operator L consists of the continuous and discrete spectral functions q̂(λ) : R 7→ C and

q̃(λj) : C
+ 7→ C where

q̂(λ) =
b(λ)

a(λ)
, q̃(λj) =

b(λj)

a′(λj)
, j = 1, 2, . . . , N,

in which λj are the zeros of a(λ). Here, the spectral coefficients a(λ) and b(λ) are given

by

a(λ) = = lim
t→∞

v21e
jλt, (4.28)

b(λ) = = lim
t→∞

v22e
−jλt, (4.29)

where v2(t, λ) is a solution of (4.18) under the boundary condition (4.22).

To obtain the continuous spectral function q̂(λ), λ ∈ R, it is not necessary to obtain

a(λ) and b(λ) separately. For convenience, one can instead write an explicit differential

equation

dy(t, λ)

dt
+ q(t)e2jλty2(t, λ) + q∗(t)e−2jλt = 0,

y(−∞, λ) = 0, (4.30)

and obtain q̂(λ) = limt→∞ y(t, λ).

Analogously, one can solve the second-order differential equation

d2z(t, λ)

dt2
−
(
2jλ+

qt
q

)
dz(t, λ)

dt
+ |q|2z(t, λ) = 0,

z(−∞, λ) = 1,
dz(−∞, λ)

dt
= 0, (4.31)

and obtain a(λ) = lim
t→∞

z(t, λ). The discrete spectrum is obtained as the zeros of a(λ).

Remark 10. The NFT is generally operator specific and thus is defined with respect to an
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L operator. However many known equations can be represented by the AKNS operator

(4.14).

Just like the ordinary Fourier transform, the nonlinear Fourier transform can be

computed analytically only in a few cases. An example is given in the next subsection.

4.3.3 Example: Nonlinear Fourier Transform of a Rectangular

Pulse

Consider the rectangular pulse

q(t) =




A, t ∈ [t1, t2];

0, otherwise.

Let T = t2 − t1 and T ′ = t2 + t1.

In this case P (λ, q) is time-independent when t ∈ [t1, t2], and (4.18) under the bound-

ary condition (4.22) can be easily solved in closed form. The canonical eigenvector v2 is

given by

v2(t, λ) = exp[(t− t1)P ]v2(t1, λ), v2(t1, λ) =

(
1

0

)
e−jλt1 .

It follows that

v2(∞, λ) = v2(t2, λ) = exp(PT )v2(t1, λ),

where

exp(PT ) = exp

{[
−jλ q

−q∗ jλ

]
T

}

=

[
cos(∆T )− j λ

∆
sin(∆T ) A

∆
sin(∆T )

−A∗

∆
sin(∆T ) cos(∆T ) + j λ

∆
sin(∆T )

]
,

with ∆ =
√
λ2 + |A|2. The spectral coefficients are obtained from (4.28) and (4.29) as

a(λ) =

(
cos(∆T )− j λ

∆
sin(∆T )

)
ejλT ,

b(λ) =
−A∗

∆
sin(∆T )e−jλT ′

.
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Figure 4.4: Discrete and continuous spectra of a square wave signal with T = 1, and (a)
A = 1, (b) A = 2, (c) A = 6.

The zeros of a(λ) in C+, which satisfy

j tan(T
√
|A|2 + λ2) =

√
1 +
|A|2
λ2

,

give rise to the discrete spectrum. The continuous spectrum is given by

q̂(λ) =
A∗

jλ
e−2jλt2

(
1− ∆

jλ
cot(∆T )

)−1

.

Note that as A→ 0, ∆→ λ, and one can see that in the limit of AT ≪ 1 there is no

discrete spectrum. Furthermore, the continuous spectrum tends to

q̂(λ) = −A∗Te−jλT ′

sinc(2Tf), λ = 2πf,

which is just the ordinary Fourier transform of the q(t).

Fig. 4.4 shows the two spectra for T = 1 and various values of A. For small A, there is

no discrete spectrum and the continuous spectrum is essentially just the ordinary Fourier
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transform of q(t). As A is increased, the continuous spectrum deviates from the ordinary

Fourier transform and one or more discrete mass points appear on the jω axis.

4.3.4 Elementary Properties of the Nonlinear Fourier Trans-

form

Let q(t)↔ (q̂(λ), q̃(λk)) be a nonlinear Fourier transform pair. The following properties

are proved in Appendix C.1.

1. (The ordinary Fourier transform as limit of the nonlinear Fourier transform): If

||q||L1 ≪ 1, there is no discrete spectrum and q̂(λ) → Q(λ), where Q(λ) is the

ordinary (linear) Fourier transform of −q∗(t)

Q(λ) = −
∞̂

−∞

q∗(t)e−2jλtdt.

2. (Weak nonlinearity): If |a| ≪ 1, then âq(λ) ≈ aq̂(λ) and ãq(λk) ≈ aq̃(λk). In

general, however, âq(λ) 6= aq̂(λ) and ãq(λk) 6= aq̃(λk).

3. (Constant phase change): êjφq(t)(λ) = ejφq̂(t)(λ) and ẽjφq(t)(λk) = ejφq̃(t)(λk).

4. (Time dilation): q̂( t
a
) = |̂a|q(aλ) and q̃( t

a
) = |̃a|q(aλk);

5. (Time shift): q(t− t0)↔ e−2jλt0 (q̂(λ, )q̃(λk));

6. (Frequency shift): q(t)e−2jωt ↔ (q̂(λ− ω), q̃(λk − ω));
7. (Lax convolution): If q2(t) = q1(t) ∗ (L,M ;L), then q̂2(λ) = H(λ,L)q̂1(λ) and

q̃2(λk) = H(λ,L)q̃1(λk). For the NLS equation, the channel filter is H(λ,L) =

exp(−4jλ2L).
8. (Parseval identity):

∞́

−∞
‖q(t)‖2 dt = Ê + Ẽ, where

Ê =
1

π

∞̂

−∞

log
(
1 + |q̂(λ)|2

)
dλ, Ẽ = 4

N∑

j=1

ℑ (λj) .

The quantities Ê and Ẽ represent the energy contained in the continuous and

discrete spectra, respectively.

In addition, we have the following properties related to the nonlinear Fourier trans-

form

1. (Causality and layer-peeling property): Let q1(t) and q2(t) be two signals with

non-overlapping support, e.g., signals in a pulse train. Without loss of generality,

assume that q1(t) is supported on t ≤ t0, and that q2(t) is supported on t > t0. If
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(a1, b1) and (a2, b2) are, respectively, the nonlinear Fourier coefficients of q1(t) and

q2(t), then the nonlinear Fourier coefficients of q1(t) + q2(t) are given by

(a(λ), b(λ)) = (a1(λ), b1(λ)) ◦ (a2(λ), b2(λ))
∆
=
(
a1(λ)a2(λ)− b1(λ)b∗2(λ∗), a1(λ)b2(λ) + b1(λ)a

∗
2(λ

∗)
)
.

That is to say, if we slice the signal in time in consecutive portions according to

a mesh −∞ < · · · < t−1 < t0 < t1 < · · · < ∞, the nonlinear Fourier coefficients

satisfy the Markov property

{ak(λ), bk(λ); q(t), tk < t < tk+1} → (ak+1(λ), bk+1(λ)) ,

where (ak(λ), bk(λ)) are the spectral coefficients calculated from q(t) in −∞ < t <

tk.

2. (Purely imaginary eigenvalues) If ||q||L1 <
π
2
, then there is no discrete spectrum.

If q(t) is real, nonnegative, piecewise smooth, and single-lobe (non-decreasing for

t < t0 and non-increasing for t > t0), then there are precisely N = ⌊1
2
+

||q(t)||L1

π
−ǫ⌋

eigenvalues, all purely imaginary and simple [51].

4.4 Evolution of the Nonlinear Fourier Transform

Derivation of the evolution of the nonlinear Fourier transform of a signal propagating

based on the NLS equation proceeds straightforwardly. As q(t, z) propagates, the eigen-

values of L are preserved and the eigenvectors of L propagate based on (4.19). Assuming

that q(t, z) and its time-derivative vanish at t = ±∞ for all z ≤ L during the propagation,

then as t→∞ (4.19) is reduced to

vz(t, z)→
(
2jλ2 0

0 −2jλ2

)
v(t, z). (4.32)

Thus the boundary conditions (4.21) and (4.22) are transformed to

v1(t, λ)→
(
0

1

)
ejλte−2jλ2z, t→ +∞,

v2(t, λ)→
(
1

0

)
e−jλte2jλ

2z, t→ −∞.
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These transformed boundary conditions are not consistent with the boundary conditions

(4.21) and (4.22) used to define the canonical eigenvectors, due to the additional factors

e±2jλ2z. As a result, the evolution of the canonical eigenvectors from z = 0, according

to vz = Mv, does not lead to the canonical eigenvectors at z = L. However, by proper

scaling, one can obtain the canonical eigenvectors at any z.

For instance, focusing on v2(t, λ; z), and changing variables to u2(t, λ; z) = v2(t, λ; z)e−2jλ2z,

we obtain u2t = Pu2 with boundary condition (4.22) for all z. Consequently, u2(t, λ; z) is

a canonical eigenvector for all z. By transforming (4.32), the evolution equation for u is

asymptotically (at t = +∞) given by

u2z(∞, λ; z) =
(
0 0

0 −4jλ2z

)
u2(∞, λ; z),

which gives

u21(∞, λ; z) = u21(∞, λ; 0)
u22(∞, λ; z) = u22(∞, λ; 0)e−4jλ2z

Using expressions (4.28) and (4.29) we obtain

a(λ, z) = lim
t→∞

u21(t, λ; z)e
jλt = lim

t→∞
u21(t, λ; 0)e

jλt = a(λ, 0)

b(λ, z) = lim
t→∞

u22(t, λ; z)e
−jλt = lim

t→∞
u22(t, λ; 0)e

−4jλ2ze−jλt

= b(λ, 0)e−4jλ2z.

In turn, the nonlinear Fourier transform propagates according to

q̂(t, z)(λ) = e−4jλ2z q̂(t, 0)(λ),

q̃(t, z)(λj) = e−4jλ2
jz q̃(t, 0)(λj),

λj(z) = λj(0), j = 1, 2, . . . , N. (4.33)

Note that, since a(λ, z) is preserved under the evolution (i.e., is independent of z), the

number of the discrete eigenvalues—which are zeros of a(λ)—are also preserved.

In summary, we see that the operation of the Lax convolution in the nonlinear Fourier

domain is described by a simple multiplicative (diagonal) operator, much in the same

way that the ordinary Fourier transform maps y(t) = x(t) ∗ h(t) to Y (ω) = X(ω) ·H(ω).

The channel filter in (4.33) is exp(−4jλ2z).
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4.5 An Approach to Communication over Integrable

Channels

Since the nonlinear Fourier transform of a signal is essentially preserved under Lax con-

volution, one can immediately conceive of a nonlinear analogue of orthogonal frequency

division multiplexing (OFDM) for communication over integrable channels. We refer to

this scheme as nonlinear frequency division multiplexing (NFDM). In this scheme, the

input output channel model is given by

Ŷ (λ) = H(λ)X̂(λ) + Ẑ(λ)

Ỹ (λj) = H(λj)X̃(λj) + Z̃(λj),

where X̂(λ) = q̂(λ, 0) and X̃(λj) = q̃(λ, 0) are spectra at the input of the channel,

Ŷ (λ) = q̂(λ, z) and Ỹ (λj) = q̃(λ, z) are spectra at the output of the channel, Ẑ(λ) and

Z̃(λj) are effective noises in the spectral domain, and the channel filter is

H(λ) = e−4jλ2z.

A bandlimited Gaussian noise in time domain generally maps to non-Gaussian noise

processes in the spectral domain.

The proposed scheme consists of two steps.

• The inverse nonlinear Fourier transform at the transmitter (INFT). At the trans-

mitter, information is encoded in the nonlinear spectra of the signal according to a

suitable constellation on
(
X̂(λ), X̃(λj)

)
. The time domain signal is generated by

taking the inverse nonlinear Fourier transform,

q(t) = INFT
(
X̂(λ), X̃(λ)

)
,

and is sent over the channel. (The INFT is described formally in the next section.)

• The forward nonlinear Fourier transform at the receiver (NFT). At the receiver,

the (forward) nonlinear Fourier transform of the signal,

(
Ŷ (λ), Ỹ (λ)

)
= NFT(q(t, z))

is taken and the resulting spectra are compared against the transmitted spectra

according to some metric d
(
X̂(λ), X̃(λ); Ŷ (λ), Ỹ (λ)

)
.

As q(t, 0) propagates in the time domain based on the complicated nonlinear equa-
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{λj , q̃(λj), q̂(λ)}TX

S/P INFT P/S D/A LPF

P/S NFT S/P A/D LPF

{λj , q̃(λj), q̂(λ)}RX

...
...

...
...

channel

Figure 4.5: Nonlinear frequency-division channel model.

tion, it is significantly distorted and, among other distortions, undergoes intersymbol

interference (ISI) in a very complicated manner. Despite this, the nonlinear spectra of

the signal,
(
X̂(λ), X̃(λj)

)
, are essentially held invariant during propagation, up to a

complex-valued scale factor (see (4.33)). All the nonlinear spectral components propa-

gate independently of each other, and the channel is decomposed into a number of linear

parallel independent channels of the form yk = ckxk + nk, where nk denotes the effective

noise in the kth channel. By diagonalizing the channel in this way, the ISI is removed in

the spectral domain.

In this scheme, as in linear OFDM, communication objectives, such as constella-

tion design, coding and modulation are entirely formulated in the spectral domain. All

available degrees of freedom, i.e., {λj, X̃(λj), X̂(λ)} can be generally modulated. Time

domain constraints can be translated to constraints in the spectral domain. A power

constraint, for instance, can be exactly transformed to a power constraint in the spectral

domain with the help of the Parseval Identity. A bandwidth limitation is not directly and

simply expressed in the nonlinear spectral domain; however, it appears that the nonlinear

spectrum of a signal bandlimited to W is indeed confined, approximately, to a vertical

strip in the real line and the upper half complex plane, with a width proportional to the

W .

Fig. 4.5 illustrates the NFDM channel model that we use in this thesis for data

transmission over integrable channels such as optical fibers.
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4.6 Inverse Nonlinear Fourier transform

In this section, we describe the inverse nonlinear Fourier transform, which is a method

for recovering the signal q(t, ·) from its nonlinear Fourier transform (q̂(λ), q̃(λj)). This is

the opposite of what was done in the Section 4.3, and it gives further important insight

into the mechanism of the NFT. As in Section 4.3, the value of z is irrelevant here and

the index z is thus suppressed.

4.6.1 Riemann-Hilbert Factorization

In the 1950s, before the publication of Gardner [42], a method for retrieving the poten-

tial q(t) in the linear Schrödinger equation from the knowledge of the scattering matrix

S was already known in quantum mechanics. It was later realized that this method is

an instance of a Riemann-Hilbert problem in complex analysis [10, 37]. Alternatively,

the same task can be accomplished using the Gelfand-Levitan method [10], a different

approach developed earlier in the context of inverse problems for Sturm-Liouville differ-

ential equations. Although either of these methods can be used for solving the inverse

problem, in this thesis we will use the Riemann-Hilbert method.

To begin, canonical eigenvectors can be found in two ways. On the one hand, they

are related to q(t) through the Zakharov-Shabat system (4.18). One can solve (4.18) to

explicitly express the canonical eigenvectors as a series involving q(t). On the other hand,

canonical eigenvectors are related to the nonlinear Fourier transform via the projection

equations (4.24)-(4.25). The latter are two equations for four unknowns and in general

cannot be solved. However, the unique properties of the canonical eigenvectors, which

are analytic in disjoint regions of the complex plane, will allow us to find them in terms

of the nonlinear Fourier transform. Note that this second derivation does not explicitly

depend on q(t); however, by equating the canonical eigenvectors obtained from these two

derivations, we can relate the signal q(t) to its nonlinear Fourier transform (q̂(λ), q̃(λj)).

We find it helpful to briefly introduce the tool that we employ in this section, namely

the Riemann-Hilbert factorization problem in complex analysis.

Definition 7 (Riemann-Hilbert factorization). The Riemann-Hilbert factorization prob-

lem consists of finding two complex functions f−(z) and f+(z), respectively, analytic in-

side and outside of a closed contour C in the complex plane, such that on C they satisfy

the boundary condition f+(z) = g(z)f−(z) for some given g(z).

It g(z) satisfies a Hölder condition, it is possible to find both f+(z) and f−(z) ev-

erywhere in the complex plane from the given boundary condition. In Appendix B, we
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provide a brief overview of this problem and its solution. See [52] for more discussion.

4.6.2 The Inverse Transform

The inverse transform maps the two spectral functions (q̂(λ), q̃(λj)) to the signal q(t).

As noted, we need to express the canonical eigenvectors in terms of the nonlin-

ear Fourier transform. Below we will find it more convenient to work with canonical

eigenvectors subject to fixed boundary conditions. Scaling the canonical eigenvectors as

V 2 = v2ejλt, Ṽ 2(t, λ∗) = ṽ2(t, λ∗)e−jλt, V 1 = v1e−jλt and Ṽ 1(t, λ∗) = ṽ1(t, λ∗)ejλt, the

projection equations (4.24) and (4.25) are transformed to

V 2(t, λ) = a(λ)Ṽ 1(t, λ∗) + b(λ)e2jλtV 1(t, λ), (4.34)

Ṽ 2(t, λ∗) = −a∗(λ∗)V 1(t, λ) + b∗(λ∗)e−2jλtṼ 1(t, λ∗). (4.35)

Lemma 10. If q ∈ L1(R), then V 1(t, λ) and V 2(t, λ) are analytic functions of λ in the

upper half complex plane C+ = {z ∈ C : ℑ(z) > 0} while Ṽ 1(t, λ∗) and Ṽ 2(t, λ∗) are

analytic functions of λ in the lower half complex plane C− = {z ∈ C : ℑ(z) < 0}.

Proof. See Appendix C.2.

Rearranging (4.34)-(4.35) gives

(
V 1(t, λ) V 2(t, λ)

)

=
(
Ṽ 1(t, λ∗) Ṽ 2(t, λ∗)

)( b∗(λ∗)
a∗(λ∗)

e−2jλt 1
a∗(λ∗)

−1
a∗(λ∗)

− b(λ)
a∗(λ∗)

e−2jλt

)
. (4.36)

Since
(
V 2 V 1

)
and

(
Ṽ 2(t, λ∗) Ṽ 1(t, λ∗)

)
are analytic, respectively, in the upper and

lower half-planes, (4.36) defines a matrix Riemann-Hilbert problem.

Solution of the Riemann-Hilbert factorization problem (4.36) is given in Appendix C.4.

Omitting the details, the following linear system of equations, known as the Riemann-
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Hilbert system, is obtained:

Ṽ 1(t, λ∗) =

(
1

0

)
+

N∑

i=1

q̃(λi)e
2jλitV 1(t, λi)

λ− λi

+
1

2πj

∞̂

−∞

q̂(ζ)e2jζtV 1(t, ζ)

ζ − (λ− jǫ) dζ,

V 1(t, λ) =

(
0

1

)
−

N∑

i=1

q̃∗(λ∗i )e
−2jλ∗

i tṼ 1(t, λ∗i )

λ− λ∗i

+
1

2πj

∞̂

−∞

q̂∗(ζ∗)e−2jζtṼ 1(t, ζ∗)

ζ − (λ+ jǫ)
dζ,

Ṽ 1(t, λ∗m) =

(
1

0

)
+

N∑

i=1

q̃(λi)e
2jλitV 1(t, λi)

λ∗m − λi

+
1

2πj

∞̂

−∞

q̂(ζ)e2jζtV 1(t, ζ)

ζ − λ∗m
dζ, m = 1, . . . , N,

V 1(t, λm) =

(
0

1

)
−

N∑

i=1

q̃∗(λ∗i )e
−2jλ∗

i tṼ 1(t, λ∗i )

λm − λ∗i

+
1

2πj

∞̂

−∞

q̂∗(ζ∗)e−2jζtṼ 1(t, ζ∗)

ζ − λm
dζ,

m = 1, . . . , N. (4.37)

This is a system of 2N +2 linear equations for 2N +2 discrete and continuous canonical

eigenvectors {V 1(t, λm)}Nm=1, {Ṽ 1(t, λm)}Nm=1, and V
1(t, λ) and Ṽ 1(t, λ) as a function of

the Fourier transform (q̂(λ), q̃(λj)).

Next, the canonical eigenvectors are related to the signal q(t). By inspecting the

Zakharov-Shabat system (4.18), it is shown in Appendix C.3 that for |λ| ≫ 1

V 1(t, λ) =




1
2jλ
q(t)

1 + 1
2jλ

∞́

−∞
|q(t)|2dt


+O(λ−2). (4.38)

It now becomes easy to recover the signal q(t) from the nonlinear Fourier transform

(q̂(λ), q̃(λj)). Eigenvector V
1 is related to q via (4.38) for |λ| ≫ 1, and is related to the

nonlinear Fourier transform via the second equation in (4.37). Approximating 1/(λ− ζ)
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and 1/(λ − λi) by −1/λ + O(λ−2) in the second equation of (4.37) for |λ| ≫ 1 and

comparing V 1
1 with V 1

1 in (4.38), we obtain

q∗(t) = 2j
N∑

i=1

q̃(λi)e
2jλitV 1

2 (t, λi)

− 1

π

ˆ ∞

−∞
q̂(λ)e2jλtV 1

2 (t, λ)dλ. (4.39)

This represents q(t) as a function of the nonlinear Fourier transform.

In summary, given (q̂(λ), q̃(λj)), we first solve the Riemann-Hilbert system to find the

eigenvector V 1. For this purpose, one can discretize the system (4.37) and solve a linear

system of equations of the form

Ax = b,

for appropriate A and b. This is done for each fixed ti to determine the samples of

V l(ti, λ) at that time. Then, V 1, q̂ and q̃ are substituted in (4.39) to obtain the signal

q(t).

Note that this inverse transform is taken only once at the transmitter to synthesize

the desired pulse shapes. It is only the forward transform which needs to be taken in

real time at the receiver.

The mathematical tools developed in this chapter are used in the subsequent chap-

ters to present further details pertaining the application of the suggested scheme in data

transmission over integrable channels. In the next chapter, numerical methods are pre-

sented to compute NFT. An important special case occurs when the continuous spectrum

is zero. This corresponds to N -soliton signals, where the inverse NFT can be carried out

in several ways. N -solitons are discussed in Chapter 6.

4.7 Summary

The nonlinear Fourier transform of a signal with respect to an operator L in a Lax

pair consists of continuous and discrete spectral functions x̂(λ) and x̃(λj), obtainable by

solving the eigenproblem for the L operator. The NFT maps a Lax convolution to a

multiplication operator in the spectral domain. Using the nonlinear Fourier transform,

we propose a transmission scheme for integrable channels, termed nonlinear frequency-

division multiplexing, in which the information in encoded in the nonlinear spectrum of

the signal. The scheme is an extension of traditional OFDM to any channel generated by
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a Lax pair. An example is the optical fiber channel, in which signals propagate according

to the nonlinear Schrödinger equation. The class of integrable channels, though nonlinear

and often complicated, are somehow “linear in disguise,” and thus admit the proposed

nonlinear frequency-division multiplexing transmission scheme.



