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Informational Aesthetics 

Measures
Jaume Rigau, Miquel Feixas, and Mateu Sbert ■ University of Girona, Spain

In 1928, George D. Birkhoff formalized the 

aesthetic measure of an object as the quotient 

between order and complexity (see also the “Re-

lated  Work” sidebar).1 From Birkhoff’s work, Max 

Bense,2 together with Abraham Moles,3 developed 

informational aesthetics (or information-theoretic 
aesthetics from the original German term), which 

de�nes the concepts of order and complexity 

from Shannon’s notion of information.4 As Birk-

hoff stated, formalizing these 

concepts, which depend on the 

context, author, observer, and 

so on, is dif�cult. Scha and Bod 

claimed that in spite of these 

measures’ simplicity, “if we in-

tegrate them with other ideas 

from perceptual psychology and 

computational linguistics, they 

may in fact constitute a start-

ing point for the development of 

more adequate formal models.”5

The creative process generally 

produces order from disorder. 

Bense proposed a general schema 

that characterizes artistic pro-

duction by the transition from 

the repertoire to the �nal prod-

uct. He assigned a complexity to the repertoire, 

or palette, and an order to the distribution of its 

elements on the artistic product. 

This article, an extended and revised version 

of earlier work,6 presents a set of measures that 

conceptualizes Birkhoff’s aesthetic measure from 

an informational viewpoint. These measures de-

scribe complementary aspects of the aesthetic ex-

perience and are normalized for comparison. We 

show the measures’ behavior using three sets of 

paintings representing different styles that cover 

a representative feature range: from randomness 

to order. Our experiments show that both global 

and compositional measures extend Birkhoff’s 

measure and help us understand and quantify the 

creative process. 

Information theory and Kolmogorov 
complexity

Some basic notions of information theory,4 Kol-

mogorov complexity,7 and physical entropy8 serve 

as background for our work.

Information-theoretic measures
Information theory deals with information 

transmission, storage, and processing.4 Research-

ers in �elds such as physics, computer science, sta-

tistics, biology, image processing, and learning use 

information theory. 

Let X be a �nite set and X be a random vari-

able taking values x in X with distribution p(x) = 

Pr[X = x] (that is, the probability that variable X 

takes value x). Likewise, let Y be a random variable 

taking values y in Y. We characterize an informa-

tion channel X → Y between two random variables 

(input X and output Y) by a probability transition 

matrix that determines the output distribution 

given the input. 

We de�ne the Shannon entropy H(X) of a ran-

dom variable X by 

H X p x p x
x X

( ) ( )log ( )= −
∈
∑

 

The Shannon entropy H(X), also denoted by H(p), 
measures the average uncertainty of random variable 

X and ful�lls 0 ≤ H(X) ≤ log |X|. If the logarithms 

are taken in base 2, we express entropy in bits. 

The conditional entropy is de�ned by 

H X Y p x y p x y
x X y Y

( ) ( , )log ( )
,

= −
∈ ∈
∑

The Birkhoff aesthetic  

measure of an object is the  

ratio  between  order and  

complexity. Informational 

aesthetics describes the 

interpretation of this measure 

from an information-theoretic 

perspective. From these ideas, 

the authors de�ne a set of 

ratios based on information 

theory and Kolmogorov 

complexity that can help 

to quantify the aesthetic 

experience.
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where p(x, y) = Pr[X = x, Y = y] is the joint prob-

ability, and p(x|y) = Pr[X = x|Y = y] is the condi-

tional probability. The conditional entropy H(X|Y) 

measures the average uncertainty associated with 

X if we know the outcome of Y. The mutual infor-
mation between X and Y is de�ned by I(X, Y) = 

H(X) − H(X|Y) = H(Y) − H(Y|X), and represents 

the shared information between X and Y. 

The Shannon source-coding theorem is a funda-

mental result of information theory. This theorem 

encodes an object to store or transmit it ef�ciently. 

The theorem expresses that an optimal code’s mini-

mal length (for instance, a Huffman code) ful�lls 

H X H X( ) ( )≤ < +l 1   (1)

where �  is the expected length of the optimal bi-

nary code for X. 

