
Informative Feature Selection for Object Recognition via Sparse PCA∗

Nikhil Naikal, Allen Y. Yang, and S. Shankar Sastry

Department of EECS, University of California, Berkeley

{nnaikal, yang, sastry}@eecs.berkeley.edu

Abstract

Bag-of-words (BoW) methods are a popular class of

object recognition methods that use image features (e.g.,

SIFT) to form visual dictionaries and subsequent histogram

vectors to represent object images in the recognition pro-

cess. The accuracy of the BoW classifiers, however, is often

limited by the presence of uninformative features extracted

from the background or irrelevant image segments. Most

existing solutions to prune out uninformative features rely

on enforcing pairwise epipolar geometry via an expensive

structure-from-motion (SfM) procedure. Such solutions are

known to break down easily when the camera transforma-

tion is large or when the features are extracted from low-

resolution, low-quality images. In this paper, we propose a

novel method to select informative object features using a

more efficient algorithm called Sparse PCA. First, we show

that using a large-scale multiple-view object database, in-

formative features can be reliably identified from a high-

dimensional visual dictionary by applying Sparse PCA on

the histograms of each object category. Our experiment

shows that the new algorithm improves recognition accu-

racy compared to the traditional BoW methods and SfM

methods. Second, we present a new solution to Sparse

PCA as a semidefinite programming problem using the Aug-

mented Lagrangian Method. The new solver outperforms

the state of the art for estimating sparse principal vectors

as a basis for a low-dimensional subspace model.

1. Introduction

In the past decade, the exponential growth of storage ca-

pacity has encouraged people to upload personal images to

large online image databases such as Picassa and Flickr.

The proliferation of modern smartphones equipped with

low-quality mobile cameras has also garnered interest to
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endow smartphone users with the ability to automatically

recognize common objects and landmark buildings in man-

made urban environments. The existence of common ob-

jects and landmarks in these images has motivated research

in visual object recognition [7, 9, 12, 28]. Images in these

coarsely labelled databases are used to train classifiers that

can be used to recognize different object categories. To

tackle the problem of recognizing a large number of ob-

jects in large image databases, a visual-dictionary based ap-

proach has been well studied [20, 22], which have further

led to several other methods to recognize objects in both the

single-view and multi-view settings [3, 4, 8, 18, 24, 26]. Es-

sentially, most of the methods work with certain visual de-

scriptors (e.g., SIFT and its many variants) extracted from

the images to construct visual histograms, which represent

the object appearance in the images using a precomputed

visual dictionary.

Although the visual-dictionary methods have proven to

be efficient in describing object images, the accuracy of

the classifiers is often limited by the presence of uninfor-

mative image features typically extracted from the back-

ground or irrelevant image segments, such as pedestrians

and vegetation (see Figure 1 for an example). When the ir-

relevant segments take on a significant portion of an image,

the uninformative features can dominate the representation

in the visual histogram, and hence lead to inferior recog-

nition accuracy. In [25], Turcot and Lowe suggested, if a

subset of so-called useful features or informative features

can be systematically selected during the training stage, it

not only further reduces the number of visual descriptors

needed, but also significantly improves the recognition ac-

curacy. Since in man-made environments, most objects of

interest, in particular landmark buildings, are rigid objects,

3-D perspective geometry can be leveraged to select infor-

mative features that satisfy a pairwise epipolar constraint

via RANSAC. This is known as the Structure-from-Motion

(SfM) approach.

Motivated by the literature, in this paper, we study how

to improve informative feature selection in both speed and

accuracy from possibly low-resolution, low-quality camera

networks. One major problem in enforcing the epipolar
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constraint on images collected from low-power camera net-

works instead of high-end photography is that establishing

wide-baseline feature correspondence of SIFT-type features

is known to be brittle even using state-of-the-art bundle ad-

justment techniques [23]. In addition, the quality of im-

ages sampled from low-power camera sensors also presents

a challenge to reliably extract image features to describe the

appearance of interesting objects in multiple views.