Chapter 5

Numerical Methods For Computing

the NFT

The purpose of computing is insight,

not numbers.

Richard Hamming

The nonlinear Fourier transform of a signal q(t) is a pair of functions: the continuous

spectrum q̂(λ), λ ∈ R, and the discrete spectrum q̃(λj), ℑλj > 0, j = 1, . . . ,N. The

NFT arises in the study of integrable waveform channels as defined in Chapter 4. In

such channels, signals propagate (in a potentially complicated manner) according to a

given integrable evolution equation, whereas the nonlinear Fourier transform of the signal

propagates according to a (simple) multiplication operator.

In Chapter 4, we proposed nonlinear frequency-division multiplexing (NFDM), a

scheme that uses the nonlinear Fourier transform for data communication over inte-

grable channels. NFDM extends traditional orthogonal frequency division multiplexing

(OFDM) to channels generatable by a Lax pair. An example is the optical fiber channel,

where signal propagation is modeled by the (integrable) nonlinear Schrödinger (NLS)

equation. In general, the channel input-output relations in the NFT domain are (see

Chapter 4)

Ŷ (λ) = H(λ)X̂(λ) + Ẑ(λ),

Ỹ (λj) = H(λj)X̃(λj) + Z̃(λj),

where X̂(λ) and X̃(λj) are continuous and discrete spectra at the input of the channel,

Ŷ (λ) and Ỹ (λj) are spectra at the output of the channel, and Ẑ(λ) and Z̃(λj) represent

82
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noise. The channel filter H(λ) for the NLS equation is given by H(λ) = exp(−4jλ2z).
NFDM is able to deal directly with nonlinearity and dispersion, without the need

for additional compensation at the transmitter or receiver. In this scheme, informa-

tion is encoded in the nonlinear spectrum at the channel input, and the corresponding

time-domain signal is transmitted. At the receiver, the NFT of the received signal is

computed, and the resulting spectra Ŷ (λ) and Ỹ (λj) are subsequently used to recover

the transmitted information.

Similar to the ordinary Fourier transform, while the NFT can be computed analyti-

cally in a few cases, in general, numerical methods are required. Such methods must be

robust, reliable and fast enough to be implemented in real time at the receiver. In this

chapter, we suggest and evaluate the performance of a number of numerical algorithms for

computing the forward NFT of a given signal. Using these algorithms, we then perform

extensive numerical simulations to understand the behavior of the nonlinear spectrum

for various pulse shapes and parameters commonly used in data communications.

We are aware of no published work presenting the NFT of various signals numeri-

cally, for different pulse shapes and parameters. Such work is necessary to clarify the

structure of the nonlinear spectrum and help in its understanding. In part, this has been

due to the fact that the NFT has largely remained a theoretical artifice, and practical

implementation of the NFT as an applied tool has not yet been pursued in engineering.

We review the relevant literature in Section 5.1 and suggest new schemes for the

numerical evaluation of the NFT. Although these methods are general and work for the

AKNS system [48], for the purpose of illustration, we specialize the AKNS system to

the Zakharov-Shabat system. All these methods are put to test in cases where analyt-

ical formulae exist and are compared with one another in Section 5.5. Only some of

these methods will be chosen for the subsequent numerical simulations; these are the

layer-peeling method, Ablowitz-Ladik integrable discretization, and the spectral matrix

eigenvalue scheme. These methods are used in the next sections to numerically compute

the nonlinear Fourier transform of a variety of practical pulse shapes encountered in data

communications.

5.1 The Nonlinear Fourier Transform

Details of the nonlinear Fourier transform can be found in Chapter 4. Here we briefly re-

call a few essential ingredients required in the numerical computation of the forward

transform. As noted earlier, we illustrate numerical methods in the context of the

Zakharov-Shabat system, which is a Lax operator for the nonlinear Schrödinger equation.
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For later use, we recall that the slowly-varying complex envelope q(t, z) of a narrow-

band small-amplitude signal propagating in a dispersive weakly-nonlinear medium, such

as an optical fiber, satisfies the cubic nonlinear Schrödinger equation. By proper scaling,

the equation can be normalized to the following dimensionless form in 1 + 1 dimensions:

jqz = qtt + 2|q|2q. (5.1)

Here t denotes retarded time, and z is distance.

The NFT for an integrable evolution equation starts by finding a Lax pair of operators

L and M such that the evolution equation arises as the compatibility condition Lz =

[M,L] =ML− LM . For the NLS equation, we may take operator L as

L = j

(
∂
∂t

−q(t, z)
−q∗(t, z) ∂

∂t

)
. (5.2)

(The corresponding M operator can be found in Chapter 4.)

The NFT is defined via the spectral analysis of the L operator (5.2). The spectrum

of L is found by solving the eigenproblem Lv = λv, where λ is an eigenvalue of L and

v is its associated eigenvector. It can be shown that the operator L in (5.2) has the

isospectral flow property, i.e., its spectrum is invariant even as q evolves according to the

NLS equation.

The eigenproblem Lv = λv can be simplified to

vt =

(
−jλ q(t)

−q∗(t) jλ

)
v. (5.3)

Note that the z-dependence of q is suppressed in (5.3) (and throughout this chapter),

as this variable comes into play only in the propagation of the signal, not in the definition

and computation of the NFT.

Assumption 1. Throughout this thesis we assume that (a) q ∈ L1(R), and (b) q(t) is

supported in the finite interval [T1, T2].

The set of eigenvectors v associated with eigenvalue λ in (5.3) is a two-dimensional

subspace Eλ of the continuously differentiable functions. We define the adjoint of a vector

v = [v1(t), v2(t)]
T as ṽ = [v∗2(t),−v∗1(t)]T . If v(t, λ∗) is an element of Eλ∗ , then ṽ(t, λ∗) is

an element of Eλ. It can be shown that any pair of eigenvectors v(t, λ) and ṽ(t, λ∗) form

a basis for Eλ (see Section 4.3.1). Using Assumption 1(b), we can select an eigenvector
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v1(t, λ) to be a solution of (5.3) with the boundary condition

v1(T2, λ) =

(
0

1

)
ejλT2 .

The basis eigenvectors v1 and ṽ1 are called canonical eigenvectors.

Having identified a basis for the subspace Eλ, we can project any other eigenvector

v2 on this basis according to

v2(t, λ) = a(λ)ṽ1(t, λ) + b(λ)v1(t, λ). (5.4)

Following Assumption 1(b), a particular choice for v2 is made by solving the system

vt =

(
−jλ q(t)

−q∗(t) jλ

)
v, v(T1, λ) =

(
1

0

)
e−jλT1 , (5.5)

in which we dropped the superscript 2 in v2 for convenience. By solving (5.5) in the

interval [T1, T2] for a given λ and obtaining v(T2, λ), the nonlinear Fourier coefficients

a(λ) and b(λ) can be obtained by considering (5.4) at t = T2. The resulting coefficients

obtained in this manner are

a(λ) = v1(T2)e
jλT2 ,

b(λ) = v2(T2)e
−jλT2 . (5.6)

The NFT of a signal q(t) consists of a continuous spectral function defined on the

real axis λ ∈ R

q̂(λ) =
b(λ)

a(λ)
, λ ∈ R,

and a discrete spectral function defined on the upper half complex plane C+ = {λ :

ℑ(λ) > 0}

q̃(λj) =
b(λj)

da(λ)/dλ|λ=λj

, j = 1, · · · ,N,

where λj are eigenvalues and correspond to the (isolated) zeros of a(λ) in C+, i.e.,

a(λj) = 0.

From the discussions made, in order to compute the nonlinear spectrum of q(t), the

system of differential equations (5.5) needs to be solved in the interval [T1, T2]. Except
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for special cases, (5.5) needs to be solved numerically.

Numerical methods for the calculation of the forward nonlinear Fourier transform are

divided into two classes in this chapter:

1. Methods which estimate the continuous spectrum by directly integrating the

Zakharov-Shabat system; see Section 5.2.

2. Methods which find the (discrete) eigenvalues. Two approaches are suggested in

this thesis for this purpose. Similar to the continuous spectrum estimation, we

can integrate the Zakharov-Shabat system numerically and obtain a(λ). To find

zeros of a(λ), the scheme is often supplemented with a search method to locate

eigenvalues in the upper half complex plane. One can also discretize and rewrite

the Zakharov-Shabat system in the interval [T1, T2] as a (large) matrix eigenvalue

problem; see Section 5.3.

We begin by discussing methods which estimate the continuous spectrum.

5.2 Numerical Methods for Computing the Contin-

uous Spectrum

In this section, we assume that λ ∈ R is given and provide algorithms for calculating

the nonlinear Fourier coefficients a(λ) and b(λ). The continuous spectral function is then

easily computed as the ratio q̂(λ) = b(λ)/a(λ). This process can be repeated to compute

the spectral amplitudes for any desired finite set of continuous frequencies λ.

5.2.1 Forward and Central Discretizations

The most obvious method to attempt to solve (5.5) is the first-order Euler method or

one of its variations [53].

Recall that the signal q(t) is supported in the finite time interval [T1, T2], and partition

this interval uniformly according to the mesh T1 < T1+ ǫ < · · · < T1+Nǫ = T2 with size

N , i.e., with ǫ = (T2 − T1)/N . Let q[k]
∆
= q(kǫ) and let

P [k]
∆
=

(
−jλ q[k]

−q∗[k] jλ

)
. (5.7)

Integrating both sides of (5.5) from kǫ to (k+1)ǫ and assuming that the right hand side
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is constant over this interval, we get

v[k + 1] = v[k] + ǫP [k]v[k], k = 0, . . . , N,

v[0] =

(
1

0

)
e−jλT1 . (5.8)

Equation (5.8) is iterated from k = 0 to k = N to find v[N ]. The resulting vector is

subsequently substituted in (5.6) to obtain a(λ) and b(λ).

We have implemented the Euler method for the calculation of the nonlinear Fourier

transform of a number of pulse shapes. Unfortunately, the one-step Euler method does

not produce satisfactory results for affordable small step sizes ǫ.

One can improve upon the basic Euler method by considering the central difference

iteration [53],

v[k + 1] = v[k − 1] + 2ǫP [k]v[k].

This makes the discretization second-order, i.e., the error v(T1 + kǫ) − v[k] is of order

O(ǫ2). Here an additional initial condition is required too, which can be obtained, e.g.,

by performing one step of the regular forward difference (5.8).

5.2.2 Fourth-order Runge-Kutta Method

One can also employ higher-order integration schemes such as the Runge-Kutta methods.

Improved results are obtained using the fourth-order Runge-Kutta method [54–56]. How-

ever it takes significant time to estimate the spectrum using such higher order numerical

methods in real-time. Since the method, with its typical parameters, is quite slow and

does not outperform some of the schemes suggested in the following sections, we do not

elaborate on this method here; see [53] for details. However, for comparison purposes we

will include this scheme in our numerical simulations given in Section 5.5.

5.2.3 Layer-peeling Method

In Section 4.3.3 of Chapter 4, we have calculated the nonlinear spectra of a rectangular

pulse. One can approximate q(t) as a piece-wise constant signal and use the layer-peeling

property of the nonlinear Fourier transform to estimate the spectrum of any given signal.

Let a[k] and b[k] be the nonlinear Fourier coefficients of q(t) in the interval [T1, kǫ), and

x[k] and y[k] coefficients in the small (rectangular) region [kǫ, kǫ + ǫ). The iterations of
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the layer-peeling method read

(a[k + 1], b[k + 1]) = (a[k], b[k]) ◦ (x[k], y[k]), (5.9)

(a[0], b[0]) = (1, 0),

where the ◦ operation is defined as in [57]

a[k + 1] = a[k]x[k]− b[k]ȳ[k],
b[k + 1] = a[k]y[k] + b[k]x̄[k],

in which

x[k] =

(
cos(Dǫ)− j λ

D
sin(Dǫ)

)
ejλ(t[k]−t[k−1]),

y[k] =
−q∗k
D

sin(Dǫ)e−jλ(t[k]+t[k−1]),

and x̄[k](λ) = x∗[k](λ∗), ȳ[k](λ) = y∗[k](λ∗), D =
√
λ2 + |q[k]|2. The desired coefficients

are obtained as a := a[N ] and b := b[N ]. Note that the exponential factors in x[k]

and y[k] enter in a telescopic manner. As a result, for the numerical implementation,

it is faster to drop these factors and just scale the resulting a[N ] and b[N ] coefficients

by exp(jλ(T2 − T1)) and exp(−jλ(T2 + T1)), respectively. This, however, reduces the

accuracy as it involves the product of large and small numbers.

We are motivated by [37] in which the layer-peeling identity (5.9) is mentioned as a

property of the nonlinear Fourier transform. An equivalent presentation of this method

is given in [56,58,59] as well.

Note further that a different numerical method, but with the same name (layer-

peeling), exists in geophysics and fiber Bragg design [60]; however this method is not

related to the problem considered here.

We shall see in Section 5.5 that the layer-peeling method gives remarkably accurate

results in estimating the nonlinear Fourier transform.

5.2.4 Crank-Nicolson Method

In the Crank-Nicolson method, the derivative of the evolution parameter is approximated

by a finite-difference approximation, e.g., forward discretization, and other functions are
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discretized by taking their average over the end points of the discretization interval:

v[k + 1]− v[k]
ǫ

=
1

2
(P [k]v[k] + P [k + 1]v[k + 1]) ,

where P [k] is defined in (5.7). This implicit iteration can be made explicit

v[k + 1] = (I − ǫ

2
P [k + 1])−1(I +

ǫ

2
P [k])v[k],

k = 0, . . . , N

with initial condition (5.8). As we will see, this simple scheme too gives good results in

estimating the nonlinear spectrum.

5.2.5 The Ablowitz-Ladik Discretization

Ablowitz-Ladik discretization is an integrable discretization of the NLS equation in time

domain [61, 62]. In this section, we suggest using the Lax pairs of the Ablowitz-Ladik

discretization of the NLS equation for solving the Zakharov-Shabat eigenproblem in the

spectral domain [63].

Discretization sometimes breaks symmetries, making the discrete version of an in-

tegrable equation no longer integrable. A consequence of symmetry-breaking is that

quantities that are conserved in the continuous model may no longer be invariant in the

discretized equation. A completely integrable Hamiltonian system with an infinite num-

ber of conserved quantities might have a discretized version with no, or few, conserved

quantities. The discrete equation therefore does not quite mimic the essential features of

the original equation if the step size is not small enough.

However, for some integrable equations, discretizations exist which are themselves

completely integrable Hamiltonian systems, i.e., they possess an infinite number of con-

served quantities and are linearizable by a Lax pair, and therefore are solvable by the

nonlinear Fourier transform. Such developments exist for the NLS and Korteweg-de Vries

(KdV) equations.

For the NLS equation, the integrable discrete version was introduced by Ablowitz

and Ladik [61]. To illustrate the general idea, let us replace 1 ± jλǫ for small ǫ with

e±jλǫ in the forward discretization method (5.8) (the opposite of what is usually done in

practice). Let z = e−jλǫ represent the discrete eigenvalue, Q[k] = q[k]ǫ, and

R[k] =

(
z Q[k]

−Q∗[k] z−1

)
. (5.10)
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The Ablowitz-Ladik iteration is

v[k + 1] = R[k]v[k], v[0] =

(
1

0

)
e−jλT1 . (5.11)

Under this z transformation, the upper half complex plane in λ domain is mapped to the

exterior of the unit circle in the z domain. The continuous spectrum therefore lies on the

unit circle |z| = 1, while the discrete spectrum lies outside of the unit circle |z| > 1.

One can rewrite the R-equation (5.10) in the eigenvalue form Lv[k] = zv[k], with the

following L operator

L =

(
Z −Q[k]

−Q∗[k − 1] α[k − 1]Z−1

)
, (5.12)

where α[k] = 1+ |Q[k]|2, and Z is the shift operator, i.e., Z−1x[k] = x[k− 1], k ∈ Z. To

the first order in ǫ, α[k] ≈ 1 and (5.12) can be simplified to

L =

(
Z −Q[k]

−Q∗[k] Z−1

)
. (5.13)

Given the L operator (5.13), one can consider the M operator of the continuous NLS

equation and modify its elements such that the compatibility equation Lz = [M,L]

represents a discretized version of the NLS equation. It is not hard to verify that after

doing so we are led to an M operator resulting in the following discrete integrable NLS

equation

j
dq[k]

dz
=
q[k + 1]− 2q[k] + q[k − 1]

ǫ2

+ |q[k]|2(q[k + 1] + q[k − 1]). (5.14)

Here the space derivative remains intact and the signal q[k] is discretized in time, in

such a way that the nonlinearity is somehow averaged among three time samples. In the

continuum limit ǫ → 0, (5.14) approaches the continuous NLS equation and its merits

lie in the fact that it is integrable for any ǫ, not just in the limit ǫ → 0. For example,

soliton pulses can be observed in this model for any ǫ. The equation has its own infinite

number constants of motion, approaching integrals of motion in the continuum limit.

The operator M which leads to (5.14), and the details of the nonlinear Fourier transform

for (5.14) can be found in [9, 61].

We conclude that the Ablowitz-Ladik discretization can be used not only as a means
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to discretize the NLS equation in the time domain, but also as a means to solve the

continuous-time Zakharov-Shabat system in the spectral domain. This is a non-finite-

difference discretization, capable of dealing with oscillations exp(±jλt) in the Zakharov-

Shabat system, which greatly enhances the accuracy of the one-step finite-difference

methods.

Following the Tao and Thiele’s approach [37] and [54], we can also normalize the R[K]

matrix

v[k + 1] =
1√

1 + |Q[k]|2

(
z Q[k]

−Q[k]∗ z−1

)
v[k]. (5.15)

The scale factor does not change the spectrum significantly, since it is canceled out in

the ratios q̂ = b/a and q̃ = b/a′, and also its effects are second order in ǫ. However,

numerically, normalization may help in reducing the numerical error. In subsequent

sections, we refer to (5.11) as the Ablowitz-Ladik method (AL1) and to (5.15) as the

modified Ablowitz-Ladik method (AL2).

5.3 Methods for Calculating the Discrete Spectrum

In order to compute the discrete spectrum, the zeros of a(λ) in the upper half complex

plane must be found. One way to visualize this is to assume a two-dimensional mesh in

C+ and determine a at all mesh points. Discrete eigenvalues are then easily identified by

looking at the graph of |a(λ)|; in many cases they correspond to deep and narrow “wells”

corresponding to the zeros of the magnitude of a.

As noted earlier, two types of methods are suggested to calculate the point spectrum.

1. One can use the integration-based algorithms mentioned in Section 5.2 which

calculate nonlinear Fourier coefficients, and search for eigenvalues using a root

finding method, such as the Newton-Raphson method. Such methods require

good initial points and one needs to be careful about convergence [53].

2. It is also possible to rewrite the spectral problem for an operator as a (large)

matrix eigenvalue problem. The point spectrum of the operator can be found in

this way too.

5.3.1 Search Methods

To calculate the discrete spectral amplitude q̃ = b/a′, we require da/dλ as well. As we

will show, information about the derivative of a can be updated recursively along with
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the information about a, without resorting to approximate numerical differentiation.

Recall that the nonlinear Fourier coefficient a(λ) is given by (5.6)

a(λ) = v1[N ]ejλt[N ].

Taking the derivative with respect to λ, we obtain

da(λ)

dλ
= ((v1[N ])′ + jT2v1[N ]) ejλt[N ].

We can update the derivative information dv/dλ along with v. In methods of Section 5.2,

the transformation of eigenvectors from t[k] to t[k + 1] can be generally represented as

v[k + 1] = A[k]v[k],

for some suitable one-step update matrix Ak (which varies from method to method).

Differentiating with respect to λ and augmenting v with v′ = dv/dλ, we get the iterations

v[k + 1] = A[k]v[k], (5.16)

v′[k + 1] = A′[k]v[k] + A[k]v′[k], (5.17)

with initial conditions

v[0] =

(
1

0

)
e−jλt[0], v′[0] =

(
−jt[0]

0

)
e−jλt[0].

The derivative matrix A′ depends on the method used.

For the forward discretization scheme:

A′ =M1 =

(
−j 0

0 j

)
ǫ.

For the Crank-Nicolson scheme:

A′ =
1

2
(I +M2)

−1 (I + (I +M2)
−1 (I −M2)

)
M1,

where

M2 =

(
1
2
jλ −1

2
q[k]

1
2
q∗[k] −1

2
jλ

)
ǫ.
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For the Ablowitz-Ladik method:

A′ =

(
−jz 0

0 jz−1

)
ǫ.

The desired coefficients are obtained at k = N as follows

a(λ) = v1[N ]ejλt[N ],

b(λ) = v2[N ]e−jλt[N ],

a′(λ) = (v′1[N ] + jt[N ]v1[N ]) ejλt[N ].

Similarly, the layer-peeling iteration can be augmented to update a′(λ) as well:

a[k + 1] = a[k]x[k]− b[k]ȳ[k],
b[k + 1] = a[k]y[k] + b[k]x̄[k],

a′[k + 1] = a′[k]x[k] + a[k]x′[k]− (b′[k]ȳ[k] + b[k]ȳ′[k]),

b′[k + 1] = a′[k]y[k] + a[k]y′[k] + b′[k]x̄[k] + b[k]x̄′[k],

a[0] = 1, b[0] = a′[0] = b′[0] = 0, (5.18)

where

x[k] = cos(Dǫ)− j λ
D

sin(Dǫ),

y[k] =
−q∗k
D

sin(Dǫ),

x′[k] = −jλ
2ǫ

D2
cos(Dǫ)−

(
j + λǫ

D
− jλ2

D3

)
sin(Dǫ),

y′[k] = −q
∗
kλ

D3
(Dǫ cos(Dǫ)− sin(Dǫ)) .

The expressions for x̄′[k] and ȳ′[k] are similar, with j replaced with −j and q[k] replaced
with −q∗[k].

With the derivative information being available, the Newton-Raphson method is a

good scheme to search for the location of the (discrete) eigenvalues. The iteration for the

complex-valued Newton-Raphson scheme is

λk+1 = λk − αk

a(λk)

a′(λk)
, (5.19)

where αk is some step size modifier; usually αk = 1. The iteration stops if λk is almost
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stationary, i.e., if |α a
a′
| < δ for a small δ. In practice, the quadratic convergence of the

scheme is often very fast and occurs in just a few iterations.

In data communications, since noise is usually small, the points in the transmitted

constellation can (repeatedly) serve as the initial conditions for (5.19). In this case,

convergence is usually achieved in a couple of iterations. For an unknown signal, random

initial conditions are chosen. In either case, one or more sequence of Newton iterations

have to be performed for any single eigenvalue.

To make sure that all of the eigenvalues are found, we can check the trace formula

for n = 1, 2, 3. The trace formula is a time frequency identity relating the hierarchy of

infinitely many conserved quantities to the spectral components.

