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Two Different Problems Context Tree Estimation

Variable Length Memory

m Linguistics, lossless compression:

/ P VT

trying vanilla_qui et

m Music, biology, genomics. ..

= memory structure as fingerprint of the source.
Example: Brazialian and European Portuguese.



Two Different Problems Context Tree Estimation

Context Tree Sources

A Context Tree Source (CTS) or Variable Length Markov Chain
(VLMC) is a Markov Chain whose order may vary with the value of
the past.
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Two Different Problems Context Tree Estimation

The Context Algorithm (Rissanen '81)

m Same principle as CART algorithm.
m For every possible node s € A*, compute a distortion such as:

o(s) = max HP ), P(- |as)H .

m Keep the nodes s € A*
such that

d(s) > €(s,n)

and their ancestors as
internal nodes of the
estimated tree T¢.



Two Different Problems Context Tree Estimation

Penalized Maximum Likelihood

m Estimator
Tparr = argmax log Pr(x7|2° ) + pen(n, T),
T

where pen(n,T) = penalty function, grows with n and |T|.
m MDL - BIC Penalty

TI(|A] -1
pen(n,T) = ‘|(|2|) log n.
1
I
Effective computation: N (L n2,i3), elreztes:pen)
recursive algorithm “Context )/ ) \(M)
Tree Maximization”
7 AY 7 AY
V2NN 7N /N



Two Different Problems Context Tree Estimation

Under- and Over-estimation

Two possible types of estima-
tion errors:

under-estimation:
IseTy:s¢T
—> ‘easily” avoided
(large deviation regime)
at exponential rate
over-estimation:
IseT:s5¢Ty
— more delicate, no
exponential rates

Asymptotic consistency results: [Bihlmann& Wyner 99,
Csiszar& Talata '06, G. '06]



Two Different Problems Context Tree Estimation

Non asymptotic study [G. & Leonardi "11]

m For both algorithms, need to control the ‘distance’ between

=

P,(-|s) and P(:s).
the number N,(t) of summands is random: deviations of
¢
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Two Different Problems Context Tree Estimation

Non asymptotic study [G. & Leonardi "11]

m For both algorithms, need to control the ‘distance’ between
Py(+|s) and P(-|s).
= the number N,(¢) of summands is random: deviations of
t

(L= = Plal9)D Lo )

u:l

m The right 'distance’ to consider is:
KL (Pt(-|s),P(-|s)) .
— the quantity of interest is:

Wi = No(t) KL (Pi(ls): P(1s)) -
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RSN ERl  Stochastic Bandit Problems

Example: sequential clinical trials

m patients visit the medical center one after another for a given
disease

m they are prescribed one of the (say) 5 treatments available
m the treatments are not equally efficient. . .

E ...but nobody knows which one is the best: they only observe
the effect of the prescribed treatment on each patient

= What is the best allocation strategy?

m Prescriptions may be chosen using only the previous
observations

m The goal is not to estimate each treatment'’s efficiency
precisely, but to heal as many patients as possible



RSN ERl  Stochastic Bandit Problems

The (stochastic) Multi-Armed Bandit Model

Environment K arms with parameters 6 = (61,...,0k) such that
for any possible choice of arm a; € {1,..., K} at
time t, one receives the reward

XL - Xatﬂl

where, forany 1 <a < K and s > 1, X, s ~ 1, and
the (X 4)aq,s are independent.

Reward distributions v, € JF, parametric or not.
Example Bernoulli rewards: 6 € [0, 1], v, = B(6,)

Strategy The agent’s actions follow a dynamical strategy
m = (71,72, ...) such that

At = 7Tt(X1, e ,Xt_l)



RSN ERl  Stochastic Bandit Problems

Real challenges

m Randomized clinical trials

m original motivation since the 1930’s
m dynamic strategies can save resources

m Recommender systems:

m advertisement

= website optimization

® news, blog posts, ...

oLy RS

m Computer experiments
m large systems can be simulated in order to optimize some
criterion over a set of parameters
= but the simulation cost may be high, so that only few choices
are possible for the parameters

m Games and planning (tree-structured options)



RSN ERl  Stochastic Bandit Problems

Performance Evaluation, Regret
Cumulated Reward S7 = Zle X

Our goal Choose 7 so as to maximize

K
> E[E[X:1{A = a}|X1,..., Xi1]]
1 a=1

Mq

o~
Il

palE [Ng (T)]

I
M=

2
Il
N

where NJ(T) = >, 1{A; = a} is the number of
draws of arm a up to time T', and o = E(vg).