We propose to address this problem by a principled

semidefinite programming (SDP) technique, known as

Sparse Principal Components Analysis (Sparse PCA) [30].

As an extension of the popular PCA method, Sparse PCA

addresses a drawback of classical PCA that the principal

vectors (PVs) as a basis of a low-dimensional subspace typ-

ically have dense non-zero entries. In particular, in high-

dimensionality setting, the dense linear combinations of all

the variables make it difficult to interpret the corresponding

principal components (PCs).

In case of visual-dictionary based object recognition, the

variables in a high-dimensional histogram are associated

with the codewords that represent either informative fore-

ground features or uninformative background. We contend

that in a large-scale object image database, the subset of

informative features can be reliably selected by the sparse

coefficients in the first few PVs. The new solution is more

robust to wide-baseline camera transformation and numeri-

cally more efficient than the existing solutions of establish-

ing pairwise rigid-body correspondence.

1.1. Main Contributions

In this paper, we exploit the use of Sparse PCA as a

variable selection tool for selecting informative features

in the object images captured from low-resolution cam-

era sensor networks. Firstly, we present a scheme for us-

ing Sparse PCA with high-dimensional covariance matri-

ces constructed from visual histograms to extract a sparse

support of visual codewords for each object category. We

compare its performance with the SfM technique applied

to large-baseline, low-quality multiple-view images. Sec-

ondly, we propose a state-of-the-art algorithm to speed

up Sparse PCA using the Augmented Lagrangian Method

(ALM) [2, 27]. To mitigate the high dimensionality of

the visual dictionary, a direct variable elimination method

called SAFE is presented to further prune out uninforma-

tive features for object recognition prior to the Sparse PCA

process. The experiment on synthetic data shows that the

new algorithm outperforms the previous convex program-

ming algorithm (DSPCA) [5] in terms of speed while main-

taining the same estimation accuracy. Finally, we per-

form object recognition experiments, which demonstrate

improved recognition by successfully suppressing uninfor-

mative features. To aid peer evaluation, the source code

of our algorithms has been made public on our website:

http://www.eecs.berkeley.edu/˜yang/.

2. Recognition via Vocabulary Trees

In object recognition, certain local invariant features

have become a popular representation of the object images,

which can be extracted and encoded into high-dimensional

descriptors using algorithms such as SIFT [15] and SURF

[1]. In the bag-of-words (BoW) approach, these invariant

features are further quantized to form a dictionary of visual

words. All the feature descriptors in the training set are hi-

erarchically clustered into visual word clusters (e.g., using

hierarchical k-means [13]). This hierarchical tree is com-

monly referred to as a vocabulary tree [20]. The size of a

vocabulary tree for a large database ranges from thousands

to hundreds of thousands. For example, in this paper, we

use hierarchical k-means to construct 1,000-D vocabularies

for our training image database, with a branch factor of k =

10 and four hierarchies.

To start the training process, feature descriptors in each

training image are propagated down the vocabulary tree to

form a BoW model for the image. Then a term-frequency

inverse-document-frequency (tf-idf ) weighted visual his-

togram y is defined for each training image [20]. For each

object category, i = 1 · · ·C, m weighted histograms are

generated from the m training images of that category re-

spectively: Ai = {y1,y2, · · · ,ym}. All the C sets form

the training set, A = {A1, A2, · · · , AC}.
During the testing phase, feature descriptors are ex-

tracted for the query image and propagated down the

vocabulary tree by the same fashion to obtain a single

weighted query histogram q. Using the simplest nearest-

neighbor classifier,1 the query image is then given a rel-

evance score s based on the ℓ1-normalized difference be-

tween the weighted query and the ith training set Ai:

s(q, Ai) = min
yj∈Ai

‖
q

‖q‖1
−

yj

‖yj‖1
‖1. (1)

Finally, the label of the visual histogram q is assigned as the

object category that achieves the minimal relevance score:

label(q) = arg min
i∈[1···C]

s(q, Ai). (2)