In general, the trace formula represents a time domain conserved quantity as the sum

of discrete and continuous spectral terms:

E(k) = E
(k)
disc + E

(k)
cont,

where

E
(k)
disc =

4

k

N∑

i=1

ℑ
(
λki
)
,

E
(k)
cont =

1

π

∞̂

−∞

λk−1 log
(
1 + |q̂(λ)|2

)
dλ,

and where E(k) are time domain conserved quantities (functionals of the signal). The

first few conserved quantities are energy

E(1) =

∞̂

−∞

|q(t, z)|2dt,

momentum

E(2) =
1

2j

∞̂

−∞

q(t)
dq(t)

dt
dt,

and Hamiltonian

E(3) =
1

(2j)2

∞̂

−∞

(
|q(t)|4 −

∣∣∣∣
dq(t)

dt

∣∣∣∣
2
)
dt.
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For n = 1, the trace formula is a kind of Parseval’s identity (Plancherel’s theorem),

representing the total energy of the signal in time as the sum of the energy of the discrete

and continuous spectral functions. When satisfied, the Parseval’s identity ensures that

all of the signal energy has been accounted for.

We first calculate the continuous spectrum and its “energy terms” for a sufficiently

fine mesh on the real λ axis. The energy difference Eerror =
∣∣∣
∣∣∣E(k) − E(k)

cont

∣∣∣
∣∣∣ gives an

estimate on the number of missing eigenvalues. When a new eigenvalue λ is found, this

error is updated as Eerror :=
∣∣∣
∣∣∣E(k) − E(k)

cont − 4
k
ℑλk

∣∣∣
∣∣∣. The process is repeated until Eerror

is less than a small prescribed tolerance value.

To summarize, given the signal q(t), its nonlinear Fourier transform can be computed

based on Algorithm 1.

5.3.2 Discrete Spectrum as a Matrix Eigenvalue Problem

The methods mentioned in Section 5.3.1 find the discrete spectrum by searching for

eigenvalues in the upper half complex plane. Sometimes it is desirable to have all eigen-

values at once, which can be done by solving a matrix eigenvalue problem [55,63]. These

schemes obviously estimate only (discrete) eigenvalues and do not give information on

the rest of the spectrum. Since the matrix eigenvalue problem can be solved quickly

for small-sized problems, it might take less computational effort to compute the discrete

spectrum in this way. In addition, one does not already need the continuous spectrum

to estimate the size of the discrete spectrum. On the other hand, for large matrices that

arise when a large number of signal samples are used, the matrix eigenproblem (which

is usually not Hermitian) is slow and it may be better to find the discrete spectrum

using the search-based methods. The matrix-based methods also have the disadvantages

that they can generate a large number of spurious eigenvalues, and one may not be able

to restrict the algorithm for finding eigenvalues of a matrix to a certain region of the

complex plane.

Below we rewrite some of the methods mentioned in the Section 5.2 as a regular

matrix eigenvalue problem, for the computation of the discrete spectrum.
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Algorithm 1 Numerical Nonlinear Spectrum Estimation

Sample the signal at a sufficiently small step size ǫ.
Fix a sufficiently fine mesh M on the real λ axis.
for each λ ∈M do
Iterate (5.16) from k = 0 to k = N to obtain v[N ].
Compute the continuous spectral amplitude

ρ(λ) =
v2[N ]

v1[N ]
e−2jλt[N ].

end for
Initialize the error e = ||E − Econt||.
while |e| > ǫ1 do
Choose λ0 ∈ D randomly, where D is a prescribed region in C+.
Set i = 0;
repeat
Iterate (5.16)-(5.17) from k = 0 to k = N to obtain v[N ] and v′[N ], and perform
a Newton-Raphson update

λi+1 = λi −∆λ, ∆λ = αi

v1[N ]

v′1[N ] + jt[N ]v1[N ]

if If λi+1 /∈ D then
choose λ0 ∈ D randomly.
Set i := −1.

end if
Set i := i+ 1.

until |∆λ| < ǫ2 and i > 0
λi is an eigenvalue and the associated spectral amplitude is

q̃(λi) =
v2[N ]

v′1[N ] + jt[N ]v1[N ]
e−2jλit[N ].

Update e := ||E − Econt − Edisc||, where Edisc = [4ℑλi, 2ℑλ2i , 43ℑλ3i ].
end while
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Central-difference Eigenproblem

The matrix eigenvalue problem can be formulated in the time domain or the frequency

domain [55]. Consider the Zakharov-Shabat system in the form Lv = λv

j

(
∂
∂t

−q
−q∗ − ∂

∂t

)
v = λv. (5.20)

In the time domain, one can replace the time derivative ∂/∂t by the central finite-

difference matrix

D =
1

2ǫ




0 1 0 · · · −1
−1 0 1 · · · 0

· · ·
0 0 −1 0 1

1 0 0 −1 0



,

and expand (5.20) as

j

(
D −diag(q[k])

−diag(q∗[k]) −D

)
v[k] = λv[k]. (5.21)

The point spectrum is contained in the eigenvalues of the matrix in the left hand side of

(5.21).

Eigenvalues of a real symmetric or Hermitian matrix can be found relatively efficiently,

owing to the existence of a complete orthonormal basis and the stability of the eigenvalues.

In this case, a sequence of unitary similarity transformations Ak+1 = PAkP
T can be

designed, using, for instance, the QR factorization, the Householder transformation, etc.,

to obtain the eigenvalues rather efficiently [64].

Unfortunately, most of the useful statements about computations using Hermitian

matrices cannot usually be generalized to non-Hermitian matrices. As a result, the

eigenvalues of a non-Hermitian matrix (corresponding to a non-self-adjoint operator) are

markedly difficult to calculate [64,65]. Running a general-purpose eigenvalue calculation

routine on (5.21) is probably not the most efficient way to get eigenvalues. Next we

make suggestions to simplify the non-Hermitian eigenproblem (5.21) by exploiting its

structure.

The diagonal matrix in the lower left corner of (5.21) can be made zero by apply-

ing elementary row operations and using the entries of the D matrix. Since elementary

row operations, as in Gauss-Jordan elimination, generally change the eigenvalues, the
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corresponding column operations are also applied to induce a similarity transformation.

In this way, an upper-Hessenberg matrix is obtained in O(N) operations, as compared

to a sequence of Householder transformations with O(N3) operations and O(N2) mem-

ory registers. The eigenvalues of the resulting complex upper-Hessenberg matrix can

subsequently be found using QR iterations.

Ablowitz-Ladik Eigenproblem

We can also rewrite the Ablowitz-Ladik discretization as a matrix eigenvalue problem.

Using the L operator (5.13), we obtain

v1[k + 1]−Q[k]v2[k] = zv1[k], (5.22)

−Q∗[k − 1]v1[k] + α[k − 1]v2[k − 1] = zv2[k], (5.23)

which consequently takes the form

(
U1 −diag(Q[k])

−diag(Q∗[k − 1]) UT
2

)
v = zv,

in which

U1 =




0 1 0 · · · 0

0 0 1 · · · 0

· · ·
0 0 0 0 1

1 0 0 0 0



,

U2 =




0 α[1] 0 · · · 0

0 0 α[2] · · · 0

· · ·
0 0 0 0 α[N − 1]

α[N ] 0 0 0 0



,

and diag(Q[k]) = diag (Q[0], · · · , Q[N ]), diag(Q∗[k−1]) = diag (Q∗[N ], Q∗[0] · · · , Q∗[N − 1]).

Note that all shifting operations are cyclic, so that all vector indices k remain in the in-

terval 0 ≤ k ≤ N .

It is not very different to consider the more simplified L operator (5.12) instead

of (5.13). This corresponds to the above discretization with U2 := U1 and −Q∗[k − 1]

replaced with −Q∗[k]. Similarly, one can rewrite the normalized Ablowitz-Ladik iteration
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as a matrix eigenvalue problem. This corresponds to (5.23) where instead of having α[k−
1], v1[k + 1] is multiplied by α[k] in the first equation, i.e., U1 and U2 are interchanged.

Spectral Method

In the frequency domain, one can approximate derivatives with the help of the Fourier

transform. Let us assume that

v(t) =

M
2∑

k=−M
2

(
αk

βk

)
e

j2kπt

T , q(t) =

M
2∑

k=−M
2

γke
j2kπt

T ,

where T = T2 − T1. Then the Zakharov-Shabat system is

−αk

2πk

T
− j

M
2∑

m=−M
2

γk−mβm = λαk,

−j
M
2∑

m=−M
2

γ∗−k+mαm + βk
2πk

T
= λβk.

Thus we obtain

(
Ω Γ

−ΓH −Ω

)(
α

β

)
= jλ

(
α

β

)
,

where α = [α−M
2
, . . . , αM

2
]T , β = [β−M

2
, . . . , βM

2
]T , Ω = −2π

T
diag(−M

2
, . . . , M

2
) and

Γ = −j




γ0 γ−1 · · · γ−M
2

0 0 · · · 0

γ1 γ0 γ−1 · · · γ−M
2

0 · · · 0
. . . . . . . . .

γM
2
γM

2
−1 · · · γ−M

2
+1 γ−M

2

0 γM
2
γM

2
−1 · · · γ−M

2
+1

. . . . . . . . .

0 · · · 0 γM
2
γM

2
−1 · · · γ0 γ−1

0 0 · · · 0 γM
2
γM

2
−1 · · · γ0




.

The point spectrum is thus found by looking at the eigenvalues of the matrix

A =

(
Ω Γ

−ΓH −Ω

)
.
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5.4 Running Time, Convergence and Stability of the

Numerical Methods

The numerical methods discussed in this chapter are first-order matrix iterations and

therefore the running time of all of them is O(N) multiplications and additions per

eigenvalue. This corresponds to a complexity of O(N2) operations for the calculation of

the continuous spectrum on a mesh with N eigenvalues. The exact number of operations

depends on the details of the implementation and the memory requirement of the method.

All iterative methods thus take about the same time asymptotically, albeit with different

coefficients.

An important observation is that, while the Fast Fourier Transform (FFT) takes

O(N log2N) operations to calculate the spectral amplitudes of a vector with length N

at N equispaced frequencies, the complexity of the methods described in this chapter to

compute the continuous spectrum are O(N2). Similarly, it takes O(NN) operations to

calculate the discrete spectrum. In other words, so far we do not exploit the potentially

repetitive operations in our computations.

It is evident from (5.6) that as T2 → ∞, v1[k] should grow as ∼ exp(−jλT2) so

that a(λ) is a finite complex number. The canonical eigenvector v[k;T1, T2] thus has an

unbounded component as T2 → ∞ (i.e., ||v[k]|| → ∞). One can, however, normalize v1

and v2 according to

u1 = v1e
jλt

u2 = v2e
−jλt,

and transform (5.5) to

ut =

(
0 q(t)e2jλt

−q∗(t)e−2jλt 0

)
u, u(T1, λ) =

(
1

0

)
. (5.24)

The desired coefficients are simply a(λ) = u1(T2) and b(λ) = u2(T2). Consequently, if

one is interested in obtaining eigenvectors v[k] in addition to the coefficients a(λ) and

b(λ), the discretization of the normalized system (5.24) has better stability properties:

(a[k + 1], b[k + 1]) =

(
1 Q[k]z−2k

−Q∗[k]z2k 1

)
(a[k], b[k])

(a[0], b[0]) = (1, 0) . (5.25)
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The nonlinear Fourier coefficients are obtained as a := a[N ] and b := b[N ]. The discrete

nonlinear Fourier transform mentioned in [37] is thus the forward discretization of the

normalized Zakharov-Shabat system (5.24).

We are interested in the convergence of v[k] (or a(λ) and b(λ)) as a function of N for

fixed values of T1 and T2. That is to say, we require that the error e = ||v(kǫ)− v[k]|| → 0

as N → ∞ (for fixed T1 and T2). The (global) error in all methods described in this

chapter is at least O(ǫ), and therefore all these methods are convergent.

Some of these methods are, however, not stable. This is essentially because the

Zakharov-Shabat system in its original form has unbounded solutions, i.e., ||v(t)|| → ∞
as t → ∞. Errors can potentially be amplified by the unstable system poles. One

should be cautious about the normalized system (5.24) as well. For example, forward

discretization of the normalized system (5.25) gives a first-order iteration x[k + 1] =

A[k]x[k]. The eigenvalues of the matrix A[k] in this method are

s1,2 = 1± jǫ|q[k]|.

It follows that the forward discretization of (5.24) gives rise to eigenvalues outside of

the unit disk, |s| > 1. As a result, first-order discretization of (5.24) are also unstable.

In cases where |s| > 1, we can consider normalizing the iterations by dividing A[k] by√
detA[k] (in the case of (5.25), dividing the right-hand side by

√
1 + |Q[k]|2). The

resulting iteration has eigenvalues inside the unit disk. For ǫ ≪ 1 the effect is only

second-order in ǫ, however it helps in managing the numerical error if larger values of ǫ

are chosen.

An issue pertinent to numerical methods is chaos. Chaos and numerical instability of

finite-difference discretizations has been observed in [66] for the sine-Gordon equation,

which is also integrable and shares a number of basic properties with the NLS equation.

In [67], the authors conclude that the standard discretizations of the cubic nonlinear

Schrödinger equation may lead to spurious numerical behavior. This instability is deeply

related to the homoclinic orbits of the NLS equation, i.e., it occurs if the initial signal

q(t, z = 0) is chosen to be close to the homoclinic orbit of the equation. It disappears

only if the step size is made sufficiently small, which can be smaller than what is desired

in practice.

It is shown in [67] that the Ablowitz-Ladik discretization of the NLS equation (in time)

has the desirable property that chaos and numerical instability, which are sometimes

present in finite-difference discretizations of the NLS equation, do not appear at all.

Though these results are for the original time-domain equations, the issue can occur in
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the spectral eigenvalue problem (5.5) as well, if the signal q[k] is close to a certain family

of functions (related to sinωt and cosωt). Therefore, among discretizations studied, the

Ablowitz-Ladik discretization of the Zakharov-Shabat system is immune to chaos and its

resulting numerical instability. This is particularly important in the presence of amplifier

noise, where chaos can be more problematic.

5.5 Testing and Comparing the Numerical Methods

In this section, we test and compare the ability of the suggested numerical schemes to

estimate the nonlinear Fourier transform (with respect to the Zakharov-Shabat system)

of various signals. Numerical results are compared against analytical formulae, in a few

cases where such expressions exist. Our aim is to compare the speed and the precision of

these schemes for various pulse shapes in order to determine which ones are best suited

for subsequent simulation studies.

To derive the analytical formulae, recall that the continuous spectral function can be

written as q̂(λ) = lim
t→∞

y(t, λ), in which y(t, λ) satisfies [57]

dy(t, λ)

dt
+ q(t)e2jλty2(t, λ) + q∗(t)e−2jλt = 0,

y(−∞, λ) = 0. (5.26)

Similarly, one can solve the second-order differential equation

d2z(t, λ)

dt2
−
(
2jλ+

qt
q

)
dz(t, λ)

dt
+ |q|2z(t, λ) = 0,

z(−∞, λ) = 1,
dz(−∞, λ)

dt
= 0, (5.27)

and obtain a(λ) = lim
t→∞

z(t, λ). The zeros of a(λ) form the discrete spectrum.

In the following, the discrete spectrum is found and compared using the following

matrix-based schemes:

1. central difference method;

2. spectral method;

3. Ablowitz-Ladik (AL) discretization (AL1);

4. AL discretization with normalization (AL2).

In the matrix-based schemes, the entire point spectrum is found at once by solving a

matrix eigenvalue problem.

The complete spectrum is found using search-based methods:
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1. forward discretization method;

2. fourth-order Runge-Kutta scheme;

3. layer-peeling methods;

4. Crank-Nicolson method;

5. AL discretization;

6. AL discretization with normalization.

In search-based methods, the Newton method is used together with the trace formula to

find both discrete and continuous spectra.

Each of the following pulses is sampled uniformly using a total of n samples in a time

window containing at least 99.99% of the pulse energy.

5.5.1 Satsuma-Yajima Pulses

One signal with known spectrum is the Satsuma-Yajima pulse [68]

q(t) = Asech(t).

Solving the initial value problem (5.5) (or (5.26)) analytically, the following continuous

spectral function is obtained [68]

q̂(λ) = −Γ(−jλ+ 1
2
+ A)Γ(−jλ+ 1

2
− A)

Γ2(−jλ+ 1
2
)

sin(πA)

cosh(πλ)
.

The discrete spectrum is the set of zeros of a(λ) i.e., poles of q̂(λ) (when analytically

extended in C+). Recalling that Γ(x) has no zeros and is unbounded for x = 0,−1,−2, . . .,
it follows that the discrete spectrum consists of N = ⌊A+ 1

2
− ǫ⌋ eigenvalues, located at

(A− 1
2
)j, (A− 3

2
)j, . . .. In the special case in which A is an integer, A = N, the Satsuma-

Yajima pulse is a pure N-soliton with N eigenvalues, and the continuous spectral function

is zero.

Figs. 5.1, 5.2 and 5.3 give the numerical results for A = 2.7, N = 210. Fig. 5.1

shows that, in this example, the spectral and central difference methods produce good

results among the matrix-based methods in estimating the discrete eigenvalues λ =

0.2j, 1.2j, 2.2j. All methods generate a large number of spurious eigenvalues along the

real axis. This behavior might be viewed as a tendency of the algorithms to generate

the continuous spectrum too. However the spurious eigenvalues do not disappear com-

pletely even when the continuous spectrum is absent (when A is an integer); only their

range becomes more limited. The spurious eigenvalues across the real axis can easily

be filtered, since their imaginary part has negligible amplitude. The AL methods, with
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Figure 5.1: Discrete spectrum of the Satsuma-Yajima pulse with A = 2.7 using (a)
central difference method, (b) spectral method, (c) Ablowitz-Ladik scheme, (d) modified
Ablowitz-Ladik scheme.

and without normalization, produce the same eigenvalues plus another vertical line of

spurious eigenvalues having a large negative real part. Normalization in the AL scheme

does not make a significant difference in this example.

Fig. 5.2 shows the accuracy of the various matrix-based methods in estimating the

smallest and largest eigenvalues of q = 2.7sech(t) in terms of the number of the sample

points N . As the number of sample points N is decreased, the spectral and central

difference methods maintain reasonable precisions, while the accuracy of the AL schemes

quickly deteriorates. One can check that in these cases, the error in the approximation

ejλ∆t ∼ 1 + jλ∆t becomes large (since ∆t≫ 1).

The spectral method is generally more accurate than the other matrix-based methods.

The AL discretizations seem to perform well as long as λ∆t ≪ 1, i.e., when estimating

eigenvalues with small size or when N ≥ 200. The AL discretization eventually breaks

down at about N = 50 as the analogy between the continuous and discrete NLS equation
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Figure 5.2: Error in estimating (a) the smallest eigenvalue and (b) the largest eigenvalue
of the Satsuma-Yajima pulse q(t) = 2.7sech(t) as a function of the number of sample
points N using matrix eigenvalue methods. The Ablowitz-Ladik method 1 is the method
of Section 5.3.2 with no normalization, and the Ablowitz-Ladik method 2 is the same
scheme with normalization.

is no longer justified at such low resolutions, whereas other schemes continue to track the

eigenvalues to some accuracy. In other words, what the AL methods find at such small

values of N is the spectrum of the discrete soliton-bearing NLS equation, which is not

a feature of finite-difference discretizations. (In fact, it is essential for this algorithm to

deviate from the finite-difference discretizations as N is reduced, to produce appropriate

solitons with few samples.) The running time of all matrix eigenvalue methods is about

the same.

Search-based methods can be used to estimate the point spectrum as well. Here we use

the Newton method with random initial points to locate eigenvalues in C+. Naturally, we

limit ourselves to a rectangular region in the complex plane, slightly above the real axis

to avoid potential spurious eigenvalues. Since the number of eigenvalues is not known a

priori, the continuous spectrum is found first so as to give an estimate of the energy of the

discrete spectrum. It is essential that the continuous spectrum is estimated accurately so

that a good estimate of the energy of the discrete spectrum can be obtained. Once this

energy is known, and a suitable (rectangular) search region in C+ is chosen, the Newton

method is often able to locate all of the discrete eigenvalues using just a few iterations.

Fig. 5.3 shows the accuracy of the searched-based methods in estimating the largest

eigenvalue of the signal q(t) = 2.7sech(t). The Runge-Kutta, layer-peeling and Crank-

Nicolson methods have about the same accuracy, followed closely by forward discretiza-

tion. Since this is the largest eigenvalue, the AL schemes are not quite as accurate. As

noted above, comparison at smaller values of N is not illustrative, as the AL estimate
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Figure 5.3: Error in estimating the largest eigenvalue of Satsuma-Yajima pulse q(t) =
2.7sech(t) as a function of the number of sample points N using search-based methods.

quickly deviates from λmax of the continuous signal.

The Runge-Kutta method, at the accuracies shown in the above graphs, is of course

very slow, and is not a practical method to implement. The running time for the other

schemes is approximately the same. Search-based methods take an order of magnitude

more time than matrix-based methods when N is small. These methods fail when N

becomes too small (N < 200), since the large error in estimating the energy terms of

the continuous spectrum negatively influences the stopping criteria and consequently

degrades the Newton increments. For large N , on the other hand, the QR factorization,

which takes O(N3) operations in calculating the eigenvalues of a matrix, becomes quite

slow and restricts the use of matrix-based methods.

The same conclusions are observed for various choices of real or complex parameter

A. As |A| is increased, as before, the spectral and finite-difference schemes produce the

correct eigenvalues, and the AL methods generate the same eigenvalues plus an additional

vertical strip of spurious eigenvalues. The range of the spurious eigenvalues across the

real axis remains about the same. As the phase of A is increased, the true (non-spurious)

eigenvalues remain the same in all methods (as expected analytically), while some of the

vertical spurious eigenvalues in the AL schemes move from left to right or vice versa. The

spectral and finite-difference schemes are relatively immune to these additional spurious

eigenvalues. Normalization of the AL method sometimes produces slightly fewer spurious

eigenvalues across the real axis, as can be seen in Figs. 5.1(c)-(d).
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5.5.2 Rectangular Pulse

Consider the rectangular pulse

q(t) =




A t ∈ [T1, T2]

0 otherwise
. (5.28)

It can be shown that the continuous spectrum is given by [57]

q̂(λ) =
A∗

jλ
e−2jλt

(
1− D

jλ
cot(D(T2 − T1))

)
,

whereD =
√
λ2 + |A|2. To calculate the discrete spectrum, the equation (5.27) is reduced

to a simple constant coefficient second-order ODE

d2z

dt2
− 2jλ

dz

dt
+ |A|2z = 0, z(T1) = 1, z′(T1) = 0.

It is easy to verify that the eigenvalues are the solutions of

e2j(T2−T1)
√

λ2+|A|2 =
λ+

√
λ2 + |A|2

λ−
√
λ2 + |A|2

. (5.29)

Following the causality and the layer-peeling property of the NFT, one can generalize the

above result to piece-wise constant pulses. This is the basis of the layer-peeling method

of Section 5.2.3.