Regret Minimization equivalent to minimizing

Rp=Tp' —E[Sr]= 3 (4" — pa) E[NI(T)]

aipra <p*

where p* € max{p,:1<a< K}



RSN ERl  Stochastic Bandit Problems

Upper Confidence Bound Strategies

UCB [Lai&Robins '85; Agrawal '95; Auer&al '02]

m Construct an upper confidence bound for the expected reward

of each arm:
Sul®) clog(?)
alt) =
wh= §mo T\ 2
e —_———

estimated reward exploration bonus

m Choose the arm with the highest UCB

m It is an index strategy [Gittins '79], easily interpretable and
intuitively appealing.



RSN ERl  Stochastic Bandit Problems

Performance of the UCB algorithm

Non-asymptotic regret bound

[Auer, Cesa-Bianchi, Freund and Schapire '02]

16 log(T")
No(T) < 814,
D= =

m The lower-bound for Bernoulli arms is

log(T)
Ny(T)> —————(1—-0(1
@) kl(ua,u*)( 1)
where kl(p, q) = plog’—; + (1 —p)log i%z.
m Thinking of Pinsker's inequality kl(q, p*) > 2(p* — pa)%:
— remove factor 16;
— replace 2(u* — pa)? by kl(pq, ).



RSN ERl  Stochastic Bandit Problems

How to construct the UCB?

The analysis shows that:

® uy(t) must upper-bound g, with probability > 1 — 1/t for all
aand t<T.

m Better UCB = better regret (both in theory and in
practice)

UCB algorithm:

Sat) | [clog(t)

vl =3 T v

Reminiscent of Hoeffding's inequality (¢ = 1) but the number of
terms N, (t) is random.



Confidence Bounds for Self-Normalized Averages

In both examples:

m We have a large total number of observations. . .

® ...but they are splitted into sub-samples of (possibly small)
random size

m we need to confidence regions for the parameters on each
sub-sample

m the diameter of the confidence regions may be data-driven

—— Goal: do as if the number of obersations where not random



Confidence Bounds for Self-Normalized Averages

In both examples:

m We have a large total number of observations. . .

® ...but they are splitted into sub-samples of (possibly small)
random size

m we need to confidence regions for the parameters on each
sub-sample

m the diameter of the confidence regions may be data-driven

m WARNING: Law of Iterated Logarithm !

—— Goal: do as if the number of obersations where not random



Confidence Bounds for Self-Normalized Averages

In both examples:

m We have a large total number of observations. . .

... but they are splitted into sub-samples of (possibly small)
random size

m we need to confidence regions for the parameters on each
sub-sample

m the diameter of the confidence regions may be data-driven

m WARNING: Law of Iterated Logarithm !

— Goal: do almost as if the number of obersations where not
random
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Confidence Bounds for Self-Normalized Averages
m Sub-gaussian Case
m Beyond the Sub-gaussian Case



Confidence Bounds for Self-Normalized Averages ESIE-cISSETWEEES

Simple framework

Observations: (Xj)¢ iid with expectation .

Optionnal skipping: ¢ is {0, 1}-valued and
o(X¢,...,X;—1)-measurable.

Total number of observations: N; = 22:1 €¢.
Estimator of u: fi(t) = Ny 'S0 e X
Cumulated deviation: Sy =>"}_; € (Xt — ,u) satisfies V),

E [e,\sﬁNm(,\)] <1
where ¢(\) = logE [e*1].

Sub-gaussian case: ¢(A) = 02A%/2.

Can be generalized: X; martingale increments,. . ..



Confidence Bounds for Self-Normalized Averages ESIE-cISSETWEEES

Idea 0: Plain union bound

Union bound (sub-gaussian case)

With probability at least 1 — 4,

Proof: Union bound 4+ Chernoff

t
2t . 2¢
P (St > 04/2N¢ log 5) :p(U {8>\nst S /2Nt log }ﬂ{Nt :n})
n=1

2,2
A
—oApy/2nlog %-}—g 2"77,

t | 2t
k) 1 [2log &
< — for the choice A\, = — 2985 .
1 2t o n

IN
M-
g



Confidence Bounds for Self-Normalized Averages ESIE-cISSETWEEES

ldea 1: Method of Mixture [see De la Pefia et al. '04, '07]
Idea: as V\,E [ewt—NM()\)} <1:

/+OO ]E |:e>\St_Nt 022>\2:| y e_#dA = ]E |:L /+OO e)\St_NiUZﬂ_AQ;Qd)\}
V 2 /27'(' -

_ .
E #€Z(NU2+1;2) <1

/No? + 42 =
and one obtains (for example):