2.1. Failure of SfM on low­quality images

It was suggested by Turcot and Lowe [25] that the accu-

racy of object recognition in large image databases can be

improved by suppressing uninformative visual words that

typically represent irrelevant image background. In [25],

SfM techniques were used to enforce pairwise epipolar con-

straints of rigid objects. The authors argued that, between

a pair of images that render the same object in space, un-

informative features can be easily pruned out as outliers

w.r.t. a dominant epipolar constraint by RANSAC. Along

1In the literature, more sophisticated classifiers such as SVMs have also

been used. Nevertheless, this is not the focus of the paper.

http://www.eecs.berkeley.edu/~yang/


(a) Original SURF feature detection results.

(b) Informative features detected by SfM.

(c) Informative features selected by thresholded PCA based on the first two leading PVs.

(d) Informative features selected by Sparse PCA based on the first two leading PVs.

Figure 1. Comparison of informative feature selection on low-quality multiple-view images. A subset of 16 training images of a building

(Campanile at UC Berkeley) in the BMW database [18] are used for training. For each image pair in SfM, SURF features are deemed

informative if the consensus of the corresponding epipolar constraint exceeds 25% of the total feature pairs. For thresholded PCA, we

manually assign small-valued entries to zero in PVs in attempt to achieve the same sparsity as Sparse PCA. The best results to identify

informative features on the Campanile are given by Sparse PCA.

similar lines, Philbin et al. [21] introduced a Geometric La-

tent Dirichlet Allocation model for constructing image adja-

cency graphs. Subsequently, rich latent topic models were

built from the adjacency graphs with the identity and lo-

cations of visual words specific to the objects, thereby re-

jecting uninformative visual words. Knopp et al. [11] aug-

mented query images with rough geolocation information

combined with wide-baseline feature matching to detect

and suppress uninformative features before invoking vocab-

ulary tree based object recognition.

All these methods rely on the accuracy of wide-baseline

feature matching to establish pairwise epipolar geometry.

However, they tend to fail when the quality of the images

in the database is very poor, as is the case with images

captured from mobile cellphones or distributed camera net-

works. Furthermore, man-made landmarks such as build-

ings often have repetitive texture and patterns that tend to

confuse feature correspondence algorithms (e.g., Bundler

[23]). Figure 1 (b) shows an example where SfM fails at de-

termining the wide-baseline transformation across images

of an object captured from multiple vantage points. More

examples can be found in Figure 4 later.

3. Identifying Informative Features

Classical PCA is a well established tool for the analysis

of high-dimensional data. For a data matrix A, PCA com-

putes the PCs via an eigenvalue decomposition of its empir-

ical covariance matrix Σ. It has also been observed that in



general the entries of the corresponding PVs are dense and

nonzero. In certain applications, it is desirable to obtain

PVs that can explain the maximum variance of A using lin-

ear combinations of just a few nonzero variables, and hence

improves interpretability of such data. It is with this moti-

vation that Sparse PCA was developed [5, 16, 30] and has

proven to be a very useful tool for identifying focalized hid-

den information in data where the coordinate axes involved

have physical interpretations.

In the BoW approach to object recognition, each coordi-

nate axis in the visual histogram corresponds to a particular

visual word in the vocabulary tree. We contend that the vi-

sual words that contribute to the maximum variance in data

corresponding to each object category can be regarded as

informative features for object recognition. In order to use

Sparse PCA to identify these visual words, an empirical co-

variance matrix must first be computed for each object cat-

egory in the database.

Let us consider m available training images of an ob-

ject category. Using the constructed vocabulary tree learned

from all the categories, the SURF descriptors in each im-

age are converted into a visual histogram y ∈ R
n. The

m vectors {yj} are then normalized to have unit length

and centered, and grouped into a data matrix: A =
[ỹ1, ỹ2, · · · , ỹm] ∈ R

n×m. The empirical covariance

matrix is then computed from this data matrix as ΣA =
1
m

AAT .

Sparse PCA that computes the first sparse eigenvector of

ΣA optimizes the following objective [30]:

xs = arg max x
T ΣAx subj. to ‖x‖2 = 1, ‖x‖1 ≤ k.