Fig. 5.4(a)-(b) show the results of numerically computing the discrete spectrum of a

rectangular pulse with parameters A = 2, T2 = −T1 = 1. The exact eigenvalue is found

to be λ = 1.5713j, by numerically finding the roots of (5.29) using the Newton-Raphson

method. No other eigenvalue is found under a large number of random initial conditions.

All methods generate the desired eigenvalue together with a large number of spurious

eigenvalues across the real axis. The central-difference scheme visibly generates fewer

spurious eigenvalues. The Ablowitz-Ladik schemes produce two more eigenvalues with a

large negative real part.

Fig. 5.5 compares the precision of various methods in estimating the nonlinear spec-

trum of the rectangular pulse with A = 2, T2 = −T1 = 1. The modified AL scheme

performed the same as the basic AL scheme, and hence we do not include the modified

AL scheme in the graphs.

Convergence to the discrete spectral amplitudes generally occurs much more slowly

than convergence to the eigenvalues. Fig. 5.6(a) shows the precision of various methods
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Figure 5.4: Discrete spectrum of the rectangular pulse (5.28) with A = 2, T2 = −T1 = 1
using (a) Fourier method, (b) central difference method, (c) Ablowitz-Ladik scheme, (d)
modified Ablowitz-Ladik scheme.
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Figure 5.5: Error in estimating the largest eigenvalue of the rectangular pulse q(t) =
2rect(t) as a function of the number of sample points N using (a) matrix-based methods
and (b) search-based methods.
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in the figure. (b) Continuous spectrum.

in estimating the discrete spectral amplitude of the rectangular wave with A = 2, T2 =

−T1 = 1. It can be seen that convergence does not occur until N > 1000. Fig. 5.6(b)

shows the continuous spectrum for the same function. All methods produced essentially

the same continuous spectrum, except for some very slight variations near zero frequency.

As |A| is increased, more eigenvalues appear on the imaginary axis. The distance be-

tween these eigenvalues becomes smaller as |λ| is increased. All methods produce similar

results, with the Ablowitz-Ladik methods reproducing the purely imaginary eigenvalues

at spurious locations with large real part. Phase addition has no influence on any of

these methods, as expected analytically.

5.5.3 N-Soliton Pulses

We consider an 4-soliton pulse with discrete spectrum

q̃(−1 + 0.25j) = 1, q̃(1 + 0.25j) = −j,
q̃(−1 + 0.5j) = −1, q̃(1 + 0.5j) = j. (5.30)

The 4-soliton is generated by solving the Riemann-Hilbert linear system of equations

with zero continuous spectrum [57] and can be seen in Fig. 5.7(a). Figs. 5.8(a)-(d) show

the discrete spectrum of the signal using various matrix-based methods. The relative

accuracy of these schemes in estimating the eigenvalue λ = 1+0.5j is shown in Fig. 5.7(b).

A very similar graph is obtained for other eigenvalues. Iterative methods fare similarly
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Figure 5.7: (a) Amplitude profile of a 4-soliton pulse with spectrum (5.30). (b) Error in
estimating the eigenvalue λ = 1 + 0.5j.

and their performance is shown in Fig. 5.9(b).

The convergence of the discrete spectral amplitudes q̃(λj) is not quite satisfactory.

Discrete spectral amplitudes associated with eigenvalues with small |ℑ(λj)| can be ob-

tained with reasonable accuracy, although the convergence of q̃(λj) is slower than the

convergence of the eigenvalues themselves. On the other hand, discrete spectral ampli-

tudes associated with eigenvalues with large |ℑ(λ)| are extremely sensitive to the location

of eigenvalues and even slight changes in eigenvalues lead to radically different estimates

for the spectral amplitudes. In fact, as the energy of the pulse is increased by hav-

ing eigenvalues with large |ℑ(λ)|, the Riemann-Hilbert system becomes ill-conditioned.

Therefore the discrete spectral amplitudes cannot generally be obtained using the meth-

ods discussed in this chapter. It is illustrative to see the surface of |a(λ)| in Fig. 5.21.

The eigenvalues sometimes correspond to deep and narrow wells in the surface of |a(λ)|,
and sometimes they correspond to flat minima. In cases that they correspond to narrow

wells, the derivative a′(λ) is sensitive to the location of eigenvalues, leading to sensitivities

in q̃(λj). It is also clear from (5.18) that a′(λ) is proportional to λ2 and thus is sensitive

to λ.

Note that q̃(λj) do not appear in the trace formula, and in particular they do not

contribute to the signal energy. This part of the NFT controls the time center of the

pulse and influences the signal phase too. Due to dependency on the time center of the

signal and the fact that time center can hardly be used for digital transmission, the values

of q̃(λj) appear to be numerically chaotic and cannot carry much information. For this

reason, we do not discuss these quantities in detail.
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Figure 5.8: Discrete spectrum of N -soliton pulse with spectrum (5.30) using (a) Fourier
method, (b) central difference method, (c) Ablowitz-Ladik scheme, and (d) modified
Ablowitz-Ladik scheme.
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Figure 5.9: (a) Error in estimating the eigenvalue λ = −1 + 0.25j in a 4-soliton using
search-based methods. (b) Error in estimating the discrete spectral amplitude |q̃| = 1.
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Figure 5.10: Nonlinear Fourier transform of a sinc function with amplitude A = 1, 2, 3, 4.

5.6 Nonlinear Fourier Transform of Pulses in Data

Communications

In this section, we use the numerical methods discussed in Section 5.1 to compute the

nonlinear Fourier transform of signals typically used in optical fiber transmission. The

emphasis is on sinc functions as they constitute signal degrees of freedom, but we also

consider raised-cosine functions, sech signals, and Gaussian pulses. In particular, we

study the effect of the amplitude and phase modulation on the structure of the nonlinear

spectra. We will also discuss the spectrum of wavetrains formed by sinc functions.

Since the layer-peeling and the spectral methods give accurate results in estimating

the nonlinear spectra, they are chosen for subsequent simulations.
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Figure 5.11: Locus of eigenvalues of the sinc function under amplitude modulation: (a)
A = 0 to A = 5, (b) A = 0 to A = 20.

5.6.1 Amplitude and Phase Modulation of Sinc Functions

Fig. 5.10 shows the spectrum of y(t) = Asinc(2t) under amplitude modulation. It can

be seen that a sinc function is all dispersive as A is increased from zero, until about

A = π (||q||L1 = 1.2752π) where a new eigenvalue emerges from the origin. Starting

from A = 0, the continuous spectrum is a rectangle, resembling the ordinary Fourier

transform −F(q∗(t))(2λ). As A is increased, the continuous spectral function is narrowed

until A = π, where it looks like a delta function and its energy starts to deviate from

the energy of the time domain signal. As A > π is further increased, the dominant

eigenvalue on the jω axis moves up until A = 1.27π, where λ1 = 1.4234j and a new

pair of eigenvalues emerges, starting from λ23 = ±3.2 + 0.05j. When the newly created

eigenvalues are not pronounced enough, for instance in this example when transiting from

A = π to A = 1.27π, numerical algorithms have difficulties in determining whether these

small emerging eigenvalues are part of the spectrum or not. Here it appears that for

π < A < 1.27π there is just one dominant purely imaginary eigenvalue moving upward.

At A = 1.27π, λ23 emerge and move up in the complex plane as A is increased. An

important observation is that the sinc function appears to have not only purely imaginary

eigenvalues, but also a pair of symmetric eigenvalues with nonzero real part emerging at

high values of A; see Fig. 5.11(b). This means that, for example, a sinc function (viewed

in the time domain) contains a stationary “central component” plus two small “side

components” which travel to the left and right if the sinc function is subject to the NLS

flow. The locus of the eigenvalues of the function Asinc(2t) as a result of variations in A

is given in Fig. 5.11.

It follows that the sinc function is a simple example of a real symmetric pulse whose
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Figure 5.13: (a) Amplitude of the continuous spectrum with no carrier. (b) Amplitude
of the continuous spectrum with carrier frequency ω = 5. The phase graph is also shifted
similarly with no other change (∆λ = 2.5). (c) Locus of the eigenvalues of a sinc function
with amplitude A = 8 as the carrier frequency exp(−jωt) varies.

eigenvalues are not necessarily purely imaginary, as conjectured for a long time. However

if q(t) is real, non-negative, and “single-lobe”, then there are exactly N = ⌊1
2
+

||q||L1

π
− ǫ⌋

eigenvalues, all purely imaginary [51].

Under phase modulation, in the form of adding a constant phase term to the signal,

the eigenvalues and the magnitude of the continuous spectrum remained unchanged.

Vertical shift in the phase of the continuous spectrum as a result of phase modulation

can be seen in Fig. 5.12.

We may also examine the effect of time-dependent phase changes. The effect of linear

chirp, of the form exp(jωt), is shown in picture Fig. 5.13. Linear chirp results in just a

shift of the discrete and continuous spectrum to the left or the right, depending on the

sign of the chirp.

It is interesting to observe the effect of a quadratic chirp. The locus of eigenvalues

that result due to changes in the quadratic phase q exp(jωt2) has been studied in [51]

for Gaussian pulses. In our sinc function example, in the case that there is one discrete
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Figure 5.14: Eigenvalues of Ae−jωt2sinc(2t): (a) locus of eigenvalues for A = 4 and ω = 0.5
to ω = 50, (b) locus of eigenvalues for A = 12 and ω = 0 to ω = 50, (c) eigenvalues
for A = 4 and ω = 15, (d) eigenvalues for A = 12 and ω = 0.50, (e) eigenvalues for
A = 12 and ω = 41.39 just before collision, (f) eigenvalues for A = 12 and ω = 41.43
after collision.

eigenvalue in the chirp-free case (such as when A = 4), increasing ω will move the

eigenvalue on the jω axis upward, but then the eigenvalue move down again and is

absorbed in the real axis. Fig. 5.14(c) shows the moment before the eigenvalue is absorbed

into the real axis. Note that the eigenvalues off the jω axis are considered to be spurious;

their number increases as the number of sample points is increased.

A more interesting behavior is observed when A = 12. Here, there are two eigenvalues

on the jω axis: λ1 ≈ 10.0484j, λ2 = 5.5515j, together with λ3,4 = ±3.1315 + 0.7462j

(Fig 5.14(d)). As ω is increased, λ1 and λ2 move down and a fifth eigenvalue λ5 emerges

from the real axis and moves upwards on the jω axis. Eventually, at about ω = 41.41,

λ2 and λ5 “collide” and move out of the jω axis to the left and right. If ω is further

increased, λ2 and λ5 are absorbed into the real axis; see Fig. 5.14.

Collision of eigenvalues also occurs with time dilation. Signal q(t) = sinc(at) has 3

eigenvalues on the jω axis for a = 0.1, plus two small eigenvalues on two sides of the jω

axis (Fig 5.16(b)). As a is increased, the smaller eigenvalue on the jω axis comes down

and a new eigenvalue is generated at the origin, moving upward. These two eigenvalues

collide at 0.12j (a = 0.1330) and are diverted to the first and second quadrant, and
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Figure 5.15: (a) Nonlinear spectral broadening as a result of quadratic phase modulation
Aejωt

2
sinc(2t) with A = 1 and ω = 0, 10 and 30. (b) Phase of the continuous spectrum

when A = 1 and ω = 10. (c) Phase of the continuous spectrum when A = 1 and ω = 30.

eventually absorbed in the real axis at about ℜλ = ±0.32 (ω = 0.1990), Fig. 5.16(c)-

(d)). As a is decreased, more eigenvalues appear on the jω axis and fewer on the real

axis (Fig. 5.16(e)-(f)). Note that the eigenvalues are not necessarily on the jω axis. For

example, the signal y = sinc(0.1370t) clearly has eigenvalues λ1 = 0.8684j, λ2 = 0.5797j,

λ3,4 = ±0.1055 + 0.1210i.

Fig. 5.15 shows the nonlinear spectrum of a sinc pulse under a quadratic chirp mod-

ulation, given by Aejωt
2
sinc(2t), is broadened as ω varies.

The effect of time dilation on the continuous spectrum can be seen in Fig. 5.17. It

can be observed that increasing bandwidth a, will increase the continuous range of real

nonlinear frequencies, leading to bandwidth expansion.

5.6.2 Sinc Wavetrains

The nonlinear spectrum of a wavetrain can take on a complicated form, just like its

ordinary Fourier transform counterpart. Eigenvalues of a two-symbol train, for instance,

depend on the amplitude and phase of the two signals, and their separation distance.

We first analyze the case in which there are only two sinc functions located at the

fixed Nyquist distance from each other, i.e., y(t) = a1sinc(2t +
1
2
) + a2sinc(2t − 1

2
). For

a1 = a2 = 2 the spectrum consists of a single eigenvalue λ = 0.3676j and a number of

spurious eigenvalues as shown in Fig. 5.18(a). As the phase of a2 is increased from θ = 0

to θ = π, the eigenvalues moves off the jω axis to the left and a new eigenvalue emerges

from the real axis in the first quadrant. Eigenvalues at θ = π are ±1.3908+0.3287i. The

resulting locus of eigenvalues is shown in Fig. 5.18(b). Figs 5.18(c)-(d) depict similar

graphs when both a1 and a2 change.

Next we study the locus of the discrete spectrum as a function of pulse separation

for fixed amplitudes. If the amplitude of the sinc functions is increased sufficiently,
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Figure 5.16: Locus of eigenvalues of sinc(at) as the bandwidth varies (a) from a = 0.1 to
a = 0.6. (Eigenvalues with small ℑλ are not shown here.) (b) Eigenvalues for a = 0.1.
(c) Eigenvalues before collision and (d) after collision. (e) Eigenvalues for a = 0.06 before
collision and (f) for a = 0.065 after collision.
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Figure 5.18: Discrete spectrum of y(t) = a1sinc(2t− 1
2
) + a2sinc(2t+

1
2
) for (a) a1 = a2,

(b) a1 = 2, a2 = 2ejθ for −π < θ ≤ π, (c) a1 = 2, 0 ≤ a2 ≤ 6, (d) a1 = 4j, 0 ≤ a2 ≤ 6.
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eigenvalues appear off the real axis and form a locus as the distance between pulses varies.

Fig. 5.19(a) shows the locus of eigenvalues of y(t) = 4sinc(2t + τ) + 4sinc(2t − τ) as τ

changes between zero to 5. At τ = 0, eigenvalues are λ1 = 6j, λ2,3 = ±2.3618 + 0.6476i

and λ4,5 = ±3.2429 + 0.0815i. As the distance between pulses is increased, λ1 rapidly

decreases, and at about τ = 0.25, where λ1 = 4.3j, the eigenvalues with non-zero real

parts are absorbed into the real axis at ℜλ = −3. As τ is further increased, λ1 decreases

further, until τ = 0.4 where λ1 = 2.4j and two new eigenvalues emerge at locations

ℜλ = ±3.12 going up and towards the jω axis. These eigenvalues return, before reaching

the jω axis, to be absorbed into the real axis, while new eigenvalues are generated again

from the real axis. At τ = 0.7 eigenvalues are λ = 2j, ±1 + j. At some point, the

newly created eigenvalues are not absorbed into the real axis, but they reach the jω

axis and collide. A collision occurs, for instance, at τ = 1.05. One of these eigenvalues

goes down to be absorbed into the origin, and the other one, interestingly, goes up to be

united with the maximum eigenvalue on the jω axis (i.e., to create one eigenvalue with

multiplicity two). Increasing the distance further does not change the location of this

eigenvalue, which from now is fixed at λ = 1.4j, but just changes the pattern of lower

level eigenvalues. The collision does not occur when the amplitudes of the signals are

smaller; see Fig. 5.19 (b) for the locus of the eigenvalues when the amplitude of the two

sinc functions is 2.

0

1

2

3

4

5

-4 -2 0 2 4

ℑ
(λ
)

ℜ(λ)

0

0.5

1

1.5

-4 -2 0 2 4

ℑ
(λ
)

ℜ(λ)

(a) (b)

Figure 5.19: (a) The locus of the discrete spectrum of y(t) = 4sinc(2t+ τ)+4sinc(2t− τ)
as a function of 0 ≤ τ ≤ 5. (b) The locus of the discrete spectrum of y(t) = 2sinc(2t +
τ) + 2sinc(2t− τ) as a function of 0 ≤ τ ≤ 5.

For wavetrains with a larger number of signals, the number of eigenvalues increases

proportionally. We generate these wavetrains randomly and examine the region to which

the spectrum is confined. Fig. 5.20 shows the locus of the discrete spectrum of all sinc

wavetrains with 16 signals. All 16 signal degrees of freedom in the bandlimited signal are
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modulated here. The effect of the bandwidth constraint in the nonlinear spectral domain

can seen in this picture.
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Figure 5.20: Effect of the bandwidth constraint on the location of the eigenvalues of a
sinc wavetrain containing 16 pulses having random amplitudes.

5.6.3 Preservation of the Spectrum of the NLS Equation

It is crucial to ensure that the spectrum found by the numerical methods, such as those

discussed in the previous sections, is in fact correct. While it proved difficult to do so

consistently and efficiently, there are various tests to increase one’s confidence in the truth

of the output of the numerical methods. Taking the inverse nonlinear Fourier transform

in the continuous-time domain and comparing the resulting function in time with the

original signal is generally quite cumbersome and not always feasible. One quick test

is to examine a time frequency identity, such as the trace formula for n = 1, 2, 3, . . . as

used in this chapter. The first few conserved quantities in this identity can be written

explicitly. One should allow higher tolerance values in the trace formula for large n, as the

discrete terms in this identity involve λn and thus are increasingly more sensitive to the

eigenvalues. Another test is to subject the signal to the flow of an integrable equation,

such as the NLS equation, and check that the discrete spectrum is preserved and the

spectral amplitudes are scaled appropriately according to that equation. In this section,

we let the signal propagate according to the NLS equation and compare the spectra at

z = 0 and z = L for various L.
Fig. 5.21 shows examples of the spectra of a number of pulses at z = 0 and z = L

evolving according to the NLS equation (5.1). The distances mentioned in the graphs in

km correspond to a standard optical fiber with parameters in Table 2.1.

Note that in all these examples discrete the spectrum is completely preserved, and the

continuous spectral amplitudes undergo a phase change properly. Compared to Gaussian

and raised-cosine examples, whose nonlinear Fourier transform can be found easily, the
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Figure 5.21: Propagation of pulses along an optical fiber in the time domain (left), in the
nonlinear Fourier transform domain (middle), and showing the surface of |a(λ)| (right).
The pulses are (a) Gaussian pulse, (b) Satsuma-Yajima pulse, (c) raised-cosine pulse, (d)
sinc pulse. The zeros of |a(λ)| correspond to eigenvalues in C+.
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discrete spectrum of sinc functions is much more challenging to find. This is because the

non-dominant eigenvalues off the jω axis have small imaginary parts for typical parame-

ters and are not sufficiently distinguished. They also have large real parts, increasing the

search region. Sinc functions are thus not the best examples to illustrate the application

of the NFT in optical fibers. We studied these ideal pulses primarily because of their

fundamental utility in digital communications.

5.7 Summary

In this chapter, we have suggested and compared a variety of numerical methods for the

computation of the nonlinear Fourier transform of a signal defined on the entire real line.

A straightforward finite-difference discretization, such as the forward discretization, does

not often produce satisfactory results. Among the methods studied in this chapter, the

layer-peeling and spectral methods gave accurate results in estimating the continuous

and discrete spectrum over a wide class of examples.

Given a waveform without having prior knowledge of the location of the discrete

eigenvalues, we suggest the use of matrix-based methods to compute the discrete spec-

trum. If, on the other hand, the location of the eigenvalues is known approximately (as

in data-communication problems, where the eigenvalues are chosen at the transmitter

from a finite set) a search-based method is recommended.

Although the eigenvalues and the continuous spectral function can be calculated with

great accuracy, the discrete spectral amplitudes are quite sensitive to the location of the

eigenvalues, even in the absence of noise. These discrete amplitudes control the time

center of the pulse, and are therefore sensitive to timing jitter. For data communication

purposes it follows that, whereas the presence or absence of the eigenvalue itself may

allow for robust information transmission, encoding information in the time center of the

pulse, i.e., in the discrete spectral amplitudes, is unlikely to be viable.

Using these numerical methods, we studied the influence of various signal parameters

on the nonlinear Fourier transform of a number of pulses commonly used in data com-

munications. We found, for example, that the spectrum of an isolated normalized sinc

function with amplitude A is purely continuous for the A < π. However, as the pulse

amplitude is increased, dominant eigenvalues appear on the jω axis, together with pairs

of symmetric eigenvalues having nonzero real part.

In general, amplitude variations result in variations in the location of the eigenvalues

and the shape of the continuous spectrum. Eigenvalues follow particular trajectories in

the complex plane. Phase variations, on the other hand, influence only the phase of the
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spectrum, not the location of the eigenvalues. One important observation, which may be

beneficial for the design of data communication systems, is that the nonlinear spectrum

of bandlimited pulses appears to be confined to a vertical strip in the complex plane with

a width proportion to the signal bandwidth.

This chapter has only scratched the surface of a potentially rich research area. The

development of efficient and robust numerical techniques suitable for various engineering

applications of the nonlinear Fourier transform will require significant additional effort. A

problem of particular interest is the development of a “fast” nonlinear Fourier transform

method that would be the analog of the FFT.



Chapter 6

Discrete and Continuous Spectrum

Modulation

Few things are harder to put up with

than a good example.

Mark Twain

In the previous chapters it was suggested to exploit the integrability and use the non-

linear Fourier transform to transmit information over integrable communication channels,

such as the optical fiber channel. In this transmission scheme information is encoded in

the nonlinear Fourier transform of the signal, consisting of a discrete and a continuous

spectral function. In this chapter, we provide further detail on the nonlinear spectrum

modulation and determine gains achievable via modulating the spectral invariants of the

nonlinear Schrödinger equation. Since the guard time between pulses can be large in

a dispersive system, a large number of discrete spectral degrees of freedom should be

eventually modulated. This corresponds to an implementation of the inverse nonlinear

Fourier transform from a suitably chosen 2N complex discrete spectral degrees of free-

dom to an N -soliton pulse in time domain. We examine various ways to generate such

N -solitons for N ≫ 1 for nonlinear transmission over optical fiber networks. The result-

ing method compatible with the channel nonlinearity can have significant potential for

long-haul fiber data transmission.

After describing the structure of the NFT transmitter, we give some examples show-

ing how to use the nonlinear Fourier transform for data transmission, improving upon

the classical soliton systems. The nonlinear Fourier transform of a signal with respect

to a Lax operator consists of discrete and continuous spectral functions, in one-to-one

correspondence with the signal [57]. In this chapter, we mostly consider the important

124
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special case where the continuous spectrum is zero, examining data transmission schemes

conceived by modulating the discrete spectrum.

An important step in developing a communication theory of waveform channels is

to appropriately discretize the channel and identify a suitable set of degrees of freedom.

