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Two Different Problems Context Tree Estimation

Variable Length Memory

Linguistics, lossless compression:

t r y i n g v a n i l l a q u i e t_ _

Music, biology, genomics. . .

=⇒ memory structure as fingerprint of the source.
Example: Brazialian and European Portuguese.
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Context Tree Sources

A Context Tree Source (CTS) or Variable Length Markov Chain
(VLMC) is a Markov Chain whose order may vary with the value of
the past.
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Two Different Problems Context Tree Estimation

The Context Algorithm (Rissanen ’81)

Same principle as CART algorithm.

For every possible node s ∈ A∗, compute a distortion such as:

δ(s) = max
a∈A

∥
∥
∥P̂ (·|s), P̂ (·|as)

∥
∥
∥ .

Keep the nodes s ∈ A∗

such that

δ(s) ≥ ǫ(s, n)

and their ancestors as
internal nodes of the
estimated tree T̂C .



Two Different Problems Context Tree Estimation

Penalized Maximum Likelihood

Estimator

TPML = argmax
T

log P̂T (x
n
1 |x0−∞) + pen(n, T ),

where pen(n, T ) = penalty function, grows with n and |T |.
MDL - BIC Penalty

pen(n, T ) =
|T |(|A| − 1)

2
log n.

Effective computation:
recursive algorithm “Context
Tree Maximization”

c1 c2 c3

c =min(L(n1,n2,n3), c1+c2+c3+pen)

(n1) (n2) (n3)



Two Different Problems Context Tree Estimation

Under- and Over-estimation

Two possible types of estima-
tion errors:

1 under-estimation:
∃s ∈ T0 : s /∈ T̂
=⇒ “easily” avoided
(large deviation regime)
at exponential rate

2 over-estimation:
∃s ∈ T̂ : s /∈ T0

=⇒ more delicate, no
exponential rates

Asymptotic consistency results: [Bühlmann& Wyner ’99,
Csiszar&Talata ’06, G. ’06]



Two Different Problems Context Tree Estimation

Non asymptotic study [G. & Leonardi ’11]

For both algorithms, need to control the ‘distance’ between
P̂t(·|s) and P (·|s).

=⇒ the number Ns(t) of summands is random: deviations of

Zt =
1

Ns(t)

t∑

u=1

(✶{Xu=a − P (a|s)})✶{Xu−1
u−|s|

=s}
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Two Different Problems Context Tree Estimation

Non asymptotic study [G. & Leonardi ’11]

For both algorithms, need to control the ‘distance’ between
P̂t(·|s) and P (·|s).

=⇒ the number Ns(t) of summands is random: deviations of

Zt =
1

Ns(t)

t∑

u=1

(✶{Xu=a − P (a|s)})✶{Xu−1
u−|s|

=s}

The right ’distance’ to consider is:

KL
(

P̂t(·|s), P (·|s)
)

.

=⇒ the quantity of interest is:

Wt = Ns(t)KL
(

P̂t(·|s);P (·|s)
)

.
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Two Different Problems Stochastic Bandit Problems

Example: sequential clinical trials

patients visit the medical center one after another for a given
disease

they are prescribed one of the (say) 5 treatments available

the treatments are not equally efficient. . .

. . . but nobody knows which one is the best: they only observe
the effect of the prescribed treatment on each patient

⇒ What is the best allocation strategy?

Prescriptions may be chosen using only the previous
observations

The goal is not to estimate each treatment’s efficiency
precisely, but to heal as many patients as possible



Two Different Problems Stochastic Bandit Problems

The (stochastic) Multi-Armed Bandit Model

Environment K arms with parameters θ = (θ1, . . . , θK) such that
for any possible choice of arm at ∈ {1, . . . ,K} at
time t, one receives the reward

Xt = Xat,t

where, for any 1 ≤ a ≤ K and s ≥ 1, Xa,s ∼ νa, and
the (Xa,s)a,s are independent.

Reward distributions νa ∈ Fa parametric or not.

Example Bernoulli rewards: θ ∈ [0, 1]K , νa = B(θa)
Strategy The agent’s actions follow a dynamical strategy

π = (π1, π2, . . . ) such that

At = πt(X1, . . . , Xt−1)



Two Different Problems Stochastic Bandit Problems

Real challenges

Randomized clinical trials

original motivation since the 1930’s
dynamic strategies can save resources

Recommender systems:

advertisement

website optimization

news, blog posts, . . .