(3)

We denote the indices of the non-zero coefficients in xs by

I (i.e., the nonzero support of xs). These indices are sub-

sequently used in the object recognition process (explained

in Section 6).

In practice, it is common that the leading first sparse PV

may not be sufficient for obtaining a variable support, and it

is desirable to further estimate a few subsequent sparse PVs

as well. In optimization, it is a common practice to esti-

mate succeeding eigenvectors by sequentially deflating the

covariance matrix with the preceding ones. Several tech-

niques have been explored for reliably deflating a covari-

ance matrix for Sparse PCA [17]. We adopt a simple tech-

nique called Hotelling’s deflation that eliminates the influ-

ence of the first sparse PV to obtain a deflated covariance

matrix Σ′
A as follows:

Σ′
A = ΣA − (xs

T ΣAxs)xsxs
T . (4)

Then, the second sparse eigenvector x
′
s of ΣA becomes

the leading sparse eigenvector of Σ′
A, and can be estimated

again by Sparse PCA (3). In our experiment, we observe

that the first two sparse PVs are sufficient for selecting in-

formative features that lie on the foreground objects in the

BMW database (as shown in Figure 1 and 4). Finally, If we

denote the indices of the non-zeros in the second PV x
′
s as

I ′, then the union I∪I ′ provides the support corresponding

to the informative features of a particular category.

For pedagogical purposes, we also compare the variable

selection performance of thresholded PCA in Figures 1 and

4. To obtain a sparsified PCA support set, we perform PCA

on the same covariance matrix ΣA and pick the top k indices

of the corresponding first and second PVs with highest ab-

solute value as the informative features. Here, k is chosen

as the same cardinality of the corresponding Sparse PVs for

the same category. The examples clearly show that major-

ity of the selected features do not represent the foreground

objects.

4. Speeding up Sparse PCA using ALM

Sparse PCA has been an active research topic for over

a decade. Notable approaches include SCoTLASS [10],

SLRA [29], and SPCA [30], all of which aim at finding

modified PVs with sparse entries. However, one draw-

back of all the above algorithms is that the formulation

requires solving nonconvex objective functions. Recently,

d’Aspermont et al. [5] derived an ℓ1-norm based semidefi-

nite relaxation for Sparse PCA called DSPCA, and it is cur-

rently the most widely known convex formulation of the

problem. This algorithm, however, has a slow convergence

rate that is a major bottleneck when analyzing high dimen-

sional data. Augmented Lagrangian Method (ALM) based

algorithms have recently gained a lot of popularity due to

their rapid convergence and speed in ℓ1-minimization [27]

and Robust PCA [14] problems. These have motivated us

to develop a new algorithm for solving the semidefinite re-

laxation form of Sparse PCA using ALM.

We begin by showing Sparse PCA can be converted to

a SDP [5]. Given a positive semidefinite matrix Σ ∈ S
n

that represents the empirical data covariance, Sparse PCA

solves the following objective:

max
‖x‖2≤1

x
T Σx− ρ‖x‖0, (5)

where ρ > 0 is a scalar parameter controlling the sparsity in

x. By following the ℓ1-norm relaxation and lifting proce-

dure for semidefinite relaxation, and dropping a nonconvex

rank constraint, we can rewrite (5) as [5]:

max
X

Tr(ΣX)− ρ‖X‖1 : Tr(X) = 1, X � 0, 2 (6)

where X = xx
T is a matrix variable. Duality allows us to

rewrite this problem as a SDP:

min
U∈Sn

λmax(Σ + U) : − ρ ≤ Uij ≤ ρ. (7)

As presented in [5], assuming Σ is fixed and given, the max-

imum eigenvalue function λmax(·) can be approximated by

2In this paper, ‖X‖1 represents the entrywise norm: 1
T |X|1.



a smooth, uniform objective (i.e., with Lipschitz continuous

gradient):

fµ(U) = µ log(Tr exp(
Σ + U

µ
), (8)

∇fµ(U) = exp(
Σ + U

µ
)/Tr(exp(

Σ + U

µ
), (9)

where µ = ǫ/2 log(n) produces an ǫ-approximate solution.