The NFT provides a means to discretize integrable nonlinear dispersive waveform chan-

nels. The proposed nonlinear frequency-division multiplexing (NFDM) scheme can be

considered as a generalization of orthogonal frequency-division multiplexing (OFDM) to

integrable nonlinear dispersive communication channels. The advantages of NFDM arise

from the following:

1. NFDM removes inter-channel interference (cross-talk) between users of a network

sharing the same fiber channel;

2. NFDM removes inter-symbol interference (ISI) (intra-channel interactions) for

each user;

3. spectral invariants as carriers of data are remarkably stable and noise-robust fea-

tures of the NLS flow;

4. with NFDM, information in each channel of interest can be conveniently read

anywhere in a network without knowledge of the distance or any information

about other users.

Modulating the discrete spectrum corresponds to multisoliton transmission and detec-

tion. Fiber-optic communications using fundamental solitons (i.e., 1-solitons) has faced

numerous challenges in the past decades. The spectral efficiency of current soliton sys-

tems is typically quite low. Solitons interact with each other and in the presence of noise

the system-reach is limited by the Gordon-Haus effect [69]. Despite solutions suggested

to alleviate these limitations [69], the industry currently considers the use of more tradi-

tional pulse-shapes, such as sinc and raised-cosine pulses, which may not be particularly

compatible with the structure of the nonlinear Schrödinger (NLS) equation [39], which

governs pulse transmission in optical fibers.

This chapter improves upon the classical soliton systems by using multisoliton pulse

shapes as carriers of data. While a fundamental soliton can be modulated, detected and

analyzed in the time domain, multisolitons are best understood via their nonlinear spec-

trum in the complex plane. In this chapter, these pulses are obtained by implementing

a simplified inverse NFT at the transmitter, and are demodulated at the receiver by

recovering their spectral invariants using the forward NFT. Numerical methods for the

calculation of the forward NFT are discussed in Chapter 5. Here we discuss the inverse

NFT for the case that the continuous spectrum is zero.

It can be observed numerically that the discrete spectrum of a long random wavetrain,
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e.g., that formed from a sinc basis, appears to contain most of the wavetrain energy.

This implies that a sample function from a stationary bandlimited stochastic process

x(t), −T/2 < t < T/2 is approximately a multisoliton as T → ∞. The fact that a

large class of input signals of interest are indeed multisolitons implies that the desirable

properties of such signals (or issues such as interactions and timing jitters) exist to the

same extent for multisolitons and, in fact, are better understood in the context of the

latter. Since parameters of a multisoliton naturally do not interact with one another,

there is potentially a great advantage in directly modulating these parameters. Sending

an N -soliton train for large N and detecting it at the receiver with the help of the NFT,

the interaction of the individual components is no longer problematic.

There is a vast body of literature on solitons in mathematics, physics, and engineer-

ing; see, e.g., [9, 10, 69] and references therein. Classical, path-averaged and dispersion-

managed fundamental 1-solitons are well-studied in fiber optics [69]. The existence of

optical N -soliton pulses in optical fibers is also well known [69]. These results however

mostly study the pulse propagation properties of an N -soliton pulse, are usually limited

to small N (e.g. N = 2, 3), and consider specific isolated input signals (e.g., inputs of

the form Asech(t)). Since N -solitons are naturally defined in the nonlinear spectral do-

main, in general they are best decoded with the help of the nonlinear Fourier transform.

With the exception of few papers, we are aware of no other work using soliton trains or

the nonlinear Fourier transform for data transmission. See [45] for an early interesting

work on multi-solitons and the inverse scattering transform and [70] for a more recent

(in progress) publication. The general viewpoint taken in this chapter is similar to that

of [45].

6.1 Background

6.1.1 System Model

As before, we consider a standard single-mode (SSM) fiber with dispersion coefficient β2,

nonlinearity parameter γ and length L. We thus consider again the normalized stochastic

NLS equation (3.3) of Chapter 4, with parameters given in Table 2.1. We do not perform

dispersion compensation, although the NLS equation is integrable for both positive and

negative dispersions.
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6.1.2 The Discrete Spectral Function

Here we briefly recall the definition of the discrete spectral function in the context of

the nonlinear Schrödinger equation. We first consider the deterministic version of (3.3),

where the noise is zero. Later, we will treat noise as a perturbation of the noise-free

equation.

The nonlinear Fourier transform of a signal in (3.3) arises via spectral analysis of the

operator

L = j

(
∂
∂t

−q(t)
−q∗(t) − ∂

∂t

)
= j (DΣ3 +Q) , (6.1)

where D = ∂
∂t
,

Q =

(
0 −q
−q∗ 0

)
, and Σ3 =

(
1 0

0 −1

)
.

Let v(t, λ) be an eigenvector of L with eigenvalue λ. Following Chapter 4, the discrete

spectral function of the signal propagating according to (3.3) is obtained by solving the

the Zakharov-Shabat eigenproblem Lv = λv, or equivalently

vt =

(
−jλ q(t)

−q∗(t) jλ

)
v, v(−∞, λ) =

(
1

0

)
e−jλt, (6.2)

where the initial condition was chosen based on the assumption that the signal q(t)

vanishes as |t| → ∞. The system of ordinary differential equations (6.2) is solved from

t = −∞ to t = +∞ to obtain v(+∞, λ). The nonlinear Fourier coefficients a(λ) and b(λ)

are then defined as

a(λ) = lim
t→∞

v1(t, λ)e
jλt,

b(λ) = lim
t→∞

v2(t, λ)e
−jλt.

Finally, the discrete spectral function is defined on the upper half complex plane C+ =

{λ : ℑ(λ) > 0}:

q̃(λj) =
b(λj)

a(λj)
, j = 1, · · · , N,

where λj are the isolated zeros of a(λ) in C+, i.e., solutions of a(λj) = 0. The continuous

spectral function is defined on the real axis λ ∈ R as q̂(λ) = b(λ)/a(λ).
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6.2 Modulating the Discrete Spectrum

Let the nonlinear Fourier transform of the signal q(t) be represented by

q(t)←→ (q̂ (λ), q̃(λj)) .

When the continuous spectrum q̂(λ) is set to zero, the nonlinear Fourier transform con-

sists only of discrete spectral functions q̃(λj), i.e., N complex numbers λ1, . . . , λN in

the upper half complex plane C+ together with the corresponding N complex spectral

amplitudes q̃(λ1), . . . , q̃(λN). In this case, the inverse nonlinear Fourier transform can be

worked out in closed-form, giving rise to N -soliton pulses [71]. The resulting expressions,

however, quickly get complicated when N > 2. As a consequence, analytical results tend

to be limited to low-order solitons.

One can, however, create and modulate these multisolitons numerically. In this section

we study various schemes for the implementation of the inverse NFT at the transmitter

when q̂ = 0.

6.2.1 Discrete Spectrum Modulation by Solving the Riemann-

Hilbert System

The inverse nonlinear Fourier transform can be obtained by solving a Riemann-Hilbert

system of integro-algebraic equations or, alternatively, by solving the Gelfand-Levitan-

Marchenko integral equations. Great simplifications occur when q̂(λ) is zero. For in-

stance, in this case the integral terms in the Riemann-Hilbert system vanish and the

integro-algebraic system of equations is reduced to an algebraic linear system, whose

solution gives rise to N -soliton pulses.

Let V (t, λj) and Ṽ (t, λ∗j) denote the scaled eigenvectors associated with λj and λ
∗
j de-

fined by their boundary conditions at +∞ (they are denoted by V 1 and Ṽ 1 in Chapter 4).

Setting the continuous spectral function q̂(λ) to zero in the Riemann-Hilbert system of

Chapter 4, we obtain an algebraic system of equations

Ṽ (t, λ∗m) =

(
1

0

)
+

N∑

i=1

q̃(λi)e
2jλitV (t, λi)

λ∗m − λi
,

V (t, λm) =

(
0

1

)
−

N∑

i=1

q̃∗(λi)e
−2jλ∗

i tṼ (t, λ∗i )

λm − λ∗i
. (6.3)
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Define

V2×N =
(
V (t, λ1) V (t, λ2) · · · V (t, λN)

)
,

Ṽ2×N =
(
Ṽ (t, λ∗1) Ṽ (t, λ∗2) · · · Ṽ (t, λ∗N)

)
,

KN×N =




q̃1e
2jλ1t

λ∗
1−λ1

q̃1e
2jλ1t

λ∗
2−λ1

· · · q̃1e
2jλ1t

λ∗
N
−λ1

q̃2e
2jλ2t

λ∗
1−λ2

q̃2e
2jλ2t

λ∗
2−λ2

· · · q̃2e
2jλ2t

λ∗
N
−λ2

...
...

. . .
...

q̃Ne2jλN t

λ∗
1−λN

q̃Ne2jλN t

λ∗
2−λN

· · · q̃Ne2jλN t

λ∗
N
−λN



,

(J1)2×N =

(
1 1 · · · 1

0 0 · · · 0

)
,

(J2)2×N =

(
0 0 · · · 0

1 1 · · · 1

)
,

eN×1 =
(
1 1 · · · 1

)T
,

J2×N = J2 − J1K
∗ =

(
−eTK∗

e

)
,

FN×1 =
(
q̃1e

2jλ1t q̃2e
2jλ2t · · · q̃Ne

2jλN t

)T
.

In this notation, the algebraic equations (6.3) are simplified to

Ṽ = J1 +VK V = J2 − ṼK∗. (6.4)

Note that K∗ is the complex conjugate of K (not Hermitian). Therefore

V = (J2 − J1K
∗) (IN +KK∗)−1 = J (IN +KK∗)−1 ,

and V2 = eT (IN +KK∗)−1. The N -soliton formula is given by

q(t) = −2jeT (IN +K∗K)−1 F∗. (6.5)

The right hand side is a complex scalar and has to be evaluated for every t to determine

samples of q(t) everywhere.

Example 12. It is useful to see the (scaled) eigenvectors for a single soliton with spectrum
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q̃(α+jω

2
, z) = q̃0e

2αωze−j(α2−ω2)z and the eigenvector

v(t, λ; z) =
1

2
sech[ω(t− t0)]

(
e−jΦ

eω(t−t0)

)
, (6.6)

where Φ = αt+ (α2 − ω2)z −∠q̃0 − π
2
and t0 =

1
ω
log |q̃0|

ω
− 2αz. The celebrated equation

for the single soliton obtained from (6.5) is

q(t) = −jωe−jαte−jφ0sech (ω(t± t0)) . (6.7)

From the phase-symmetry of the NLS equation, the factor −j in (6.7) can be dropped.

The real and imaginary part of the eigenvalue are the frequency and amplitude of the

soliton. Note that the discrete spectral amplitude q̃(λ) is responsible for the phase and

time-center of the soliton.

6.2.2 Discrete Spectrum Modulation via the Hirota Bilineariza-

tion Scheme

It is also possible to generate multisolitons without solving a Riemann-Hilbert system

or directly using the NFT. A method which is particularly analytically insightful is the

Hirota direct method [71]. It prescribes in some sense a nonlinear superposition for

integrable equations.

The Hirota method for an integrable equation works by introducing a transforma-

tion of the dependent variable q to convert the original nonlinear equation to one or

more homogeneous bilinear PDEs. For integrable equations, the nonlinearity usually is

canceled or separated out. The resulting bilinear equations have sum of exponentials so-

lutions. Computationally, bilinear equations are solved perturbatively by expanding the

unknowns in terms of the powers of a small parameter ǫ. For integrable equations, this se-

ries truncates, rendering approximate solutions of various orders to be indeed exact. The

bilinearization transformation has been found for many integrable equations [71], taking

on similar forms that usually involve the derivatives of the logarithm of the transformed

variable.

Let us substitute q(t, z) = G(t,z)
F (t,z)

, where, without loss of generality, was may assume

that F (t, z) is real-valued. To keep track of the effect of nonlinearity, let us restore the

nonlinearity parameter γ in the NLS equation. Plugging into the resulting NLS equation

jqz = qtt + 2γ|q|2q,
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we get

j (GzF − FGz) = FGtt − 2FtGt −GFtt

+ 2
F 2
t + γ|G|2

F
G

= FGtt − 2FtGt +GFtt

+ 2
F 2
t + γ|G|2 − FFtt

F
G, (6.8)

where we have added and subtracted 2GFtt. Equation (6.8) is trilinear in F and G. It

can be made bilinear by setting

j(GzF −GFz) = FGtt − 2FtGt +GFtt,

F 2
t + γ|G|2 − FFtt = 0. (6.9)

It is very convenient (though not necessary) to organize (6.9) using the Hirota D operator

Dn
t (a(t), b(t)) =

(
∂

∂t
− ∂

∂t′

)n

a(t)b(t′)|t=t′ ,

as

(jDz +D2
t )FG = 0, (6.10)

D2
tFF = 2γ|G|2. (6.11)

Note that the D-operator acts on a pair of functions to produce another function.

Note further that (6.10) does not depend on the nonlinearity parameter γ. That is to

say, the nonlinearity has been separated from equation (6.10). For some other integrable

equations (e.g., the Korteweg-de Vries equation for which one gets only one bilinear

PDE), the nonlinearity parameter is in fact canceled completely.

Because (6.10) and (6.11) are homogeneous in the order of derivatives that occur in

each term, exponential functions are candidate solutions. This suggests that F and G

can be expanded (linearized) as

F (t, z) = f 0(t, z) + ǫf (1)(t, z) + ǫ2f (2)(t, z) + · · · ,
G(t, z) = g0(t, z) + ǫg(1)(t, z) + ǫ2g(2)(t, z) + · · · ,
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for some small parameter ǫ. We then obtain

FG = f (0)g(0) + ǫ
(
f (0)g(1) + f (1)g(0)

)

+ ǫ2
(
f (0)g(2) + f (1)g(1) + f (2)g(0)

)
+ · · · ,

F 2 = (f (0))2 + 2ǫf (0)f (1) + ǫ2
(
2f (0)f (2) + f (1)2+

)
+ · · · ,

|G|2 = |g(0)|2 + ǫ
(
g(0)g(1)∗ + g(0)

∗

g(1)
)

+ ǫ2
(
g(0)g(2)

∗

+ g(2)g(0)
∗

+ |g(1)|2
)
+ · · · ,

which can then be substituted into (6.10)-(6.11). Equating like powers of ǫ, one obtains

bilinear equations for sub-components f (i)g(j) using the D operator. As shown below (for

the NLS), this series truncates for integrable systems and exact solutions of various finite

order are obtained. To begin finding unknowns recursively, we can set initially f (0) = 1.

The zero-order term in (6.10) gives jg
(0)
z + g

(0)
tt = 0 or g(0) = ceX0 , where X0 =

2jλ0t− k0z+φ0. Here λ0 = (α+ jω)/2 is the eigenvalue, k0 = 4jλ20, and φ0 is a constant

phase related to the spectral amplitude (φ0 = log(q̃/ω2)). The zero-order term in (6.11)

gives c = 0, and thus g(0) = 0. At this stage, we can set the higher order terms to zero

and get the trivial solution q = 0.

The ǫ term in (6.10) gives g(1) = αeX1 . The corresponding term in (6.11) gives

2D2
t f

(1) = 0, or f (1) = 0.

The ǫ2 term in (6.11) is D2
t f

(2) = 2|g(1)|2, or 2f (2)
tt = 2|g(1)|2. Trying f (2) = αeX1+X∗

1 ,

we get α = (λ− λ∗)−2/4. At this stage, we can set other higher order unknowns to zero

and get the one soliton solution (choosing ǫ = 1)

F (t, z) = 1 +
1

4(λ− λ∗)2 e
X1+X∗

1 ,

G(t, z) = eX1 ,

q(t, z) =

(
e−X1 +

1

4(λ− λ∗)2 e
X∗

1

)−1

= ωsech [ω (t− 2αz − t0)] ejαt−j(α2−ω2)z.

where t0 = log(|q̃|/ω)/ω.

We can continue to find higher order solitons. The ǫ2 term in (6.10), i.e., (jDz +

D2
t )1.g2 = 0, gives g2 = α2e

X2 .
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In general, we have

F (t, z) =
∑

m=0,1

D1(m) exp
(
m · x+mTΦm

)
,

G(t, z) =
∑

m=0,1

D2(m) exp
(
m · x+mTΦm

)
,

wherem = [mi]
2N
i=1,mi = {0, 1}, x = [Xi]

2N
i=1, Xi = ωit−kiz+Xi(0), ki = jωi, Xi+N = X∗

i ,

Φ = [φij]
2N
i,j=1,

φij =





0 i ≥ j

−2 log (ωi + ωj)
i=1,2,··· ,N

j=N+1,N+2,··· ,2N

−2 log (ωi − ωj)
i=N+1,··· ,2N

j=N+1,N+2,··· ,2N

and

D1(m) =




1

N∑
i=1

mi =
N∑
i=1

mi+N

0 otherwise

,

D2(m) =




1

N∑
i=1

mi = 1 +
N∑
i=1

mi+N

0 otherwise

.

Note that, using the identity ∂tt logF =
FttF−F 2

t

F 2 , (6.11) is reduced to |q(t, z)|2 =

γ−1∂tt logF . The amplitude of q is thus captured by the real-valued function F , while G

contains the phase of the signal.

Two important observations follow from the Hirota method. Firstly, multisoliton

solutions of the NLS equation in the F ,G domain (q = G/F ) are the summation of

exponentially decaying functions β(α)e−αtejωt, each located at a frequency ω. That is to

say, while plane waves ej(ωt−kz) are the natural basis functions that solve linear PDEs,

for integrable systems, exponentially decaying functions are suitable. The addition of the

decaying factor e−αt (when t > 0) is the point at which the nonlinear Fourier transform

diverges from the linear Fourier transform [58]. Secondly, for each individual soliton

term, the Hirota method adds two-way interaction terms, three-way interaction terms,

etc., until all the interactions are accounted for. In this way, the interference between

individual components is removed, as shown schematically in Fig. 6.1. Tables 6.1 and
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{b1}

{b2}

{bN−1}

{bN}

bk to ak

mapper

and

modulator

· · · · · ·
F

interaction

terms

G

interaction

terms

G
Fe−aN−1te+jωN−1t

e−a2te+jω2t

e−a1te+jω1t

e−aN te+jωN t

q(t)

Figure 6.1: (a) Hirota modulator in creating N -solitons.

Table 6.1: The structure of the interaction terms in F .
F

N = 1 1 + eX1+X∗
1

N = 2 1 + eX1+X∗
1 + eX2+X∗

2 + eX1+X∗
2 + eX2+X∗

1

N = 3 1 + eX1+X∗
1 + eX2+X∗

2 + eX3+X∗
3 +

(
eX1+X∗

2 + eX2+X∗
1 + eX1+X∗

3 + eX3+X∗
1 + eX2+X∗

3 + eX3+X∗
2

)
+(

eX1+X2+X∗
1+X∗

2 + eX1+X2+X∗
1+X∗

3 + eX1+X2+X∗
2+X∗

3 + eX1+X3+X∗
1+X∗

2 + eX1+X3+X∗
1+X∗

3 + eX1+X3+X∗
2+X∗

3

)
(
+eX2+X3+X∗

1+X∗
3 + eX2+X3+X∗

1+X∗
2 + eX2+X3+X∗

2+X∗
3

)
+ eX1+X2+X3+X∗

1+X∗
2+X∗

3

6.2 show these interaction terms for N = 1, 2, 3.

While the Hirota method reveals important facts about the structure of the NLS

equation, it may not be the best method to compute multisolitons numerically. There

are
(
2N
N

)
∼ 22N and

(
2N
N+1

)
∼ 22N terms in F and G respectively, and unless one truncates

the interaction terms at some step, the complexity quickly grows, making it hard to

compute N -solitons for N ≥ 10.

6.2.3 Recursive Discrete Spectrum Modulation Using Darboux

Transformation

Multisoliton solutions of the NLS equation can be constructed recursively using the Dar-

boux transformation (DT). The Darboux transformation, originally introduced in the
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Table 6.2: The structure of the interaction terms in G.
G

N = 1 eX1 + eX
∗
1

N = 2 eX1 + eX
∗
1 + eX1+X2+X∗

1 + eX1+X2+X∗
2

N = 3 eX1 + eX2 + eX3 +
(
eX1+X2+X∗

1 + eX1+X2+X∗
2 + eX1+X2+X∗

3 + eX1+X3+X∗
1 + eX1+X3+X∗

2 + eX1+X3+X∗
3

)
(
eX2+X3+X∗

1 + eX2+X3+X∗
2 + eX2+X3+X∗

3

)
+
(
eX1+X2+X3+X∗

1+X∗
2 + eX1+X2+X3+X∗

2+X∗
3 + eX1+X2+X3+X∗

2+X∗
3

)

v (t, λk+1; q(t;λ1, · · · , λk))

q(t;λ1, · · · , λk)

q(t;λ1, · · · , λk+1)

v (t, µ; q(t;λ1, · · · , λk))

v(t, λk+1; q(t;λ1, · · · , λk)

v(t, µ; q(t;λ1, · · · , λk+1)

(a) (b)

Figure 6.2: (a) Signal update. (b) Eigenvector update.

q(t) = 0

v(t, λ1; 0)

v(t, λ2; 0)

v(t, λ3; 0)

· · ·

v(t, λN−2; 0)

v(t, λN−1; 0)

v(t, λN ; 0)

q(t;λ1)

v(t, λ2; q(t;λ1))

v(t, λ3; q(t;λ1))

v(t, λ4; q(t;λ1))

· · ·

v(t, λN−1; q(t;λ1))

v(t, λN ; q(t;λ1))

q(t;λ1, λ2)

v(t, λ3; q(t;λ1, λ2))

v(t, λ4; q(t;λ1, λ2))

v(t, λ5; q(t;λ1, λ2))

· · ·

v(t, λN ; q(t;λ1, λ2))

· · ·

· · ·

· · ·

. .
.

q(t;λ1, λ2, · · · , λN−1)

v(t, λN ; q(t;λ1, λ2, · · · , λN−1))

q(t;λ1, · · · , λN )

Figure 6.3: Darboux iterations for the construction of an N -soliton.

context of the Sturm-Liouville differential equations and later used in the nonlinear in-

tegrable systems, provides the possibility to construct from one solution of an integrable

equation another solution [72]. For instance, one can start from the trivial solution q = 0

of the NLS equation, and recursively obtain all higher order N -soliton solutions. This

approach is particularly suited for numerical implementation.

Let x(t, λ; q) denote a solution of the system

xt = P (ζ, q)x,

xz =M(ζ, q)x, (6.12)
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for the signal q and complex number ζ = λ (not necessarily an eigenvalue of q), where

the P andM operators were defined in Chapter 4. It is clear that x̃ = [x∗2,−x∗1]T satisfies

(6.12) for ζ → ζ∗, and furthermore, by cross-elimination, q is a solution of the integrable

equation underlying (6.12).

The statement of the Darboux theorem is as follows.

Theorem 11 (Darboux Transformation). Let φ(t, λ; q) be a known solution of (6.12),

and set Σ = SΓS−1, where S = [φ(t, λ), φ̃(t, λ)] and Γ = diag(λ, λ∗). If v(t, µ; q) satisfies

(6.12), then u(t, µ; q̃) obtained from the Darboux transform

u(t, µ; q̃) = (µI − Σ) v(t, µ; q), (6.13)

satisfies (6.12) for

q̃ = q − 2j(λ∗ − λ) φ∗
2φ1

|φ1|2 + |φ2|2
. (6.14)

Furthermore, both q and q̃ satisfy the integrable equation underlying the system (6.12).

