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Abstract: The long-term spectral characteristics of the bare soil surface (BSS) in the BLUE, GREEN,
RED, NIR, SWIR1, and SWIR2 Landsat spectral bands are poorly studied. Most often, the RED and
NIR spectral bands are used to analyze the spatial heterogeneity of the soil cover; in our opinion, it is
outmoded and seems unreasonable. The study of multi-temporal spectral characteristics requires the
processing of big remote sensing data based on artificial intelligence in the form of convolutional
neural networks. The analysis of BSS belongs to the direct methods of analysis of the soil cover. Soil
degradation can be detected by ground methods (field reconnaissance surveys), modeling, or digital
methods, and based on the remote sensing data (RSD) analysis. Ground methods are laborious,
and modeling gives indirect results. RSD analysis can be based on the principles of calculation of
vegetation indices (VIs) and on the BSS identification. The calculation of VIs also provides indirect
information about the soil cover through the state of vegetation. BSS analysis is a direct method
for analyzing soil cover heterogeneity. In this work, the informativeness of the long-term (37 years)
average spectral characteristics of the BLUE, GREEN, RED, NIR, SWIR1 and SWIR2 bands of the
Landsat 4–8 satellites for detecting areas of soil degradation with recognition of the BSS using deep
machine learning methods was estimated. The objects of study are the spectral characteristics of
kastanozems (dark chestnut soils) in the south of Russia in the territory of the Morozovsky district
of the Rostov region. Soil degradation in this area is mainly caused by erosion. The following
methods were used: retrospective monitoring of soil and land cover, deep machine learning using
convolutional neural networks, and cartographic analysis. Six new maps of the average long-term
spectral brightness of the BSS have been obtained. The information content of the BSS for six spectral
bands has been verified on the basis of ground surveys. The informativeness was determined by
the percentage of coincidences of degradation facts identified during the RSD analysis, and those
determined in the field. It has been established that the spectral bands line up in the following
descending order of information content: RED, NIR, GREEN, BLUE, SWIR1, SWIR2. The accuracy
of degradation maps by band was determined as: RED—84.6%, NIR—82.9%, GREEN—78.0%,
BLUE—78.0%, SWIR1—75.5%, SWIR2—62.2%.

Keywords: bare soil; deep machine learning; neural networks; Landsat spectral bands; soil degradation;
soil water erosion

1. Introduction

The informativeness of the multi-temporal spectral characteristics of the bare soil
surface (BSS) in various spectral bands is insufficiently studied for the purpose of arable
land degradation identification. The analysis of the spectral characteristics of the BSS is
one of the direct methods for diagnosing soil cover transformation. Such methods are
promising for big remote sensing data (RSD) processing and require the use of artificial
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intelligence (AI) in the form of convolutional neural networks. It is possible to apply AI and
big data to reveal and analyze the multi-temporal spectral characteristics of BSS in various
spectral bands. Until now, it has been difficult to compare multi-temporal characteristics
without the use of AI and big data.

There are various methods for recognizing degraded areas of the soil cover, which
can be grouped according to these main principles: traditional ground/field surveys [1],
modeling [2–6] based on the processing of digital elevation models [7–12], and climate
data [13,14] RSD processing. When processing RSD, both individual images [15–20] and
multi-time series [17,21] can be used. When indicating soil degradation, both vegetation
indices (VIs) [21–26] and BSS [27–33] are used.

Ground methods are very laborious [1]. Modeling methods determine the potential
rather than the actual degradation of the soil cover [27]. VIS analysis in the detection of
degradation is an indirect method. Due to the laboriousness of ground-based methods and
the shortcomings of modeling and indirect methods, the processing of RSD on the spectral
characteristics of the BSS are of interest. Identification of the BSS is possible on RSD in the
paradigm of the spectral neighborhood of the soil line (SNSL). The SNSL theory itself is
presented in a series of papers of 2016–2018 [29–33]. It should be noted that remote sensing
is currently big data [34]. Processing of big satellite data is possible both in manual mode
(retrospective monitoring of soil and land cover) [35–39] and automated, based on deep
machine learning [26,40–43]. The SNSL theory assumes the possibility of revealing the
spatial heterogeneity of the soil cover based on big satellite data, but without the use of
indicator botany.

Machine learning is often used to solve computer vision problems; simulating the
selection of the desired image or part of the image by a person. Deep neural networks [44]
have become a standard approach for solving segmentation problems in autonomous
driving [45], medical image diagnostics [46,47], geosensing [48,49], and precision agricul-
ture [50,51]. Similarly, neural networks are also used in the recognition of RSD suitable for
calculating the degradation of the soil cover [26].

Big data processing methods are often associated with the procedures of selecting
(filtering) the initial information; data mining and map reduction [52,53]. RSD filtering can
be implemented based on deep machine learning and computer vision methods [26,40–43].
RSD fragments selected by neural network filtering or other methods are used to form maps
of intra-field heterogeneity of soil and land cover: ExactFarming [54], FarmersEdge [55],
Cropio [56], Intterra [57], AGRO-SAT [58], NEXT farming [59], Agronote [60]. Areas
of degraded soils are one of the components of the intra-field heterogeneity of the soil
cover [21].

In the articles of 2020–2022 [21,26,28,61], the authors present three methods for map-
ping of intra-field soil cover heterogeneity based on the processing of multi-temporal RSD:
the method of averaging the values of the VIs, the method of the frequency filter of the VIs
values and the method of calculating the soil line parameters. The first two methods are a
kind of indicator of botany methods. The third method uses the spectral brightness of the
BSS. The methods are different, but they are based on the processing of a pair of Landsat
spectral bands RED and NIR, inherited from the original discovery, a “tasseled cap” [62].
The works of 2021–2022 in the special issue “Remote sensing for cropping systems and bare
soils monitoring and optimization” are also based on the processing of the RED and NIR
spectral bands [22–25,63,64]. At the same time, the development of VIs calculation allows
using other spectral bands in addition to RED-NIR. So, when calculating of the enhanced
vegetation index (EVI), the BLUE band is used [65]. When determining of the leaf area
index (LAI), the SWIR band [66,67] or the GREEN band are added to the calculations.

It can be assumed that degraded areas of agricultural lands have specific spectral
characteristics of the BSS not only in the RED and NIR bands. In the work of 2022 [61]
the mean long-term values of RED and NIR for the period from 1984 to 2021 were used.
This turned out to be possible due to the invariance of the characteristics of the spectral
equipment of the Landsat 4–8 satellites and the automated neural network recognition
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of the BSS [61]. In addition to RED and NIR, the same multi-temporal series form the
Landsat BLUE, GREEN, SWIR1, and SWIR2 bands. Thus, it is possible to obtain averaged
multi-temporal characteristics of six Landsat spectral bands (BLUE, GREEN, RED, NIR,
SWIR1 and SWIR2) for the BSS over 37 years and conduct a comparative analysis of their
informativeness to detect the distribution of degraded arable land.

The scientific novelty of this study lies in the independent analysis of the multi-
temporal spectral characteristics of the BSS in each of the six Landsat bands. The purpose of
independent analysis is to establish the possibility/impossibility of mapping of degraded
areas of arable land for each band. Also new is the set of methods for constructing maps of
long-term average spectral characteristics of BSS. Multi-temporal (37 years) averaging is
carried out based on big satellite data, which is selected based on the application of AI in
the form of computer vision based on a convolutional neural network.

The scientific novelty of this study consists of three components:

1. The informativeness of the BSS multi-temporal (37 years) spectral characteristics in
the BLUE, GREEN, RED, NIR, SWIR1, and SWIR2 bands for the purpose of detecting
degraded lands is studied separately and independently of each spectral band.

2. BSS recognition for each spectral band of each scene of RSD for 37 years was carried
out based on AI (computer vision).

3. Convolution of big RSD is applied for each Landsat pixel in the form of the long-term
average spectral brightness of each spectral band.

The aim of this work is to evaluate the informativeness of the long-term average spec-
tral characteristics of the BLUE, GREEN, RED, NIR, SWIR1 and SWIR2 bands of the Landsat
4–8 satellites for detecting areas of soil degradation with recognition of the BSS using deep
machine learning methods in most erosive part of Russia (Rostov region) [38,68–73].

