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Abstract In this article, we propose a test of fit for normality based on the estimated

Informational Energy and using m-step spacings. Consistency of the test statistic is

established. Critical values and power values of the test against various alternatives

are calculated. Finally, the power values of the proposed test are compared with the

power values of some prominent normality tests.

Keywords Informational energy · Test of normality · Test power ·
Monte Carlo simulation

1 Introduction

Suppose that the random variable X has distribution function F with density function

f . The informational energy ε( f ) of the random variable was defined by

ε( f ) =
∫ ∞

−∞
f 2(x)dx . (1)

Onicescu [4] justified the name informational energy and its connection to Infor-

mation Theory in the classical mechanics. Rao [8] obtained distributions describing

equilibrium states in statistical mechanics based on informational energy. The infor-

mational energy has been widely used in many statistical problems, see [5,6,9] and

references therein.
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Pardo [7], for one-dimensional distributions, proposed an estimator of informational

energy. His estimate was based on the fact that (1) can be expressed as

ε( f ) =
∫ 1

0

(

d

dp
F−1(p)

)−1

dp.

The estimate was constructed by replacing the distribution function F by the empir-

ical distribution function Fn , and using a difference operator instead of the differential

operator. The derivative of F−1(p) is then estimated by a function of the order statis-

tics. Assuming that X1, . . . , Xn is the sample, then the estimator is given by

εmn = 1

n

n
∑

i=1

2m

n(X(i+m) − X(i−m))
,

where m is positive integer, m ≤ n
2

, and X(1) ≤ X(2) ≤ · · · ≤ X(n) are the order

statistics and X(i) = X(1) if i < 1, X(i) = X(n) if i > n.

Pardo [7] showed that εmn is a consistent estimator to the informational energy of

U (0, 1) samples and it is greater or equal than one. Note that the informational energy

of a U (0, 1) distribution is one.

In Reliability studies, engineering and management sciences, testing whether

the underlying distribution has a particular form is very important and statistical

methods assume an underlying distribution in the derivation of their results. Since

mis-specifying the distribution may prove very costly, this problem must check care-

fully.

A theorem of [7] states that among all distributions that possess a density function

f and have a support (0, 1), the entropy ε( f ) is minimized by the uniform distribution.

Based on this property, [7] introduced the following statistic for test of uniformity.

εmn = 1

n

n
∑

i=1

2m

n
(

X(i+m) − X(i−m)

) .

Large values of εmn indicate that the sample is from a non-uniform distribution.

Next, he obtained the percentage points of the test statistic and the power of test by

simulation.

In Sect. 2, we introduce a test for normality based on informational energy. Con-

sistency and location-scale invariance of the proposed test is established. In Sect. 3,

we compare the power of the proposed test with the some prominent existing tests on

a wide variety of alternatives and for sample sizes n = 10, 20, 30 and 50, and show

that, for some types of alternatives, the proposed test achieve higher power than the

competitors.

2 The Test Statistic

Given a random sample X1, . . . , Xn from a continuous probability distribution F with

a density f (x), the hypothesis of interest is
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H0 : f (x) = f0(x;µ, σ) = 1√
2 πσ

exp

{

−1

2

(

x − µ

σ

)2
}

, for some (µ, σ) ∈ �,

where µ and σ are unspecified and � = R × R
+. The alternative to H0 is

H1 : f (x) �= f0(x;µ, σ) f or any (µ, σ) ∈ �.

Without loss of any generality, one can reduce the above problem of goodness-of-fit,

to testing the hypothesis of uniformity on the unit interval, by means of the probability

integral transformation U = F0(X). Therefore, if Ui = F0(X i ), i = 1, 2, . . . , n be

the transformed sample, then the hypotheses can be rewrite as

H0 : f (u) = 1, 0 < u < 1,

against

H1 : f (u) �= 1, 0 < u < 1.