Proof. See Appendix D.

The Darboux transform thus provides a means to construct from one solution of an

integrable equation q, another solution q̃ according to (6.14). Theorem 11 immediately

provides the following observations.

1. From φ(t, λ; q) and v(t, µ; q), we can obtain u(t, µ; q̃) according to (6.13). If µ

is an eigenvalue of q, then µ is an eigenvalue of q̃ as well. Furthermore, since

u(t, µ = λ; q̃) = 0, λ is also an eigenvalue of q̃. It follows that the eigenvalues of q̃

are the eigenvalues of q together with λ, i.e., λ is added to the eigenvalues of q.

2. q̃ is a new solution of the NLS equation obtained from q, and u(t, µ; q̃) is one of

its eigenvectors.

These observations suggest a two-step iterative algorithm to generate N -solitons

pulses, as illustrated in the Figs. 6.2-6.3. Denote a k-soliton pulse with eigenvalues

λ1, λ2, · · · , λk by q(t;λ1, λ2, · · · , λk) := q(k).

Eigenvector update:

v1(t, λj, q
(k+1)) = −

{
(λj − λk+1)|v1(t, λk+1, q

(k))|2 + (λj − λ∗k+1)|v2(t, λk+1, q
(k))|2

}
v1(t, λj, q

(k))

+(λ∗k+1 − λk+1)v1(t, λk+1, q
(k))v∗2(t, λk+1, q

(k))v2(t, λj, q
(k)), (6.15)
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v2(t, λj, q
(k+1)) = −

{
(λj − λ∗k+1)|v1(t, λk+1, q

(k))|2 + (λj − λk+1)|v2(t, λk+1, q
(k))|2

}
v2(t, λj, q

(k+1))

−(λk+1 − λ∗k+1)v
∗
1(t, λk+1, q

(k))v2(t, λk+1, q
(k))v1(t, λj, q

(k)), (6.16)

for k = 1, · · · , N and j = k, · · · , N .

Signal update:

q(k+1) = q(k) − 2j(λ∗k+1 − λk+1)×
v1(t, λk+1, q

(k))v∗2(t, λk+1, q
(k))

||v(t, λk+1, q(k))||2
. (6.17)

Note that v(t, λj, q
(k+1)) can also be obtained directly by solving the Zakharov-

Shabat system for q(k+1). It is however more efficient to update the required eigen-

vector from (6.15)-(6.16). N -solitons can be constructed from the trivial solution q = 0.

The first column of Fig. 6.3 is chosen to be the (non-canonical eigenvector) v(t, λj) =

[Ae−jλjt, Bejλjt]T and iterations are initialized from these vectors to find all k−solitons,
k ≤ N . The coefficients A and B control the spectral amplitudes and the shape of the

pulses. For a single soliton A = exp(j∠q̃) and B = |q̃|.

6.3 Evolution of the Discrete Spectrum

Recall that the imaginary and real parts of the eigenvalues correspond, respectively, to

soliton amplitude and frequency. If the real part of the eigenvalue ℜλ is zero, the N -

soliton does not travel (with respect to a traveling observer) while propagating. The

individual components of an N -soliton pulse with non-zero frequencies travel in retarded

time with speeds proportional to ℜλi (frequency).
The manner of N -soliton propagation thus depends on the choice of the eigenvalues.

An N -soliton signal is essentially composed of N single solitons coupled together, similar

to a molecule which groups a number of atoms. If the discrete spectrum of the signal lies

completely on the imaginary axis, the pulse preserves its shape or periodically oscillates

during the evolution. If the eigenvalues have non-zero real parts, various components

travel at different speeds and eventually when z →∞ the N -soliton decomposes into N

separate solitons

q(t, z)→
∑

ωie
−j(αit+kiz+φ0)sech(ωi(t− ti − αiz)),

where λ = (αi + jωi)/2 is the eigenvalue, ki = (α2
i − ω2

i )/2, and ti is the time center.

This breakdown of a signal to its individual components, while best observed in the case

of multisolitons, is simply a result of group velocity dispersion and exists for all pulses
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similarly. The extent of breakdown and shift depends on a variety of factors, such as

launch power, length of the fiber, number of mass points, fiber dispersion, and dispersion-

management schemes. If dispersion is not managed, the effects of pulse broadening must

be carefully considered.

6.4 Demodulating the Discrete Spectrum

To demodulate a multisoliton pulse, the eigenproblem (6.2) needs to be solved. There

is limited work in the mathematical literature concerning the numerical solution of the

Zakharov-Shabat spectral problem (6.2). In Chapter 5, we have suggested methods

by which the nonlinear Fourier transform of a signal may be computed numerically.

In particular, here we use the layer-peeling and Ablowitz-Ladik methods described in

Chapter 5 to estimate the discrete spectrum.

Recall that the layer-peeling method works by approximating q(t) as a piece-wise

constant signal and using the layer-peeling property of the nonlinear Fourier transform

mentioned in [37]. Let q(t) be defined in the interval [T1, T2]. The layer-peeling iteration

is given as

a[k + 1] = a[k]x[k]− b[k]ȳ[k],
b[k + 1] = a[k]y[k] + b[k]x̄[k].

where

x[k] =

(
cos(ǫD)− j λ

D
sin(ǫD)

)
ejλǫ, (6.18)

y[k] =
−q∗k
D

sin(Dǫ)e−2jλt, (6.19)

and x̄[k](λ) = x∗[k](λ∗), ȳ[k](λ) = y∗[k](λ∗), D =
√
λ2 + |q[k]|2.

The layer-peeling scheme can be used along with the Newton-Raphson method to

search for the eigenvalues of q(t) in the upper-half complex plane C+. The reader is

referred to Chapter 5 for further details.

6.5 Statistics of the Spectral Data

Unfortunately, the generalized NLS equation that includes an additive space-time noise

term is generally not integrable. The addition of noise also disturbs the vanishing or
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periodic boundary conditions usually assumed in the development of the nonlinear Fourier

transform. However, since the amplified spontaneous emission noise in optical fibers is

quite small compared to the signal level for SNR >10 dB , one can treat the effects of

noise as a small perturbation of the signal, and still safely use the NFT.

Calculation of the exact statistics can be quite cumbersome. This is essentially be-

cause the NLS equation with additive noise, unlike the noise-free equation, has little or no

structure, giving rise to complicated variational representations for the noise statistics.

Even if such exact results are available, they are poorly suited for data communications

studies. One can however approximate or bound these statistics using a perturbation

theory, or simulate them on a computer.

Remark 11. In the special case that the noise is real and multiplicative and only a

function of distance, i.e., the signal is multiplied by a real-valued multiplicative random

variable at each (discrete) point in the fiber, the resulting equation is still integrable and

the theory of the nonlinear Fourier transform can be used with no approximation. We

conjecture that exact statistics of the spectral data can be found in this case.

Remark 12. Note that the generalized NLS equation that includes a loss term is also not

integrable. Note, however, that loss is traded with the distributed Raman amplification

noise, and once including perturbations resulting from the noise, the effect of the fiber

loss can approximately be ignored (though the nature of these two perturbations are

different).

Noise can be added in a discrete or continuous manner. In the case of the discrete

(lumped) noise addition resulting from the erbium-doped fiber amplifiers, the randomness

is on initial conditions and, assuming a finite time interval, the NFT is exact whether

the input pulse is deterministic or random. We refer to this type of the stochasticity

where the randomness comes from the initial conditions and not the medium as the

homogeneous randomness.

If noise is injected continuously throughout the fiber as a result of distributed Raman

amplification (DRA), one has a non-homogeneous noise. Here we can discretize the fiber

into a large number of small fiber segments and add lumped noise at the end of each

segment. The injected noises act as random perturbations of the initial data at the input

of each segment. The DRA can thus be approximately treated similar to the lumped noise

case. This is justified in the view that when simulating the stochastic NLS equation, the

step size in the split-step Fourier method can be as large as the distance between EDFA

amplifiers, i.e., the dynamic of the pulse propagation under DRA and a large number

of EDFAs is about the same. Other non-homogeneous distortions can also be treated

similarly.
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In this section, we study the effect of the these two types of perturbations on the

NFDM channel model. We assume that the noise vanishes, or is negligible, as |t| → ∞
and has a finite energy such that the signal remains absolutely integrable almost surely.

6.5.1 Homogeneous Noise

The NFT arises in the spectral analysis of the L operator (6.1). We can easily analyze

the perturbations of the eigenvalues λ as a result of the changes in the signal q(t).

Let us denote the noise-free nonlinear Fourier transform of q(t) by (q̂(λ), q̃(λj)). As

the signal q(t) is perturbed to q(t) + ǫN(t) for some small parameter ǫ and (normalize)

noise process N(t), the (discrete) eigenvalues and spectral amplitudes slightly deviate

from their nominal values. Separating the signal and noise terms, the perturbed v and λ

satisfy

(L+ ǫR)v = λv, R =

(
0 N

−N∗ 0

)
, (6.20)

where R is the noise matrix. The study of the stochastic nonlinear Fourier transform

is thus a perturbation theory of the non-self-adjoint operator (6.20). Here we need to

measure the variation of the eigenvalues and eigenvectors as the operator L is changed

from L to L+ ǫR.

Perturbation theory of Hermitian operators is well-studied in the quantum mechanics

(e.g., by E. Schrödinger). The Zakharov-Shabat operator (6.20) is however non-self-

adjoint. Unfortunately most useful properties of the self-adjoint operators do not carry

to the non-self-adjoint operators, particularly due to the lack of a complete orthonormal

basis. Thus the perturbation of the spectral data for the NLS equation is more difficult

than that for the KdV equation. In both cases (deterministic) perturbation analysis of

the IST already exists in the literature [73–76]. These are however mostly deterministic

results and the distribution of the scattering data is still lacking in the literature. A very

interesting work is [77] in which authors calculate the distribution of the spectral data for

the special case that channel has no noise and the input is a white Gaussian stochastic

process.

Since in this Section we are only interested in finding the noise in eigenvalues (and not

discrete spectral amplitudes whose perturbation analysis can be complicated), a simple

small noise approximation, given below, is sufficient.

For the non-self adjoint operators L, the orthogonality that we require is between the

space of left and right eigenvectors of L associated with distinct eigenvalues; that is to
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say, between eigenvectors of L associated with λ and eigenvectors of the adjoint operator

L∗ associated with µ 6= λ∗. Let us equip the space of eigenvectors with the usual L2 inner

product

〈u, v〉 =
∞̂

−∞

(u1v
∗
1 + u2v

∗
2) dt. (6.21)

It can be easily verified that the operator Σ3L is self-adjoint, i.e., 〈u,Σ3Lv〉 = 〈Σ3Lu, v〉,
where Σ3 = diag(1,−1) is the Pauli matrix.

We use a small noise approximation method, expanding unknown variables in noise

level ǫ [24] as

v(t) = v(0)(t) + ǫv(1)(t) + ǫ2v(2)(t) + · · · (6.22)

λ = λ(0) + ǫλ(1) + ǫ2λ(2) + · · · . (6.23)

We assume these variables are analytic functions of ǫ so that above series are convergent

(without the need to renormalize [24]). Plugging (6.22)-(6.23) into (6.20) and equating

the like powers of ǫ, we obtain

Lv(0) = λ(0)v(0), (6.24)

(L− λ(0))v(1) = −(R− λ(1))v(0), (6.25)

(L− λ(0))v(2) = −(R− λ(1))v(1) + λ(2)v(0), (6.26)
... .

The first term gives that v(0) and λ(0) are eigenvalue and eigenvector of the (nominal)

operator L. To eliminate v1 from the second equation, we take the inner product on both

sides of (6.24) with some vector u; the left hand side of the resulting expression is

〈u, (L− λ(0))v(1)〉 = 〈(L− λ(0))∗u, v(1)〉 = 〈(L∗ − λ(0)∗)u, v(1)〉. (6.27)

To have (6.27) vanish, we can choose u to be an eigenvector of the adjoint operator L∗

associated with an eigenvalue µ = λ(0)∗, i.e., (L∗ − λ(0)∗)u = 0. Since L∗(q) = L(−q),
if Lv = λ(0)v, it can be verified that L∗u = λ(0)u for u = [v1,−v2] = Σ3v. Choosing

u := u(0) = Σ3v
(0)(t, λ∗)

λ(1) =
〈u(0), Rv(0)〉
〈u(0), v(0)〉 .
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Using similar calculations we obtain λ(2)

λ(2) =
〈u,Rv(1)〉
〈u, v(0)〉 − λ

(1) 〈u, v(1)〉
〈u, v(0)〉 ,

and so on.

To summarize, the fluctuations of discrete eigenvalues is given by

λ̂n = λn + ǫ
〈un, Rvn〉
〈un, vn〉

+O(ǫ2), n = 1, 2, · · · , N.

It follows that the perturbation of the eigenvalues is distributed, to the first order,

according to a zero mean complex Gaussian distribution.

To find higher order fluctuations of eigenvalues, v(k), k ≥ 1, need to be found as well.

This is done by expanding v(k) in the eigenspace of L associated with all eigenvalues

and using the orthogonality of left and right eigenspaces. Since the operator L is not

self-adjoint under the L2(R) inner product, this calculation is a little more elaborate than

the case that L is self-adjoint (where a complete orthonormal basis exists).

6.5.2 Non-homogeneous Noise and Other Perturbations

Consider the perturbed NLS equation

jQz = Qtt + 2|Q|2Q+ ǫV (t, z), (6.28)

where ǫ is a small parameter (noise level), and V (t, z) represents the combined effects of

the signal loss and the distributed noise. Here we will make the a priori assumption that

sample paths of the stochastic process possess sufficient regularity and we do not discuss

the well-posedness properties of (6.28).

Let us represent (6.28) with the same L and M of the noise-free equation and now

let λ vary with time. The equality of mixed derivatives vtz = vzt gives

(
−jλz Qz + jQtt + 2j|Q|2Q

−Q∗
z + jQ∗

tt + 2j|Q|2Q∗ jλz

)
v = 0.

This, upon re-arranging and using (6.28), simplifies to

λzv = ǫR̄v, R̄ = −R.

Note that, as before, we do not have v(t, z) a priori because, according to (6.1), it



Chapter 6. Discrete and Continuous Spectrum Modulation 143

depends on the noisy signal q(t, z) and λ(z), both of which are unknown. However, if

the noise level ǫ is small, we can expand v(t, z) and λ in powers of ǫ as (6.22) and (6.23)

to obtain (λ(0))z = 0 and R̄v(0) = (λ(1))zv
(0) (i.e., (λ(1))z appears as a time-independent

eigenvalue of R̄(t)). Taking the inner-product with u(0) = Σ3v
(0)(t, λ∗) on both sides of

R̄v(0) = (λ(1))zv
(0), we obtain the first order variation of eigenvalues

(λ1)z =
〈u(0), R̄v(0)〉
〈u(0), v(0)〉 . (6.29)

It follows from (6.29) that the distribution of deviation of the eigenvalues is approxi-

mately a zero-mean conditionally Gaussian random variable. The variance of this random

variable is signal dependent, and although eigenvectors of anN -soliton can be represented

as a series from Darboux transform, it is best calculated numerically if N ≥ 2.

Example 13. Consider the single soliton of Example 12. It can be verified that 〈Σ3v(t, λ
∗), v(t, λ)〉

= ω
2
(1 + ω2

|q̃|2 ) =
1
ω
, where we assumed |q̃| = ω so that the soliton is centered at t0 = 0.

Furthermore

〈v(t, λ∗), R̄v(t, λ)〉 = −
ˆ

(v1(t, λ
∗)v∗2(t, λ)N

∗ + v2(t, λ
∗)v∗1(t, λ)N) dt

= −
ˆ

1

2
sech(ωt)(v2(t, λ

∗) + v∗2(t, λ))ℜN̄ + j

ˆ

1

2
sech(ωt)(v2(t, λ

∗)− v∗2(t, λ))ℑN̄dt

= −1

2

ˆ

sech(ωt)ℜN̄dt− j

2

ˆ

sech(ωt)tanh(ωt)ℑN̄dt,

where N̄ = N exp(jΦ) has the same statistics as N . It follows that

αz = −
ˆ

sech(τ)ℜN̄dτ, (6.30)

ωz = −
ˆ

sech(τ)tanh(τ)ℑN̄dτ . (6.31)

The Gordon-Haus effect easily follows from the αz equation. Note that in fiber optics

noise is added to the signal, i.e., V → jV .

6.6 Spectral Efficiencies Achievable by Modulating

the Discrete Spectrum

We turn now to the numerical study of N -solition data transmission schemes, providing

simulation results to quantify the gains that are achievable. The baseline system is

assumed to be a classical on-off keying soliton transmission in which in any symbol period
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Ts either zero or a fundamental soliton is sent. To improve upon the classical binary

soliton transmission system, two or more discrete mass points are packed in a time interval

which an on-off keying soliton system occupies, while keeping the bandwidth requirements

same. The location of the eigenvalues and the values of the discrete spectral amplitudes

can be jointly modulated for this purpose. We shall see that the effective useful region in

the upper-half plane to exploit the potential of discrete eigenvalue modulation is limited

by a variety of factors. As noted earlier, in this chapter, we discuss modulating the

continuous spectrum just briefly.

Since modulating the nonlinear spectrum translates to pulses with variable width,

power, and bandwidth, we take the average time, average power, and the maximum

bandwidth to properly convert bits per symbol to bits/s and bits/sec/Hz. We start

by continuously modulating one eigenvalue in a given region (i.e., a classical soliton

with amplitude and phase drawn from a multiple ring constellation). We next consider

multisoliton systems with a number of constellations on eigenvalues and discrete spectral

amplitudes. We compare the achievable spectral efficiencies (and in some cases bit error

rates) with those of an on-off-keyed single-soliton communication system.

Throughout this section, we consider a 2000 km single mode single channel optical

link in which fiber loss is perfectly compensated in a distributed manner using the Raman

amplification. Dispersion compensation is not applied, as it is an advantage of the method

that no dispersion management or nonlinearity compensation is required. We let pulses

interact naturally, as atoms in a molecule, and perform all operations on such groups.

The method however works for dispersion managed fibers as well, and in general with any

operation that does not change integrability. Typical simulation parameters are given in

Table 2.1.

6.6.1 Spectral Efficiency of 1-Soliton Systems

Soliton transmission systems typically do not have high spectral efficiencies. This is

because the amplitude and the width of a single soliton are inversely related, and hence

they require a lot of time or bandwidth per degree of freedom provided. Errors in a soliton

transmission system occur either because of the Gordon-Haus timing jitter effect (which

is the primary source of the error if not managed) or amplitude (energy) fluctuations.

Following the Galilean invariance [9], the Gordon-Haus effect exists for all kind of pulses

to the same extent and is not specific to solitons. This classical effect can be suppressed

with the help of the suitably designed filters, and as a result is ignored in this section.

Let first consider a classical soliton system with only one eigenvalue λ = (α+ jω)/2.
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The joint density fA,Ω(α, ω) can be obtained from (6.30)-(6.31) or just directly by ex-

tracting the dynamics of α and ω from the stochastic NLS equation, resulting to a pair of

coupled stochastic ordinary differential equations. For instance, multiplying the stochas-

tic NLS equation (6.28) by q∗, subtracting from its conjugate, integrating over time, and

using the integration by parts in the dispersion term, we get

∂E

∂z
= 2ℑ

∞̂

−∞

q(τ, z)Z(τ, z)dτ, (6.32)

where E(z) =
´

|q(τ, z)|2dτ is the energy, and Z = −N∗ is a noise process similar to

N . Thus energy fluctuations is a signal-dependent Gaussian random variable E(z) ∼
NR

(
E(0), σ2

´

E(z)dz
)
≈ NR(E(0), σ

2zE(0)). Ignoring the energy of the continuous

spectrum, we have E ≈ 2ω and

ω(z) = ω(0) + σ

√
zω(0)

2
NR(0, 1) . (6.33)

The conditional probability density function (PDF) fΩ|Ω0(ω|ω0) is easily derived

f(ω|ω0) =
1√

πσ2zω0

e
− (ω−ω0)

2

σ2zω0 . (6.34)

The the PDF of r =
√
ω(z) is approximately a Rician distribution

f(r|r0) =
r

σ2
e−

r2+r20
2σ2 I0(

rr0
σ2

)

≈ 1√
2πσ2

e−
(r−r0)

2

2σ2 , r, r0 ≥ σ, (6.35)

which is signal-independent in high SNRs.

Note that we are interpreting the stochastic NLS equation as a soliton-bearing system

in the limit that noise is small. A soliton of the deterministic NLS equation launched

into a system described by the stochastic NLS equation would have, of course, a growing

continuous spectrum too and, in addition, a very small chance of creating additional

solitons out of noise at some distance, or collapsing into the real axis in the λ plane.

All these effects are negligible if the energy of the launched soliton is large enough and

the propagation distance is not exceedingly long. where the Gaussian approximation is

valid in the limit P ≫ σ2. The non-Gaussian part of the PDF could also be taken into

account, however this would be of little value in the evaluation of the capacity as it is

quite negligible and complicates mutual information optimization.



Chapter 6. Discrete and Continuous Spectrum Modulation 146

0

1

2

3

4

5

0 5 10 15 20 25 30

C
b
it
s/
sy
m
b
ol

SNR [dB]

Direct detection
Sampling at t = 0

NFT
NFT HG lower bound

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0 5 10 15 20 25 30

ρ
[b
it
s/
s/
H
z]

SNR [dB]

Direct detection
Sampling at t = 0

NFT

(a) (b)

0

1

2

-0.4 -0.2 0 0.2 0.4

ℑ
λ

ℜλ

0

1

2

-0.4 -0.2 0 0.2 0.4

ℑ
λ

ℜλ

(c (d)

Figure 6.4: (a) Capacity (bits/symbol) and, (b) spectral efficiency (bits/s/Hz), of soliton
systems using direct detection, sampling, and the NFT methods. (c) Eigenvalue constel-
lation. (d) Noise balls at the receiver in the NFT approach. The signal-dependency of
the noise balls can be seen e.g., through (6.33).

In [29] we have shown that a half-Gaussian density

f(ω0) =
1√
2πP

e−
ω2
0

2P , ω0 ≥ 0,

gives the asymptotic capacity for (6.34)

C ∼ 1

2
log(1 + SNR )− 1

2
,

where SNR = P
σ2 .

Translating capacity in bits/symbol to the spectral efficiency in bits/s/Hz depends

on the receiver architecture. Assuming that the receiver is able to decode pulses with
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variable widths, the spectral efficiency ρ(P) is obtained by

ρ(P) = max
f(ω0)
ω0∈S

1

ET (ω0)BW (S)
I(ω;ω0),

EP (ω0) ≤ P , (6.36)

where T (ω0) and P (ω0) are the width and the power of a single soliton with amplitude

ω0 and BW (S) = max
ω0∈S

BW (ω0) is the maximum passband bandwidth that the signal

set S requires for transmission (set by the minS). For a one soliton signal, we have

approximately

T (ω0) =
7

ω0

, P (ω0) =
ω2
0

6.2
, BW (ω0) = 0.95ω0, (6.37)

where the width T (ω0) includes a guard time, four times the full width at half maximum

power FWHM, so as to minimize the intra-channel interactions.