2. Materials and Methods

The objects of study are the spectral characteristics of dark chestnut, slightly solonetzic
clayey (sand—7%, silt—52%, clay—41%) and heavy loamy (sand—5%, silt—55%, clay—40%)
soils on loess-like clays and loams (Haplic Kastanozems) in the south of Russia, in the
Morozovsky district of the Rostov region (Figure 1). The absolute height is about 120 m a.s.l.
The average annual air temperature is 8.5 ◦C. The average long-term annual precipitation
is 415.6 mm. The climate of the study area is characterized as moderate continental, with
mild winters and hot summers, or as hot-summer humid continental (Dfa) according to the
Köppen climate classification [74]. The Vysotsky-Ivanov moisture coefficient [75], which
defined as the ratio of the annual precipitation to the annual evaporation, is 0.57 (insufficient
moisture supply). The hydrothermal coefficient [76] as a climatic indicator of moisture
availability of the territory is 0.7–0.8 (arid zone). The sum of active air temperatures (above
10 ◦C) is 3125 ◦C. The main crop is winter wheat. Sunflower, corn, and legumes are also
cultivated. Clean fallow is used every four years. Irrigation is not applied. Deep machine
learning included Landsat scenes 173/028 and 174/027 path/row in the Zernogradsky
and Tselinsky districts of the Rostov region (Figure 1). Prediction based on the trained
neural network was carried out on the Landsat 173/026 path/row. Rectangular boundaries
(frame) were set on the object of study (Figure 1) to search for RSD. The object of study
falls into one Landsat path/row—173/026. For the period from 1984 to 2021, 551 Landsat
4–8 scenes were found in the archives (Table S1).
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Figure 1. Location of machine learning and study area; fields of acceptance sample and
points/numbers of soil pit locations displayed on high resolution RSD.

2.1. Flowchart of the Work

This work represents the creation and development of a GIS project for the study area.
The flowchart of work is shown on Figure 2. Conventionally, a GIS project is formed in
six stages. At the first stage, we do not have any information on the study area, except
for the geographical coordinates of the object. All data at this point are in “cloud” storage
systems. In the GIS, an extent to search for information is defined. At the second stage,
the topographic, space, aerial photographic, and other data from open sources are loaded
into the GIS project. The first big data array is formed for the study area. Data mining
procedures are used to filter big RSD. At the third stage, as a result of applying the methods
of retrospective monitoring of soil and land cover, a convolutional neural network and
instructions for organizing a field survey, the GIS project is supplemented with ground
data, agricultural field boundaries, and a second array of big RSD (798 BSS maps). The
procedure of BSS determining based on a neural network is also an element of data mining.
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At the fourth stage, using GIS, the maps of the average long-term characteristics of
the BSS in 6 spectral bands are created. The map reduce procedure is carried out; big
data convolution. At the fifth stage, based on ground survey data, the maps of long-term
average spectral characteristics of BSS are reclassified into maps of soil degradation. From
the big data, a smart data was formed. At the sixth stage, statistical methods determine the
accuracy of the constructed maps of soil degradation. Thus, the flowchart demonstrates
the consistent application of big data processing methods, deep machine learning, and
geoinformatics to mapping of soil degradation. The sequential formation of a GIS project
in six stages allows the conversion of the big data into smart data through data mining and
map reduction procedures using AI.

2.2. Retrospective Monitoring of Soil and Land Cover

The method is described in a series of papers of 2013–2020 [35–39]. This method
allows the restoration of the change in the boundaries of arable land in the period from
the present to 1968. Special detailing of the work is necessary from 1984 to 2021, when
there was high dynamics of the areas of arable land in Russia [77]. The method is based
on the interpretation of satellite imagery of different spatial resolutions: high spatial
resolution (IKONOS, GeoEye-1, WorldView, etc.) [78], medium spatial resolution (Landsat,
Sentinel) [79], and archival data from 1968 and 1975 (CORONA) [80]. The accuracy of the
method corresponds to the accuracy of traditional mapping at a scale of 1:10,000 [81,82].
The method requires a GIS project of a certain composition and quality.

2.3. GIS Project

A GIS project was created for the study area. It includes the following layers: topo-
graphic maps, digital elevation model (DEM) shuttle radar topographic mission (SRTM)
1 arc second [12], remote sensing of high spatial resolution (about 1 m), RSD Landsat 4–8
from 1985 to 2021, and Sentinel-2 space imagery 2016–2021.

All materials used in the work have accurate georeferencing based on large-scale
topographic maps. Exact georeferencing was made by local-affine transformations. For
aerial photography and the US CORONA mission data, atmospheric correction was not
performed. For Landsat and Sentinel, atmospheric correction was carried out using the
ATCOR module of the ERDAS imagine software package [83].

When it is possible, the GIS project is supplemented by: ortho-photomaps based on
aerial photography, scanned analog space imagery of 1968 with a spatial resolution of 1.8 m
(panchromatic, KH-4B satellite, US CORONA mission), scanned analog space imagery of
1975 with a spatial resolution of 6 m (panchromatic, KH-9 satellite, US CORONA mission).

2.4. Deep Machine Learning Flowchart

In the general flowchart of work (Figure 2), a convolutional neural network is used
to process big remote sensing data (BRSD); BSS recognition on 133 Landsat 4–8 scenes.
Based on the neural network, 798 BSS maps are formed over 37 years. In this case, the
convolutional neural network is used to process the acceptance sample, i.e., for processing
BRSD that did not participate in deep machine learning. The possibility to apply the results
of the neural network (798 BSS maps) for creating of soil degradation maps confirms the
correctness of deep machine learning. The acceptance sample is one of the blocks of training
the neural network and testing the quality of training (Figure 3). Another block is the
processing of the training sample. For training, a dataset is formed from 732 BSS maps
(6 bands of 122 Landsat scenes). The dataset is formed by manual determination of the
SNSL. Based on the dataset, deep machine learning is carried out. The third block is the test
sample. A test sample is formed similarly to the training one, but on a different Landsat
path/row. The test sample does not participate in training but is used in the quality control
of training.
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The training is carried out until the maximum match of the BSS recognition results
between the neural network and the test dataset is reached. The trained convolutional
neural network is applied in the work, as shown in the general flowchart.

2.5. Identification of BSS on Landsat 4–8 Scenes Based on Deep Machine Learning

The method is described in detail in a 2022 paper [61]. The method consists of training
a neural network based on a dataset. The dataset is a series of Landsat scenes from 1984 to
2021, on which bare soil is defined. The BSS on the scenes was highlighted by manually
analyzing the RED-NIR (“tasseled cap”) plots of each scene. When selecting, the theory
of the spectral neighborhood of the soil line was used. According to this theory, the BSS
occupies a specific place on the “tasseled cap” plot (Figure 4).
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Figure 4. BSS mask and density of the RED-NIR distribution for Landsat scene of June 2007.

This area is part of a “tasseled cap” and lies on the soil line [62] between the areas of
post harvest residues (straw) and traces of agricultural fires (soot), which are abundant in
southern Russia [84]. The location of SNSL only partially coincides with the soil line for
VIs of the normalized difference vegetation index (NDVI) type [85]. The trained neural
network makes it possible to identify the BSS on any Landsat scenes in similar soil and
climatic conditions.
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Deep machine learning uses popular neural architecture for image segmentation U-
Net [49], the ReLU activation function, batch normalization [86], the Dice Loss function [87],
and the Adam optimization algorithm [88].

2.6. Methods for Assessing the Quality of Machine Learning Algorithms

1. Test sample. A set of objects not used in learning.
2. Acceptance sample. A set of objects not used in development.
3. Cross-validation [89,90]. The training sample is divided into N parts and training is

performed N times on N-1 parts (without repetitions).

2.7. Calculation of the Average Multi-temporal Spectral Brightness of the BSS in the BLUE,
GREEN, RED, NIR, SWIR1 and SWIR2 Bands for Each Landsat Pixel

According to the SNSL technology, the averaged multi-temporal RED-NIR spectral
characteristics of the BSS in the form of the average distance of a point with RED-NIR
coordinates from the origin of coordinates have information content for constructing soil
maps [61]. In this study, the average characteristics of each of the six bands were calculated
to identify their informativeness. Only those pixels are considered, where the presence
of the BSS is predicted based on the neural network. Thus, “n” is not the total number of
Landsat scenes, but the number of Landsat scenes where a pixel is predicted as BSS.