Related Work in Informational Aesthetics
Eighty years ago, Birkhoff formalized the notion of 

beauty by introducing the aesthetic measure, de�ned as 

the ratio between order and complexity.1 According to 

this measure, “the complexity is roughly the number of el-

ements that the image consists of and the order is a mea-

sure for the number of regularities found in the image.”2 

Birkhoff suggested that aesthetic feelings stem from the 

harmonious interrelations inside the object and that the 

aesthetic measure is determined by the order relations in 

the object. He identi�ed three successive phases in the 

aesthetic experience: 

A preliminary effort of attention, which is necessary for 

the act of perception and increases proportionally to the 

object’s complexity (C). 

The feeling of value or aesthetic measure (M) coming 

from this effort. 

The veri�cation that the object is characterized by 

certain harmony, symmetry, or order (O), which seems 

necessary for the aesthetic effect.

From these considerations, Birkhoff de�ned the aesthetic 

measure as M =O/C. 

Birkhoff understood the impossibility of comparing 

objects of different classes and accepted that the aesthetic 

experience depends on the observer. So, he proposed re-

stricting the group of observers and applying the measure 

only to similar objects. 

Using information theory, Bense proposed both the 

redundancy and Shannon entropy to quantify, respective-

ly, an artistic object’s order and complexity.3 According 

to Bense, any artistic creation process involves a deter-

mined repertoire of elements (such as colors, sounds, and 

phonemes) that is transmitted to the �nal product. The 

creative process is selective (that is, to create is to select). 

For instance, if the repertoire is given by a palette of colors 

with a probability distribution, the �nal product (in our 

case, a painting) is a selection (a realization) of this palette 

on a canvas. Although the distribution of elements of an 

aesthetic state has a certain order, the repertoire shows 

a certain complexity. Bense also distinguished between a 

global complexity, formed by partial complexities, and a 

global order, formed by partial orders. 

Other authors have also introduced measures to 

■

■

■

quantify aesthetics. Koshelev considered that the running 

time t(p) of a program p that generates a given design 

is a formalization of Birkhoff’s complexity C. In addition, 

a monotonically decreasing function of the program’s 

length l(p) (that is, Kolmogorov complexity) represents 

Birkhoff’s order O.4 So, looking for the most attractive 

design, M = 2−l(p)/t(p) de�nes the aesthetic measure. 

Machado and Cardoso established that an aesthetic 

visual measure depends on the ratio between image 

complexity and processing complexity.5 They estimated 

both using real-world compressors (JPEG and fractal, 

respectively). They considered that images that are simul-

taneously visually complex and easy to process have a 

higher aesthetic value. 

Green�eld6 and Hoenig7 provide excellent overviews of 

the history of the aesthetic measures. 
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Another interesting property of the entropy is the 

Jensen-Shannon inequality, which is expressed by 

JS p p
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where JS(π1, …, πn; p1, …, pn) is the Jensen-Shannon 
divergence of probability distributions p1, …, pn 

with n prior probabilities or weights π1, …,πn; ful-

�lling Σi
n

i= =1 1π . The Jensen-Shannon divergence 

measures how far the probabilities pi are from 

their likely joint source Σi
n

i ip=1π  and equals zero 

if, and only if, all pi are equal. 

Kolmogorov complexity and the similarity metric 
The Kolmogorov complexity K(x) of a string x is 

the length of the shortest program to compute x 

on an appropriate universal computer.6 Essentially, 

a string’s Kolmogorov complexity is the length of 

its ultimate compressed version and is machine-in-

dependent up to an additive constant. The condi-

tional complexity K(x|y) of x relative to y is de�ned 

as the length of the shortest program to compute x 

given y as an auxiliary input to the computation. 

The joint complexity K(x, y) represents the length 

of the shortest program for the pair (x, y). The 

Kolmogorov complexity is also called algorithmic 

information or algorithmic randomness. 