Using (6.37), the maximum spectral efficiency of a baseline on-off keying system is

obtained to be about ρ ≈ 0.15 bits/s/Hz at the average power P0 = 0.16 mW. Note that

the spectral efficiency problem (6.36) is not convex and hence finding the global optimum

may prove to be challenging. Here we simply optimize mutual information and scale it

by ET (ω)× BWmax(S) evaluated at the capacity achieving input distribution.

Fig. 6.4 shows that capacity and the spectral efficiency of a 1-soliton system with

amplitude modulation using various detection methods. Note that since we do not solve

the optimization problem (6.36), the spectral efficiencies shown in the Fig. 6.4(b) are

only lower bounds to the actual achievable values. Fig. 6.4(c)-(d) shows the transmitted

constellation and the noise balls at the receiver. The actual number of signal levels is

64 in the simulations. Calculation of the approximate capacity is performed using the

Arimoto-Blahut algorithm and is confirmed by numerical interior point optimization.

6.6.2 Spectral Efficiency of 2-Soliton Systems

To illustrate how the NFT method works, we start off by a simple example.



Chapter 6. Discrete and Continuous Spectrum Modulation 148

Modulating Eigenvalues

Consider the following signal set with 4 elements.

S1 : 0,

S2 : q̃(0.5j) = 1,

S3 : q̃(0.25j) = 0.5,

S4 : q̃(0.25j, 0.5j) = (1, 1). (6.38)

We compare this with a standard on-off keying soliton transmission system, consist-

ing of S1 and S2, providing about ρ0 = 0.33 bits/sec/Hz spectral efficiency at P0 =

0.1876 mW and R0 = 7.42 Gbits/sec data rate (see Table. 6.3 and its description). Note

that the noise level is so small compared to the imaginary part of the eigenvalues that

with few eigenvalues performance evaluation is essentially a deterministic analysis.

Table 6.3 shows the energy, duration, power and the bandwidth of the signals in

(6.38). The resulting constellation has the average power 0.46P0 and the average time

duration 1.65T1, where P0 and T1 are power and time duration of the fundamental soliton.

Therefore the new signal sets provides about log 4
1.65T1W0

= 1.2121 × ρ0 bits/sec/Hz and

operates at R = 1.2121 × R0 for about the same average power (0.5P0). Note that

without S4 the average power would be higher and in addition the improvement in the

spectral efficiency is slightly smaller compared to the on-off keying system. Signal S4 is

the new signal that NFT method adds to what other methods can also include. Signals

such as S4 do not cost much in terms of time × maximum bandwidth product, while

they add additional elements to the signal set. Such additional signals can generally be

decoded only with the help of the nonlinear Fourier transform.

In this example, the receiver needs to estimate the pulse-duration. This can be done

in many ways, e.g., using the NFT computations already performed: zeros of the signal

signal energy duration FWHM 99% duration power bandwidth
S1 0 T0 T1 0 W0

S2 E0 T0 T1 P0 W0

S3 0.5 E0 2T0 2T1 0.25P0 0.5W0

S4 1.5 E0 4.25T0 2.58T1 0.58P0 0.5W0

Table 6.3: Parameters of the signal set in Section. 6.6.2. Here E0 = 4×0.5 = 2, T0 = 1.763
at FWHM power, T1 = 5.2637 (99% energy), P0 = 0.38 and W0 = 0.5714. The scale
parameters are T ′

0 = 25.246 ps and P ′
0 = 0.5 mW at dispersion 0.5 ps/(nm− km).
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in time can be detected when [v21e
jλt, v22e

−jλt] reaches a constant value in steady state.

This can be checked at times t = T1, t = 2T1 and t = 2.58T1. If one of the signals is zero

at the end of another signal, one can monitor the energy of the continuous spectrum to

make sure that it is small. If symbol duration is fixed to be the maximum 2.58T1, the

addition of S3 and S4 increases both time interval and cardinality of signal set such that

the spectral efficiency and data rate remained to be same (log(6)/2.58), while operating

at 77% of the on-off keying signal power.

Since solitons with purely imaginary eigenvalues do not suffer from major temporal

or spectral broadening, there would be no major performance loss at the end of the fiber.

Modulating both Eigenvalues and Spectral Amplitudes

We can improve upon the previous example by modulating the spectral amplitudes too.

Consider the following signal set

S1 : 0,

S2 − S5 : q̃(0.5j) = q̃1,

S6 − S9 : q̃(0.25j) = q̃2,

S10 − S16 : q̃(0.25j, 0.5j) = (q̃3, q̃4). (6.39)

We make a 3-PAM constellation on q̃i ∈ {0.5, 1, 1.5}. This creates a signal set with 16

elements. Here pulses are extended to 3T1 time duration. The resulting constellation has

the average power 1.06P0 and average time duration 2.236T1, where P0 and T1 are power

and time duration of the benchmark on-off keying system. Therefore the new signal set

provides about log 16
2.236T1W0

= 1.79×ρ0 bits/sec/Hz and operates at R = 1.79×R0 for about

the same average power. If we fix symbol durations to be the maximum 3T1, then the

improvement is ρ = 2.2ρ0 = 0.73 bits/s/Hz, at 80% of the average power.

Again, since real part of the eigenvalues is not modulated, signals do not suffer from

major temporal or spectral broadening, and there would be no performance loss at the

end of the fiber.

Remark 13. Note that modulating the eigenvalues include only the amplitude information

and to excite the other half of the degrees of freedom representing the phase, discrete

spectral amplitudes should be considered too. While |q̃(λj)| may be noisy, the phase

∠q̃(λj) or a function of {q̃(λj)}j=N

j=1 can be investigated for this purpose. Note however

that the asymptotic behavior of the spectral efficiency can be obtained by considering

the eigenvalues alone.
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6.6.3 Spectral Efficiency of N-Soliton Systems, N ≥ 3

To achieve high spectral efficiencies, a dense constellation in the upper-half complex plane

needs to be considered. A spectral constellation with n eigenvalues in C+ and m levels

for spectral amplitudes provides

log

(
n∑

k=0

(
n

k

)
mk

)
= n log (m+ 1) ,

bits. One can continue the argument presented in the previous examples by increasing

n and m. The receiver architecture presented in this thesis is fairly simple and is able

to decode NFT signals rather efficiently. At the transmitter side, one should make sure

that all (m + 1)n signals look good in time and frequency. Some pulses may have a

large peak to average power, bandwidth or (99%) width. We have not found rules

for modulating the spectrum such that the pulses have “good” properties in time too.

While for small examples given here we can check pulse properties directly, in general we

require appropriate ways for selecting the spectral data (specially the discrete spectral

amplitudes).

In this simulation, we assume a constellation with 30 points uniformly chosen in the

interval 0 ≤ λ ≤ 2 on the imaginary axis and create all N -solitons, 1 ≤ N ≤ 6. We

then prune signals with undesirable bandwidth or width from this large signal set. The

remaining multi-solitons are used as carriers of data in the typical fiber system considered

earlier. Here a spectral efficiency of 1.5 bits/s/Hz is achieved. For this calculation, we

take the maximum pulse width (containing 99% of the signal energy) and the maximum

bandwidth of the signal set. Since pulse widths are large, the shift of the signal energy due

to the Gordon-Haus effect is insignificant here. By increasing n and m, the Gordon-Haus

effect is as important as it is for the sinc function transmission and backpropagation.

6.7 Multiuser Communications Using the NFT

As mentioned in Chapter 3, a major gain potentially can potentially be obtained by using

methods which do not suffer from inter-channel interference, such as NFDM. In fact,

interference-free communications is the most promising advantage of the NFT approach.

Recall that the real and imaginary axes of the complex plane in the NFT method

represent, respectively, the signal frequency and amplitude. In a multiuser optical com-

munication system, we partition the complex plane into vertical bins. Each bin contains

one or more degrees of freedom and is assigned to a user. The function of add-drop mul-
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ℑ(λ) (amplitude)

Figure 6.5: Partitioning C+ for multiuser communication using the NFT.

tiplexers is now modified to multiplex and demultiplex signals in a nonlinear way. Each

nonlinear multiplexer/demultiplexer in principle calculates the spectrum of its input sig-

nal, filters signals which need to be dropped in the complex plane, and specifies the free

bands in the nonlinear spectrum. It then calculates the spectrum of the signals entering

the fiber and puts them in unoccupied bands. Finally, the inverse NFT is taken to output

a time domain signal. This way each user gets a subspace in the complex plane during its

trip in the fiber, operates in that subspace and deterministically does not interfere with

other users. For small peak powers on the imaginary axis, the nonlinear multiplexing is

equivalent to the regular Fourier transform multiplexing and as per-channel powers are

increased, the deviations from the capacity of the linear channels associated with the

prior work is best accounted for.

6.7.1 The Need for a Nonlinear Multiplexer/Demultiplexer

It is a conclusion of this thesis that one needs to multiplex and demultiplex signals in

nonlinear fashion so as to avoid the interference associated with the WDM method and

reach significantly higher spectral efficiencies. The nonlinear frequency-division multi-

plexer described above is complex in the given form and may not be the best description

of a such device (without further simplification). Any multiplexer inducing independent

signal propagation for different users is enough to get to the most of the advantages of the

NFT method. This is true even if the resulting per user channel models are nonlinear.

To find such multiplexer, a deterministic model, as noted in Chapter 3 and advocated in

this thesis, can be considered.
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6.8 Spectral Efficiencies Achievable by Modulating

the Continuous Spectrum

In addition to the discrete spectrum, the continuous spectrum can be modulated too. The

spectrum of an isolated sinc function is purely continuous in low powers, resembling a sinc

function. The continuous spectrum is modulated just like the ordinary Fourier transform

and at the receiver can be estimated with great accuracy. The received spectrum is

then compared with the spectrum of the possible waveforms at the transmitter in the

log-Euclidean norm

d(q̂2(λ), q̂1(λ)) =
1

π

∞̂

−∞

log
(
1 + |q̂2(λ)− q̂1(λ)|2

)
dλ.

Fig. 6.6(a) shows the capacity of a typical single channel fiber-optic system using the

backpropagation and the nonlinear Fourier transform. The NFT is calculated on a 1024

and 64 point grid on the real axis. The 1024-point NFT can be compared with the 1024-

point FFT implementation of the Split-Step Fourier Method in the backpropagation

scheme. As it can be seen, the NFT and backpropagation methods give about the

same capacities. The slight improvement in the NFT method can be attributed to the

stability of the spectral data compared to the time data (though numerical errors should

be considered too).

Simulation is repeated for 5 WDM channels with the system architecture of Fig. 2.8.

Here, low-pass filters and ROADMs are placed at the end of each fiber segment. The

spectral efficiency in this case is obviously lower due to the inter-channel interference.

Here too, NFT and FFT-based backpropagation produce approximately the same results.

From Fig. 6.6 it follows that at low SNRs NFT and backpropagation give about the

same capacities. As the SNR is increased, the spectral efficiency of the backpropaga-

tion degrades due to ISI (if memory is not accounted for) or inter-channel interference

(inevitably). The spectral efficiency of the NFT is expected to grow further due to the

immunity to the cross talk. We have not yet simulated the spectral efficiency at SNRs

beyond that of Fig. 6.6 due to a large number of simulation variables at high spectral

efficiencies, the introduction of the discrete mass points, and the complexity of the NFT

multiplexer. The major advantage of the NFDM is yet remained to be illustrated.

Note that often the mutual information is rather flat at the location of the capacity-

achieving input distribution. That is to say, the capacity is usually not very sensitive to

the details of the channel. Thus although the stability of the spectral data translates to
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a small improvement in the capacity in low SNRs, the improvements in the probability

of error, as another performance measure, are more substantial in the NFT method.

6.9 Some Remarks

We briefly reiterate few remarks about the NFT method made throughout the thesis to

highlight and recapitulate some of its properties.

Noise in the spectral coordinates The NLS equation with additive noise has no

known integrability structure, in the sense of possessing a set of non-interacting degrees

of freedom, as in the linear or the nonlinear Fourier transform (unless for special cases of

noise). As a result, an additive noise in the time domain gets coordinates in the spectral

domain which are not independent or orthogonal. Since the noise description is signal-

dependent, one gets two kinds of interference in a multiuser nonlinear channel: a large

deterministic interference and a smaller stochastic interference. The NFT method does

not suffer from the large deterministic interference (“strong interference”). However the

smaller stochastic interference is expected to be left over (“weak interference”).

Spectral efficiency of the NFDM method asymptotically As stated above, while

deterministic channels are parallel and independent in the nonlinear Fourier domain, the

presence of the noise correlates degrees of freedom and introduces interference. Thus

NFDM is subject to a weak interference (whose strength depends on the noise level and

SNR).

Note however that the decline of the capacity in the prior work is mostly due to the

(strong) deterministic interference. The stochastic interference is an order of magnitude

smaller and its effects are expected to appear at larger SNRs (of order of the inverse

of the noise power ǫ−1). As a result, although the spectral efficiency of the NFDM is

expected to be higher and may not peak down at the usual SNRs (∼ 25 dB) where the

spectral efficiency of the WDM transmission and backpropagation declines [7], it too

may ultimately peak down, albeit at much higher SNRs (> 30 dB ). We have not yet

simulated the capacity at such high SNRs to see that at what SNR this may potentially

happen. Such spectral efficiency achievable by the NFDM may be the best achievable

rate, since the channel in the presence of the noise is not known to posses any set of

non-interacting degrees of freedom and thus is fundamentally interference-limited. The

improvements in the spectral efficiency using the NFDM method, compared to the WDM

scheme, can still be significant, due to the immunity to the deterministic interference.
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Figure 6.6: Capacity of (a) single channel, and (b) WDM optical fiber system using the
nonlinear Fourier transform and backpropagation. The SNR is calculated at the system
bandwidth and can be adjusted to represent the optical signal-to-noise ratio (OSNR).
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Figure 6.7: (a) As the power of the nonlinearity is increased from α = 0 in jqz =
qtt + 2q|q|α, the equation changes from a linear one with structure to a non-integrable
equation with no structure, until α = 2 where it becomes integrable and again possesses
a (self-organizing) structure. For the purpose of the communications, a channel with
structure is preferred. Thus the near integrable channel in practice (shown by a star)
is equalized to an integrable channel (shown by a circle) as in this thesis, or to a linear
channel (shown by a square) as in the prior work. (b) Three terms of the NLS equation
in the time and spectral domains.
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This can be seen, for instance, from the capacity simulations performed in [7] which

illustrate that the spectral efficiency of the WDM method vanishes at high SNRs even

if noise is set to zero. This is not the case for the NFDM whose spectral efficiency is

unbounded when the noise is zero. This example shows what gains are expected to be

achievable using the NFDM. It also shows the importance of considering deterministic

models in multi-user optical channels.

Similarities and Differences of NFDM and OFDM

Similarities

1. The degrees of freedom are parallel and independent when noise is zero.

2. As in OFDM, one should consider the NFT under periodic boundary conditions

and obtain a discrete NFT. The development of the discrete NFT already exists

in the mathematics literature [58,78]. A cyclic prefix may be needed at this stage.

Differences

1. Unlike OFDM, the noise in the NFDM method is correlated across spectral com-

ponents and is signal-dependent.

2. Frequencies in the NFDMmethod are complex numbers. Since discrete frequencies

in C+ come in the form of isolated points as a part of the degrees of freedom, they

can be chosen from a constellation in C+ (e.g., QAM) and are subject to noise

jitter. Thus eigenvalue communication is modulating the (discrete) support of

the nonlinear Fourier transform of the signal (similar to frequency-shift keying).

Modulating the remaining degrees of freedom, i.e., the discrete and continuous

spectral amplitudes, is in analogy with the OFDM.

Some of the Advantages and Disadvantages of the NFT

Advantages Some of the advantages of using the NFDM were mentioned at the

beginning of this chapter (page 122). In short, in this method all deterministic distortions

are zero for all users of a multiple user network (i.e., no SPM, XPM, FWM, ISI or

interference).

Disadvantages

1. NFDM critically relies on the integrability of the channel. Loss, higher order dis-

persion, and other perturbations caused by filters and communication equipments
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not taken into account here contribute to deviations from integrability. There are

however several reasons to believe that the back to back channel from transmitter

to the receiver can still be close to an integrable channel:

(a) NFT is applicable as long as one can see solitons in the fiber. Solitons

have been implemented in practice in the presence of the communication

equipments (filters, multiplexers, analog-to-digital (A/D) converters, etc).

This is an indicator that the back to back channel is still nearly integrable.

(b) With employing Raman amplification the effects of the loss are minimal

(indeed traded with noise perturbation).

(c) Mathematically one has stability results for solitons. A soliton passing

through a filter might be distorted a little, but it re-organizes its shape so

as to revert back to its original shape (or form a soliton living nearby in the

complex plane). For instance as an application of this property, filters were

traditionally used to keep solitons in shape and reduce the Gordon-Haus

timing jitter [69].

(d) In the view that the performance of the WDM method is asymptotically

severed with SNR, the potential gains of using the NFT can be significant.

It may be worthwhile to identify and minimize the perturbations of the

integrability.

(e) The current practice of compensating and equalizing a nearly integrable

channel to make it as linear as possible might be a more significant effort

than making it integrable (see Fig. 6.7 (a)).

2. The nonlinear Fourier coefficients at the receiver are calculated in O(n) operations
per nonlinear frequency, where n is the number of signal samples in time. To

compare with FFT, the complexity of an n-point NFT is O(n2) (fixed number of

Newton steps is assumed in case of discrete frequencies). The complexity of the

transmitter can be even more. As a result, NFT is computationally difficult to

implement or sometimes to simulate.

3. Optical or electrical signal processing of N-solitons and the required hardware for

their nonlinear multiplexing may not be as simple as those in the linear systems.

A signal modulated to have desirable properties in the spectrum may translate

to a signal in the time domain which is not processed easily with the current

technology (e.g., requiring high resolution A/Ds). Note that the NFT decoder

typically requires signal samples at increments smaller than the Nyquist rate. An

interpolation step may be needed to find all the necessary data.

4. Noise in the NFT domain can be difficult to analyze. However given that this
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is the total accumulated noise, and the more important deterministic distortions

are not present in the NFDM, nonlinear spectrum is still a more natural domain

for information-theoretic analysis (see Fig. 6.7 (b)). In the time domain, all three

terms, including the accumulated noise, are difficult to analyze, mainly due to

their interactions.



Chapter 7

Conclusion

A man’s errors are his portals of

discovery.

James Joyce

Motivated by the recent studies showing that the spectral efficiency of optical fiber

networks is severely limited by the impacts of the nonlinearity, we revisited information

transmission in such nonlinear systems. Among numerous distortions, we identified the

inter-channel interference in the multiuser WDM optical networks as the implacable fac-

tor limiting the spectral efficiency at high powers. However this distortion and similar

ones arising from the nonlinearity, are largely due to the use of methods suited for linear

systems, such as pulse train transmission and WDM, for the nonlinear optical channel.

Exploiting the integrability of the NLS equation, we presented a nonlinear frequency-

division multiplexing method which is fundamentally compatible with the structure of

the channel. The distinction with the previous methods is that NFDM is now able to

handle the nonlinearity as well, and thus as the the signal power or transmission distance

is increased, the new method does not suffer from the cross talk between signal compo-

nents, which has severed the performance of the prior work. The scheme has numerous

other advantages desired in a communication network. We took the first steps towards a

communication system implementing the nonlinear Fourier transform. We simplified the

task of the transmitter and receiver and provided examples illustrating how to use the

NFT for data transmission. Although these small examples clearly demonstrate improve-

ments over their benchmark systems, a high spectral efficiency simulation illustrating the

promise of the NFDM that the spectral efficiency does not degrade at moderate SNRs as

in the prior work has not yet been performed. Due to the importance of the nonlinearity

in optical networks, NFT or a similar idea should ultimately be used in the future to

conceive schemes which do not suffer from cross talk or cancel such effects in the existing

systems.
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Appendix A

Spectrum of Bounded Linear

Operators

When moving from finite-dimensional spaces (of e.g., matrices) to infinite-dimensional

spaces (of e.g., functions and operators), some results do not carry over necessarily. Here

we recall a few useful results in functional analysis [46].

Let H be a Hilbert space, let D be a dense subset of H, and let L : D → H be an

operator.

Definition 8. The adjoint of L is the operator L∗ whose domain D∗ consists of all ψ ∈ H
for which there exists an element L∗ψ ∈ H such that

〈L∗ψ, φ〉 = 〈ψ,Lφ〉, ∀φ ∈ D.

The operator L is said to be self-adjoint if D = D∗ and L∗ = L. Ignoring domain

subtleties (as is the case for bounded operators), self-adjoint operators are the analogue

of Hermitian matrices.

Definition 9. Given an operator L on a Hilbert space, an operator M is said to be the

inverse of L if the domain of M is the range of L, the range of M is the domain of L,

and ML = I and LM = I.

We will restrict ourselves now to operators whose D is the entire space H.
An operator L : H → H is invertible if it 1) is one-to-one 2) is onto 3) has bounded

inverse. In finite-dimensional spaces, only the first condition is required.

An operator is bounded if it maps bounded inputs to bounded outputs. A bounded

operator is invertible if it is one-to-one and onto.
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Definition 10. The spectrum of an operator L on H is defined as

σ(L) = {λ ∈ C|L− λI is not invertible }.

The spectrum of a bounded operator can be partitioned into two classes, depending

on the reason that L− λI fails to be invertible.

A complex number λ is considered part of the discrete spectrum if L−λI is not one-to-
one, i.e., Lψ = λψ has a non-zero solution ψ ∈ H. In this case, λ is called an eigenvalue,

and each ψ satisfying this equation for the given λ is an associated eigenvector. The set

of all eigenvalues is called the point spectrum or discrete spectrum of L, σdisc(L).

It can also happen that L − λI fails to be surjective, i.e., the range of L − λI is a

proper subset of H. We call the set of λ for which this happens the continuous spectrum

σcont(L) [46].

In finite-dimensional Hilbert spaces the spectrum is entirely discrete. This may no

longer be true in infinite-dimensional spaces, where the eigenvalues (if they exist) may

only be one part of the spectrum. The spectrum of a self-adjoint operator is real. In

general, σ(L) = σ(L∗).

The following examples illustrate some these possibilities.

Example 14. The operator L(x(t)) = tx(t), x(t) ∈ L2[0, 1], has no eigenvalues and its

spectrum is purely continuous σ(L) = [0, 1].

Example 15. The Fourier transform operator F(q)(ω) =
∞́

−∞
q(t)ejωtdt, regarded as on

operator on L2(R) has the property F4 = I. The eigenvalues are therefore the discrete

values {±1,±j}. If p(t) is an arbitrary polynomial, then p(t) exp(−t2/2) is an eigenfunc-

tion.

