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Abstract

The exploitation of subsurface hydrocarbon reservoirs is achieved through the con-

trol of production and injection wells (i.e., by prescribing time-varying pressures and 

flow rates) to create conditions that make the hydrocarbons trapped in the pores of 

the rock formation flow to the surface. The design of production strategies to exploit 

these reservoirs in the most efficient way requires an optimization framework that 

reflects the nature of the operational decisions and geological uncertainties involved. 

This paper introduces a new approach for production optimization in the context 

of closed-loop reservoir management (CLRM) by considering the impact of future 

measurements within the optimization framework. CLRM enables instrumented oil 

fields to be operated more efficiently through the systematic use of life-cycle produc-

tion optimization and computer-assisted history matching. Recently, we have pro-

posed a methodology to assess the value of information (VOI) of measurements in 

such a CLRM approach a-priori, i.e. during the field development planning phase, to 

improve the planned history matching component of CLRM. The reasoning behind 

the a-priori VOI analysis unveils an opportunity to also improve our approach to the 

production optimization problem by anticipating the fact that additional information 

(e.g., production measurements) will become available in the future. Here, we show 

how the more conventional optimization approach can be combined with VOI con-

siderations to come up with a novel workflow, which we refer to as informed pro-

duction optimization. We illustrate the concept with a simple water flooding prob-

lem in a two-dimensional five-spot reservoir and the results obtained confirm that 

this new approach can lead to significantly better decisions in some cases.
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1 Introduction

Hydrocarbons are found trapped in the pores of subsurface reservoir rock. To exploit 

oil and gas reservoirs, wells are drilled to connect the rock formation to the surface. 

Production wells deplete the reservoir by imposing bottom-hole pressures (BHPs) 

lower than the original reservoir pressure. Injection wells are used to inject fluids 

(e.g., water or gas) at higher BHPs than the original reservoir pressure to replace the 

produced volumes and maintain the pressure of the reservoir. Together, production 

and injection wells create a pressure gradient in the reservoir that forces the fluids 

originally in-place to flow through the rock formation towards the production wells. 

As in other processes, an improved performance (i.e., recovery of hydrocarbons) can 

be achieved by designing optimal control strategies (i.e., well settings) for the sys-

tem. The flow of fluids through the reservoir involves complex (nonlinear) physi-

cal phenomena that depend on many characteristics of the reservoir system whose 

knowledge is usually very limited. Therefore, the search of production strategies for 

efficient recovery of hydrocarbons requires methods to handle the inherent uncer-

tainties, in particular geological uncertainties. In our context, reservoir management 

is the set of practices used to mitigate the effect of these uncertainties and optimize 

the reservoir performance. To achieve that, reservoir engineers and geoscientists 

rely on models to characterize the reservoir, integrating all the knowledge available. 

These models are used to simulate the reservoir response to production strategies 

and provide elements to support the important decisions to be taken.

Recent tools developed to support decision making in reservoir operations rely on 

model-based optimization and uncertainty quantification to find the best production 

strategy. Closed-loop reservoir management (CLRM) goes a step further and takes 

advantage of the frequent measurements collected throughout the reservoir produc-

ing life-time to determine the optimal set of controls (see Jansen et  al. 2005 and 

more references in the Sect. 2). This is achieved through the systematic use of life-

cycle optimization in combination with computer-assisted history matching. This 

combination provides the ability to react to the observations from the true reservoir 

(i.e., measurements gathered through the designed surveillance plan), offering the 

opportunity to benefit from the remaining flexibility of the production strategy and 

compensate for possibly wrong previous decisions, which are doomed to be subopti-

mal due to the presence of uncertainty.