Computer experiments

large systems can be simulated in order to optimize some
criterion over a set of parameters
but the simulation cost may be high, so that only few choices
are possible for the parameters

Games and planning (tree-structured options)



Two Different Problems Stochastic Bandit Problems

Performance Evaluation, Regret

Cumulated Reward ST =
∑T

t=1Xt

Our goal Choose π so as to maximize

E [ST ] =
T∑

t=1

K∑

a=1

E
[
E [Xt✶{At = a}|X1, . . . , Xt−1]

]

=
K∑

a=1

µaE [Nπ
a (T )]

where Nπ
a (T ) =

∑

t≤T ✶{At = a} is the number of
draws of arm a up to time T , and µa = E(νa).

Regret Minimization equivalent to minimizing

RT = Tµ∗ − E [ST ] =
∑

a:µa<µ∗

(µ∗ − µa)E [Nπ
a (T )]

where µ∗ ∈ max{µa : 1 ≤ a ≤ K}



Two Different Problems Stochastic Bandit Problems

Upper Confidence Bound Strategies

UCB [Lai&Robins ’85; Agrawal ’95; Auer&al ’02]

Construct an upper confidence bound for the expected reward
of each arm:

ua(t) =
Sa(t)

Na(t)
︸ ︷︷ ︸

estimated reward

+

√

c log(t)

2Na(t)
︸ ︷︷ ︸

exploration bonus

Choose the arm with the highest UCB

It is an index strategy [Gittins ’79], easily interpretable and
intuitively appealing.



Two Different Problems Stochastic Bandit Problems

Performance of the UCB algorithm

Non-asymptotic regret bound
[Auer, Cesa-Bianchi, Freund and Schapire ’02]

Na(T ) ≤
16 log(T )

2(µ∗ − µa)2
+ 4 .

The lower-bound for Bernoulli arms is

Na(T ) ≥
log(T )

kl(µa, µ∗)

(
1− o(1)

)

where kl(p, q) = p log p
q
+ (1− p) log 1−p

1−q
.

Thinking of Pinsker’s inequality kl(µa, µ
∗) ≥ 2(µ∗ − µa)

2:

=⇒ remove factor 16;
=⇒ replace 2(µ∗ − µa)

2 by kl(µa, µ
∗).



Two Different Problems Stochastic Bandit Problems

How to construct the UCB?

The analysis shows that:

ua(t) must upper-bound µa with probability ≥ 1− 1/t for all
a and t ≤ T .

Better UCB =⇒ better regret (both in theory and in
practice)

UCB algorithm:

ua(t) =
Sa(t)

Na(t)
+

√

c log(t)

2Na(t)

Reminiscent of Hoeffding’s inequality (c = 1) but the number of
terms Na(t) is random.



Confidence Bounds for Self-Normalized Averages

In both examples:

We have a large total number of observations. . .

. . . but they are splitted into sub-samples of (possibly small)
random size

we need to confidence regions for the parameters on each
sub-sample

the diameter of the confidence regions may be data-driven

=⇒ Goal: do as if the number of obersations where not random
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In both examples:

We have a large total number of observations. . .

. . . but they are splitted into sub-samples of (possibly small)
random size

we need to confidence regions for the parameters on each
sub-sample

the diameter of the confidence regions may be data-driven

WARNING: Law of Iterated Logarithm !
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Confidence Bounds for Self-Normalized Averages Sub-gaussian Case

Simple framework

Observations: (Xt)t iid with expectation µ.

Optionnal skipping: ǫt is {0, 1}-valued and
σ
(
Xt, . . . , Xt−1

)
-measurable.

Total number of observations: Nt =
∑t

s=1 ǫt.

Estimator of µ: µ̂(t) = N−1
t

∑n
k=1 ǫtXt.

Cumulated deviation: St =
∑n

k=1 ǫt
(
Xt − µ

)
satisfies ∀λ,

E

[

eλSt−Ntφ(λ)
]

≤ 1

where φ(λ) = logE
[
eλX1

]
.

Sub-gaussian case: φ(λ) = σ2λ2/2.

Can be generalized: Xt martingale increments,. . . .



Confidence Bounds for Self-Normalized Averages Sub-gaussian Case

Idea 0: Plain union bound

Union bound (sub-gaussian case)

With probability at least 1− δ,

|µ̂(t)− µ| ≤ σ

√

2 log 2t
δ

Nt
.