The values of each of the six bands for a pixel are averaged using the formula:

BANDmean =

(
n

∑
i=1

BANDi

)
/n

Here, BAND—one of the Landsat spectral bands—BLUE, GREEN, RED, NIR, SWIR1
and SWIR2,

BANDi—band spectral brightness value for the i-th Landsat scene,
i—Landsat scene number in the Landsat scenes database,
n is the total number of Landsat scenes in the Landsat scenes database involved in the

calculation of long-term averages,
BANDmean—average long-term value of the spectral brightness of the band for a pixel,
BANDmean is calculated for six bands, the result is: BLUEmean, GREENmean, REDmean,

NIRmean, SWIR1mean and SWIR2mean.

2.8. Mapping of Long-Term Average Spectral Characteristics BLUEmean, GREENmean, REDmean,
NIRmean, SWIR1mean and SWIR2mean for the BSS

The values BLUEmean, GREENmean, REDmean, NIRmean, SWIR1mean and SWIR2mean were
calculated with a spatial resolution of 30 m over the entire study area. Six matrices of values
were obtained, which, in raster form, are maps of the distribution of these values.

2.9. Ground Verification

Ground verification was used to check the informativeness and establish the ranges of
BLUEmean, GREENmean, REDmean, NIRmean, SWIR1mean and SWIR2mean values for various soil
types/varieties. The soil pits were positioned, and samples were taken by classical methods
based on methodological recommendations for field examination [1]. In particular, the soil
pits (1.2 m in length, 0.6 m in width) were excavated to a depth of 1 m. Topographic maps
and high-resolution RSD were used to determine the locations for ground sampling. On
their basis, research routes were determined. At each point with the planned coordinates, a
soil pit was excavated. For each soil profile, a description, photographing, and sampling
were carried out. The coordinates of the profiles were recorded by a GPS receiver. A soil
sample was taken from the top 0–10 cm layer of each profile to measure the organic matter
(OM) content. The thickness of the humus horizon was also measured using a tapeline.

The thickness of the humus horizon was understood as the total thickness of the A and
AB genetic horizons of the studied soils [91–93]. OM content was determined according
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to Tyurin’s method [94]. A direct analog of Tyurin’s method for determining OM is the
Walkley-Black method [95].

Soil type and subtype, as well as the presence of degradation, were determined in
the process of describing the soil profiles and using the values of the OM content in the
plow horizon and the thickness of the humus horizon. Degradation was understood as a
decrease in the thickness of the humus horizon and/or a decrease in the OM content in the
plow horizon in relation to the typical soil properties for the study region.

The quality of the interpretation is determined by the percentage of coincidence of
degradation definitions in ground surveys, and the calculation of the threshold values of
BLUEmean, GREENmean, REDmean, NIRmean, SWIR1mean and SWIR2mean, characterizing the
presence of degradation.

2.10. Cartographic Analysis

Cartographic analysis was performed in AcrGIS [96]. All materials were collected in
this GIS. The main method of analysis was the pairwise intersection of different layers of
the GIS project. The results of the intersection were recorded in spreadsheets. In electronic
tables, the quantitative parameters of the obtained combinations were evaluated, and
regression equations were calculated.

3. Results
3.1. GIS Project

A GIS project was assembled for the territory of the Morozovsky district of the Rostov
region, including the following layers:

1. Topographic maps at a scale of 1:25,000 and 1:50,000;
2. Panchromatic aerial photography (2012) with a spatial resolution of 0.6 m (or-

thophotomap);
3. SRTM DEM 1 arc second [12];
4. Scanned analogue space imagery of 1968 with a spatial resolution of 1.8 m (panchro-

matic, KH-4B satellite, US CORONA mission);
5. Scanned analogue space imagery of 1975 with a spatial resolution of 6 m (panchro-

matic, KH-9 satellite, US CORONA mission);
6. RSD Landsat 4–8 from 1985 to 2021 (Table S2);
7. Space imagery Sentinel-2 of 2016–2021.

3.2. Construction of the Maps of Arable Land Boundaries

Based on the GIS project, the boundaries of arable lands cultivated from 1984 to 2021
were digitized using the method of retrospective monitoring (Figure 1). Eight agricultural
fields with a total area of 649 ha have been digitized.

3.3. Ground Surveys

Using classical methods based on layers 1–3 of the GIS project, it was planned to make
80 soil pits (Figure 1). In all soil profiles soil names were determined (meadow chestnut,
dark chestnut, dark chestnut slightly eroded, dark chestnut medium eroded, and dark
chestnut strongly eroded soils), the thickness of the humus horizon and the OM content in
the upper layer of the plow horizon (0–10 cm) were measured. The results of field surveys
are presented in Tables 1, 2 and S3 and as a GIS layer in *.shp format (Figure 1).
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Table 1. Results of ground surveys and BSS long-term average spectral characteristics.

Soil Pit
OM

Content,
%

Thickness of
Humus

Horizon, cm

Soil
Name * BLUEmean GREENmean NIRmean REDmean SWIR1mean SWIR2mean

1 2.6 31 4 0.12322 0.11048 0.15255 0.11731 0.23055 0.20157
2 3.5 60 1 0.11806 0.09566 0.11650 0.09392 0.19271 0.17115
3 2.7 39 3 0.11921 0.10155 0.13204 0.10375 0.20556 0.18170
4 3.1 53 2 0.11682 0.09614 0.12032 0.09568 0.19569 0.17133
5 2.8 47 2 0.11975 0.09962 0.12763 0.10069 0.19161 0.16462
6 3.0 42 2 0.12075 0.10198 0.13188 0.10298 0.18960 0.16026
7 2.8 36 3 0.11871 0.10083 0.13194 0.10325 0.20385 0.17958
8 2.7 36 3 0.12378 0.10934 0.15006 0.11538 0.22887 0.20096
9 2.3 29 4 0.12429 0.11041 0.15157 0.11735 0.21970 0.18989
10 3.3 47 2 0.11925 0.10174 0.13376 0.10432 0.21079 0.18541
11 3.2 54 1 0.11732 0.09645 0.12112 0.09599 0.19726 0.17455
12 2.8 40 2 0.11910 0.10029 0.12707 0.10206 0.19892 0.17420
13 1.8 27 4 0.12688 0.11854 0.16846 0.13009 0.22646 0.18898
14 3.2 38 3 0.11988 0.10287 0.13276 0.10497 0.19769 0.17123
15 1.8 25 5 0.12706 0.11739 0.16098 0.12738 0.21976 0.18479
16 3.2 56 1 0.11737 0.09626 0.11902 0.09507 0.19256 0.16928
17 1.5 25 5 0.12658 0.11607 0.16174 0.12797 0.21841 0.18214
18 3.1 37 3 0.12025 0.10071 0.12900 0.10273 0.18923 0.16056
19 2.9 39 3 0.11936 0.10165 0.12876 0.10346 0.20496 0.18085
20 1.7 20 5 0.12765 0.11972 0.16917 0.13102 0.22385 0.18655
21 3.4 44 2 0.11875 0.09963 0.12422 0.10046 0.20008 0.17789
22 3.2 42 2 0.11971 0.10322 0.13482 0.10621 0.20838 0.18137
23 3.0 51 2 0.11984 0.10006 0.12688 0.10103 0.18611 0.15863
24 1.9 21 5 0.12527 0.11370 0.15908 0.12406 0.21507 0.18018
25 2.5 37 3 0.12106 0.10280 0.13519 0.10550 0.20142 0.17308
26 3.1 53 2 0.11795 0.09758 0.12395 0.09830 0.20040 0.17803
27 2.1 31 4 0.12343 0.10889 0.14327 0.11466 0.21372 0.18683
28 2.2 35 3 0.12272 0.10734 0.14285 0.11248 0.21182 0.18257
29 2.8 36 3 0.12116 0.10465 0.13770 0.10804 0.20976 0.18295
30 2.2 32 3 0.12146 0.10588 0.14082 0.11151 0.20217 0.17158
31 2.7 41 2 0.12106 0.10501 0.13876 0.11000 0.20324 0.18071
32 3.2 40 2 0.12048 0.10249 0.13196 0.10358 0.20903 0.18603
33 2.8 43 2 0.12120 0.10409 0.13329 0.10659 0.20359 0.17878
34 2.0 23 5 0.12673 0.11711 0.15968 0.12654 0.21991 0.18826
35 2.5 33 3 0.12565 0.11106 0.14683 0.11726 0.21085 0.18223
36 3.0 41 2 0.12055 0.10190 0.12971 0.10170 0.18966 0.16220
37 3.5 52 2 0.12384 0.10233 0.12646 0.10028 0.19003 0.16153
38 3.0 48 2 0.11891 0.10071 0.12953 0.10239 0.20227 0.17828
39 3.0 40 2 0.12139 0.10292 0.13017 0.10173 0.18995 0.16503
40 2.0 25 5 0.12579 0.11447 0.15653 0.12289 0.21564 0.18412
41 2.3 29 4 0.12214 0.10915 0.14799 0.11726 0.20111 0.16700
42 2.7 38 3 0.11907 0.10204 0.13358 0.10527 0.20678 0.18029
43 2.0 22 5 0.12782 0.11830 0.16212 0.12880 0.22545 0.19438
44 2.3 27 4 0.12588 0.11462 0.15761 0.12356 0.21867 0.18481
45 2.0 27 4 0.12543 0.11342 0.15128 0.12130 0.21172 0.18120
46 2.1 25 5 0.12388 0.10975 0.15023 0.11933 0.20418 0.17017
47 3.1 47 2 0.11738 0.10030 0.13191 0.10268 0.19546 0.16632
48 2.1 35 3 0.12313 0.11277 0.15395 0.12115 0.21765 0.18592
49 3.3 53 2 0.12055 0.10150 0.13440 0.10247 0.24074 0.21701
50 2.1 29 4 0.12293 0.10985 0.15179 0.11777 0.21329 0.17967
51 2.3 30 4 0.12460 0.11070 0.14942 0.11729 0.21205 0.18091
52 3.2 46 2 0.11822 0.09909 0.12563 0.10028 0.19229 0.16825
53 3.0 49 2 0.11695 0.09819 0.12518 0.09954 0.19778 0.17147
54 3.5 58 1 0.11527 0.09430 0.11746 0.09472 0.19044 0.16510
55 3.0 42 2 0.11898 0.10097 0.13154 0.10405 0.20315 0.17699
56 2.5 32 3 0.12154 0.10657 0.14102 0.11090 0.21228 0.18359
57 2.5 39 3 0.12060 0.10514 0.13739 0.10873 0.20751 0.17823
58 2.1 26 4 0.12441 0.11099 0.14945 0.11792 0.21410 0.18137
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Table 1. Cont.