A major challenge in determining the optimal production strategy arises from the 

nature of the main uncertainties inherent to the reservoir management problem. The 

geological uncertainties are endogenous (Jonsbråten 1998): they only get revealed 

at the cost of decisions. In other words, the production measurements that can help 

reducing the uncertainty can only be gathered when the field is operated, which 

requires a decision to be made (i.e., an operational strategy to be defined). In prac-

tice this means that the future state of uncertainty depends on current and previous 

decisions. Therefore, a truly optimal production strategy can only be determined by 

considering its own impact in the future measurement outcomes and their conse-

quences to the future decisions to be made under the future state of uncertainty.
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Recently, we have proposed a methodology in which the CLRM framework 

is used to assess the value of future measurements (Barros et  al. 2016a). Such 

a methodology allows one to quantify the expected value achievable with the 

improved decision making enabled by the selected surveillance plan. Thus, it can 

be used as a tool to assist operators in the design of the optimal surveillance plan 

(i.e., measurement type, location, frequency, precision,...).

In order to estimate the VOI for a given surveillance plan, we calculate the 

additional value of the future measurements in terms of the value enabled by the 

production strategies re-optimized in a closed-loop fashion with the new informa-

tion. Because it considers the availability of future information, the VOI assess-

ment framework can potentially also help eliminating the shortcoming of the 

traditional optimization approach related to the endogenous nature of the uncer-

tainties. In this paper, we therefore propose to integrate VOI considerations into 

the production optimization framework to come up with a novel workflow, which 

we refer to as informed production optimization (IPO).

In Sect. 2 we recap the key concepts for the development of our new method 

and relate to previous work addressing problems of similar nature. Next, in 

Sect. 3, we introduce the proposed workflow for the simplest application of IPO, 

showing how it builds upon the VOI assessment framework we proposed in Bar-

ros et al. (2016a). Thereafter, we illustrate it with a small case study, describing 

details of our implementation and analyzing the improved VOI results obtained 

with IPO. After that, we discuss in Sect. 4 how the methodology can be extended 

to a more general case with multiple decision stages and observation times. 

Finally, in Sect. 5, we reflect on the advantages of this new concept to optimize 

production strategies, and we suggest directions for future work.

2  Background

2.1  Closed‑loop reservoir management (CLRM)

Closed-loop reservoir management (CLRM) is a combination of frequent life-cycle 

production optimization and data assimilation (also known as computer-assisted his-

tory matching); see Fig. 1. Life-cycle optimization aims at maximizing a financial 

measure, typically net present value (NPV), over the producing life of the reservoir 

by optimizing the production strategy. This may involve well location optimization, 

or, in a more restricted setting, optimization of well rates and pressures for a given 

configuration of wells, on the basis of one or more numerical reservoir models. Data 

assimilation involves modifying the parameters of one or more reservoir models, or 

the underlying geological models, with the aim to improve their predictive capacity, 

using measured data from a potentially wide variety of sources such as production 

data or time-lapse seismic. For further information on CLRM see, e.g., (Jansen et al. 

2005, 2008, 2009; Naevdal et al. 2006; Sarma et al. 2008; Chen et al. 2009; Wang 

et al. 2009; Foss and Jensen 2011; Hou et al. 2015).
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2.2  Robust optimization

The conventional approach to optimization under geological uncertainties is the so-

called robust optimization. Robust life-cycle optimization uses one or more ensem-

bles of geological realizations (or reservoir models) to account for uncertainties and 

to determine the production strategy that maximizes a given objective function over 

the ensemble of N realizations: � = {�1,�2,… ,�
N
} , where �

i
 is a vector of model 

parameters for realization i; see, e.g., Yeten et al. (2003) or Van Essen et al. (2009). 

