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Abstract

Convolutional Neural Networks (CNNs) are

known to rely more on local texture rather than

global shape when making decisions. Recent

work also indicates a close relationship between

CNN’s texture-bias and its robustness against dis-

tribution shift, adversarial perturbation, random

corruption, etc. In this work, we attempt at im-

proving various kinds of robustness universally

by alleviating CNN’s texture bias. With inspira-

tion from the human visual system, we propose

a light-weight model-agnostic method, namely

Informative Dropout (InfoDrop), to improve in-

terpretability and reduce texture bias. Specifi-

cally, we discriminate texture from shape based

on local self-information in an image, and adopt

a Dropout-like algorithm to decorrelate the model

output from the local texture. Through exten-

sive experiments, we observe enhanced robust-

ness under various scenarios (domain generaliza-

tion, few-shot classification, image corruption,

and adversarial perturbation). To the best of our

knowledge, this work is one of the earliest at-

tempts to improve different kinds of robustness

in a unified model, shedding new light on the

relationship between shape-bias and robustness,

also on new approaches to trustworthy machine

learning algorithms. Code is available at https:

//github.com/bfshi/InfoDrop.

1. Introduction

Despite the impressive performance in a broad range of

visual tasks, Convolutional Neural Network (CNN) is sur-
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Figure 1. Comparison of different shape-biased methods. (a) Orig-

inal image of cat and dog. (b) Simple edge detection is susceptible

to complex patterns (e.g. stripes of the cat) and can severely dam-

age image contents. (c) In this work, we reduce texture-bias under

guidance of self-information, which aligns well with human vision.

The definition and computation of self-information are in Sec. 3.

prisingly vulnerable compared with the human visual sys-

tem. For example, features learned by CNN have trouble

in generalizing across shifted distributions between train-

ing and test data (Chen et al., 2019; Wang et al., 2019a).

Random image corruptions can also considerably degrade

its performance (Hendrycks & Dietterich, 2019). CNN is

extremely defenseless under well-designed image perturba-

tion as well (Szegedy et al., 2013). This is opposite to the

human visual system, which is robust to domain gap, noisy

input, etc. (Biederman, 1987; Bisanz et al., 2012; Geirhos

et al., 2017).

Another intriguing property of CNN is its ‘texture bias’,

namely its bias towards texture instead of shape. Despite the

earlier belief that CNN extracts more abstract shapes and

structures layer by layer as human does (Kriegeskorte, 2015;

LeCun et al., 2015), recent works reveal its reliance on the

local texture when making decisions (Geirhos et al., 2019;

Brendel & Bethge, 2019). For instance, given an image with

a cat’s shape filled with an elephant’s skin texture, CNN

tends to classify it as an elephant instead of a cat (Geirhos

et al., 2019).

Supported by some recent works, there seems to be a sur-

prisingly close relationship between CNN’s robustness and

texture-bias. For example, Zhang & Zhu (2019) find that

adversarially trained CNNs are innately less texture-biased.

There are also a few attempts to tackle a specific task by

training a less texture-biased model. Carlucci et al. (2019)

propose to improve robustness against domain gap by train-

ing on jigsaw puzzles, which relies more on global structure

information. Geirhos et al. (2019) find that shape-biased

https://github.com/bfshi/InfoDrop
https://github.com/bfshi/InfoDrop
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CNNs trained on stylized images are more robust to ran-

dom image distortions. Up to this point, one may naturally

wonder:

Is texture-bias a common reason for CNN’s different kinds

of non-robustness against distribution shift, adversarial per-

turbation, image corruption, etc.?

To explore the answer, this work aims at improving vari-

ous kinds of robustness universally by alleviating CNN’s

texture bias and enhancing shape-bias. Some approaches

to train shape-biased CNNs have been proposed recently.

However, they either are susceptible to complex patterns

(see Fig. 1(b)) (Radenovic et al., 2018), or have high

computational complexity and auxiliary tasks (Geirhos

et al., 2019; Wang et al., 2019a; Carlucci et al., 2019;

Wang et al., 2019b). In this work, we propose a

light-weight model-agnostic method, namely Informative

Dropout (InfoDrop). The inspiration comes from earlier

works on saliency detection and human eye movements:

humans tend to look at regions with high self-information

− logP(current region | surrounding regions), i.e., regions

whose being observed based on surrounding regions con-

tains more ‘surprise’ (Bruce & Tsotsos, 2006; 2009). In

other words, people tend to pay more attention to regions

that look different from neighboring regions. In our case,

patterns like flat regions or high-frequency textures tend to

repeat themselves in the neighboring region, thus being less

informative. On the other hand, visual primitives (e.g. edges,

corners) are more unique and thus more informative among

its neighborhood. Fig. 1(c) provides a visualization of the

information distribution in natural images. Note that both

shape and important characteristics (e.g. eyes, stripes) are

accentuated, while texture (e.g. hair) is relatively repressed.