Information distance is de�ned as the length of 

the shortest program that computes x from y and y 

from x.7 Up to an additive logarithmic term, the in-

formation distance is given by E(x, y) = max{K(y|x), 
K(x|y)}. This measure is a metric. Long strings that 

differ by a small amount are intuitively closer 

than short strings that differ by the same amount. 

Hence, the necessity to normalize the information 

distance arises. Li and colleagues7 de�ne a normal-

ized version of E(x, y), called the normalized infor-
mation distance or the similarity metric: 

NID x y
K x y K y x

K x K y

K x

( , )
max ( ), ( )

max ( ), ( )

(

=
{ }

{ }
=

,, ) min ( ), ( )

max ( ), ( )

y K x K y

K x K y

− { }
{ }    (3)

NID is also a metric and takes values in [0, 1]. 

It’s universal in the sense that if two strings are 

similar according to the feature described by a par-

ticular normalized admissible distance (not neces-

sarily a metric), they’re also similar in the sense 

of the normalized information metric. Because of 

the Kolmogorov complexity’s noncomputability, a 

feasible version of NID, called normalized compres-
sion distance, is de�ned as 

NCD x y
C x y C x C y

C x C y
( , )

( , ) min ( ), ( )

max ( ), ( )
=

− { }
{ }}   (4) 

where C(x) and C(y) represent the length of com-

pressed string x and y, respectively, and C(x, y) the 

length of the compressed pair (x, y). Therefore, 

NCD approximates NID by using a standard real-

world compressor. 

Physical entropy
Looking at a system from an observer’s angle, 

Zurek8 de�ned the physical entropy as the sum of 

the missing information (Shannon entropy) and 

the algorithmic information content (Kolmogorov 

complexity) of the available data: 

Sd = H(Xd) + K(d)  (5)

where d is the system’s observed data, K(d) is the 

Kolmogorov complexity of d, and H(Xd) is the con-

ditional Shannon entropy or our ignorance about 

the system given d. 

Physical entropy re�ects the fact that measure-

ments increase our knowledge about a system. In 

the beginning, we have no knowledge about the 

system’s state, so the physical entropy reduces to 

the Shannon entropy, re�ecting our total igno-

rance. If the system is in a regular state, physical 

entropy decreases as we make more measurements. 

In this case, we increase our knowledge about the 

system and might be able to ef�ciently compress 

the data. If the state isn’t regular, we can’t achieve 

compression, and the physical entropy remains 

high. According to Zurek, we can view this com-

pression process from the perspective of an infor-

mation-gathering and using system entity, such 

as a Maxwell’s demon, capable of measuring and 

modifying its strategies based on the measure-

ments’ outcomes.

Global aesthetic measures
We consider three basic concepts of Bense’s cre-

ative process: 

the initial repertoirethe basic states (in our 

case, a wide range of colors that we assume are 

�nite and discrete);

the used palette (selected repertoire)the range 

of colors selected by the artist with a given prob-

ability distribution; and 

the �nal color distributionthe arrangement of the 

palette colors on a physical support (canvas). 

Our set of measures uses these concepts to extend 

Birkhoff’s measure using information theory and 

Kolmogorov complexity.

■

■

■
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For a given color image I of N pixels, we use an 

sRGB color representation based on a repertoire 

of 2563 colors (Xrgb). We reduce the Xrgb range us-

ing the luminance Y709 (Xl = [0, 255]). From the 

normalization of the intensity histograms of Xrgb 

and Xl, using 2563( )Nb
rgb  and 256( )Nb

l  bins, re-

spectively, we obtain the probability distributions 

of the random variables Xrgb and Xl. The maxi-

mum entropy Hmax for these random variables is 

log| |Nb
rgb = 24  and log| |Nb

l = 8 , respectively. 

Throughout this article, we use the following 

notions:

a palette (Xrgb or Xl), given by the image’s nor-

malized intensity histogram;

the palette entropy or pixel uncertainty (Hp), 

obtained from H(Xrgb) or H(Xl);
the image information content or image uncer-

tainty (NHp); and 

an image’s Kolmogorov complexity (K). 