Typically, the objective function to be optimized is the net present value (NPV):

where �
NPV

 is the ensemble mean of the objective function values J
i
 of the indi-

vidual realizations. The objective function J
i
 for a single realization i is defined as 

usual:

where t is time, T is the producing life of the reservoir, q
o
 is the oil production rate, 

q
wp

 is the water production rate, q
wi

 is the water injection rate, r
o
 is the price of oil 

produced, r
wp

 is the cost of water produced, r
wi

 is the cost of water injected, b is 

the discount factor expressed as a fraction per year, and � is the reference time for 

discounting (typically one year). The outcome of the optimization procedure is a 

vector � containing the settings of the control variables over the producing life of the 

reservoir. More specifically, the vector �prior = [�⊤
1
�2

⊤ … �
M

⊤]⊤ comprises the 

schedule of well controls for each of the M control time intervals (typically months 

(1)JNPV = �NPV ≈
1

N

N
∑

i=1

J
i
,

(2)Ji = ∫
T

t=0

qo

(

�, t,�i

)

ro − qwp

(

�, t,�i

)

rwp − qwi

(

�, t,�i

)

rwi

(1 + b)
t

�

dt,

Fig. 1  Closed-loop reservoir management as a combination of life-cycle optimization and data assimila-

tion (Jansen et al. 2008)
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or quarters) through the entire reservoir life-cycle T (typically tens of years). Note 

that, although the optimization is based on N models, only a single strategy � is 

obtained, under the rationale that only one strategy can be implemented in reality. 

Note also that, despite being popular among CLRM practitioners, the robust opti-

mization approach presented by Van Essen et al. (2009) is only one way of dealing 

with uncertainty in production optimization. An alternative approach is to balance 

risk and return within the optimization by including well-defined risk measures or 

other utility functions in the objective function; see, e.g., Capolei et al. (2015) and 

Siraj et al. (2016).

2.3  VOI assessment in CLRM

Recently, we proposed a new methodology to assess the VOI of future measure-

ments by making use of the CLRM framework (Barros et al. 2016a). Our approach 

presented there consists of closing the loop in the design phase to simulate how 

information obtained during the producing life-time of the reservoir comes into play 

in the context of optimal reservoir management. By considering both data assimila-

tion and optimization in the procedure, we are able to not only quantify how infor-

mation changes knowledge, but also how it influences the results of decision making 

(Barros et al. 2016a). This is possible because a new production strategy is obtained 

every time the models are updated with new information, and the strategies with and 

without additional information can be compared in terms of the value of the optimi-

zation objective function (typically NPV) obtained when applying these strategies to 

a virtual asset (a synthetic truth); see the flowchart in Fig. 2. We define the VOI of 

future measurements as the additional value realized by the asset when the future 

information is utilized for the optimization of the subsequent well controls. Since we 

do not have perfect knowledge of the true asset, we use an ensemble of plausible 

truths. For a problem with M control time intervals and considering the ith plausible 

truth �i

truth
 , the baseline for VOI calculation is the value Ji

prior
 obtained without the 

future information. This involves optimization of all the well controls 

�prior = [�
⊤

prior,1
�prior,2

⊤ … �prior,M
⊤
]⊤ under the initial state of uncertainty (i.e., 

over the prior ensemble of model realizations). Note that here we consider the 

approximation presented (Barros et al. 2016a) to accelerate the procedure: although 

multiple prior ensembles are used to perform the history matching for the different 

plausible truths, a single ensemble is used to determine the strategy �prior optimal 

under initial uncertainty. Starting from this baseline, the additional value VOIi
j
 of the 

�
i
j
 measurements gathered during the jth control interval is the difference between 

the value Ji
post,j

 obtained through the re-optimization of the well controls in the sub-

sequent control time intervals �
i
post

(

tj+1 ∶ T
)

= [�i
post,j+1

⊤
�

i
post,j+2

⊤ …�
i
post,M

⊤]⊤ 

compared to the baseline value Ji

prior
 . Note that the values Ji

prior
 and Ji

post,j
 are not sta-

tistics of the ensembles used in the analysis, but the value produced by implement-

ing the strategies �prior and �i

prior
 to the plausible truth �i

truth
 . Note also that the well 

controls prior to the �
i
j
 measurements, i.e. 
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�prior

(

0 ∶ tj
)

= [�prior,1
⊤
�prior,2

⊤ …�prior,j
⊤]⊤ , are the ones determined by optimiza-

tion without future information (i.e., under initial uncertainty).