Proof: Union bound + Chernoff

P

(

St > σ

√

2Nt log
2t

δ

)

= P

(

t
⋃

n=1

{

eλnSt > e
σλn

√

2Nt log 2t
δ

}

∩ {Nt = n}

)

≤
t
∑

n=1

e
−σλn

√

2n log 2t
δ

+
σ2λ2

n
2

n

≤

t
∑

n=1

δ

2t
for the choice λn =

1

σ

√

2 log 2t
δ

n
.



Confidence Bounds for Self-Normalized Averages Sub-gaussian Case

Idea 1: Method of Mixture [see De la Peña et al. ’04, ’07]
Idea: as ∀λ,E

[
eλSt−Ntφ(λ)

]
≤ 1:

∫ +∞

−∞

E

[

eλSt−Nt
σ2λ2

2

] y√
2π

e−
λ2y2

2 dλ = E

[
y√
2π

∫ +∞

−∞

eλSt−Nt
σ2λ2

2
−

λ2y2

2 dλ

]

= E

[

y
√

Nσ2 + y2
e

S2
t

2(Nσ2+y2)

]

≤ 1

and one obtains (for example):

Method of mixture (sub-gaussian case only!)

With probability at least 1− δ,

|µ̃(t)− µ| ≤ σ

√

2 log 1
δ

Nt+1

(

1 +
1

2
log (Nt + 1)

)

,

where µ̃(t) = (
∑n

t=1 ǫtXt)/(Nt+1).

Succesfully used in [Abbasi-Yadkori, Pál and Szepesvári ’11] for
linear bandits.



Confidence Bounds for Self-Normalized Averages Sub-gaussian Case

Idea 2: Peeling [G. & Moulines ’08, ’11]

Decompose the value of Nt by slices as follows: if Nt > 1 then

Nt ∈

⌈

log(t)
log(1+η)

⌉

⋃

k=1

]

(1 + η)k−1 , (1 + η)k
]

Treat each slice independently with a unique λk (instead of the λn)
Control the loss in accuracy

Peeling (sub-gaussian case)

With probability at least 1− δ,

|µ̂(t)− µ| ≤ σ

√
√
√
√2 log 4 log(t)

δ
+ log

(

2 log
(
4 log(t)

δ

))

Nt
.
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Confidence Bounds for Self-Normalized Averages Beyond the Sub-gaussian Case

Rewriting Chernoff’s bound

E [exp (λSt − tφ(λ))] ≤ 1

if X̄t = µ + St/t, and xt ≥ µ,
yields for λ = λ(xt) :

P (X̄t ≥ xt) ≤ exp(−tI(xt;µ))
x

tµ

exp(−t I(x
t
,µ))

 

 

I(., µ)

In other words:

P
(
I(X̄t;µ) ≥ I(xt;µ), X̄t ≥ µ

)
≤ exp(−tI(xt;µ))

or, denoting δ = tI(xt;µ),

P
(
tI(X̄t;µ) ≥ δ, X̄t ≥ µ

)
≤ exp(−δ)

=⇒ confidence interval of risk at most α : I-neighboorhood of
X̄t

[at, bt] =

{

µ : tI(X̄t;µ) ≤ log
2

α

}
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Rewriting Chernoff’s bound

E [exp (λSt − tφ(λ))] ≤ 1

if X̄t = µ + St/t, and xt ≥ µ,
yields for λ = λ(xt) :

P (X̄t ≥ xt) ≤ exp(−tI(xt;µ))
X

t
a

t
b

t

log(2/α)

 

 

I(., µ)
I(x

t
, .)
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P
(
I(X̄t;µ) ≥ I(xt;µ), X̄t ≥ µ

)
≤ exp(−tI(xt;µ))

or, denoting δ = tI(xt;µ),

P
(
tI(X̄t;µ) ≥ δ, X̄t ≥ µ

)
≤ exp(−δ)

=⇒ confidence interval of risk at most α : I-neighboorhood of
X̄t

[at, bt] =

{

µ : tI(X̄t;µ) ≤ log
2

α

}



Confidence Bounds for Self-Normalized Averages Beyond the Sub-gaussian Case

Bounds for random Nt [G. & Leonardi ’11, G. & Cappé ’11]

General bound:

For all δ > 0,

P

(

I (µ̂(t);µ) ≥ δ

N(t)

)

≤ 2e ⌈δ log(t)⌉ e−δ

Log-concave case

If I(·;µ) is log-concave

P (∃t ∈ {1, . . . , n} : tI (µ̂(t);µ) ≥ δ) ≤ 2
√
e

⌈√
δ

2
log(t)

⌉

e−δ

Remark: the LIL suggests that there is little room for
improvements.