With this approximation, (7) can be rewritten as:

min
U

fµ(U) : − ρ ≤ Uij ≤ ρ. (10)

Based on the above SDP formulation, next we consider

speeding up Sparse PCA via an ALM approach [2]. The

basic idea is to eliminate the constraints and add to the cost

function a penalty term that prescribes a high cost to infea-

sible points. This augmented cost function is called the aug-

mented Lagrange function. In our case, the box constrained

convex problem of (10) can be written in an unconstrained

form as:

F (U, Y )
.
= min

U
{fµ(U) +

∑

1≤i,j≤n

P (Uij , Yij , c)}, (11)

where Yij , 1 ≤ i, j ≤ n represents the Lagrange variable, c
determines the severity of the penalty, and

P (u, y, c) =























y(u− ρ) +
c

2
(u− ρ)2 if ρ− y

c
≤ u,

y(u + ρ) +
c

2
(u + ρ)2 if −ρ− y

c
≥ u,

−
y2

2c
otherwise.

(12)

The algorithm for Sparse PCA using ALM (SPCA-

ALM) is presented in Algorithm 1. Note that in each itera-

tion of the outer loop of the algorithm, we need to solve the

unconstrained minimization problem in (11), which has no

closed-form solution. Thus, we employ Nesterov’s first or-

der gradient technique [19]. Once this augmented Lagrange

function is minimized, the Lagrange multipliers Y will be

updated using the rule:

Y k+1
ij =











Y k
ij + ck(Uk

ij − ρ) if Y k
ij + ck(Uk

ij − ρ) > 0,

Y k
ij + ck(Uk

ij + ρ) if Y k
ij + ck(Uk

ij + ρ) < 0,

0 otherwise.
(13)

After the algorithm converges, the primal variable is given

by the gradient in (9), i.e., Xk = ∇fµ(Uk). Then the sparse

principal component is recovered as the leading eigenvector

of Xk.

4.1. Performance

We have evaluated our SPCA-ALM algorithm by com-

paring its performance against the DSPCA solver [5]. Both

algorithms have been implemented in MATLAB and bench-

marked on a 2.6 GHz Intel processor with 4 GB memory.

Algorithm 1: SPCA-ALM

Input: Covariance Σ and ρ > 0.

1: U1 ← 0, Y 1 ← 0, X1 ← 0, c1 ← 1.

2: while not converged (k=1,2,3,...) do

3: t1 ← 1, V 1 ← Uk, W 0 ← Uk, Z ← rand(n, n).

4: α0 ← ‖V 1−Z‖F

‖∇F (V 1,Y k)−∇F (Z,Y k)‖F
.

5: while not converged (l=1,2,3,...) do

6: Find smallest i ≥ 0 for which

7: F (V l, Y k)− F (V l − αl−1

2i ∇F (V l, Y k), Y k) ≥
αl−1

2i+1 ‖∇F (V l, Y k)‖F .

8: αl ← 2−iαl−1, W l ← V l − αl∇F (V l, Y k).

9: tl+1 ← (1 +
√

4tl
2

+ 1)/2.

10: V l+1 ←W l + tl−1
tl+1 (W l −W l−1).

11: end while

12: Uk+1 ←W l

13: Update Y k+1 using the update rule (13).

14: Xk+1 ← ∇fµ(Uk+1).
15: ck+1 ← 2k.

16: end while

Output: Sparse principal vector, xs ← leading

eigenvector of Xk.

We generate synthetic data of varying dimensionality as fol-

lows. First, in the n-dimensional vector space, 10% of its

indices are selected as nonzero support. Next, the values of

the nonzero coefficients are drawn from an independent and

identically distributed Gaussian x0(i) ∼ N(0, 200). Fi-

nally, random noise ǫ ∼ N(0, 1) is added to x0 to form

a noisy version of the empirical covariance matrix, Σ =
(x0+ǫ1)(x0+ǫ1)T . This covariance matrix, along with an

optimal choice of the parameter ρ to encourage sparsity, is

provided to both the SPCA-ALM and DSPCA algorithms.