2.4  Future information and optimization

The concept of accounting for the availability of future information within the opti-

mization is not new and has been investigated for several applications in different 

scientific communities. In operations research, such an optimization problem is 

addressed from a more mathematical perspective, being referred to as stochastic pro-

gramming. Two-stage or multistage models are used to account for the sequential 

nature of the decisions, which allows the optimization to be expressed in a nested 

formulation. For more information, see Birge and Louveaux (1997), Ruszczyski and 

Shapiro (2003), Georghiou et al. (2011). In the formalism from decision and game 

theory, non-myopic decision rules are the ones where the decision makers look 

ahead and consider future information, opposed to the myopic approach in which 

the influence of current decisions on the future state of uncertainty (i.e., conditional 

posterior distributions) is ignored (Mirrokni et al. 2012). The artificial intelligence 

community refers to this class of problems as partially observable Markov decision 

Fig. 2  Workflow for VOI assessment. Accelerated procedure from Barros et al. (2016a)
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processes (POMDPs), related to applications where direct observations of the state 

of the uncertain processes are not available (Smallwood and Sondik 1973; Hauskre-

cht 2000). In these cases, the decisions are optimized not only based on their direct 

contribution to produce value but also to maximize the expected pay-off (or reward) 

of subsequent decisions (Krause and Guestrin 2007, 2009). In systems and control 

theory, the dual control introduced by Feldbaum (1960, 1961) seeks to determine 

the optimal trade-off between excitation and control to promote a more active learn-

ing from the measurements while directing the system to its optimal state. This is 

only possible through the definition of control policies that anticipate the availability 

of future measurements and their learning effect. In this respect, Van Hessem (2004) 

discussed the steps to be taken to turn the traditional open-loop MPC (i.e., model 

predictive control) methods into feedback mechanisms that know how to respond to 

future measurements. More recently, Hanssen (2017) and Hanssen et al. (2017) pro-

posed an implicit dual MPC controller that explicitly includes the feedback mecha-

nism in the optimization problem. In system identification, Forgione et  al. (2015) 

investigated the use of different model update strategies to enable batch-to-batch 

improvement in the control of industrial processes.

The main applications of these ideas are in: logistics and supply chain problems; 

network problems such as traffic control and power grids; medical decision mak-

ing; planning and scheduling. In the oil and gas upstream sector, Jonsbråten (1998) 

applied stochastic programming to drilling sequence optimization in a simplified 

setting. Goel and Grossmann (2004) used stochastic models in the planning of 

offshore gas fields with uncertainties related to the reserves, but without consider-

ing reservoir simulation models. Foss and Jensen (2011) claimed that a conscious 

exploitation of the dual effect of controls can be significant in a reservoir system 

given the typical large uncertainties, but highlighted the fact that the dual-control 

problem is unsolvable in practice. Zenith et al. (2015) investigated the use of sinu-

soidal oscillations as a means of exciting the reservoir to obtain more informative 

data during well testing, but without analyzing the influence on the subsequent 

decisions. More recently, Abreu et al. (2015) have proposed a methodology to opti-

mize under uncertainty the valve settings of smart wells considering the possibility 

of acquiring additional information in the future. Their approach uses the ideas of 

approximate dynamic programming to make the problem tractable. Hanssen (2017), 

Hanssen et al. (2017) proposed to tackle the reservoir management problem using 

closed-loop predictions to optimize control policies which account for the feedback 

mechanism instead of optimizing control sequences or set points.

3  Two-stage IPO

In the context of production optimization, the decision in question is the use of an 

optimized production strategy that maximizes the value of the asset. Despite the 

limited potential for learning due to the poor information content of typical pro-

duction measurements, the knowledge about a reservoir changes along its produc-

ing life-time. Thus determining a single production strategy by performing robust 

optimization based on the initial state of uncertainty (Van Essen et  al. 2009) is 
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equivalent to ignoring the endogenous nature of the reservoir management prob-

lem. It is a myopic approach which will likely lead to suboptimal solutions. The 

stochastic programming ideas discussed in the previous section can be a solution 

to overcome this limitation.