To this end, InfoDrop is proposed to reduce texture-bias

by decorrelating each layer’s output with less informative

input regions. Specifically, we adopt a Dropout-like algo-

rithm (Srivastava et al., 2014): for input regions with less

information, we zero out the corresponding output neurons

with higher probability. In this way, reliance on textures

can be reduced and the model is trained to be more biased

towards shapes. By eliminating InfoDrop after training, the

model is further demonstrated to be internally shape-biased

without InfoDrop during inference. The shape-bias property

is exhibited through different experiments, both qualitatively

and quantitatively.

To evaluate the robustness of InfoDrop, we conduct exten-

sive experiments in four different tasks: domain general-

ization, few-shot classification, robustness against random

corruption, and adversarial robustness. Results show a con-

sistent improvement in different kinds of robustness over

various baselines, demonstrating the effectiveness and ver-

satility of our method. We also demonstrate that InfoDrop

can be combined with other algorithms (e.g. adversarial

training) to further enhance the robustness.

1.1. Our Contribution

• With inspiration from the human visual system, we

propose InfoDrop, an effective albeit simple plug-in

method to reduce the general texture bias of any CNN-

based model.

• As shown by extensive experiments, InfoDrop achieves

consistently non-trivial improvement over multiple

baselines in a wide variety of robustness settings. Fur-

thermore, InfoDrop can be incorporated together with

other algorithms to obtain higher robustness.

• To the best of our knowledge, this work is one of

the earliest attempts to improve different kinds of ro-

bustness in a unified model. This sheds new light

on the relationship between CNN’s texture-bias and

non-robustness, also on new approaches to building

trustworthy machine learning algorithms.

2. Related Work

2.1. Vulnerability of CNNs

An important feature of intelligence is its ability to general-

ize knowledge across tasks, domains and categories (Csurka,

2017). However, CNNs still struggle when different kinds of

distribution shifts exist between training and test data. For

instance, in few-shot classification, where large class gap

is the main challenge, complex algorithms make little im-

provement upon simple baselines (Chen et al., 2019; Huang

et al., 2020; Dhillon et al., 2020). CNNs also have trouble

with transferring knowledge across different domains, espe-

cially when data is unavailable in the target domain as in the

task of domain generalization (Khosla et al., 2012; Li et al.,

2017; 2018b; Carlucci et al., 2019). In this work, we eval-

uate our method’s robustness against distribution shift on

tasks of few-shot classification and domain generalization.

CNNs are also sensitive to small perturbations and cor-

ruptions in images, which can be easily dealt with by hu-

mans (Azulay & Weiss, 2019). Hendrycks & Dietterich

(2019) benchmark CNN’s robustness against 18 types of

random corruption, demonstrating its vulnerability. It is

also shown that well-designed perturbation, namely adver-

sarial perturbation, can severely degrade the performance

of CNNs (Szegedy et al., 2013). We evaluate the robust-

ness of our approach against both random corruption and

adversarial perturbation, with other methods towards model

robustness as baseline, e.g., adversarial training (Madry

et al., 2018; Zhang et al., 2019).

2.2. Texture-bias of CNNs

Despite the recent impressive performance of CNNs in vari-

ous vision tasks, the visual processing mechanism behind
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remains controversial. One widely accepted hypothesis is

that CNNs extract low-level primitives (e.g. edges, corners)

in lower layers and try to combine them into complex shapes

in higher layers (Kriegeskorte, 2015; LeCun et al., 2015).

This hypothesis is supported by numbers of empirical find-

ings, both from computational (Zeiler & Fergus, 2014) and

psychological (Ritter et al., 2017) perspectives. However,

recent work argues that local texture is sufficient for CNNs

to perform correct classification (Brendel & Bethge, 2019).

Shape or contour information, on the other hand, seems hard

for CNNs to understand (Ballester & Araujo, 2016). CNNs

also fail at transferring between images with similar shapes

yet distinct textures (Geirhos et al., 2019). These findings

indicate an alternative explanation for the success of CNNs:

local texture is what CNNs base on when making decisions.

2.3. Relation between Non-robustness and Texture-bias

More and more work indicates a close relationship be-

tween CNNs’ non-robustness and texture-bias. Zhang &

Zhu (2019) find that adversarially trained networks are less

texture-biased. Geirhos et al. (2019) show that shape-biased

models trained with stylized images are more robust against

image distortion. Carlucci et al. (2019) propose to boost

domain generalization by training to solve jigsaw puzzles,

which relies more on global structure. Wang et al. (2019a)

propose to penalize CNN’s local predictive power to reduce

the domain gap induced by image background. With the

same objective, Wang et al. (2019b) propose to project out

superficial statistics in feature space. However, none of the

work has discussed the relationship between texture-bias

and different types of non-robustness in a unified model.

2.4. Bias in Human Vision

It is known that human eyes tend to fixate on specific regions

(saliency) rather than scan the whole image they see (Yarbus,

2013). The mechanism behind this kind of bias has attracted

lots of interest. Itti et al. (1998) reveal the importance of

center-surround contrast of units in the human visual system.

Hou & Zhang (2007) detect saliency using residual contrast

in the spectral domain. Other works propose to use Shannon

entropy to measure saliency and predict fixation (Fritz et al.,

2004; Renninger et al., 2005). In Bruce & Tsotsos (2006),

self-information is proposed to better model saliency.