Soil Pit
OM

Content,
%

Thickness of
Humus

Horizon, cm

Soil
Name * BLUEmean GREENmean NIRmean REDmean SWIR1mean SWIR2mean

59 2.6 38 3 0.12037 0.10479 0.14125 0.10955 0.20848 0.17821
60 2.3 35 3 0.12129 0.10616 0.14157 0.11068 0.20648 0.17422
61 2.4 39 3 0.12022 0.10556 0.14231 0.10955 0.21603 0.18704
62 3.4 59 1 0.11454 0.09205 0.11157 0.09039 0.18684 0.16652
63 3.3 58 1 0.11693 0.09485 0.11918 0.09421 0.19570 0.17372
64 2.2 30 4 0.12563 0.11249 0.15340 0.12016 0.21781 0.18695
65 3.1 42 2 0.11872 0.10000 0.12723 0.10126 0.19847 0.17298
66 2.0 30 4 0.12388 0.10937 0.15031 0.11647 0.21287 0.17946
67 3.1 44 2 0.11845 0.09909 0.12646 0.09957 0.20740 0.18109
68 2.0 24 5 0.12504 0.11472 0.16003 0.12405 0.22713 0.19562
69 3.3 51 2 0.11925 0.10102 0.13354 0.10466 0.20107 0.17113
70 2.9 45 2 0.11805 0.09958 0.12598 0.10130 0.19548 0.16876
71 2.5 31 4 0.12201 0.10719 0.14240 0.11360 0.20667 0.17784
72 3.3 52 2 0.11688 0.09715 0.12354 0.09731 0.20042 0.17419
73 2.3 32 3 0.12207 0.10702 0.14364 0.11278 0.21713 0.18663
74 2.4 34 3 0.12043 0.10325 0.13968 0.10784 0.20550 0.17455
75 3.1 45 2 0.11815 0.10051 0.13353 0.10397 0.20409 0.17481
76 2.1 22 5 0.12477 0.11389 0.16050 0.12558 0.22699 0.19341
77 1.6 19 5 0.12556 0.11629 0.16574 0.13113 0.21947 0.18349
78 2.4 32 3 0.12321 0.11099 0.15084 0.11861 0.21739 0.18724
79 2.2 24 5 0.12425 0.11186 0.15387 0.12133 0.21454 0.18250
80 3.4 47 2 0.11851 0.10010 0.12998 0.10298 0.19781 0.16864

* Soil names are given in Table 2.

Table 2. Classification of ranges of the Landsat bands mean values according to soil varieties.

Soil Number Soil Name BLUEmean Range GREENmean Range NIRmean Range REDmean Range

1 Meadow-chestnut 0.114543–0.117373 0.0920461–0.0964505 0.111569–0.121124 0.0903929–0.0959896

2 Dark chestnut 0.117374–0.119842 0.0964506–0.103217 0.121125–0.134816 0.0959897–0.104661

3 Dark chestnut
slightly eroded 0.119843–0.123205 0.103218–0.107342 0.134817–0.146825 0.104662–0.112780

4 Dark chestnut
medium eroded 0.123206–0.127819 0.107343–0.112491 0.146826–0.153399 0.112781–0.121297

5 Dark chestnut
strongly eroded 0.127819–0.127819 0.112492–0.119718 0.153400–0.169174 0.121298–0.131129

The average OM content for dark chestnut soils in this study is 3.1%, which is in
significant agreement with the characteristics of this zonal soil—dark chestnut slightly
solonetzic clayey and heavy loamy soils on loess-like clays and loams [91]. This soil variety
is characterized by the following values: the thickness of the humus horizon is 40–60 cm
and the content of OM is 3–4% [92]. The threshold values of the OM content and the
thickness of the humus horizon (2.7% and 40 cm), as characteristics of degradation, were
also determined during the field survey based on the typical characteristics of soil types
and subtypes in the study area.

3.4. Construction of BSS Masks

The dataset for the neural network was compiled based on 244 Landsat scenes for two
path/row—173/028 and 174/027 [61]. For each Landsat scene, a mask of the BSS was built
on the principles of SLNS [29–33] (Figure 4). A total of 567,127,808 learning elements were
used, of which 112,632,627 are BSS. Half of the dataset (122 Landsat scenes 173/028) was
used as a training sample with cross-validation. The second half of the Landsat scenes
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(174/027) was used as a test sample. The total IoU estimate (the intersection over union
between the predicted and the corresponding manually constructed bare soil masks) of the
proposed model on the validation set is 0.79.

The territory of the study region was used as an acceptance sample. On 551 Landsat
173/026 scenes, based on deep machine learning, the BSS was observed, 133 Landsat
scenes from 1 April 1985 to 30 November 2021 were selected for calculations. The BSS was
predicted 889,525 times and 133 BSS masks were created.

3.5. Maps of Long-Term Average Spectral Characteristics BLUEmean, GREENmean, REDmean,
NIRmean, SWIR1mean and SWIR2mean for BSS

Using the BSS masks for 133 Landsat scenes for each of the 6 spectral bands, the
calculation of the long-term average values of the spectral brightness for the period from
1985 to 2021 was carried out. The calculation results are shown in Figure 5. To facilitate
visual analysis, the maps are presented in the uniform palette, but based on each band’s
own histogram.

3.6. Additions to the GIS Project

The following layers were added to the GIS project:

8. Layer of ground survey results;
8.1 The content of OM in a layer of 0–10 cm;
8.2 Thickness of the humus horizon;
8.3 Names of soil varieties;
9. Maps of long-term average spectral characteristics BLUEmean, GREENmean, REDmean,

NIRmean, SWIR1mean and SWIR2mean for BSS.