Now, we use the test introduced by [7] for uniformity. Thus, the proposed test

statistic is

Tmn = 1

n

n
∑

i=1

2m

n
(

U(i+m) − U(i−m)

) = 1

n

n
∑

i=1

2m

n
(

F0

(

X(i+m), θ̂
)

− F0

(

X(i−m), θ̂
)) ,

where F0 is normal distribution function, m is positive integer, m ≤ n
2

, X(1) ≤ X(2) ≤
· · · ≤ X(n) are order statistics and X(i) = X(1) if i < 1, X(i) = X(n) if i > n. Also

θ̂ = (µ̂, σ̂) where

µ̂ = X̄ = 1

n

n
∑

i=1

X i ; σ̂ = s =

√

√

√

√

1

n

n
∑

i=1

(X i − X̄)2.

It is clear that the test statistic is invariant with respect to location and scale trans-

formations.

Remark 1 When the parameters of the distribution are specified as θ = θ0
, (that is

when the null hypothesis is simple) the test statistic is

Tmn = 1

n

n
∑

i=1

2m

n
(

F0(X(i+m), θ0
) − F0

(

X(i−m), θ0

)) .

Then, under H0, the distribution of Tmn is independent of F0.

Remark 2 When the null hypothesis is composite, if θ̂ → θ0 as n → ∞, the distrib-

ution of Tmn at θ = θ0 tends to the distribution of Tmn under simple hypothesis.
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Similar to the argument in [7], the following theorem is stated and proved.

Theorem Let X1, . . . , Xn be a random sample from normal distribution, we have

Tmn ≥ 1, and if m = o(n) and m �= 1, then

Tmn
Pr .−→ 1 as n → ∞, m → ∞.

Proof We know that the geometric mean does not exceed from the arithmetic mean,

then

Tmn = 1

n

n
∑

i=1

2m

n
(

F0

(

X(i+m), θ̂
)

− F0

(

X(i−m), θ̂
))

≥
n

∏

i=1

(

2m

n
(

F0

(

X(i+m), θ̂
)

− F0

(

X(i−m), θ̂
))

)1/n

= exp

{

1

n

n
∑

i=1

ln

(

2m

n
(

F0

(

X(i+m), θ̂
)

− F0

(

X(i−m), θ̂
))

)}

.

In other hand, we have

exp

{

1

n

n
∑

i=1

ln

(

n
(

F0

(

X(i+m), θ̂
)

− F0

(

X(i−m), θ̂
))

2m

)}

=
n

∏

i=1

(

n
(

F0

(

X(i+m), θ̂
)

− F0

(

X(i−m), θ̂
))

2m

)1/n

≤
n

∑

i=1

F0

(

X(i+m), θ̂
)

− F0

(

X(i−m), θ̂
)

2m
≤ F0

(

X(n), θ̂
)

− F0

(

X(1), θ̂
)

≤ 1.

Therefore

Tmn ≥ exp

{

1

n

n
∑

i=1

ln

(

2m

n
(

F0

(

X(i+m), θ̂
)

− F0

(

X(i−m), θ̂
))

)}

≥ 1.

We know that Y = F0(X(i+ j), θ̂) − F0(X(i), θ̂) has a Beta distribution with para-

meters j and n − j + 1. Moreover,

E

(

1

Y

)

= n

j − 1
.
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Now, we calculate E (Tmn).

E (Tmn) = 2m

n2

{

m
∑

i=1

E

(

1

F0

(

X(i+m), θ̂
)

− F0

(

X(1), θ̂
)

)

+
n−m
∑

i=m+1

E

(

1

F0

(

X(i+m), θ̂
)

− F0

(

X(i−m), θ̂
)

)

+
n

∑

i=n−m+1

E

(

1

F0

(

X(n), θ̂
)

− F0

(

X(i−m), θ̂
)

)

= 2m

n

{

m
∑

i=1

1

i + m − 2
+ n − 2m

2m − 1
+

n
∑

i=n−m+1

1

n − i + m − 1

}

= 2m

n

{

2

m
∑

i=1

1

2m − i − 1
+ n − 2m

2m − 1

}

.