We applied our measures to the set of paintings 

■

■

■

■

shown in Figure 1. Table 1 (next page) lists their sizes 

as well as the size and compression ratio achieved by 

the JPEG compressor.

Shannon’s perspective 
Bense proposed using redundancy to measure or-

der in an aesthetic object (see the “Related Work” 

sidebar on page 25). When we apply this idea to an 

image or painting, the absolute redundancy Hmax − 

Hp expresses the reduction of uncertainty due to 

the choice of a palette with a given color probabil-

ity distribution instead of a uniform distribution. 

Thus, we can express the aesthetic measure as the 

relative redundancy:

M
H H

H
B = −max

max

p

From a coding perspective, this measure represents 

the gain from using an optimal code to compress the 

image (Equation 1). The redundancy expresses one 

aspect of the creative process: the artist’s selected 

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 1. Paintings used in our tests. (a) Composition with Red, Piet Mondrian, 1938–1939; (b) Composition with Red, Blue, 

Black, Yellow, and Gray, Piet Mondrian, 1921; (c) Composition with Grid 1, Piet Mondrian, 1918; (d) The Seine at Le Grande Jatte, 

Georges-Pierre Seurat, 1888; (e) Forest at Pontaubert, Georges-Pierre Seurat, 1881; (f) Sunday Afternoon on the Island of La 

Grande Jatte, Georges-Pierre Seurat, 1884-1886; (g) The Starry Night, Vincent van Gogh, 1889; (h) Olive Trees with the Alpilles in 

the Background, Vincent van Gogh, 1889; and (i) Wheat Field under Threatening Skies, Vincent van Gogh, 1890. 
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palette. Table 2 shows signi�cant differences in 

the MB values for the set of paintings in Figure 

1. To obtain these results, we computed a pixel’s 

entropy using Hp = H(Xrgb) (thus, Hmax = 24). From 

Mondrian-1 (Figure 1a) to van Gogh-3 (Figure 

1i), the results re�ect the high color homogeneity 

in Mondrian’s paintings and the major color di-

versity in Seurat’s and van Gogh’s paintings. This 

measure only re�ects the palette information and 

doesn’t account for colors’ spatial distribution on 

canvas. Thus, the geometry (Mondrian), pointil-

lism’s randomness (Seurat),  and landscape ele-

ments (van Gogh and Seurat) are compositional 

features perceived by a human observer but not 

captured by MB. The measures described in the fol-

lowing sections address these features. 

Kolmogorov’s perspective
From a Kolmogorov complexity perspective, we 

can measure the order in an image by the dif-

ference between the image size (obtained using 

a constant length code for each color) and its 

Kolmogorov complexity. This corresponds to the 

space saving de�ned as the size reduction relative 

to the uncompressed size. The order’s normaliza-

tion gives us the aesthetic measure:

M
NH K

NH
K = −max

max  

MK takes values in [0, 1] and expresses the im-

age’s degree of order without any prior knowledge 

of the palette (the higher the image’s degree of 

order, the higher the compression ratio). Because 

of K’s noncomputability, we use real-world com-

pressors to estimate it (that is, we approximate K’s 

value by the size of the corresponding compressed 

�le). A compressor exploits both the selected pal-

ette’s degree of order and the color position in the 

canvas. We selected the JPEG compressor because 

of its ability to discover patterns, in spite of (or 

thanks to) losing information that’s imperceptible 

by the human eye. This is closer to the aesthetic 

experience than using lossless compressors, which 

usually have lower compression ratios so keep all 

the original information, including information 

that human observers can’t distinguish. Never-

theless, to avoid losing signi�cant information, we 

Table 2. Entropy H(Xrgb) and global aesthetic measures MB, MK, and MZ for the paintings in Figure 1.