In addition, shape-bias is also found critical in the human

visual system. A large amount of evidence shows shape is

the most important single clue for human vision learning

and processing (Landau et al., 1988). For example, young

children tend to extend object names based on its shape,

rather than size, color or material (Diesendruck & Bloom,

2003). The shape bias of human vision, together with its bias

towards self-information, further motivates our proposed

method.

3. Methodology

Let x ∈ R
c0×h0×w0 denotes an image with c0 channels and

spatial shape of h0 × w0. For a CNN, we denote the input

of l-th convolutional layer by zℓ−1 ∈ R
cℓ−1×hℓ−1×wℓ−1

and output by zℓ ∈ R
cℓ×hℓ×wℓ . Note that z0 equals to the

input image x. Assume the l-th layer has a convolutional

kernel kℓ ∈ R
cℓ×cℓ−1×k×k and bias bℓ ∈ R

cℓ , where k
is the kernel size. Then for c-th channel’s j-th element

zℓc,j in output zℓ (j ∈ {1, 2, ..., hℓwℓ}), we have zℓc,j =

σ(kℓ
c · p

ℓ−1
j + bℓc), where pℓ−1

j ∈ R
cℓ−1×k×k is the j-th

patch in zℓ−1, kℓ
c and bℓc are the kernel and bias for c-th

output channel, · indicates inner product and σ(·) is an

entry-wise activation function (e.g. ReLU). All through this

paper ‖ · ‖ denotes Euclidean norm.

3.1. Informative Dropout

Now we develop our information-based Dropout method for

alleviating texture-bias. As discussed in Section 1, regions

of textures tend to contain low self-information. To this end,

we propose to reduce texture-bias by decorrelating each

layer’s output with low-information regions in input. Specif-

ically, we adopt a Dropout-like approach for the purpose. In

traditional Dropout (Srivastava et al., 2014), a multiplicative

Bernoulli noise is introduced to help prevent overfitting,

where each neuron is zeroed out with equal probability. In

order to suppress texture-bias, we propose to zero out an

output neuron with higher probability if the input patch

contains less information, and vice versa. Specifically, we

model the drop coefficient r of the j-th neuron in output’s

c-th channel with a Boltzmann distribution:

r(zℓc,j) ∝ e−I(pℓ−1

j
)/T , (1)

where pℓ−1
j is the patch in the input related to the computa-

tion of zℓc,j , I denotes self-information and T is temperature.

When value of I is low, the corresponding neuron is likely

to be dropped, and the network tends to rely less on pℓ−1
j .

Here the temperature T serves as a ‘soft threshold’ of infor-

mation. When T is small, the threshold lowers down, and

only patches with least information (e.g. a patch in a solid-

colored region) will be dropped. When T goes to infinity,

all neuron will be dropped with equal probability, and the

whole algorithm becomes regular Dropout.

First we discuss how to estimate I. The definition of infor-

mation could date back to Shannon’s work (Shannon, 1948),

from where we borrow the concept of self-information I to

describe the information of a patch:

I(pℓ−1
j ) = − log qℓ−1

j (pℓ−1
j ), (2)

where qℓ−1
j is the distribution which pℓ−1

j is sampled from,

if we see pℓ−1
j as a realization of a random variable. As a
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simple case, we can assume that all patches in the neighbor-

hood of pℓ−1
j are different realizations of the same random

variable, i.e., they are all sampled from the same distribu-

tion qℓ−1
j . In this case, if pℓ−1

j contains more “texture”

than “shape”, its pattern shall repeat itself within a local

region, resulting in a high likelihood qℓ−1
j (pℓ−1

j ) and hence

low self-information and should be zeroed out with high

probability.

To approximate qℓ−1
j (·), we assume that pℓ−1

j and other

patches in its neighbourhood N ℓ−1
j come from the same

distribution p ∼ qℓ−1
j (p). Here the neighbourhood means a

local region centered at pℓ−1
j , with Manhattan radius R, i.e.,

the neighborhood contains (2R+ 1)2 patches. Then, with

neighboring patches as samples1, we approximate qℓ−1
j (·)

with its kernel density estimator q̂
ℓ−1
j , i.e.

q̂
ℓ−1
j (p) =

1

(2R+ 1)2

∑

p′∈N ℓ−1

j

K(p,p′), (3)

where K(·, ·) is kernel function. Here we use Gaussian ker-

nel, i.e., K(p,p′) = 1√
2πh

exp(−||p−p′||2/2h2), where h

is the bandwidth. Then the information of pℓ−1
j is estimated

by

Î(pℓ−1

j ) = − log{
∑

p′∈N ℓ−1

j

e
−||pℓ−1

j
−p

′||2/2h2

} + const. (4)

As one can observe, the more different pℓ−1
j is from neigh-

bouring patches, the more information it contains. For

regions of solid color or high-frequency texture, similar

patterns tend to repeat in the neighborhood, and thus lit-

tle information is presented. Local shapes, on the other

hand, are more unique in their surroundings and thus more

informative.