Note that

m
∑

i=1

1

(2m − 1) − i
= ψ(2m − 1) − ψ(m − 1),

where ψ is the digamma function. We then obtain

E (Tmn) = 2m

n

{

2 ψ(2m − 1) − 2 ψ(m − 1) + n − 2m

2m − 1

}

.

For large value of x , we have

ψ(x) ∼ log x − 1

2x
,

then when n → ∞, m → ∞, m = o(n) and m �= 1,

lim E (Tmn) = lim

{

4m

n
log

2m − 1

m − 1
+ 2m

n(m − 1)
+ 2m

2m − 1
− 2m(2m + 1)

(2m − 1)n

}

= 1.

Therefore

Tmn
Pr .→ 1 as n → ∞, m → ∞.

⊓⊔
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3 Simulation Study

We compare the power values of the proposed test with the power values of the tests

which are commonly used in practice. These tests are the Cramer-von Mises W 2, the

Watson U 2, the Anderson–Darling A2, the Kolmogorov–Smirnov D, the Kuiper V

and the Shapiro–Wilk SW . The procedures of these tests are as follows.

Suppose x(1), x(2), . . . , x(n) are the observed order statistics of the sample.

1. Find the maximum likelihood estimates of the parameters, denoted by θ̂.

2. Make the transformation z(i) = F0(x(i), θ̂), for i = 1, 2, . . . , n, where F0 is the

normal distribution function.

3. The Cramer-von Mises statistic is

W 2 = 1

12n
+

n
∑

i=1

(

2i − 1

2n
− Z(i)

)2

.

The Watson statistic is computed from

U 2 = W 2 − n

(

z̄ − 1

2

)2

,

where z̄ is the mean of zi , and the Anderson–Darling statistic is

A2 = −n − 1

n

n
∑

i=1

(2i − 1)
{

log(z(i)) + log(1 − z(n−i+1))
}

.

The Kolmogorov statistics are computed from

D+ = max
1≤i≤n

{

i

n
− z(i)

}

; D− = max
1≤i≤n

{

z(i) − i − 1

n

}

,

then the Kolmogorov–Smirnov statistic is D = max(D+, D−) and the Kuiper

statistic is V = D+ + D−.

4. Find the percentage point C∗ at a given significance level, for sample size n. We

can find the percentage points of these tests statistics in statistical literature. If

the value of the test statistic is greater than C∗, the null hypothesis is rejected at

level α.

For small to moderate sample sizes, the critical values of the proposed test statistic are

calculated by Monte Carlo simulation. Table 1 gives the critical values of Tmn statistic

for various sample sizes.

The power values of the tests based on C H , U 2, D, V , A2, SW and Tmn statistics

by means of Monte Carlo simulations under 20 alternatives are computed. These

alternatives were used by [1,3] and [2] in their study of power comparisons of several

tests for normality. The alternatives, depending on the support and shape of their

densities, can be divided into four groups. It is clear that the natural alternatives to
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Table 1 Critical values of the Tmn statistic at significance level α = 0.05

n m

1 2 3 4 5 6 7 8 9 10

5 13.17 3.183

6 11.83 3.135 2.264

7 10.78 3.070 2.194

8 10.22 2.997 2.178 1.973

9 9.001 2.878 2.144 1.916

10 8.603 2.837 2.121 1.869 1.829

15 6.608 2.426 1.941 1.762 1.669 1.637 1.640

20 5.737 2.187 1.772 1.656 1.593 1.555 1.537 1.532 1.558 1.591

25 5.283 2.043 1.682 1.568 1.527 1.502 1.487 1.476 1.476 1.485

30 4.752 1.950 1.615 1.511 1.462 1.448 1.436 1.438 1.433 1.434

40 4.169 1.820 1.525 1.431 1.391 1.372 1.365 1.361 1.366 1.369

50 4.004 1.744 1.475 1.383 1.336 1.321 1.316 1.311 1.315 1.316

Table 2 Power comparisons of 0.05 tests based on W 2, U2, A2, D, V , SW and Tmn statistics for sample