The process repeats 10 times for each problem dimension

n, while n varies from 100 to 500 and the average speed

and precision are computed for each n. Figure 2(a) com-

pares the speed of the two algorithms, while Figure 2(b)

compares the estimation error of the first estimated sparse

principal vector. The simulation shows SPCA-ALM con-

verges much faster than DSPCA (for example, at n = 500,

SPCA-ALM is about 10 times faster), while maintaining

approximately the same reconstruction accuracy.

5. Variable Elimination via SAFE

In this section, we further examine a dimensionality

reduction technique as a preprocessing step to speed up

Sparse PCA. Particularly in object recognition, the covari-

ance matrix Σ often can be of high dimension (e.g., 1000

and higher). Directly calling SPCA-ALM may still be very

time consuming. To mitigate this problem, we invoke a fea-

ture elimination method presented in [6], called SAFE. The



(a) Speed vs Data Dimension (b) Estimation Error vs Data Dimension

Figure 2. A comparison of SPCA-ALM and DSPCA using simulated data.

Figure 3. SAFE feature elimination process. Top: The red rows

and columns of a sample covariance matrix Σ are eliminated to

form new covariance matrix Σ̃, as the corresponding variances are

less than chosen ρ = 0.1. Bottom: The entries of the correspond-

ing indices are subsequently zeroed out in xs.

method allows to quickly eliminate variables in problems

involving a convex loss function and a ℓ1-norm penalty,

thereby leading to substantial reduction in the number of

variables prior to running optimization. The following the-

orem [6] states the SAFE method applied to Sparse PCA.

An illustration of this process is shown in Figure 3.

Theorem 1 (SAFE Variable Elimination for Sparse PCA).

Given a covariance matrix Σ, denote σk as its kth diagonal

entry. For the Sparse PCA problem (5), if ρ > σk, then the

kth element of the solution xs will not be in the sparse sup-

port. Hence, the kth row and column of Σ can be removed

from the optimization.

Therefore, for a predefined choice of ρ, we first obtain a

reduced covariance matrix by eliminating all the rows and

columns corresponding to those variables with sample vari-

ance less than ρ. The number of variables thus eliminated

is a conservative lower bound on the total number of zero-

weight variables in the final solution of Sparse PCA. In our

experiments, we typically can eliminate about 90% of the

variables using SAFE without sacrificing the accuracy of

preserving important informative features.

6. Experiment

In order to test the effectiveness of suppressing uninfor-

mative features for the task of object recognition, we have

evaluated the performance of our method on the Berkeley

Multiview Wireless (BMW) database [18]. The database

consists of multiple-view images of 20 landmark buildings

on the Berkeley campus. For each building, wide-baseline

images were captured from 16 different vantage points. Fur-

ther, at each vantage point, 5 short-baseline images were

taken (by five camera sensors #0 – #4 simultaneously),

thereby summing to 80 images per category. All images

are 640 × 480 RGB color images. It is important to note

that the image quality in this database is considerably lower

than many existing high-resolution databases, which is in-

tended to reproduce realistic imaging conditions for mobile

camera and surveillance applications. Further, it is notice-

able that some images are slightly out of focus and in some

cases, even corrupted by dust residual on the camera lenses.

We divide the database into a training set and a testing

set. The vantage points of each object are named numeri-

cally from 0 to 15. The camera #2 images captured at the

even vantage points of each category are designated as the

training set, and the remaining images are assigned to the

testing set. Thus, there are eight training images and 72

testing images for each category. We extract SURF features

in each of the training images and construct a vocabulary

tree with 1000 leaf nodes.

6.1. Results

We first evaluate the recognition accuracy of the classi-

fier (2) without suppressing any features from the training

and testing sets to obtain a baseline performance. The re-

sults of this experiment are presented in Table 1. For the

20 object categories tested, the average baseline recognition

rate is around 80%.