                                      Aesthetic measures 
Painting H(Xrgb) MB MK MZ

Mondrian-1 (a) 8.168 0.660 0.831 0.504

Mondrian-2 (b) 9.856 0.589 0.900 0.758

Mondrian-3 (c) 14.384 0.401 0.651 0.418

Seurat-1 (d) 14.976 0.376 0.419 0.068

Seurat-2 (e) 18.180 0.243 0.405 0.214

Seurat-3 (f) 17.045 0.290 0.539 0.351

van Gogh-1 (g) 17.204 0.283 0.631 0.485

van Gogh-2 (h) 17.288 0.280 0.657 0.523

van Gogh-3 (i) 17.689 0.263 0.532 0.364

Table 1. Size of the original �les and size and compression ratio for the paintings in Figure 1, using 
JPEG compression with the maximum quality option.

 Original image �le  Compressed �le

Painting Pixels Bytes Bytes Ratio

Mondrian-1 (a) 316,888 951,862 160,557 5.928 

Mondrian-2 (b) 139,050 417,654 41,539 10.055

Mondrian-3 (c) 817,740 2,453,274 855,074 2.869

Seurat-1 (d) 844,778 2,535,422 1,473,336 1.721

Seurat-2 (e) 857,540 2,572,674 1,530,889 1.681

Seurat-3 (f) 375,750 1,128,306 519,783 2.171

Van Gogh-1 (g) 831,416 2,495,126 919,913 2.712

Van Gogh-2 (h) 836,991 2,511,850 862,274 2.913

Van Gogh-3 (i) 856,449 2,570,034 1,203,527 2.135
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use a JPEG compressor with the maximum quality 

option (see Table 1). 

For the results in Table 2, we calculated MK using 

Hmax = 24. Although a strict ordering on MK values 

mixes paintings of different artists, the averages of 

the three sets of paintings are clearly separate. In de-

scending order, the groups are Mondrian, van Gogh, 

and Seurat. The pairs of paintings (Mondrian-3, van 

Gogh-2) and (van Gogh-3, Seurat-3) have similar 

MK values. This is probably because the compres-

sor can detect more homogeneity (or heterogeneity) 

than the human eye. For instance, the interior of 

some regions in the Mondrian-3 painting is more 

heterogeneous than it appears at �rst glance. 

Frieder Nake, a Bense disciple and pioneer in 

algorithmic art (that is, art explicitly generated by 

an algorithm), considered a painting as a hierar-

chy of signs, where at each level of the hierarchy 

we could determine the statistical information 

content. He conceived the computer as a univer-

sal picture generator capable of “creating every 

possible picture out of a combination of available 

picture elements and colors.”9 Nake’s theory of 

algorithmic art �ts well with Kolmogorov’s per-

spective, because you can consider a painting’s 

Kolmogorov complexity as the length of the short-

est program generating it.

Zurek’s perspective
We developed a new version of Birkhoff’s measure 

based on Zurek’s physical entropy.8 Zurek’s work lets 

us look at the creative process as an evolutionary pro-

cess from the initial uncertainty (Shannon entropy) 

to the �nal order (Kolmogorov complexity). We can 

interpret this approach as a transformation of the 

color palette’s initial probability distribution to 

the algorithm describing the �nal painting. 

Inspired by physical entropy (Equation 5), we 

de�ne a measure given by the ratio between the 

reduction of uncertainty (because of the compres-

sion achieved by Kolmogorov complexity) and the 

image’s initial information content. Assuming 

that each pixel’s Shannon entropy times the num-

ber of pixels (NHp) gives an image’s information 

content, we have 

M
NH K

NH
Z = −p

p

This normalized ratio quanti�es the degree of or-

der created from a given palette. 

For Table 2, we computed MZ using the JPEG 

compressor, Hp = H(Xrgb), and Hmax = 24. Taking 

the average of MZ for each artist gives us the same 

ordering as in the previous measure MK. The low 

values for Seurat’s paintings are due to their low 

compression ratio  because of the pointillist style 

(see Table 1). 

The plots in Figure 2 express, for three paint-

ings, the physical entropy’s evolution as we take 

more measurements. To simulate this evolution, we  
progressively discover each painting’s content (col-

umns from left to right), reducing the missing in-

formation (Shannon entropy) and compressing the 

discovered information (Kolmogorov complexity). 