3.7. The Intersection of the Results of Ground Surveys and Maps of Average Long-Term Spectral
Characteristics of the BSS

GIS project layers 8.1 and 8.2 were intersected with 6 maps of mean long-term spectral
characteristics. The results are presented in Tables 1 and S2. A graphical representation of
the dependences of the long-term average spectral brightness of 6 Landsat bands on the
OM content in the 0–10 cm layer and the thickness of the humus horizon is shown on the
graphs (Figures 6 and 7). The graphs also show the results of the regression analysis.

The quality of the regression model decreases in the following sequence of spectral
bands: REDmean, NIRmean, GREENmean, BLUEmean, SWIR1mean, and SWIR2mean. The high
values of the R2 coefficient (0.721–0.848) make it possible to interpret the maps of the long-
term average spectral characteristics REDmean, NIRmean, GREENmean, and BLUEmean as maps
of the OM content in the plow horizon. The low values of R2 (0.194–0.441) SWIR1mean and
SWIR2mean show that these bands cannot be used for mapping the OM content. Similarly,
the R2 values characterize the possibility of constructing maps of the thickness of the
humus horizon using REDmean, NIRmean, GREENmean, and BLUEmean and the impossibility
of constructing maps using SWIR1mean and SWIR2mean.
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Figure 7. Correlation of BANDmean values and the thickness of the humus horizon (soils are:
1—meadow-chestnut, 2—dark chestnut, 3—dark chestnut slightly eroded, 4—dark chestnut medium
eroded, 5—dark chestnut strongly eroded).

3.8. Soil Interpretation of Maps of BSS Long-Term Average Spectral Characteristics

During ground surveys, 5 soil varieties were described for 80 soil profiles: meadow-
chestnut, dark chestnut, dark chestnut slightly eroded, dark chestnut medium eroded, and
dark chestnut strongly eroded soils.

For each of 80 profiles, the REDmean, NIRmean, GREENmean, BLUEmean, SWIR1mean, and
SWIR2mean values were obtained. Analysis of variance (ANOVA) and a post hoc analysis of
the significance of differences in the spectral characteristics of soil varieties in each spectral
band were carried out (Tables S4–S10). For the RED, NIR, and GREEN bands, all five soil
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varieties differ significantly in long-term average spectral characteristics. For the BLUE
band, strongly and moderately eroded soils are spectrally indistinguishable. For the SWIR1
band, 3 out of 10 possible pairs of soils are spectrally indistinguishable. For the SWIR2
band, 8 out of 10 possible soil pairs are spectrally indistinguishable. For the SWIR1 and
SWIR2 bands, none of the five soil varieties can be statistically significantly separated
from the remaining 4 soil varieties. Based on the statistical analysis performed, it can be
assumed that soil maps can be constructed based on the long-term average spectral values
for the RED, NIR, GREEN, and BLUE bands. SWIR1 and SWIR2 bands are not suitable for
soil interpretation.

Based on the soil types/names for 80 profiles, the ranges of long-term average bright-
ness values were empirically selected for each of the four (RED, NIR, GREEN, and BLUE)
Landsat bands for each soil variety (Table 2). Soil interpretations of mean long-term spectral
brightnesses for four bands are presented on Figure 8 and added as layer 10 in the form of
four soil maps in the GIS project.
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Figure 8. Soil maps based on classification of BANDmean values (soils are: 1—meadow-chestnut,
2—dark chestnut, 3—dark chestnut slightly eroded, 4—dark chestnut medium eroded, 5—dark
chestnut strongly eroded).

The accuracy of the soil maps can be estimated by the number of soil profiles correctly
interpreted by spectral characteristics (Table 3). For the RED band, 81.3% of soil profiles
were correctly determined; for the NIR band—80.0%; for the GREEN band—76.2; and for
the BLUE band—66.3%.
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Table 3. Type I and II errors for soil varieties identification.

Soil Name

Total Number of Soil
Pits in the

Corresponding Interval
of Mean Band Values

Properly Defined
Soil Varieties

Type I Errors
(False Positive)

Type II Errors
(False Negative)

(Soil Pits
Number) % (Soil Pits

Number) % (Soil Pits
Number) %

BLUE band

1. Meadow-chestnut 8 5 62.5 3 37.5 1 12.5
2. Dark chestnut 22 17 77.3 5 22.7 10 45.5

3. Dark chestnut slightly eroded 25 15 60.0 10 40.0 5 20.0
4. Dark chestnut medium eroded 10 6 60.0 4 40.0 7 70.0
5. Dark chestnut strongly eroded 15 10 66.7 5 33.3 2 13.3

GREEN band

1. Meadow-chestnut 7 6 85.7 1 14.3 0 0.0
2. Dark chestnut 32 25 78.1 7 21.9 3 9.4

3. Dark chestnut slightly eroded 13 10 76.9 3 23.1 11 84.6
4. Dark chestnut medium eroded 16 10 62.5 6 37.5 3 18.8
5. Dark chestnut strongly eroded 12 10 83.3 2 16.7 2 16.7

RED band

1. Meadow-chestnut 7 6 85.7 1 14.3 0 0.0
2. Dark chestnut 28 24 85.7 4 14.3 4 14.3

3. Dark chestnut slightly eroded 16 13 81.3 3 18.8 8 50.0
4. Dark chestnut medium eroded 16 11 68.8 5 31.3 2 12.5
5. Dark chestnut strongly eroded 13 11 84.6 2 15.4 1 7.7

NIR band

1. Meadow-chestnut 7 6 85.7 1 14.3 0 0.0
2. Dark chestnut 32 26 81.3 6 18.8 2 6.3

3. Dark chestnut slightly eroded 15 12 80.0 3 20.0 9 60.0
4. Dark chestnut medium eroded 12 9 75.0 3 25.0 4 33.3
5. Dark chestnut strongly eroded 14 11 78.6 3 21.4 1 7.1

The accuracy of the thematic interpretation of the long-term average spectral char-
acteristics of the four Landsat bands calculated from big satellite data can be analyzed in
terms of information theory. It is possible to set the values of errors of the I and II type for
five soil varieties. According to information theory, we have type I errors—false positive
and type II errors—false negative. False positive errors in this study mean that another
soil variety fell within the range of spectral characteristics (Table 2) for one soil variety.
False negative errors mean that the soil variety did not fall within the range of spectral
values selected for it. Errors of the I and II types for the spectral bands for soil varieties are
summarized in Table 3. It follows from the table that both false positive and false negative
errors differ for different soils and bands. False positive errors range from 14.3% to 40.0%,
false negative—from 0% to 84.6%. The maximum contribution to the errors is made by
slightly eroded and moderately eroded dark chestnut soils, which have similar spectral
characteristics. Overall, according to the soil maps of the ranges of long-term average
spectral characteristics for four bands, out of 80 sections from 53 to 65 profiles fell into their
legend classes (ranges of values) (Table 3). Thus, the overall accuracy of the four soil maps
ranges from 66.3% to 81.3%.

The results of the ANOVA showed that the classification of the long-term average
spectral characteristics of the four Landsat bands by soil varieties is statistically significant,
both by the OM content and the thickness of the humus horizon (Tables S11–S12).

A post hoc analysis of the means according to the Tukey test (Tables S13–S16) showed
that by the OM content in the 0–10 cm layer, meadow-chestnut and dark chestnut soils, as
well as slightly and moderately eroded dark chestnut soils, do not differ from each other
for the BLUE, NIR and GREEN bands. For the RED band, only meadow chestnut and dark
chestnut soils do not differ in OM content.

According to the Tukey criterion (Tables S17–S20), all soil varieties of the constructed
soil maps differ by the thickness of the humus horizon, for the RED, NIR, GREEN bands.
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For the BLUE band, slightly and moderately eroded soils do not differ by the thickness of
the humus horizon.

Most soil varieties in soil maps created using four bands (RED, NIR, GREEN, and
BLUE) long-term average values, differ statistically significantly from each other by thick-
ness of the humus horizon, and OM content in the 0–10 cm layer.