Method of mixture

With probability at least 1 — ¢,

2log 5 1
a(t) — pl < —2 1+ =log (N; + 1
it u|_a\/Nt+1( + BN+ 1)

where (t) = (37 e Xe)/(Ne+1).
Succesfully used in [Abbasi-Yadkori, Pal and Szepesvari '11] for

linear bandits.




|dea 2: Peeling [G. & Moulines '08, '11]

Decompose the value of NV, by slices as follows: if N; > 1 then

[ log(t) "
log(1+7)
Nee U Jasntasen

k=1

Treat each slice independently with a unique Ay (instead of the \,)
Control the loss in accuracy

Peeling (sub-gaussian case)

With probability at least 1 — ¢,

2log 4l°g(t)+ log (2 log <4log( ))>
Ny

a(t) —pl <o
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Rewriting Chernoff's bound

=l

E [exp (AS; — to(A))] < 1

if Xt = ,U,-|-St/t, and Tt Z 1,
yields for A = A(xy) :

e N

P(X; > a¢) < exp(—tI (a; 1))

In other words:
P(I(Xy; ) > I(we; ), Xo > 1) < exp(—tI(zy; 1))
or, denoting 0 = tI(x; 1),
P(tI(Xy;p) > 6, Xy > p1) < exp(—0)

— confidence interval of risk at most « : I-neighboorhood of
X;

- 2
[ag, by = {,u StI( Xy p) <log a}
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Bounds for random N; [G. & Leonardi '11, G. & Cappé '11]

General bound:

For all § > 0,

P (101 > 1) < 2 Slog(o)]

Log-concave case

If I(-; ) is log-concave

PEte{l,...,n}:tI(a(t);pn) > 8) < 2ve [? log(t)-‘ e™®

Remark: the LIL suggests that there is little room for
improvements.



Extension: non-stationary observations [G. & Moulines '11]

m Let (X;); be independent rv bounded by B, with expectation
e varying slowly (or rarely).
m Discounted estimator: for vy €]0, 1],

Xy(n) = Sy(n)/Ny(n)
where S, (n) = Y"1 7" te1 Xy and Ny(n) = Y0 7" ey
= Bias-variance decomposition: if M, (n) = >} | v" teypu,

X, (n) — pn = Xy (n) — ]\]\{:((Z)) +J\J\{Z((Z))

N~

— Hn

m Fluctuations of the variance term: for all n > 0,

ol vy(n) = >0, A"t < min{(1 — )%, n}.



Multinomial laws [G. & Leonardi '11]

Extension using the simple inequality: for all P,Q € 9;(A),

KL(P;Q) < > K(P(x); Q(x))

zeA

Multinomial KL neighborhoods:

If X1,..., Xn~Po € My (A) are iid, and
By(k) = Yooy 1{X, = k}/t

P(Elte{l,...,n}: KL<Pt;P0) 2%)

5

< 2e (§log(n) + |Al) exp (_W>



KL-balls [Filippi, G. & Cappé '10]

Sequence (R¢)¢<y, of informational confidence regions for Py
simultaneously valid with probability at least 1 — «:

Ri={Q e M) s KLUAQ) <}

with ¢ such that 2e (dlog(n) + |A|) exp (—d/|A|) = a.




Confidence Bounds for Self-Normalized Averages Beyond the Sub-gaussian Case

Results: context tree estimation

m Context: TO keeps node s if
ZN (b5)D (D (-|bs); Dn(-|s)) > e(n) .
m Penalized Maximum Likelihood:
Tpur = arg max { log Pr(z7]2° ) + pen(n, T)} .
m Assume that pen(n,T) = |T'|e(n).

For every n > 1 and T(X7) € {Tpumr(X}), Te(XP)} it holds that

P (T(Xf) ~< T0> > 1— e (e(n)log(n) + |A[2) n2 exp (-%) .

No unnecessary assumptions like Vs, a € A, P(a|s) =0 ou
P(s;a) > e.



Confidence Bounds for Self-Normalized Averages Beyond the Sub-gaussian Case

Results: an optimal UCB procedure
UCB algorithm with

alt) = Sup{u 0,1 M(ialt), ) <

(1 a

log(T) V27”°g< AT

]E[NQ(TH < kl * 3/2
(Mar p1*) (K1(p1q,

> (g (12283 )

(kl(pta, p*))*

log(t) + 3loglog(t)) }
Na(t)

) \/log ) + 3log(log(T))

+6.

o (46 + m) log(log(T)) +

= improved logarithmic finite-time regret bound
— asymptotically optimal in the Bernoulli case



Confidence Bounds for Self-Normalized Averages Beyond the Sub-gaussian Case
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