sizes n = 10, 20 under alternatives from group I

n Alternatives W 2 U2 A2 D V SW Tmn

10 t(1) 0.612 0.606 0.609 0.579 0.589 0.594 0.450

20 t(1) 0.877 0.876 0.879 0.848 0.863 0.869 0.652

30 t(1) 0.962 0.963 0.964 0.943 0.955 0.960 0.875

50 t(1) 0.997 0.998 0.997 0.994 0.997 0.997 0.989

10 t(3) 0.175 0.168 0.182 0.159 0.158 0.187 0.124

20 t(3) 0.308 0.300 0.330 0.266 0.276 0.340 0.158

30 t(3) 0.408 0.403 0.438 0.343 0.375 0.460 0.272

50 t(3) 0.573 0.575 0.607 0.482 0.540 0.632 0.423

10 Logistic 0.077 0.074 0.079 0.074 0.071 0.082 0.057

20 Logistic 0.096 0.091 0.104 0.084 0.087 0.123 0.058

30 Logistic 0.108 0.104 0.123 0.094 0.099 0.144 0.086

50 Logistic 0.143 0.144 0.160 0.113 0.135 0.192 0.099

10 Laplace 0.154 0.150 0.155 0.140 0.139 0.150 0.096

20 Laplace 0.267 0.262 0.273 0.227 0.244 0.264 0.089

30 Laplace 0.360 0.361 0.375 0.297 0.330 0.360 0.167

50 Laplace 0.537 0.552 0.547 0.437 0.512 0.523 0.302

normal distribution are in groups I and II. For the sake of completeness, groups III and

IV are also considered. This fact shows additional insight to understand the behavior

of the new test statistic Tmn .
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Table 3 Power comparisons of 0.05 tests based on W 2, U2, A2, D, V , SW and Tmn statistics for sample

sizes n = 10, 20 under alternatives from group II

n Alternatives W 2 U2 A2 D V SW Tmn

10 Gumbel (0,1) 0.131 0.123 0.138 0.116 0.114 0.153 0.129

20 Gumbel (0,1) 0.246 0.218 0.274 0.202 0.190 0.313 0.269

30 Gumbel (0,1) 0.349 0.305 0.392 0.282 0.267 0.469 0.466

50 Gumbel (0,1) 0.545 0.477 0.601 0.438 0.423 0.686 0.693

10 Gumbel (0,2) 0.130 0.124 0.139 0.115 0.113 0.150 0.135

20 Gumbel (0,2) 0.247 0.217 0.275 0.203 0.191 0.315 0.271

30 Gumbel (0,2) 0.350 0.304 0.391 0.282 0.266 0.467 0.465

50 Gumbel (0,2) 0.544 0.478 0.600 0.436 0.424 0.685 0.694

10 Gumbel (0,1/2) 0.130 0.125 0.137 0.117 0.114 0.154 0.130

20 Gumbel (0,1/2) 0.248 0.217 0.274 0.202 0.192 0.314 0.266

30 Gumbel (0,1/2) 0.351 0.305 0.393 0.281 0.268 0.468 0.465

50 Gumbel (0,1/2) 0.545 0.476 0.602 0.437 0.422 0.687 0.692

Group I: Support (−∞,∞), symmetric.

– Student t with 1 degree of freedom (i.e. the standard Cauchy),

– Student t with 3 degrees of freedom,

– Standard logistic,

– Standard Laplace.

Group II: Support (−∞,∞), asymmetric.

– Gumbel with parameters α (location) and β (scale), denoted by Gumbel(α, β)

Group III: Support (0,∞) .

– Exponential with mean 1,

– Gamma with parameter α (shape),

– Lognormal with parametersµ (location) andσ (scale), denoted by Lognormal(µ, σ)

– Weibull with parameter α (shape),

Group IV: Support (0,1).

– Uniform,

– Beta (2,2),

– Beta (0.5,0.5),

– Beta (3,1.5),

– Beta (2,1).