3.9. Construction and Ground Verification of Degradation Distribution Maps

Three of the five soil varieties identified during the field study are classified as de-
graded soils, i.e., soils slightly, moderately and strongly eroded. Degraded soils differ from
the dark chestnut soils of this region by a smaller thickness of the humus horizon and a
lower content of OM in the upper layer of 0–10 cm. For dark chestnut soils, the thickness of
the humus horizon should be 40–60 cm with the OM content in the layer of 0–10 cm from
3% to 4% [97,98]. Meadow-chestnut soils have a greater thickness of the humus horizon
and a higher content of OM. Therefore, a decrease in the thickness of the humus horizon
of less than 40 cm or a decrease in the OM content of less than 3% can be interpreted as a
soil degradation. In this work, the threshold of OM content for determining degradation
was 2.7%. Out of 80 soil profiles, 46 belong to degraded soils and 34 to non-degraded soils.

Four degradation distribution maps (Figure 9) were created by grouping degraded
and non-degraded soil differences of maps of soil interpretation of multi-temporal spectral
characteristics. The spectral ranges are given in Table 4. As a result of the intersection of
the layer of soil profiles (layers 8.1 and 8.2) with maps of the distribution of degradation,
Table 5 was obtained. The false negative errors of degradation maps vary from one spectral
band to another from 8% to 17%. False positive errors range from 2.4% to 14%. The
overall degradation prediction accuracy ranges from 78.0% to 84.4%. The accuracy of soil
degradation maps was determined as the percentage of soil profiles that fell outside their
degradation class according to spectral classification, out of the total number of soil profiles
that fell into the spectral brightness range determined as the area of soil degradation.

Table 4. Classification of ranges of the Landsat bands mean values according to soil degradation.

Band Non-Degraded Soils Degraded Soils

BLUE 0.114543–0.119842 0.119843–0.127819
GREEN 0.0920461–0.103217 0.103218–0.119718

NIR 0.111569–0.134816 0.134817–0.169174
RED 0.0903929–0.104661 0.104662–0.131129

SWIR1 0.186105–0.204092 0.204093–0.240738
SWIR2 0.158627–0.178033 0.178034–0.217006

Table 5. Type I and II errors for soil degradation identification.

Band
Degraded Soils Based
on BANDmean Value
(Soil Pits Number)

Non-Degraded Soils Based
on BANDmean Value
(Soil Pits Number)

Type I Errors
(False Positive)

Type II Errors
(False Negative) Total

Error, %(Soil Pits
Number) % (Soil Pits

Number) %

BLUE 30 50 7 14.0 4 8.0 22.0
GREEN 39 41 2 4.9 7 17.1 22.0

NIR 39 41 1 2.4 6 14.6 17.1
RED 35 45 3 6.7 4 8.9 15.6

SWIR1 35 45 5 11.1 6 13.3 24.4
SWIR2 35 45 8 17.8 9 20.0 37.8
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Figure 9. Degradation distribution maps constructed by reclassifying maps of soil interpretations of
multi-temporal spectral characteristics: 1—non-degraded soils, 2—degraded soils.

ANOVA showed that although the soil differences for the SWIR1 and SWIR2 bands
are indistinguishable, the spectral brightnesses for degraded and non-degraded soils differ
significantly (Table S21). Therefore, it is possible to construct maps of soil degradation
bypassing the stage of constructing maps of soil interpretation of spectral characteristics.
Soil degradation maps constructed for the SWIR1 and SWIR2 bands are shown in Figure 10.
The ranges of spectral values for the SWIR1 and SWIR2 bands are given in Table 4. The
degradation prediction accuracy was 75.5% and 62.2%. The results of the ANOVA showed
that the classification of the long-term average spectral characteristics of the six Landsat
bands for soil degradation is statistically significant both by OM content and the thickness
of the humus horizon (Tables S22 and S23).
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Figure 10. Degradation distribution maps constructed by direct classification of multi-temporal
spectral characteristics: 1—non-degraded soils, 2—degraded soils.

4. Discussion
4.1. Analysis of the Soil Interpretation of the Maps of the Long-Term Average Spectral
Characteristics BLUEmean, GREENmean, REDmean, NIRmean, SWIR1mean, and SWIR2mean for
the BSS

Six Landsat spectral bands showed different informativeness for the construction of
soil and soil degradation maps. In descending order of informativeness for soil mapping,
the bands are arranged in the following order: RED, NIR, GREEN, BLUE, SWIR1, SWIR2.
The first four bands can be used to construct soil maps with an accuracy from 81.3% (RED)
to 66.3% (BLUE). The last two bands cannot be used to construct soil maps. The RED and
NIR bands are close in information content (80.0%). Using the same 4 bands, it is possible
to create binary degradation maps with even higher accuracy from 84.4% (RED) to 78.0%
(BLUE). This confirms the correctness of the choice of RED-NIR bands, which are used
to calculate VIs, for constructing soil maps based on the analysis of the BSS [61]. On the
other hand, to create degradation maps with an accuracy of at least 78.0%, possible to use
any of the 4 bands: RED, NIR, GREEN, BLUE. That is, the presence of an infrared band
is not strictly necessary for the construction of soil degradation maps, the visible range is
sufficient. Moreover, with an accuracy of 75.5% and 62.2%, soil degradation maps can also
be constructed using the SWIR1 and SWIR2 bands.

It should be assumed that the spectral reflectivity of the soil increases with a decrease
of OM content almost identically in four of the six Landsat bands, what can be clearly seen
in the graphs of Figure 6. Soil varieties significantly differ in the content of OM in the soil
layer of 0–10 cm, which makes possible the soil mapping. The relatively low accuracy
of the soil interpretation of the map of mean long-term values for the BLUE band can be
explained by the small range of values for this band (Table 2). The long-term average
spectral values for the RED band vary from 0.090 spectral units to 0.131. While for the
BLUE band, the range is from 0.114 to 0.127. With the same spectral discretization of the
Landsat bands, the BLUE band simply has fewer possible values, which makes it difficult
to set the spectral ranges for soil mapping. Perhaps this explains the relatively low accuracy
of soil interpretation for 5 soil varieties (66.3%). To create a binary map of soil degradation,
the spectral range of the BLUE band is quite sufficient to achieve an accuracy of 78.0%.

The situation is more complicated for bands SWIR1 and SWIR2. The content of OM affects
the spectral brightness of both bands, but the relationship is much weaker—R2 = 0.19–0.44.
It was noted that in the floodplain positions, the reflectivity in the bands SWIR1 and
SWIR2 increases even with an increased content of OM (point 49, Figure 1). According
to a post hoc analysis in the SWIR1 and SWIR2 bands, only non-degraded soils can be
distinguished from highly degraded ones (Tables S9 and S10). Thus, if it is necessary,
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to detect strong degradation, could be used the SWIR1 and SWIR2 bands. But for soil
mapping, the information content of these bands is insufficient.

The RED band has the maximum information content in soil mapping.

4.2. Analysis of the I and II Type Errors of Degradation Maps Constructed by Reclassifying Maps
of Soil Interpretations of Multi-Temporal Spectral Characteristics
4.2.1. BLUE Band

False negative errors were noted 4 times. In all cases, the OM content was 2.7–2.9%
which is close to the degradation detection threshold of 2.7%. Degradation was determined
only by the thickness of the humus horizon—36–39 cm. False positive error occurred in
7 cases with OM content of 2.7–3.2% and a thickness of the humus horizon of 40–53 cm.
Errors of the first and second type confirm the relatively low correlation between the
long-term average brightness characteristics of the band and the OM content—R2 = 0.72.
But it should be noted that errors occur at the degradation threshold of 2.7% OM content,
which is explained by the small spectral range of the BLUE band values. There are not
enough values to accurately determine the spectral threshold for detecting degradation.

The BLUE band gives the maximum number of errors of the first type—a false positive.

4.2.2. GREEN Band

False negative errors were noted 7 times. In 6 cases, the OM content was higher or
equal to 2.7%. Degradation was recorded only by a decrease in the thickness of the humus
horizon below 40 cm. False positive errors occurred 2 times. In both cases, the OM content
was at the degradation detection threshold. The presence of errors of the I and II type is due
to the complexity of setting the spectral threshold to determine soil degradation. Despite
the higher correlation between the long-term average brightness values of the GREEN band
(R2 = 0.81) compared to the BLUE band, the total error of both maps is 22%.