Then we discuss how the dropout process works. A direct

way is to sample neurons in the output zℓ with probabilities

given by Eq. 1, and set them to zero. During training, for

the c-th channel of ℓ-th layer’s output zℓc ∈ R
hℓ×wℓ , we ran-

domly choose neurons to drop by running weighted multi-

nomial sampling with replacement for r0 · hℓ · wℓ times,2

where r0 is a hyper-parameter controlling the amount of

dropped neurons. The algorithm is shown in Alg. 1.

1Here all the patches in the neighborhood are used. Nonethe-
less, one can only use a random part of the patches for an unbiased
estimation to reduce the computational load, especially when the
radius of the neighborhood is large. From our observation, this
barely affects the performance.

2Here we choose sampling with replacement over without re-
placement because the former runs faster in practice. Hence here
r0 can be any positive real number due to collision of samples, and
the actual dropout rate (expected ratio of sampled neurons) will be
lower than r0.

Algorithm 1 Informative Dropout (InfoDrop)

Input: input activation map zℓ−1

Parameters: convolutional kernel kℓ, bias bℓ, radius R,

temperature T , bandwidth h, “dropout rate” r0
Output: output activation map zℓ

for each element zℓc,j in output do

zℓc,j ← σ(kℓ
c · p

ℓ−1
j + bℓc)

end for

for c = 1 to cℓ do

for i = 1 to ⌊r0 · hℓ · wℓ⌋ do

sample j from [1, hℓ · wℓ] with probability r(zℓc,j)
given by Eq. 1

zℓc,j ← 0
end for

end for

Note that when training with InfoDrop on, we are inten-

tionally filtering out texture to make the model learn to

recognize shape. However, during inference, we expect to

see a genuinely shape-biased model which can filter out

texture by itself without InfoDrop’s help. To check if our

model has obtained this “internal” shape-bias, one way is to

directly remove the InfoDrop blocks during inference. How-

ever, there may be statistical mismatch (e.g. in batch nor-

malization) between clean images and images processed by

InfoDrop. To this end, we take the inspiration from (Geirhos

et al., 2019) and propose to finetune the network on clean

images with InfoDrop removed, as an extra step after Info-

Drop training. In this way, we can safely remove InfoDrop

during testing, and examine whether our network has truly

learned shape-bias.

3.2. Computational Complexity

There are two parts of computational cost in InfoDrop: (i)

calculation of self-information for input patches, and (ii)

manipulation of each output element. For self-information

calculation, there are O(hℓ−1 · wℓ−1) input patches, each

with size O(cℓ−1). Note that kernel size and scale of neigh-

borhood are constants. This means a time complexity of

O(cℓ−1 · hℓ−1 · wℓ−1) for part (i). As for part (ii), both

sampling and element-wise product needs O(cℓ · hℓ · wℓ).
Note that spatial shape often stays unchanged through

convolution. Therefore, time complexity of InfoDrop is

O((cℓ−1 + cℓ) · hℓ · wℓ), which is little overhead compared

with O(cℓ−1 · cℓ · hℓ · wℓ) in convolutional operation.

4. Experiments

We conduct extensive experiments for further understanding

properties of InfoDrop and its benefits over standard CNN-

based models. First we discuss the shape-bias property of

InfoDrop in Sec. 4.1. Then in Sec. 4.2 we evaluate robust-
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Figure 2. Picture of Lenna, its frequency map and self-information

map. Lighter regions indicate higher values.

Figure 3. Gradient-based saliency maps of regular CNN (left) and

CNN with InfoDrop (middle). Input image is shown on the right.

ness of InfoDrop through four different tasks, viz. domain

generalization, few-shot classification, robustness against

random corruption and adversarial robustness, and also com-

pare with other shape-biased approaches. In Sec. 4.3, we

conduct ablation studies for further analysis. The balance

between shape and texture is discussed in Sec. 4.4. Please

refer to Appendix for specific experimental settings.

4.1. Shape-bias of InfoDrop

We conduct several experiments, both qualitatively and

quantitatively, to analyze the shape-bias property of Info-

Drop. Due to limited space, we refer readers to Appendix

for more visualization and detailed experimental settings.

A Frequency Perspective We first analyze the shape-bias

property of self-information by visualizing how it responds

to local regions with different spatial frequency. To obtain

the average frequency of a local region, we apply Discrete

Cosine Transform (DCT) (Ahmed et al., 1974) to the local

8 × 8 patch to get the power spectrum, which is further

used as weights of each frequency level to get the average

frequency. We repeat the process for each position and get

the frequency map (Fig. 2(b)). We also calculate each po-

sition’s self-information (Fig. 2(c)). As one can observe,

for visual primitives including edges and corners (green

boxes), they present medium frequency, but are most high-

lighted by self-information. High-frequency textures (red

boxes), as highlighted in frequency map, however, contain

relatively low information due to its high-frequency self-

repeating. Flat regions (yellow boxes) are filtered by both

frequency and information map. This is also consistent with

our previous discussions.