Under each alternative, we generated 20,000 samples of size 10, 20, 30 and 50 and

then computed the test statistics (W 2, D, V, U 2, A2, SW, Tmn) . By the frequency of

the event “the test statistic is in the critical region” the power value of the correspond-

ing test was obtained. The power values are presented in Tables 2, 3, 4 and 5. For

each sample size and alternative, the bold type in these Tables indicates the statistics

achieving the maximum power.
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Table 4 Power comparisons of 0.05 tests based on W 2, U2, A2, D, V , SW and Tmn statistics for sample

sizes n = 10, 20 under alternatives from group III

n Alternatives W 2 U2 A2 D V SW Tmn

10 Exponential 0.384 0.367 0.411 0.305 0.365 0.442 0.468

20 Exponential 0.726 0.688 0.776 0.585 0.696 0.836 0.877

30 Exponential 0.896 0.866 0.934 0.783 0.884 0.968 0.982

50 Exponential 0.991 0.984 0.997 0.961 0.991 0.9995 0.9996

10 Gamma (2) 0.203 0.191 0.217 0.169 0.181 0.239 0.237

20 Gamma (2) 0.414 0.374 0.459 0.324 0.349 0.532 0.553

30 Gamma (2) 0.587 0.530 0.654 0.466 0.506 0.749 0.807

50 Gamma (2) 0.832 0.778 0.888 0.697 0.768 0.949 0.965

10 Gamma (1/2) 0.672 0.658 0.701 0.541 0.669 0.735 0.772

20 Gamma (1/2) 0.950 0.940 0.968 0.881 0.953 0.984 0.991

30 Gamma (1/2) 0.996 0.993 0.998 0.983 0.997 0.9997 0.9998

50 Gamma (1/2) 1.000 1.000 1.000 1.000 1.000 1.000 1.000

10 Lognormal (0,1) 0.552 0.536 0.576 0.461 0.527 0.603 0.626

20 Lognormal (0,1) 0.884 0.864 0.908 0.797 0.860 0.932 0.947

30 Lognormal (0,1) 0.973 0.962 0.983 0.934 0.964 0.991 0.995

50 Lognormal (0,1) 0.999 0.998 0.999 0.995 0.999 0.9999 0.9999

10 Lognormal (0,2) 0.894 0.889 0.907 0.824 0.894 0.920 0.938

20 Lognormal (0,2) 0.998 0.997 0.998 0.992 0.998 0.9996 0.9998

30 Lognormal (0,2) 1.000 1.000 1.000 1.000 1.000 1.000 1.000

50 Lognormal (0,2) 1.000 1.000 1.000 1.000 1.000 1.000 1.000

10 Lognormal (0,1/2) 0.218 0.206 0.2231 0.187 0.192 0.245 0.230

20 Lognormal (0,1/2) 0.425 0.388 0.465 0.346 0.352 0.517 0.507

30 Lognormal (0,1/2) 0.595 0.540 0.652 0.482 0.498 0.726 0.754

50 Lognormal (0,1/2) 0.824 0.769 0.869 0.706 0.737 0.924 0.937

10 Weibull (1/2) 0.854 0.848 0.874 0.752 0.856 0.894 0.915

20 Weibull (1/2) 0.995 0.994 0.997 0.984 0.996 0.9992 0.9994

30 Weibull (1/2) 1.000 1.000 1.000 1.000 1.000 1.000 1.000

50 Weibull (1/2) 1.000 1.000 1.000 1.000 1.000 1.000 1.000

10 Weibull (2) 0.076 0.074 0.078 0.070 0.70 0.084 0.084

20 Weibull (2) 0.121 0.110 0.132 0.105 0.096 0.156 0.160

30 Weibull (2) 0.159 0.138 0.187 0.138 0.119 0.232 0.280

50 Weibull (2) 0.261 0.218 0.308 0.207 0.182 0.416 0.489

For the proposed test, the maximum power was typically attained by choosing

m = 4 for n = 10, m = 7 for n = 20, m = 12 for n = 30, and m = 20 for n = 50.

With increasing n the optimal choice of m increases.