When soil degradation is detected by the GREEN band, the degradation area is
underestimated. The band gives the maximum number of errors of the II type false
negatives. Difficulties are noted with the determination of the brightness threshold for
determining degradation.

For the GREEN band, there is a single point that refers to degraded soils by both
parameters (thickness of humus-accumulative horizon and OM content) but is not detected
by brightness as degradation. In other bands, this phenomenon is not observed. An
explanation for this was not found in this work.

4.2.3. RED Band

False negatives were recorded 4 times. In all cases, the OM content is above or equal to
the degradation threshold. In all cases, degradation was determined only by the thickness
of the humus horizon—36–39 cm. False positive errors were recorded 2 times. The RED
band analysis achieved the maximum accuracy of soil cover degradation detection of 84.6%.

4.2.4. NIR Band

False negative errors were marked 6 times. In all cases, the OM content exceeded or
was equal to the threshold of 2.7%. Degradation was determined only by the thickness
of the humus horizon—38–39 cm. Degradation can be detected very accurately using the
NIR band, since an error of the II type occurs when ground-based measurements are close
to the threshold values. A false positive error also occurs at a point with near-threshold
values—2.7% OM and 41 cm thickness of the humus horizon.

The NIR band has the lowest false positive error—1 case.
Note that there are 3 points (soil profiles), which give an error of the II type (false

negative) for all 4 bands. These points are in transit landscape positions and belong to
weakly eroded soils. The thickness of the humus horizon in these soils is below 40 cm, but
the OM content is above 2.7%. The OM content in these soils is supported by sediment
delivery from higher landscape positions. It can be assumed that the soils are eroded
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and sediment-accumulated, which ensures a relatively high content of OM at a relatively
low thickness of the humus horizon. Obviously, it is these landscape positions that will
determine the upper threshold of accuracy of the proposed mapping method based on
long-term average spectral characteristics.

The minimum errors in the creation of degradation maps were achieved when analyz-
ing the RED band.

4.3. Analysis of the I and II Type Errors of Degradation Maps Constructed by Direct Classification
of Multi-Temporal Spectral Characteristics

For the RED, NIR, GREEN, and BLUE bands, soil cover degradation maps were built
based on previously constructed soil maps. For SWIR1 and SWIR2 bands, degradation
maps were constructed by direct division of the band spectral range into two classes. The
errors of these groups of maps differ from each other.

4.3.1. SWIR1 Band

False negative errors for the band occurred 6 times. Of the 6 times, 3 times points were
missed, where soil degradation was recorded both by the OM content and the thickness of
the humus horizon. For false positive errors, all 5 cases refer to non-degraded soils by both
parameters. Twice with a false positive error, the OM content is 3.3%, which is not typical
for the first 4 spectral bands.

4.3.2. SWIR2 Band

False negative errors were marked 9 times. Soil profiles where degradation by ground
methods was recorded both by OM content and thickness were skipped five times. False
positive errors were recorded 7 times. As for the SWIR1 band, in all cases these are
non-degraded soils by both parameters.

The main difference between the degradation maps for the SWIR1 and SWIR2 bands
and the RED, NIR, GREEN and BLUE bands is that the errors of both types are not close
to the specified degradation thresholds. That is, a false positive error can occur when the
thickness of the humus horizon is 53 cm, and the OM content is 3.3%. The errors for the
SWIR1 and SWIR2 bands look illogical in terms of the effect of degradation on the spectral
brightness. The errors for these two bands are not the same as those for the RED, NIR,
GREEN, and BLUE bands. No additional factors affecting the spectral values of the SWIR1
and SWIR2 bands were identified in this study.

4.4. Physical Interpretation of Work Technology

This study was based on the assumption that the brightness characteristics of the
soil cover are related to the OM content in the topsoil layers. It was assumed that in each
satellite image, the spectral characteristics of the soil moisture and the agrotechnical/tillage
methods of its processing affect the spectral characteristics of the soil. During long-term
observations, it was assumed that most of the RSD pixels would go through different stages
of wetting and different agrotechnical treatments. As a result, dozens of spectral states of a
pixel will be accumulated over 35 years, in which the influence of different soil humidity
of each date of acquisition of the satellite image will be mutually leveled. That is, the
number of wet states of a pixel is offset by the number of dry states. As a result, long-term
average data will reflect more inert factors affecting soil reflectivity. Similarly, agrotechnical
methods will have to undergo mutual compensation, since in principle these methods are
the same for all fields during the crop rotation. For 35 years, several crop rotations had
to change.

This hypothesis was tested when constructing a soil map based on the principles of
the spectral neighborhood of the soil line [61]. Indeed, in the RED-NIR spectral space, the
BSS occupies a specific place in the form of an ellipse of possible values over decades [32].
With an increase in humidity, the image of the soil darkened, and the spectral reflectivity
decreased. With a decrease in humidity, the opposite process was observed. Of the three
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independent factors affecting the spectral reflectivity (OM content, humidity, agricultural
practices), only the OM content was long-term stable.

When analyzing the RED and NIR bands independently, these assumptions were
confirmed. Indeed, the average long-term characteristics of the bands for the BSS have a
high correlation with the OM content in the 0–10 cm layer. The assumptions about the
predominant effect of the OM content on the spectral reflectivity for the BLUE and GREEN
bands were also confirmed. In fact, all four (RED, NIR, GREEN, BLUE) Landsat bands
behave in the same way in terms of OM content, moisture level and farming practices.
The brightness of the soil in these bands decreases with an increase in the OM content, an
increase in moisture, and loosening of the plow horizon. It can be assumed, that when
loosening (plowing, harrowing, disking) the arable horizon, the soil comes to the surface in
a wetter state. With a decrease in the OM content, in moisture, and the formation of a dry
soil crust, the reflectivity of the BSS increases.

It was also confirmed that data for 35 years allow, due to big data, to mutually
compensate the influence of humidity and agricultural practices. The OM content in the
upper arable horizons becomes a main factor affecting the spectral reflectivity.

For bands SWIR1 and SWIR2 the situation is somewhat different. It can be argued
that the SWIR1 and SWIR2 bands are influenced by factors not related to OM content,
moisture and agricultural practices. The available ground data did not allow to establish
these factors. It was only noted that in several landscape positions (floodplain terraces) in
the SWIR1 and SWIR2 bands, the spectral brightness increases with an increase of the OM
content. This effect sharply distinguishes the SWIR1 and SWIR2 bands from the RED, NIR,
GREEN, BLUE bands.

Of course, moisture and OM content are not the only factors affecting the reflectivity
of soils. Parent material and soil texture have a great influence. But within the study
area, the soils are formed on a single parent rock and have the same type of granulometric
composition, which makes it possible to exclude their impact. Increased reflectivity is also
an indicator of non-compliance with the rules of soil use, which leads to an increase in
losses due to erosion and, as a result, a decrease in the content of OM [99].

This is the physical interpretation of the work; the need for interpretation is substanti-
ated in [100]. As a physical interpretation, regression models of calculated parameters and
field measurements were used [101,102].

4.5. Perspective RSD and Direction of Work

The work [61] showed the possibility of constructing soil degradation maps based
on the average long-term characteristics of the RED-NIR bands. This study shows that, in
practice, a soil degradation map can be built using the average long-term characteristics of
any of the 5 spectral bands (RED, NIR, GREEN, BLUE, SWIR1) with an accuracy of at least
75.0%. It is important that it is enough to use only the bands of the visible range, without
the analysis of infrared bands. There are more options for RSD in the visible range than
Landsat analogues.

But the previous and current work is based on BSS recognition using all 6 bands—RED,
NIR, GREEN, BLUE, SWIR1 and SWIR2. We have not studied the issue of reducing the
number of spectral bands when training a neural network to recognize BSS with acceptable
accuracy. In the future, this issue needs to be studied in more detail. If a smaller number of
spectral bands are sufficient for BSS recognition, then this can expand the number of RSD
sources for constructing soil degradation maps based on big satellite data.