The Mondrian paintings show on average a greater 

order than the van Gogh paintings, and the van 

Gogh paintings more than the Seurat paintings. So, 

we can more ef�ciently compress or comprehend 

our progressive knowledge about the paintings in 

the Mondrian case than in the other cases.

Quantifying the creative process. We can understand 

the global measures from the initial repertoire’s 
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Figure 2. The evolution of physical entropy (S) (missing information H + Kolmogorov complexity K) for three paintings shown in 

Figure 1. The missing information is captured by Hp = H(Xrgb) and the Kolmogorov complexity has been approximated using the 

JPEG compressor. (a) Mondrian-1 (Figure 1a), (b) Seurat-1 (Figure 1d), and (c) van Gogh-1 (Figure 1g). 
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complexity (logarithm of the number of repertoire 

states), the selected palette (Shannon entropy), 

and the �nal distribution (Kolmogorov complex-

ity). From these complexities, we obtain the order, 

measuring the differences between them:

in MB, Hmax − Hp is the palette redundancy; 

in MK, NHmax − K is the compression achieved 

from the product’s order; and 

in MZ, NHp − K is the reduction of uncertainty 

produced while observing or recognizing the �-

nal product. 

These differences quantify the creative process: 

the �rst represents the selection process from the 

initial repertoire, the second captures the order in 

the color distribution, and the third expresses the 

transition from the palette to the artistic object.

Compositional aesthetic measures
Bense considered the creative act a transition 

process from an initial repertoire to the distribu-

tion of its elements on the physical support (such 

as a canvas). Here, we introduce measures to ana-

lyze an image’s composition (that is, the spatial 

distribution of colors from a given palette).

Order as self-similarity
To analyze an image’s composition, the measures 

used must quantify the degree of correlation or simi-

larity between image parts. The Jensen-Shannon di-

vergence and the similarity metric can capture the 

spatial order.

Shannon’s perspective. From Shannon’s viewpoint, we 

can compute the similarity between an image’s parts 

using the Jensen-Shannon divergence (Equation 2), 

which is a measure of discrimination between prob-

ability distributions. We can use this divergence to 

calculate the dissimilarity between diverse regions’ 

■

■

■

intensity histograms. Thus, for a given decomposi-

tion of an image, the Jensen-Shannon divergence 

will quantify the spatial heterogeneity. 

Although the ratio between the image’s Jensen-

Shannon divergence and the initial uncertainty Hp 

expresses the degree of dissimilarity, we de�ne its 

complementary value  as a measure of self-similarity:
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where n is the resolution level (that is, number of 

regions desired), πi is the area of region i, pi repre-

sents the probability distribution of region i, and 

H(pi) is its entropy. The self-similarity measure 

takes values in [0, 1], decreasing the value with a 

�ner partition. For a random image and a coarse 

resolution, the value should be close to 1. 

Table 3 shows the values of Mj for the set of 

paintings. In our tests, we decomposed the paint-

ings in a 4 × 4 regular grid and computed the 

histograms using the luminance Y709. The high 

similarity between the palettes of the parts of a 

Seurat painting �ts with the high values of Mj. 

On the other hand, Mondrian-2’s lower self-

similarity is due to the presence of regions with 

different palettes. 

Kolmogorov’s perspective. To measure the similarity 

between two parts of an image, we use the nor-

malized information distance (Equation 3). As 

we described earlier, the information distance be-

tween two subimages is the length of the shortest 

program needed to transform the two subimages 

into each other. If we consider an image’s degree of 

order as the self-similarity, we can measure it from 

the average NID between each subimage pair:

Table 3. The compositional aesthetic measures Mj, Mk, and Ms for the set of paintings in Figure 1 
computed for n = 16.