Next, for each object category i, we obtain its informa-

tive feature set Ii by determining the indices of the non-zero



variables in the first and second sparse PVs. These are es-

timated by running Sparse PCA on the covariance matrix

corresponding to the training histogram vectors in ith cat-

egory. We then form the total support set ISPCA for the

entire database by taking the union of the individual visual

support sets for all the 20 object categories, i.e.,

ISPCA = I1 ∪ I2 ∪ · · · ∪ I20.

In our experiments, we have set the sparsity controlling pa-

rameter ρ to 0.002 for all the categories. With this choice

of ρ, at roughly 33 variables per category, our total sup-

port set ISPCA identifies 405 informative features (some

informative features overlap between classes), thereby re-

jecting a fraction of 3
5 of the visual words from the 1000-D

vocabulary. With this subset of visual words, we evaluate

the recognition accuracy of (2) again. The results are also

presented in Table 1. As one can see, for most of the cate-

gories, there is a significant improvement in the recognition

accuracy, leading to the average recognition rate at 85%,

5% higher than the baseline.

For completeness, Table 1 also shows the number of se-

lected features and the recognition rates for the SfM ap-

proach. For a large number of the object categories, the SfM

method does not seem to work well, as few of the SURF fea-

tures are correctly selected as foreground features. We have

tested the recognition accuracy of these visual words on the

database as well, and the average rate is 78%, even lower

than that of the baseline performance. Finally, some visual

comparisons between the results from Sparse PCA and SfM

are presented in Figure 4.

7. Conclusion and Discussion

We have presented a novel and effective solution to select

informative features for object recognition by Sparse PCA.

For applications that involve low-quality mobile cameras or

surveillance camera networks, existing SfM solutions to de-

tect and suppress uninformative features tend to fail. We

have shown that Sparse PCA can successfully identify im-

portant visual features that explain the maximum variance

in the visual histograms. For our database, these features

correspond to those visual words that most often represent

the appearance of foreground objects. To further speed up

the execution of Sparse PCA, we have developed an im-

proved numerical algorithm, namely, SPCA-ALM. The new

algorithm has proved significantly faster than the other con-

vex semidefinite programming solutions. Using a public

multiple-view image database, our experiment shows the

estimated informative features improve the overall recog-

nition rate by 5% compared to the baseline solution, and by

7% compared to the SfM solution.

For future work, we believe the two existing approaches,

namely, Sparse PCA and SfM, are complementary under

more general object recognition settings. We would like to

focus on further combining our batch numerical technique

within a geometric RANSAC scheme to robustly detect in-

formative features in both low-quality and high-quality im-

age databases, which may lead to further improvement of

the performance.

Table 1. Recognition rates and number of selected informative fea-

tures for the 20 object classes in alphabetical order [18]. The best

rates are in bold face. The categories in which SfM failed have

zero feature selected.

Cat.
Baseline SPCA SPCA SfM SfM

Rate(%) Rate(%) # Feat Rate(%) # Feat

1 98.61 94.44 35 83.33 0

2 90.27 91.66 23 90.27 35

3 56.94 66.66 15 58.33 0

4 70.83 81.94 12 65.27 30

5 77.77 91.66 56 81.94 0

6 95.83 88.88 23 87.50 0

7 79.16 93.05 34 86.11 0

8 77.77 91.66 30 72.22 0

9 56.94 73.61 45 63.88 11

10 51.38 65.27 9 61.11 0

11 83.33 76.38 76 69.44 13

12 81.94 83.33 28 70.83 0

13 62.50 72.22 43 52.77 0

14 98.61 93.05 20 90.27 37

15 69.44 80.55 36 75.00 0

16 58.33 79.16 53 80.55 66

17 100.00 90.27 17 84.72 0

18 98.61 93.05 45 100.00 56

19 97.22 83.33 24 86.11 0

20 98.61 100 46 95.83 0

Avg. 80.02 84.51 33 77.77 12
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