Example 16. Let ∇2 be the Laplace operator and let r denote the radial distance in the

three-dimensional space. The operator L = −∇2 − 1
r
is self-adjoint, and therefore it has

a real spectrum. The continuous spectrum is [0,∞) and the discrete spectrum is given

by λn = − 1
4n2 , n = 1, 2, . . ..

Example 17. It is possible that the discrete spectrum of an operator is uncountable. For

example, for a sequence (x0, x1, . . .) ∈ ℓ2 = {x :
∑

i |xi|2 <∞}, let the left-shift operator
L be defined as L (x0, x1, x2, . . .) = (x1, x2, . . .). The spectrum consists of the unit disk

|λ| ≤ 1. The portion |λ| < 1 is the discrete spectrum while |λ| = 1 is the continuous

spectrum. The adjoint of L is the right-shift operator R (x0, x1, x2, . . .) = (0, x0, x1, . . .).

This operator has the same total spectrum, but it is entirely continuous.
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Example 18. Consider the Zakharov-Shabat system (4.18), in the form (DI − P )v = 0,

v ∈ L2(R). One can see that for λ ∈ R, the eigenvectors v(t, λ) contain oscillatory terms

exp(±jλt), and thus are not in L2(R) (unbounded in norm). As a result, the operator

(DI−P )−1 is unbounded and the inverse (DI−P )−1 does not exist on the Hilbert space

L2(R). Thus λ ∈ R forms the continuous spectrum. This is generally the case where

for an operator L on H for which the eigenproblem Lv = λv has a solution with infinite

norm.

Note that some authors subdivide what we refer to as the continuous spectrum into

further classes (e.g., residual spectrum, essential spectrum, etc.) [46]; however, for the

purposes of this thesis, classification into discrete and continuous spectra will suffice.

Hermitian matrices are always diagonalizable, have real eigenvalues, and possess a

complete set of orthonormal eigenvectors, which provide a basis for the input space.

There is a perfect generalization of this result to compact self-adjoint operators [46].

Theorem 12 (Hilbert-Schmidt spectral theorem). Let L be a compact self-adjoint op-

erator in H. Then it is always possible to find eigenfunctions {ψn} of L forming an

orthonormal basis for H.

The spectral theory of operators that are not compact and self-adjoint is more in-

volved; see [46].

An important class of operators are the multiplication operators, which are analogous

to diagonal matrices.

Definition 11 (Multiplication operator). Let f(t) be an arbitrary function. The operator

L defined by (Lψ)(t) = f(t)ψ(t), which performs sample-wise multiplication, is called

the multiplication operator or diagonal operator induced by f(t).

Theorem 13. Every bounded self-adjoint operator in a separable Hilbert space H is

unitarily equivalent to a multiplication operator Γ, i.e., L = UΓU−1 where U is unitary.

It follows that the essence of a bounded self-adjoint operator is just a multiplication

operator.



Appendix B

Riemann-Hilbert Factorization

Problem

B.1 Preliminary

Recall that a complex function f(z) = u(x, y) + jv(x, y) in the complex plane z = (x, y)

is differentiable at a point (x0, y0) if and only if the partial derivatives ux, uy, vx and vy

are continuous and

ux = vy, uy = −vx. (B.1)

The compatibility conditions (B.1) are called the Cauchy-Riemann conditions and are

obtained by equating the limit δz → 0 along the real and imaginary axes. This means

that, unlike real functions, differentiability of a complex function imposes a constraint

between the real and imaginary parts of the function.

A function f(z) is said to be analytic at (x0, y0) if it is differentiable in a neighborhood

of that point. If f(z) is analytic in an open region Ω of the complex plane, then a power

series representation of f(z) is convergent in Ω. Existence of a power series representation

has a number of interesting consequences. For instance, the zeros of a non-zero function

analytic in an open region Ω of C are isolated points in Ω [50].

Lemma 14 (Plemelj formulae). Let C be any smooth, closed, counter-clockwise, contour

in the complex plane and let f(x) be any function satisfying a Hölder condition on C

defined by

|f(t)− f(τ)| ≤ k|t− τ |α, k > 0, ∀t, τ ∈ C,
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for some 0 < α ≤ 1. Then the projection integral

F (ζ) =
1

2πj

˛

C

f(z)

z − ζ dz, (B.2)

is analytic everywhere in C except possibly at points ζ on the contour C (where F (ζ) is

not defined). If ζ approaches C along a path entirely inside the contour C, then

F+(ζ)
∆
= lim

z→ζ
F (ζ) =

f(ζ)

2
+

1

2πj
p.v.

ˆ

C

f(z)

z − ζ dz. (B.3)

If ζ approaches C along a path entirely outside the contour C, then

F−(ζ)
∆
= lim

z→ζ
F (ζ) = −f(ζ)

2
+

1

2πj
p.v.

ˆ

C

f(z)

z − ζ dz. (B.4)

Here p.v. denotes the principal value integral defined by

p.v.

ˆ

C

f(z)

z − ζ dz = lim
ǫ→0

˛

C−Cǫ

f(z)

z − ζ dz,

in which Cǫ is an infinitesimal part of C centered at z = ζ and with length 2ǫ.

Proof. See [52].

The projected function F (ζ) is a sectionally analytic function of ζ with respect to C,

i.e., it is analytic in sections C+ (the interior of C) and C− (the exterior of C), and the

limits F±(ζ) exist (as given by (B.3) and (B.4)).

A consequence of Lemma 14 is that F±(ζ) satisfies the following jump condition on

the boundary C

F+(t)− F−(t) = f(t).

The projection operator therefore produces functions which are analytic almost every-

where, except on a contour where it experiences a jump in its limits.

B.2 The Scalar Riemann-Hilbert Problem

In the scalar Riemann-Hilbert problem, the task is to find functions f+(z) and f−(z),

analytic, respectively, inside and outside a given smooth closed contour C, such that on
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C

f+(t) = g(t)f−(t) + h(t) t ∈ C, (B.5)

where h(t) and g(t) (with g(t) 6= 0 for all t ∈ C), are given functions satisfying a Hölder

condition on C.

Both unknowns f+(z) and f−(z) can be determined from the single boundary equa-

tion (B.5), using the projection operator (B.2). To see this, first consider the homoge-

neous case where h(t) = 0. One can rewrite (B.5) as a jump condition

log f+(z)− log f−(z) = log g(z) z ∈ C.

Functions log f+(z) and log f−(z) can be viewed as portions of a single sectionally analytic

function log f(z) which is analytic in C+ and C− and on boundary C its limits jump as

log g(t). In view of the projection operator P (B.2), consider

log f(z) =
1

2πj

˛

C

log g(λ)

λ− z dλ.

If log g(t) satisfies a Hölder condition on C, then log f(z) is analytic strictly inside and

outside C. On C, we can define log f+(z) and log f−(z), respectively, as equal to the

limits (B.3) and (B.4). The function obtained in this way satisfies (B.5) and has the

desired analyticity properties.

Note however that, unlike g(t), log g(t) in the integrand may not satisfy a Hölder

condition. To resolve this issue, we can multiply g(t) by a decaying factor t−k, for a

suitable k, to make t−kg(t) Hölder, and obtain f+(t) =
(
t−kg(t)

)
(tkf−(z)). Therefore,

defining

F (z) = exp


 1

2πj

˛

C

log λ−kg(λ)

λ− z dλ


 ,

we have the following solution for the homogeneous RH problem:

f+(z) =




F (z) z ∈ C+,

F+(z) z ∈ C,
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and

f−(z) =




z−kF (z) z ∈ C−,

z−kF−(z) z ∈ C.

Here k can be chosen so that t−kg(t) is continuous and the total phase change of log t−kg(t)

is zero along the closed path C.

The solution f±(z) is called the fundamental solution to the scalar RH problem. From

the homogeneity of (B.5), one can obtain other solutions by multiplying f±(z) by any

entire function in C.

We can generalize the above procedure to solve the non-homogeneous Riemann-

Hilbert problem (B.5). In this case, we can find a factorization g(t) = g+(t)
g−(t)

by solving

a homogeneous Riemann-Hilbert problem with boundary conditions g+(t) = g(t)g−(t).

Then (B.5) is reduced to

f+(t)

g+(t)
− f−(t)

g−(t)
=

h(t)

g+(t)
,

which, as before, can be solved in closed form using the Plemelj formulae.

B.3 The Matrix Riemann-Hilbert Problem

When formulating the inverse nonlinear Fourier transform, we face a matrix Riemann-

Hilbert problem (4.36). Matrix RH problems are generally more involved and may not

allow closed-form solutions [52]. As we will see in the Appendix C.4, for the particular

matrix RH problem (4.36), the projection operator (B.2) is sufficient to solve the problem.



Appendix C

Proofs of Some Results from

Chapter 4

C.1 Proof of Elementary Properties of the NFT

In this section, we sketch the proofs of the properties of the NFT stated in Section 4.3.4.

1. If ||q(t)||L1 ≪ 1, then y2(t, λ) and q2(t) terms can be ignored in (4.30) and (4.31).

From the resulting equations, it follows that there is no discrete spectrum and

q̂(λ)→ Q(λ). The quadratic terms are introduced by the NFT to account for the

nonlinearity.

2. This follows from 1) in above, and that when |a| ≪ 1, the squared terms repre-

senting the nonlinearity can be ignored.

3. This follows from replacing q(t) with ejφq(t) in (4.30) and (4.31).

4. Scaling the Zakharov-Shabat system (4.18) as t′ = t/a, we obtain the desired

result. Note that if sgn(a) < 0, boundary conditions at ±∞ are interchanged.

5. Property 5) and 6) follow by replacing q(t) with q(t − t0) and e2jωtq(t) in (4.30)

and (4.31), and accordingly changing variables.

6. This is the statement of (4.33).

7. The following identity, known as the trace formula, can be easily proved for the

nonlinear Fourier transform [10]

cn =
4

n

N∑

i=1

ℑ(λni ) +
1

π

∞̂

−∞

ζn−1 log
(
1 + |ρ(ζ)|2

)
dζ.

Here cn are the secondary constants of motion, i.e., quantities, directly in terms of

the time domain data, which are preserved during the flow of the NLS equation.
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The first few ones are the energy

c1 =

∞̂

−∞

|q(t)|2dt,

momentum

c2 =
1

2j

∞̂

−∞

q(t)q∗t (t)dt,

and the Hamiltonian

c3 = −
∞̂

−∞

(
|q(t)|4 − |qt(t)|2

)
dt.

Parseval’s Identity is the trace formula evaluated at n = 1.

8. Let q(t) be supported in the interval [t1, t2] and let K(q(t), t1, t2) denote a propa-

gator (linear transformation) which maps v(t, λ) in (4.18) from v(t1, λ) to v(t2, λ).

The propagator is structured as

K =

(
a(λ)ejλ(t2−t1) −b∗(λ∗)ejλ(t2+t1)

b(λ)e−jλ(t2+t1) a∗(λ∗)e−jλ(t2−t1)

)
.

Let q1(t) and q2(t), supported, respectively, in the intervals [t1, t2] and [t2, t3],

t1 < t2 < t3, correspond to the propagators K1(q1(t), t1, t2) and K2(q2(t), t2, t3).

Then q(t) = q1(t) + q2(t) is supported in [t1, t3], and from linearity corresponds to

the propagator K = K2K1

K =

(
a2(λ)e

jλ(t3−t2) −b∗2(λ∗)ejλ(t3+t2)

b2(λ)e
−jλ(t3+t2) a∗2(λ

∗)e−jλ(t3−t2)

)

×
(
a1(λ)e

jλ(t2−t1) −b∗1(λ∗)ejλ(t2+t1)

b1(λ)e
−jλ(t2+t1) a∗1(λ

∗)e−jλ(t2−t1)

)
.

The 1× 1 and 2× 1 elements are

K11 = ejλ(t3−t1) (a1(λ)a2(λ)− b1(λ)b∗2(λ∗)) ,
K21 = e−jλ(t3+t1) (a1(λ)b2(λ) + b1(λ)a

∗
2(λ

∗)) .

Comparing with K11 = a(λ)ejλ(t3−t1) and K21 = b(λ)e−jλ(t3+t1), we get the desired
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result.

C.2 Proof of Lemma 10

Analyticity of the canonical eigenvectors is directly a property of the Zakharov-Shabat

system (4.18). Let us scale canonical eigenvectors as V 2 = v2ejλt, Ṽ 2 = ṽ2e−jλt,V 1 =

v1e−jλt and Ṽ 1 = ṽ1ejλt. Transforming the Zakharov-Shabat system (4.18), the scaled

eigenvectors satisfy

V 2
t =

(
0 q

−q∗ 2jλ

)
V 2, V 2(−∞) =

(
1

0

)
, (C.1)

Ṽ 2
t =

(
−2jλ q

−q∗ 0

)
Ṽ 2, Ṽ 2(−∞) =

(
0

1

)
,

Ṽ 1
t =

(
0 q

−q∗ 2jλ

)
Ṽ 1, Ṽ 1(∞) =

(
1

0

)
,

V 1
t =

(
−2jλ q

−q∗ 0

)
V 1, V 1(∞) =

(
0

1

)
.

Let us, for instance, solve for the canonical eigenvector V 2 in (C.1). Considering the q

terms as an external force and using the Duhamel formula [79], (C.1) can be transformed

into its integral representation

V 2(t, λ) =

(
1

0

)

+

∞̂

−∞

h(t− t′, λ)
(

0 q(t′)

−q∗(t′) 0

)
V 2(t′, λ)dt′, (C.2)

where the system impulse response h(t, λ) is

h(t, λ) =

(
u(t) 0

0 e2jλtu(t)

)
, (C.3)

and we have ignored transient terms since the boundary condition starts at t = −∞.

The analyticity of eigenvectors can be seen intuitively at at this stage. The impulse

response (C.3) involves the term e2jλtu(t) and hence (C.1) is well defined in C+ if q ∈
L1(R). The impulse response for the V 1 equation involves −e−2jλtu(−t) and hence it is

bounded in the same region. The impulse response for Ṽ 2 and Ṽ 1 have terms proportional
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to e−2jλtu(t) and −e2jλtu(−t), respectively, and therefore these eigenvectors are analytic

in C− for q ∈ L1(R).

A more precise argument proceeds by solving (C.2) explicitly. Duhamel’s integral

(C.2) is of the form of a fixed-point map

V 2 =

(
1

0

)
+ T (V 2),

where T is the linear operator underlying (C.2). A candidate for the solution is the sum

V 2 =
∞∑

k=0

Uk (C.4)

where Uk satisfy the iteration

Uk+1 = T (Uk) +

(
1

0

)
, U0 =

(
0

0

)
.

The first few terms are

U1 =

(
1

0

)
, U2 =




0

−
t́

t1=−∞
q∗(t1)e

2jλ(t−t1)dt1


 , (C.5)

U3 =



−

t́

t2=−∞

t2́

t1=−∞
q(t2)q

∗(t1)e
2jλ(t2−t1)dt1dt2

0


 , (C.6)

and the kth term is recursively defined by

Uk+1 =

(
1

0

)
+

t
ˆ

−∞

(
q(t′)Uk

2 (t
′, λ)

−q∗(t′)Uk
1 (t

′, z)e2jλ(t−t′)

)
dt′. (C.7)

By induction on k, as (C.7) suggests, if Uk is analytic and q(t) ∈ L1(R), then Uk+1

is analytic. In addition, the series (C.4) is uniformly convergent on t and thus V 2 is

analytic in C+.

Similarly one proves the analyticity of the other canonical eigenvectors in their cor-

responding region.
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C.3 Asymptotics of Canonical Eigenvectors and Non-

linear Fourier Coefficients when |λ| ≫ 1

If λ ∈ C+ and |λ| ≫ 1, then 1
j(ω−2λ)

= −1
2jλ

+ O(λ−2) and, taking the inverse Fourier

transform, we can approximate e2jλtu(t) = − 1
2jλ
δ(t) + O(λ−2). Substituting into (C.4),

(C.5), (C.6), for |λ| ≫ 1 we obtain

V 2(t, λ) =


1 + 1

2jλ

∞́

−∞
|q(t)|2dt

1
2jλ
q∗(t)


+O(λ−2). (C.8)

A similar asymptotic expression can be derived for V 1 (λ≫ 1)

V 1(t, λ) =




1
2jλ
q(t)

1 + 1
2jλ

∞́

−∞
|q(t)|2dt


+O(λ−2).

If |λ| → ∞, q can be assumed zero in (4.18) compared to jλ. Thus v(t, λ) approaches

the boundary conditions at t = ±∞. Therefore

a(λ) = 〈v2(t, λ), v1(t, λ)〉s = 〈v2(+∞, λ), v1(+∞, λ)〉s
→ 〈v2(−∞, λ), v1(+∞, λ)〉s = 1. (C.9)

Similarly, it is shown that b(λ)→ 0 as |λ| → ∞.

C.4 Solution of the Riemann-Hilbert Problem in the

NFT

In Section 4.6, the inverse nonlinear Fourier transform was formulated as an instance of

the Riemann-Hilbert factorization problem. Using hints given in the Appendix B, the

resulting factorization problem can be solved in a simplified manner via an appropriate

contour integration.

Dividing both sides of the projection equations (4.24)-(4.25) by a(λ)(λ − ζ), for pa-
rameter ζ ∈ C−, and integrating on the real axis −∞ < λ <∞, we obtain

1

2πj

∞̂

λ=−∞

V 2(t, λ)

a(λ)(λ− ζ)dλ =
1

2πj

∞̂

λ=−∞

Ṽ 1(t, λ∗)

λ− ζ dλ+
1

2πj

∞̂

λ=−∞

q̂(λ)e2jλtV 1(t, λ)

λ− ζ dλ, (C.10)
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in which the integration is performed on the open path z = λ,−∞ < λ < ∞. The

integration path thus passes the singularity λ = ζ from above in all the integrals.

Cauchy integrals in (C.10) are computed from the residue theorem. The integration

path −∞ < λ < ∞ can be closed in the upper or lower half-planes. To compute the

first integral, we close the path in the upper half-plane and denote the resulting closed

contour by C+
−ζ , i.e., the upper half plane and excluding the singularity z = ζ

1

2πj

∞̂

λ=−∞

V 2(t, λ)

a(λ)(λ− ζ)dλ =
1

2πj

˛

C+
−ζ

V 2(t, z)

a(z)(z − ζ)dz − lim
R→∞

1

2πj

Rejπ
ˆ

Rej0

(
1

0

)

a(z)(z − ζ)dz

=
N∑

i=1

V 2(t, λj)

a′(λj)(λj − ζ)
− 1

2

(
1

0

)

=
N∑

i=1

b(λi)e
2jλitV 1(t, λi)

a′(λi)(λi − ζ)
− 1

2

(
1

0

)

=
N∑

i=1

q̃(λi)e
2jλitV 1(t, λi)

λi − ζ
− 1

2

(
1

0

)
, (C.11)

where, in the second line, when R → ∞, we have used the asymptotic values (C.8) and

(C.9) in Appendix C.3. Note that we assumed that eigenvalues λj are all simple zeros of

a(λ), i.e., no multiplicity.

To compute the second integral in (C.10), we close the integration path in the lower

half-plane and denote the resulting closed contour by C−
+ζ , i.e., the lower half-plane and

including the singularity z = ζ

1

2πj

∞̂

λ=−∞

Ṽ 1(t, λ∗)

λ− ζ dλ =
1

2πj

˛

C−
+ζ

Ṽ 1(t, z∗)

z − ζ dz − lim
R→∞

1

2πj

Rejπ
ˆ

Rej2π

(
1

0

)

z − ζ dz

= −Ṽ 1(t, ζ) +
1

2

(
1

0

)
. (C.12)

The last integral in (C.10) is left uncomputed, because the boundedness of e2jλt

depends on the sign of t. For t > 0, we can consider C+
−ζ which leads to the expression

(C.11) multiplied by u(t). For t < 0, we should inevitably consider C−
+ζ , where poles of

V 1(x, λ) are unknown. As a result, this integral is left untreated.

Using (C.11) and (C.12) in (C.10), we obtain an integral equation relating canonical
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eigenvectors V 1 and Ṽ 1 to q̂(λ) and q̃(λj)

Ṽ 1(t, ζ∗) =

(
1

0

)
+

N∑

i=1

q̃(λi)e
2jλitV 1(t, λi)

ζ − λi

+
1

2πj

∞̂

λ=−∞

q̂(λ)e2jλtV 1(t, λ)

λ− (ζ − jǫ) dλ. (C.13)

This is the first equation in the Riemann-Hilbert system (4.37) when ζ approaches the

real line from below. Since (C.13) holds for any ζ ∈ C−, evaluating (C.13) at ζ = λ∗j , j =

1, . . . , N , produces the third equation in (4.37). The remaining equations are obtained

by taking the ∼ operation from these two equations and subsequently replacing λ and

λm with, respectively, λ∗ and λ∗m.



Appendix D

Proof of the Darboux Theorem

The proof of a more general theorem can be found in [72]. We prove it here too to save

the reader delving in [72].

Let φ(t, λ; q) be a known eigenvector associated with λ and q, i.e., satisfying φt =

P (q, λ)φ. Its adjoint φ̃(t, λ) = [φ∗
2,−φ∗

1] satisfies φ̃t(t, λ) = P (q, λ∗)φ̃(t, λ). Denote this

known solution as S = [φ, φ̃], Γ = diag(λ, λ∗), and Σ = SΓS−1.

We can verify that St = JSΓ + QS, where J = diag(j,−j) and Q = offdiag(q,−q∗).
In addition we have Σt = [JΣ +Q,Σ].

Given that φ(t, λ; q) is known, the Darboux transformation maps {v(t, µ; q), ṽ(t, µ; q)}
to {u(t, µ; q̃), ũ(t, µ; q̃)} according to

U = V Λ− ΣV,

where V = [v, ṽ], U = [u, ũ], Λ = diag(µ, µ∗).

175



Appendix D. Proof of the Darboux Theorem 176

We have Vt = JV Λ +QV and

Ut = VtΛ− (ΣtV + ΣVt)

= (JV Λ +QV )Λ− ([JΣ +Q,Σ]V + Σ(JV Λ +QV ))

= (JV Λ +QV )Λ− ΣJV Λ− {[JΣ +Q,Σ] + ΣQ}V
= J(V Λ− ΣV )Λ + JΣV Λ− ΣJV Λ

+QV Λ− ([JΣ +Q,Σ] + ΣQ)V

= JUΛ + [J,Σ]V Λ− ([JΣ +Q,Σ] + ΣQ)V +QV Λ

= JUΛ + [J,Σ]V Λ−
(
JΣ2 +QΣ− ΣJΣ

)
V +QV Λ

= JUΛ + [J,Σ]V Λ− [J,Σ]ΣV −QΣV +QV Λ

= JUΛ + [J,Σ](V Λ− ΣV )−QΣV +QV Λ

= JUΛ + [J,Σ]U +Q(V Λ− ΣV )

= JUΛ + (Q+ [J,Σ])U

= JUΛ + Q̃U,

where

Q̃ = Q+ [J,Σ]. (D.1)

In the same manner we can show that u and ũ satisfy the M -equation vz = M(λ, q̃)

and ṽt =M(λ∗, q̃).
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