Table 1. Degradation of classification accuracy on patch-shuffled

images. Each image is divided into m×m patches. Here we use

m = 1 as baseline, referring to accuracy on original images.

m 1 2 3 4

REGULAR CNN 99.88 99.16 97.60 92.99
W/ INFODROP 99.80 95.37 89.03 79.90

Saliency Map of CNN To verify the shape-bias InfoDrop

brings to CNNs, we visualize gradients of model output

w.r.t. input pixels, which serve as a “saliency map” of the

network. Specifically we use SmoothGrad (Smilkov et al.,

2017) to calculate saliency map S(x),

S(x) =
1

n

n∑

i=1

∂f(xi)

∂xi
, (5)

where xi = x+ δi is original image x with i.i.d. Gaussian

noise δi, and f(·) is the network. An example is shown in

Fig. 3. We can see that InfoDrop is more human-aligned,

sensitive to shapes of objects, while the saliency map of

regular CNN is more noisy and less shape-biased, lacking

interpretability.

Patch Shuffling We also evaluate the shape-bias of Info-

Drop through recognizing images whose shape information

is ruined but texture is retained. Following (Zhang & Zhu,

2019), we achieve this goal by dividing images into m×m
patches and randomly shuffling them. Through patch shuf-

fling, global structure is ruined while local texture in each

patch is left untouched. We train our model on clean images

and test on patch-shuffled test set. We set different values of

m and results are listed in Table 1. Note that m = 1 means

no shuffling is used. As m goes up, global structures are

severely ruined, causing a rapid declination in InfoDrop’s

performance. However, regular CNN is barely influenced

since most texture information is preserved. This also indi-

cates that CNN with InfoDrop is more biased towards shape

information.

Style Transfer To understand the features extracted by

InfoDrop, we conduct ablations in the task of style transfer.

Recently, Huang & Belongie (2017) proposed AdaIN algo-

rithm to render a content image with the style of another

image (style image). Specifically, features of both content

and style images are first extracted by encoder, and then

the mean and variance of the content feature is aligned with

those of the style feature. Transferred image is then de-

coded from the aligned content feature. In our experiment,

we apply InfoDrop in the encoder and observe changes in

the rendered image. By doing so, we expect to see that only

the edging style of the content image is rendered by that

of the style image, and the texture style is preserved. This

is verified by the results in Fig. 4. Take the first row as

example, we can see that baseline method mainly change
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Figure 4. Results of style transfer. From left to right: content im-

age, style image, baseline result, result of InfoDrop. For instance,

in baseline result of the last row, both shape (e.g. edging) and tex-

ture (e.g. coloring) style are inherited from style image. However,

InfoDrop mainly renders edges in content image, while texture

(e.g. sky) or color tone is less affected.

the tone of the whole image. In contrast, InfoDrop inherits

the style of red edging and sketching, and applies it on the

shape of content image, indicating that InfoDrop is more

shape-biased in both content and style images.

4.2. Robustness of InfoDrop

In this section, we first evaluate various kinds of robustness

(against distribution shift, image corruption and adversar-

ial perturbation) of InfoDrop through four different tasks

(Sec. 4.2.1 ∼ Sec. 4.2.4). Since InfoDrop can be applied

to any CNN-based models, and extensive exploration of

more complicated base models is beyond the main scope

of our studies in this section, we only use simple architec-

ture (e.g. ResNet (He et al., 2016)) and baseline algorithms,

and observe incremental results when InfoDrop is applied.

Then we compare InfoDrop with other approaches towards

shape-bias (Sec. 4.2.5). Due to limited space, detailed ex-

perimental configuration and additional results are deferred

to Appendix.

4.2.1. DOMAIN GENERALIZATION

Due to the natural data variance induced by time, location,

weather, etc., it’s a significant feature for visual models to

generalize across different domains. To this end, the task

of domain adaptation is proposed, where labeled data from

source domain and unlabeled data from target domain are

provided (Shimodaira, 2000). Prior arts mainly focus on

diminishing the distribution shift in feature space between

source and target domain (Gretton et al., 2007; 2009; Long

et al., 2015). A more challenging task, namely domain

Table 2. Incremental results of single-source domain generaliza-

tion. + (-) indicates performance gain (decline) from InfoDrop.

SOURCE

TARGET
PHOTO ART CARTOON SKETCH

PHOTO -0.06 +2.49 +6.52 +6.09
ART +0.12 +0.20 +1.57 +0.81

CARTOON -0.84 -0.44 +0.04 +4.81
SKETCH +11.91 +4.23 +6.19 +0.15

Table 3. Results on multi-source domain generalization. Perfor-

mance of JiGen (Carlucci et al., 2019) and D-SAM (D’Innocente

& Caputo, 2018) are listed for comparison.

METHODS

TARGET
PHOTO ART CARTOON SKETCH

D-SAM 95.30 77.33 72.43 77.83
JIGEN 96.03 79.42 75.25 71.35

BASELINE 95.98 77.87 74.86 70.17
+ INFODROP 96.11 80.27 76.54 76.38

generalization, is later proposed, where data from target

domain is unavailable during training. Previous solutions

include learning invariant features (Muandet et al., 2013),

or utilizing auxiliary tasks (Carlucci et al., 2019).