The second question that remains open is to what extent the reduction in the time
range of satellite imagery used affects the accuracy of soil degradation mapping. At this
stage of the work, the maximum time series of the same type of RSD with the same spatial
and spectral calibration were used—Landsat 4–8 data for 37 years. This issue is more
relevant since the Sentinel 2A,B archive is being formed. The temporal coverage of this
archive cannot surpass the Landsat archive, since Landsat has been operating since 1984,
and Sentinel only since 2015. The survey frequency of Sentinel is several times higher than
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the Landsat; that is, the time is foreseeable when the Landsat and Sentinel archives will
equalize by the number of images per unit of the earth’s surface. Simultaneous operation
of Landsat 8 and 9 can only postpone this moment a little. It is necessary to investigate
the accuracy of soil degradation detection with the same number of RSD, but in different
time ranges.

The third direction is the inclusion of Sentinel 2A,B data into the overall technology of
work. That is, establishing the possibility of joint processing of Landsat and Sentinel data.
Sentinel 2A,B has a spectral calibration similar to Landsat 4–8. “Tasseled cap” graphs in the
RED-NIR spectral space are almost identical at close acquisition dates. It can be assumed
that a neural network trained on Landsat 4–8 scenes will be able to recognize the BSS on
Sentinel 2A,B tiles.

4.6. Perspectives for a Multiband Approach to Detecting Soil Degradation

On the topic “Remote sensing for cropping systems and bare soils monitoring and
optimization”, seven papers have been published so far [22–25,61–63]. The analysis of RSD
in all works is based on the spectral bands RED and NIR. Even in the article mentioning
hyperspectral characteristics [23], the resulting formula uses 3 VIs based on the same RED
and NIR bands. Precision farming commercial structures also calculate indices based on
RED and NIR: ExactFarming [54], FarmersEdge [55], Cropio [56], Intterra [57], AGRO-
SAT [58], NEXT farming [59], Agronote [60], OneSoil [103]. In the works of the authors of
2020–2022, 3 methods for constructing maps have been developed [21,26,28,61]. One of the
methods is based on the analysis of the BSS, and not since VIs, but this method also uses
the RED and NIR bands.

In general, it can be stated that only two of the six Landsat bands are widely used for
monitoring the state of the soil cover. The remaining bands are used less frequently and as
corrections for the influence of the atmosphere or the earth’s surface. So, when calculating
EVI, the BLUE band is used [65]. When calculating LAI [66,67], the SWIR or the GREEN
band is added to the calculations. A direct relationship between the spectral bands and the
heterogeneity of the soil cover is not established.

Based on the results of this study, it is possible to propose a wider use of Landsat
spectral bands for soil mapping, soil degradation detection and soil cover monitoring.
Spectral characteristics in the form of big data for the BSS can significantly expand the
spectral ranges currently used.

5. Conclusions

The informativeness of each of the six Landsat bands was evaluated for the purpose
of constructing soil degradation maps. During this work, it was possible to achieve the
following results:

1. A method for processing big satellite data based on AI has been proposed and imple-
mented, which makes it possible to obtain hundreds (798 maps over 37 years) of BSS
spectral maps in 6 Landsat 4–8 spectral bands.

2. A method was proposed and implemented for BRSD convolution into 6 maps of
average long-term (37 years) spectral characteristics of the BSS for 6 Landsat bands.

3. A series of informativeness of 6 Landsat bands for detecting degraded lands was used
(the series is given in descending order of information content): RED, NIR, GREEN,
BLUE, SWIR1 and SWIR2. The information content is taken to be the possible accuracy
of mapping soil degradation.

4. The achievable accuracy of soil degradation mapping has been established based on
the independent application of the average long-term characteristics of the BSS of
6 Landsat spectral bands: RED—84.6%, NIR—82.9%, GREEN—78.0%, BLUE—78.0%,
SWIR1—75.5%, SWIR2—62.2%.

5. It has been established that errors of the I and II type in the construction of degradation
maps based on the RED, NIR, GREEN, BLUE bands are close to the threshold values
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of the land-based classification of degraded soils. Errors of the I and II type for bands
SWIR1 and SWIR2 are non-systematic.

During this work, it was possible to achieve the following practical significance, which
has scientific novelty:

• Degradation maps with high accuracy can be created based on BRSD, with a neural
network determination of BSS based on any of the 4 bands: RED, NIR, GREEN, BLUE.

• A degradation map with low accuracy can be built based on BRSD, with a neural
network determination of BSS based on the SWIR1 band.

• The SWIR2 band cannot be recommended for building degradation maps, despite the
possible accuracy of 62.2%.

On the one hand, the result of the study makes it possible to clearly limit the spectral
range of RSD for mapping soil degradation by four bands (RED, NIR, GREEN, BLUE). On
the other hand, the possibilities of mapping soil degradation are expanding, as in addition
to traditional RED and NIR bands, GREEN and BLUE bands can be widely used. The high
informativeness of the RED band makes it possible, in the presence of multi-temporal series
of only this band, to compile degradation maps without involving the rest of the spectral
bands. According to our information, the RED band is present in most RSD. The studies
have confirmed that the maps built earlier on the multi-temporal series of the spectral
characteristics of the BSS based on the RED and NIR bands are highly accurate and can
be used.

The application of the method is proposed to be extended to the entire zone of distri-
bution of chestnut soils. Work is underway to create a soil degradation map of all arable
land in the Morozovsky district (more than 100,000 ha). The use of neural networks allows
the method to be widely used, because neural networks allow to determine the BSS on
hundreds and thousands of RSD scenes. The analysis of RSD archives shows that for the
zone of distribution of chestnut soils, more than 100 (from 122 to 133 in our study) RSD
scenes using one Landsat path/row can be used for calculations. When the Landsat scenes
overlap, the number of RSD suitable for calculations will double. Consequently, big satellite
data are available for the entire area.

The training of the neural network was carried out on the territory of the distribution
of chernozems. A neural network was applied for chestnut soils. We assume that the
experience of mapping soil degradation can be extended beyond the distribution of chestnut
soils to the chernozems area. In this case, the method can be applied throughout the south
of Russia and beyond (northern Kazakhstan, the great plains of the USA).

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/rs15010124/s1, Table S1: RSD Landsat for study area found in the archives;
Table S2: RSD Landsat list of GIS project and acceptance sample; Table S3: Results of ground surveys,
BSS long-term average spectral characteristics and determination of soil degradation according to
various criteria; Table S4: ANOVA of the difference between the means of BANDmean values in soil
varieties identified in field studies; Table S5: Post hoc analysis of the means of BLUEmean values in soil
varieties identified in field studies; Table S6: Post hoc analysis of the means of GREENmean values in
soil varieties identified in field studies; Table S7: Post hoc analysis of the means of REDmean values in
soil varieties identified in field studies; Table S8: Post hoc analysis of the means of NIRmean values in
soil varieties identified in field studies; Table S9: Post hoc analysis of the means of SWIR1mean values
in soil varieties identified in field studies; Table S10: Post hoc analysis of the means of SWIR2mean
values in soil varieties identified in field studies; Table S11: ANOVA of the difference between the
means of OM content in BANDmean classes for soil varieties; Table S12: ANOVA of the difference
between the means of thickness of humus horizon in BANDmean classes for soil varieties; Table S13:
Post hoc analysis of the means of OM content in BLUEmean classes for soil varieties; Table S14: Post
hoc analysis of the means of OM content in GREENmean classes for soil varieties; Table S15: Post
hoc analysis of the means of OM content in REDmean classes for soil varieties; Table S16: Post hoc
analysis of the means of OM content in NIRmean classes for soil varieties; Table S17: Post hoc analysis
of the means of thickness of humus horizon in BLUEmean classes for soil varieties; Table S18: Post hoc
analysis of the means of thickness of humus horizon in GREENmean classes for soil varieties; Table S19:
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Post hoc analysis of the means of thickness of humus horizon in REDmean classes for soil varieties;
Table S20: Post hoc analysis of the means of thickness of humus horizon in NIRmean classes for soil
varieties; Table S21: ANOVA of the difference between the means of BANDmean values in degraded
and non-degraded soils identified in field studies; Table S22: ANOVA of the difference between the
means of OM content in BANDmean classes for degraded and non-degraded soils; Table S23: ANOVA
of the difference between the means of thickness of humus horizon in BANDmean classes for degraded
and non-degraded soils.
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