From Tables 2, 3, 4 and 5, it is seen that the tests compared considerably differ in

power. Tables 4 and 5 indicate a superiority of our procedure to other tests. In these

tables, the proposed test out performs other prominent tests under more alternatives.
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Table 5 Power comparisons of 0.05 tests based on W 2, U2, A2, D, V , SW and Tmn statistics for sample

sizes n = 10, 20 under alternatives from group IV

n Alternatives W 2 U2 A2 D V SW Tmn

10 Uniform 0.071 0.078 0.076 0.064 0.081 0.082 0.089

20 Uniform 0.144 0.163 0.172 0.101 0.151 0.200 0.269

30 Uniform 0.227 0.258 0.301 0.147 0.233 0.381 0.311

50 Uniform 0.439 0.487 0.575 0.261 0.428 0.749 0.671

10 Beta(2,2) 0.044 0.048 0.045 0.042 0.050 0.042 0.050

20 Beta(2,2) 0.055 0.060 0.056 0.052 0.060 0.053 0.090

30 Beta(2,2) 0.070 0.079 0.080 0.060 0.081 0.080 0.078

50 Beta(2,2) 0.111 0.129 0.130 0.080 0.126 0.153 0.128

10 Beta(1/2,1/2) 0.222 0.243 0.256 0.155 0.234 0.299 0.276

20 Beta(1/2,1/2) 0.509 0.547 0.621 0.332 0.492 0.727 0.718

30 Beta(1/2,1/2) 0.739 0.773 0.861 0.507 0.703 0.944 0.879

50 Beta(1/2,1/2) 0.958 0.968 0.991 0.805 0.940 0.999 0.999

10 Beta(3,1/2) 0.527 0.515 0.561 0.409 0.524 0.609 0.651

20 Beta(3,1/2) 0.878 0.858 0.915 0.751 0.881 0.948 0.971

30 Beta(3,1/2) 0.977 0.969 0.991 0.930 0.981 0.997 0.999

50 Beta(3,1/2) 0.999 0.999 0.9999 0.998 0.9997 1.000 1.000

10 Beta(2,1) 0.112 0.111 0.117 0.095 0.108 0.130 0.149

20 Beta(2,1) 0.232 0.223 0.263 0.176 0.202 0.306 0.414

30 Beta(2,1) 0.364 0.345 0.431 0.273 0.318 0.515 0.619

50 Beta(2,1) 0.611 0.586 0.720 0.455 0.563 0.838 0.892

The Anderson–Darling and Shapiro–Wilk tests have the most power in group I.

In group II, it is observed that for small sample sizes the Shapiro–Wilk test achieves

greatest power and for large sample sizes the proposed test has the most power. In the

other groups, it is seen that the proposed test Tmn has the most power. The difference

of powers of the proposed test Tmn and other tests are substantial.

4 Conclusions

In this paper, we first discussed about informational energy of a continuous random

variable. We next proposed a new test for normality based on an estimator of infor-

mational energy. Consistency and other properties of the proposed test statistic have

been shown.

The paper also compared the power vales of the proposed test with some prominent

existing tests using Monte Carlo computations for sample sizes n = 10, 20, 30 and

50. Differences in power values of the proposed test with other tests are considerable

and each of the tests A2, SW and Tmn can be most powerful depending on the type of

alternatives. The tests A2 and SW are most powerful against symmetric alternatives
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with the support (−∞,∞) (group I). The test SW is most powerful against asymmetric

alternatives in group II with the support (−∞,∞).

The test Tmn (proposed test) is most powerful against alternatives in group III with

the support (0,∞) and alternatives with the support (0, 1)(group IV).

Based on these observations, the following recommendations for the application of

the studied tests in practice are presented.

1. Use the statistics A2 or SW , if the assumed alternatives are symmetric and sup-

ported by (−∞,∞).

2. Use the statistic SW , if the assumed alternatives are asymmetric and supported by

(−∞,∞).

3. Use the statistic Tmn (the proposed test), if the assumed alternatives are supported

by the bounded interval (0, 1) or if they are supported by (0,∞).
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