                                      Aesthetic measures 
Painting H(Xl) Mj MK Ms

Mondrian-1 (a) 5.069 0.900 0.312 0.166

Mondrian-2 (b) 6.461 0.762 0.335 0.352

Mondrian-3 (c) 7.328 0.969 0.198 0.060

Seurat-1 (d) 7.176 0.984 0.161 0.025

Seurat-2 (e) 7.706 0.979 0.147 0.032

Seurat-3 (f) 7.899 0.960 0.164 0.055

van Gogh-1 (g) 7.858 0.953 0.179 0.070

van Gogh-2 (h) 7.787 0.948 0.170 0.074

van Gogh-3 (i) 7.634 0.957 0.159 0.057
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 Mk(n) = 1 − avg1≤i<j≤n{NID(i, j)} 

where n is the number of regions or subimages 

provided by a given decomposition, and NID(i, j) 

is the distance between subimages Ii and Ij. This 

value ranges from 0 to 1 and expresses the degree 

of order inside the image. 

For Table 3, we calculate the values of Mk for 

the set of paintings using a 4 × 4 regular grid and 

NCD(i, j) (Equation 4) as an approximation of 

NID(i, j). For our case, we computed the values 

of C(Ii) and C(Ii, Ij) in NCD ignoring the rest of 

the canvas information (that is, zero luminance in  

I − Ii and I − Ii − Ij, respectively). As in the previ-

ous compositional measure, Mj, we classi�ed the 

paintings according to the artist, but in reverse 

order. This is because, whereas Mj only measures 

the similarity between regions’ palettes, Mk also 

measures the spatial distribution similarity of the 

palettes on the canvas. 

Interpreting Bense’s channel
We can further understand the creative pro-

cess described by Bense as the realization of an 

information channel between the palette and the 

image’s regions.

From a Shannon perspective, we present an 

algorithm that progressively partitions the im-

age, extracting all its information until the 

painting is completely revealed. The information 

extraction’s rate will depend on the painting’s 

degree of order. For instance, if a painting was 

created by randomly distributing the colors on 

the canvas, any possible partition will obtain a 

small information gain. However, if the painting 

shows a certain degree of structure, we’ll prob-

ably �nd a partition that will give us a larger 

information gain.

We construct this partitioning algorithm from 

an information channel B → R between the ran-

dom variables B (input) and R (output), which 

represent, respectively, the set of intensity bins B 

and the set of regions R of an image. A conditional 

probability matrix de�nes this channel. This ma-

trix expresses how the pixels corresponding to 

each intensity bin are distributed in the image’s 

regions. Given Nb intensity bins and Nr regions in 

the image I of N pixels, the channel’s three basic 

elements comprise 

The conditional probability matrix p(R|B), which 

represents the transition probabilities from each 

bin of the histogram to the image’s regions, is 

de�ned by p(rj|bi) = nij/ni, where nij is the num-

ber of pixels of bi into the region rj, and ni is the 

number of pixels of bi. Conditional probabilities 

ful�ll 

■

 
∀ ∈ =
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The input distribution p(B), which represents 

the probability of selecting each intensity bin, is 

de�ned by p(bi) = ni/N.

The output distribution p(R), which represents 

the normalized area of each region r, is given by 

 

p r p b p r bj i j i
n j
Ni

Nb
( ) ( ) ( )= =

=∑ 1

where nj is the number of pixels of region rj. 

We adopt a greedy mutual-information-based al-

gorithm10 that splits the image in quasihomogeneous 

regions. The procedure takes the full image as the 

unique initial partition and progressively subdivides 

it (for example, in a binary space partition or quad-

tree) according to the maximum mutual informa-

tion gain for each partitioning step. The algorithm 

generates a partitioning tree T(I) for a given ratio of 

mutual information gain or a prede�ned number of 

regions (Nr is the number of tree leaves). 

We can visualize this process from 

H B I B R H B R( ) ( , ˆ) ( ˆ)= +

 

where R̂  is the random variable that represents the 

set of regions of the image and varies after each new 

partition. Information acquisition increases I B R( , ˆ)  

(data processing inequality4) and decreases H B R( , ˆ), 

producing an uncertainty reduction due to the re-

gions’ equalization. The maximum mutual informa-

tion that we can achieve is H(B).