In our experiment, we use the naive algorithm as baseline:

training a classification model on source domain, and testing

on target domain. Following the literature (Carlucci et al.,

2019), we use PACS (Li et al., 2017) as dataset, which

consists of four domains, viz. photo, art, cartoon and sketch.

Results on single-source domain generalization are shown

in Table 2. Here we report the relative improvement of Info-

Drop over baseline. For the absolute accuracies, please refer

to Appendix. Compared with baseline, InfoDrop boosts per-

formances in multiple settings, especially with sketch as the

source or target domain. This also reflects the shape-bias of

InfoDrop, considering that sketches mainly consist of shape

information. It is also worth noticing that our model can

keep the performance on the source domain after InfoDrop

is applied.

We also obtain results on multi-source domain generaliza-

tion. Table 3 shows results on each domain after trained

on other three domains. When trained with InfoDrop, the

model is more robust to the distribution shift between dif-

ferent domains, and obtains consistent improvements over

all target domains. Moreover, the vanilla baseline with

InfoDrop is already better than or comparable with other

state-of-the-art methods on each target domain.
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Table 4. Few-shot classification results under different settings with ProtoNet as baseline. All experiments are 5-way. Usage of data

augmentation is denoted by ‘w/’, and vice versa.

CUB mini-IMAGENET mini-IMAGENET→CUB
5-SHOT 1-SHOT 5-SHOT 1-SHOT 5-SHOT 1-SHOT

W/O W/ W/O W/ W/O W/ W/O W/ W/O W/ W/O W/

PROTONET 67.13 77.64 51.62 58.83 63.84 66.85 47.96 47.17 52.71 54.62 39.36 35.24
+ INFODROP 70.94 78.18 52.40 59.06 66.85 67.25 49.61 50.09 55.06 55.09 37.11 37.50

Table 5. Few-shot classification results with different baseline

methods. All results are from 5-way classification on CUB without

data augmentation.

5-SHOT 1-SHOT

MATCHINGNET 71.18 ± 0.70 57.81 ± 0.88
+ INFODROP 72.32 ± 0.69 57.88 ± 0.91

PROTONET 67.13 ± 0.74 51.62 ± 0.90
+ INFODROP 70.94 ± 0.72 52.40 ± 0.90

RELATIONNET 69.85 ± 0.75 56.71 ± 1.01
+ INFODROP 73.72 ± 0.71 59.21 ± 0.98

4.2.2. FEW-SHOT CLASSIFICATION

Current CNNs rely on huge amount of labeled data to learn

powerful representations for downstream tasks. However,

the learned representations may generalize poorly to unseen

objects and scenes. This is in contrast to the human visual

system, which is able to quickly grasp the feature of an un-

seen object given only a few examples. To this end, the task

of few-shot classification is proposed, where a model needs

to recognize classes unseen during training with limited

examples. The main challenge here is the huge class-wise

distribution shift. Following the literature, we use ‘m-way

n-shot classification’ to refer to the setting where test data

come from m novel classes each with n examples provided.

Following the setting in Chen et al. (2019), we evaluate

InfoDrop on two popular datasets: CUB (Wah et al., 2011)

and mini-ImageNet (Ravi & Larochelle, 2017), meanwhile

also test our model in the cross-domain scenario (Chen et al.,

2019), where mini-ImageNet is used for training and CUB

for testing. We denote this setting by mini-ImageNet→CUB.

For a full comparison, we test models trained both with and

without data augmentation. For baseline algorithms, we fol-

low Chen et al. (2019) and adopt three common approaches,

viz. ProtoNet (Snell et al., 2017), MatchingNet (Vinyals

et al., 2016) and RelationNet (Sung et al., 2018).

First we use ProtoNet as baseline and evaluate our method

under different settings (Table 4). Under almost all the

settings, InfoDrop brings a non-trivial improvement in

performance. One may notice that improvements on

mini-ImageNet are larger than CUB, which is reasonable

due to the larger distribution shift to overcome in mini-

ImageNet (Chen et al., 2019). As another observation, the

improvements on 5-shot classification is larger than 1-shot.

This implies that despite the robustness of shape features,

they may not be as discriminative as texture features, hence

requiring more examples for recognition. As a consequence,

we may still need some texture to learn a discriminative

and robust model (Sec. 4.4). Also, note that for baseline

method, sometimes data augmentation may damage perfor-

mance, which is possibly because augmentation leads to

overfitting in the base classes. However, similar behavior is

not observed on InfoDrop.

Then we check whether InfoDrop can bring a consistent

improvement on different baselines. As shown in Table 5, on

three baseline methods, InfoDrop improves the robustness

universally. Note that InfoDrop most benefits RelationNet,

possibly because its relation head learns a better similarity

metrics between complex shapes.