Confidence Bounds for Self-Normalized Averages Beyond the Sub-gaussian Case

Extension: non-stationary observations [G. & Moulines ’11]

Let (Xt)t be independent rv bounded by B, with expectation
µt varying slowly (or rarely).

Discounted estimator: for γ ∈]0, 1[,

X̄γ(n) = Sγ(n)/Nγ(n)

where Sγ(n) =
∑n

t=1 γ
n−tεtXt and Nγ(n) =

∑n
t=1 γ

n−tεt
Bias-variance decomposition: if Mγ(n) =

∑n
t=1 γ

n−tεtµt,

X̄γ(n)− µn = X̄γ(n)−
Mγ(n)

Nγ(n)
︸ ︷︷ ︸

+
Mγ(n)

Nγ(n)
− µn

Fluctuations of the variance term: for all η > 0,

P

(

Sγ(n)−Mγ(n)
√
Nγ2(n)

≥ δ

)

≤
⌈
log νγ(n)

log(1 + η)

⌉

exp

(

−2δ2

B2

(

1− η2

16

))

où νγ(n) =
∑n

t=1 γ
n−t < min{(1− γ)−1, n}.



Confidence Bounds for Self-Normalized Averages Beyond the Sub-gaussian Case

Multinomial laws [G. & Leonardi ’11]

Extension using the simple inequality: for all P,Q ∈ M1(A),

KL(P ;Q) ≤
∑

x∈A

kl (P (x);Q(x))

Multinomial KL neighborhoods:

If X1, . . . , Xn ∼ P0 ∈ M1(A) are iid, and
P̂t(k) =

∑t
s=1 ✶{Xs = k}/t

P

(

∃t ∈ {1, . . . , n} : KL
(

P̂t;P0

)

≥ δ

t

)

≤ 2e (δ log(n) + |A|) exp
(

− δ

|A|

)



Confidence Bounds for Self-Normalized Averages Beyond the Sub-gaussian Case

KL-balls [Filippi, G. & Cappé ’10]

Sequence (Rt)t≤n of informational confidence regions for P0

simultaneously valid with probability at least 1− α:

Rt =

{

Q ∈ M1(A) : KL(P̂t;Q) ≤ δ

t

}

,

with δ such that 2e (δ log(n) + |A|) exp (−δ/|A|) = α.



Confidence Bounds for Self-Normalized Averages Beyond the Sub-gaussian Case

Results: context tree estimation

Context: T̂C keeps node s if

δ(s) =
∑

b

Nn(bs)D (p̂n(·|bs); p̂n(·|s)) ≥ ǫ(n) .

Penalized Maximum Likelihood:

T̂PML = argmax
T

{

log P̂T (x
n
1 |x0−∞) + pen(n, T )

}

.

Assume that pen(n, T ) = |T |ǫ(n).

Theorem

For every n ≥ 1 and T̂ (Xn
1 ) ∈

{
T̂PML(X

n
1 ), T̂C(X

n
1 )
}
it holds that

P

(

T̂ (Xn
1 ) � T0

)

≥ 1− e
(
ǫ(n) log(n) + |A|2

)
n2 exp

(

−ǫ(n)

|A|2
)

.

No unnecessary assumptions like ∀s, a ∈ A, P (a|s) = 0 ou
P (s; a) > ǫ.



Confidence Bounds for Self-Normalized Averages Beyond the Sub-gaussian Case

Results: an optimal UCB procedure
UCB algorithm with

ua(t) = sup

{

µ ∈ [0, 1] : kl
(
µ̂a(t), µ

)
≤ log(t) + 3 log log(t))

Na(t)

}

.

Theorem

E
[
Na(T )

]
≤ log(T )

kl(µa, µ⋆)
+

√
2π log

(
µ⋆(1−µa)
µa(1−µ⋆)

)

(
kl(µa, µ⋆)

)3/2

√

log(T ) + 3 log
(
log(T )

)

+

(

4e+
3

kl(µa, µ⋆)

)

log
(
log(T )

)
+

2

(

log
(

µ⋆(1−µa)
µa(1−µ⋆)

))2

(kl(µa, µ⋆))
2 + 6 .

=⇒ improved logarithmic finite-time regret bound

=⇒ asymptotically optimal in the Bernoulli case
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