We consider that the resulting tree captures the 

image’s structure and hierarchy, and the mutual 

information gained in this decomposition process 

quanti�es an image’s capacity to be ordered or the 

feasibility of an observer decomposing it. Thus, 

varying the output from the single image until the 

lowest level (that is, the pixels) lets us study the in-

formation in the image’s composition. The further 

down the regions we must go to achieve a given 

■

■

The mutual information 
gained in this decomposition 
process quali�es an image’s 
capacity to be ordered or 
the feasibility of an observer 
decompositing it.

Authorized licensed use limited to: UNIVERSITAT DE GIRONA. Downloaded on May 8, 2009 at 07:01 from IEEE Xplore.  Restrictions apply.



32 March/April 2008

Computational Aesthetics

level of information, the more complex the image. 

Similarly to Bense’s communication channel 

between the repertoire and the �nal product, the 

channel we introduced can serve as the information 

(or communication) channel that expresses color 

distribution on a canvas. So, given an initial en-

tropy or uncertainty of the image and a prede�ned 

level of resolution n, the evolution of the ratio

M n
I B R
H B

s( )
( , ˆ)

( )
=

  (6)

represents the distribution process. Note that n 

ranges 1 ≤ ≤ ≤n N Nr r
max , where Nr

max  is the mini-

mum number of regions that provide all the image 

information (that is, M Ns r( )max = 1 ). 

Figure 3 shows the evolution of Ms building a 

binary space partitioning (BSP) for each painting 

in Figure 1. The capacity of extracting order from 

each painting coincides with the behavior expect-

ed by an observer. Note the grouping of the three 

different painting styles. Table 3 shows Ms values 

for n = 16 for the set of paintings. Although the 

partitioning re�ects the geometry and randomness 

of Mondrian’s and Seurat’s paintings, respectively, 

it also �nds the landscape elements in van Gogh’s 

paintings (see Figure 4). Finally, Figure 5 shows 

a sequence of decompositions of van Gogh-1 ob-

tained for several values of n, and only accounting 

for the luminance. Each region is painted with the 

average color corresponding to that region. With 

relatively few regions, the painting’s composition 

is already visible (see Figures 5c and 5d), although 

the details aren’t suf�ciently represented. 

We studied the image composition using an 

adaptive algorithm that partitions the image using 

a BSP structure driven by the maximum informa-

tion gain at each partition. This algorithm shows 

us how the image’s composition (macro-aesthetic 

description) appears clearly after relatively few 

partitions. On the contrary, the details or forms 

in the painting appear when we reach a re�ned 

mesh (microaesthetic description).

Our three compositional measures capture the 

spatial order in an image from an informational 

viewpoint. The �rst two measures, Mj and Mk, 

measure similarities between prede�ned regions 

using the information content (Shannon entropy) 

and the algorithmic complexity (Kolmogorov com-

plexity), respectively. The third measure, Ms, based 

on shared information (mutual information), goes 

one step further by dynamically evolving as the 

structure is discovered. 

Conclusion
Further work will explore the use of higher-order 

Shannon measures, such as entropy rate and ex-

cess entropy, which can help us to understand a 

painting’s compositional aspects. Following Zu-

rek’s work,8 we’ll also analyze the artistic process 

from the viewpoint of a Maxwell’s demon-type 
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Figure 3. Evolution of ratio Ms for the set of paintings in Figure 1 (the 

�rst 100 splits). 
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Figure 4. Decompositions of (a) van Gogh-2 and (b) van Gogh-3 for 

Ms(16) = 0.074 and Ms(16) = 0.057, respectively (see Equation 6).
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artist or observer, capable of selecting and clas-

sifying the information contained in an object. 

We’ll test our measures against a broader col-

lection of paintings and other artwork, such as 

artistic photography. We’ll conduct experiments 

within and across styles or painters. Our aim is 

to investigate the possibility of using these mea-

sures for classifying styles, or for distinguishing 

periods within a given artist’s life. An interesting 

experiment will be to compare the automatic clas-

si�cation obtained by our measures with human 

experts’ classi�cation. We believe that we’re on a 

promising track with a sound theoretical basis, 

which not only extends but will further develop 

Birkhoff’s and Bense’s aesthetics studies. 
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