4.2.3. ROBUSTNESS AGAINST IMAGE CORRUPTION

It is essential for visual models to give stable predictions un-

der various kinds of corruptions (e.g. weather, blur, noise),

especially in safety-critical situations. However, current

CNNs are vulnerable to random corruptions and hardly gen-

eralize to different kinds of corruptions when trained on a

specific one (Dodge & Karam, 2017). Recently, Geirhos

et al. (2019) find that a consistently improved robustness

against different corruptions can be achieved by training

a shape-biased model. In Hendrycks & Dietterich (2019),

benchmarks of model robustness are provided on 18 com-

mon types of corruption. In our experiments, we apply

the same corruption functions on Caltech-256 dataset (Grif-

fin et al., 2007) to test the robustness of InfoDrop. For

comparison, we also test robustness of adversarially trained

networks with and without InfoDrop. Adversarial training is

known to improve robustness to noise and blur corruptions,

while degrade performance on some others (e.g. fog, con-

trast) (Gilmer et al., 2019). Results are shown in Table 12.

Due to limited space, we only show 12 types of corruptions

here. Full comparisons can be found in Appendix. Clearly,

InfoDrop improves baseline’s robustness against most cor-

ruptions (e.g. noise, weather, digital) universally, although

no noisy data is used for training. This also implies the



Informative Dropout for Robust Representation Learning: A Shape-bias Perspective

Table 6. Classification accuracy on clean and randomly corrupted images. ‘A’ and ‘I’ means usage of adversarial training and InfoDrop,

respectively. All corruptions are generated under severity of level 1 (Hendrycks & Dietterich, 2019).

A I CLEAN NOISE BLUR WEATHER DIGITAL

GAUSSIAN SHOT IMPULSE DEFOCUS MOTION GAUSSIAN SNOW FROST FOG ELASTIC JPEG SATURATE

✗ ✗ 82.98 66.38 62.85 49.97 65.97 74.79 78.75 53.10 67.09 72.42 76.58 79.77 77.15
✗ ✓ 83.14 69.58 66.83 53.00 62.52 71.76 77.03 56.44 69.80 72.75 74.54 80.49 77.77
✓ ✗ 79.69 75.30 73.80 70.71 61.53 71.68 73.77 61.11 69.06 54.52 71.69 79.31 72.62
✓ ✓ 78.59 76.17 74.90 72.26 62.32 71.32 74.04 61.69 69.83 55.00 70.26 78.10 71.26

Table 7. Adversarial robustness under different perturbation norm

on CIFAR-10. ‘A’ and ‘I’ refer to the usage of adversarial training

and InfoDrop, respectively.

A I ℓ∞ = 0 ℓ∞ = 1

255
ℓ∞ = 2

255
ℓ∞ = 8

255

✗ ✗ 94.57 55.26 7.99 0.01
✗ ✓ 94.08 59.35 12.41 0.03
✓ ✗ 86.62 82.03 77.44 42.05
✓ ✓ 86.50 82.06 77.41 43.19

potential of InfoDrop to generalize to other untested types

of corruptions. Nonetheless, the performance may further

degrade under blurring nonetheless, which is reasonable be-

cause blurring brings more distortion of shapes while others

mainly corrupts texture information. It is also noticeable

that InfoDrop can be incorporated with adversarial training

and obtain even better robustness with little overhead.

4.2.4. ADVERSARIAL ROBUSTNESS

Except for random corruptions, CNNs are also vulnerable

to carefully-designed imperceptible perturbations, namely

adversarial perturbations (Szegedy et al., 2013). This leads

to another crucial challenge for current CNN-based models.

Most work on adversarial robustness is based on adversarial

training (Madry et al., 2018). To evaluate adversarial robust-

ness of InfoDrop, we conduct ablations on both baseline

and adversarial trained models. Following the literature, we

use CIFAR-10 (Krizhevsky et al., 2009), a widely-reported

benchmark. For attacking, we use 20 runs of PGD (Madry

et al., 2018) with constrained ℓ∞ norm in both adversarial

training and testing. As shown in Table 7, InfoDrop can im-

prove robustness of baseline models under low-norm attack,

but it still fails when the perturbation is large. Moreover,

InfoDrop can be combined with adversarial training and pro-

vide extra robustness. Under the norm ℓ∞ = 8
255 , InfoDrop

brings an improvement of 1% accuracy.

4.2.5. COMPARISON WITH OTHER SHAPE-BIASED

METHODS

Some approaches have also been proposed recently to train a

shape-biased model. For example, Geirhos et al. (2019) pro-

pose to train the network on extra images with various tex-

Table 8. Performance of different shape-biased methods on single-

source domain generalization. Here we use Photo as the source

domain, and report the accuracies on the other three target do-

mains. Baseline indicates a simple ResNet50 model. † means extra

finetuning on ImageNet is required during pretraining.

ART CARTOON SKETCH

BASELINE 73.68 34.34 36.73
IN + SIN 72.80 40.04 58.70

IN + SIN† 74.51 38.38 42.61
INFODROP 74.07 41.40 54.31

ture styles in order to learn the shared shape features. Wang

et al. (2019b) propose to use Gray-level Co-occurrence Ma-

trix (Lam, 1996) as an indicator of texture, and decompose

the feature from it. Other attempts include using different

auxiliary tasks (Wang et al., 2019a; Carlucci et al., 2019).

Here we compare InfoDrop with the approach in Geirhos

et al. (2019), which pretrains the network on ImageNet

(IN) as well as Stylized-ImageNet (SIN). For comparison

with other shape-biased methods, please refer to Appendix.

Specifically, we evaluate the performances on single-source

domain generalization. We compare InfoDrop (pretrained

only on IN) with a ResNet50 pretrained on both IN and

SIN. Results are shown in Table 8. We can see that both

methods can bring an improvement in the model robustness.

Particularly, pretraining on SIN can largely increase the

accuracy on Sketch domain, which is probably because SIN

already contains images with sketch style. Remarkably,

InfoDrop can improve the robustness consistently without

seeing any target domain examples beforehand.

4.3. Ablation Studies

In this section we mainly discuss how different configura-

tions or hyperparameters will impact the performance of

InfoDrop. We first start with the role of temperature T in

Eq. 1. Intuitively, lower temperature means more conserva-

tive filtering, i.e., only patches with the least information

(e.g. constant-valued regions) are dropped, while most shape

and texture are preserved. An infinite temperature, however,

will wipe out differences between shape and texture and act

in a purely random way as regular Dropout. Apparently,
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Table 9. Ablation study of temperature T in few-shot classification.

Here we use ProtoNet as baseline (denoted by ‘-’). When T = inf ,

it degrades to regular Dropout.

T - 0.1 0.5 1.0 3.0 INF

ACC 35.24 36.33 37.50 37.89 36.21 35.54

Table 10. Ablation study on number of residual blocks equipped

with InfoDrop. Results show the accuracies in domain generaliza-

tion from sketch to art.

BLOCKS 0 0+ 1 2 3

ACCURACY 27.34 29.12 31.05 28.85 29.28

somewhere between is what we intend for, where it can

distinguish shape and texture, and filter out the latter. As

verification, we conduct ablations on 5-way 1-shot classi-

fication on mini-ImageNet→CUB. As shown in Table 9, it

reaches the highest accuracy when T = 1. Higher or lower

T will degrade the performance. This means to be more

robust, the model needs to filter out textures whilst preserve

shape information, which is consistent with our analysis.

Now we discuss to which layers should InfoDrop be applied.

Technically, it can be integrated into any convolutional lay-

ers. But since InfoDrop extracts local self-information and

locate important primitives, intuitively, as a local algorithm,

it should be applied to lower layers of a CNN. In our experi-

ments, we apply InfoDrop to the first K residual blocks of

ResNet18, where K = 0, 0+, 1, 2, 3, where 0+ means Info-

Drop is applied only to the first convolutional layer before

all residual blocks. As shown in Table 10, K = 1 gives the

best performance. For higher layers, extracted features are

more abstract and dropping them may degrade performance.

4.4. Is Shape Information All You Need?

In previous sections we have demonstrated how shape-bias

can benefit CNN’s robustness under different scenarios.

This raises another question: how biased should our model

be? For example, does a visual model still work well if it

only perceives shape information? The answer may be “no”,

considering that texture information plays a different but

also important role in the human visual system (e.g. multi-

modal perception (Sann & Streri, 2007)). It is also verified

in experiments on deep models (Xiao et al., 2019) that shape

itself does not suffice for high-quality visual recognition.

Intuitively, there should exist an optimal “bias level” so that

the model can be robust enough and meanwhile recognize

objects with a proper precision, and this optimal level may

vary from task to task.

To verify this, we conduct experiments on domain general-

ization. Specifically, we tune the temperature T to train mod-

Figure 5. Domain generalization performance of models with dif-

ferent levels of shape-bias. The x-axis is the classification error on

images with shuffled (3×3) patches, which is used as a indicator

of the shape-bias level, i.e., models with larger shape-bias tend to

fail to recognize patch-shuffled images.

els with different levels of shape-bias. To quantify the shape-

bias, we use the classification error on patch-shuffled images

as an indicator, considering that larger shape-bias generally

leads to higher classification error on patch-shuffled images.

We use photo as source domain, and test the performances

on art, cartoon and sketch. As shown in Fig. 5, the perfor-

mances on all target domains all go through an ascending

at first, and then fall back when the shape-bias keeps being

enhanced. Moreover, different target domains prefer differ-

ent optimal bias levels. This implies that current CNNs are

overly texture-biased, and we need to reach a “sweet spot”

between shape and texture.3

5. Conclusion

In this work, we aim at universally improving various kinds

of robustness of CNN by alleviating its texture-bias. To

reduce texture-bias, we get our inspiration from the hu-

man visual system and propose Informative Dropout, an

effective model-agnostic algorithm. We detect texture and

shape by the local self-information in an image, and use

a Dropout-like algorithm to decorrelate the model output

from the local texture. Through extensive experiments we

observe improved shape-bias as well as various kinds of

robustness. Furthermore, we find our method can be in-

corporated with other algorithms (e.g. adversarial training)

and achieve higher robustness. Through this work, we shed

some light on the relationship between CNN’s shape-bias

and robustness, as well as new approaches to trustworthy

machine learning algorithms.

3Another question would be what is the proper relationship
between shape and texture? Should they act like two separate
cues in a parallel way, or in a hierarchical way, where shape first
provides a quick, coarse recognition, and then details are observed
through texture? We leave this for further exploration.
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