In this paper we present a workflow for non-myopic production optimization 

within the CLRM framework. The proposed procedure is a combination of clas-

sical stochastic programming and our previously introduced workflow for VOI 

assessment in CLRM (Barros et al. 2016a). The idea is to model the decision pro-

cess related to the reservoir management problem with the help of elements of the 

CLRM framework (i.e., ensemble-based uncertainty quantification, model-based 

optimization and computer-assisted history matching), which allows us to represent 

the sequential character of the decisions (corresponding to Markov decision process) 

while accounting for future measurement data with very limited information con-

tent. Because this approach considers future information when performing produc-

tion optimization, we name it informed production optimization (IPO).

The ultimate goal of reservoir management is to maximize the value delivered 

by the asset with the implementation of production and surveillance strategies. 

Our methodology for VOI assessment (Barros et al. 2016a) provides a framework 

to quantify the value Ji
post,j

 to be produced by the asset (here, the ith plausible 

truth) with the incorporation of future information gathered through the designed 

surveillance strategy (here, measurements collected during the jth control time 

interval). For simplicity, we initially address the case with only a single observa-

tion time. Later, we discuss how these ideas can be extended to cases with multi-

ple observation times.

In the conventional approach for production optimization, we seek to maxi-

mize the predicted objective function for the ensemble of models anticipating that 

in a closed-loop setting, once more information becomes available, we will have 

the opportunity to improve our predictive models and adjust our strategies to 

achieve the best possible Ji
post,j

 . By following this reasoning, the optimization is 

making use of the flexibility of the remaining degrees of freedom 

�
i
post

(tj+1 ∶T) = [�i
post,j+1

⊤
�

i
post,j+2

⊤ …�
i
post,M

⊤]⊤ , while the part of the strategy prior 

to the future information �prior(0∶ tj) = [�prior,1
⊤
�prior,2

⊤ …�prior,j
⊤]⊤ is deemed to 

be suboptimal. We propose here to use Ji
post,j

 as the cost function for our produc-

tion optimization problem, as a way of reflecting the true goal of reservoir man-

agement when optimizing �prior(0∶ tj) . In fact, since we consider an ensemble of 

N
truth

 equiprobable plausible truths, we still perform robust optimization and our 

new objective function is defined as

where �post,j is the ensemble mean of the objective function values Ji
post,j

 for the indi-

vidual plausible truths. The objective function Ji
post,j

 for a single realization i of the 

plausible truth is calculated according to the workflow in Fig. 2, and involves the 

(3)�post,j

(

�

(

0∶ tj
)

, tj
)

=
1

Ntruth

Ntruth
∑

i=1

Ji
post,i

(

�

(

0∶ tj
)

, �i
post

(

tj+1 ∶T
)

, tj
)

,
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solution of history matching with the future information gathered during control 

interval j and re-optimization of the production strategy for the subsequent control 

intervals �i
post

(tj+1 ∶T) . We can also see the optimization of this new cost function as 

a two-stage stochastic model or a nested optimization problem where the outer opti-

mization concerns the production strategy up to control interval j and the inner opti-

mization determines the remaining part of the strategy, which will be different for 

each one of the N
truth

 plausible truths. Thus, the IPO problem can be formulated as

where the outcome of the optimization is a single optimal production strategy 

�
IPO

(0∶ tj) until the observation time tj , and N
truth

 optimal strategies 

�
i
post

(tj+1, 2,… , T) , i = 1, 2,… , Ntruth , for the remaining producing time. The pro-

posed workflow to solve this optimization problem iteratively is displayed in Fig. 3. 

The procedure resembles the original VOI assessment workflow presented in Barros 

et al. (2016a) (Fig. 2), but contains an outer iterative loop (shown in blue) to keep 

updating the part of the production strategy prior to the observation time. The inner 

(4)�IPO

(

0∶ tj
)

= arg max
�

1

Ntruth

Ntruth
∑

i=1

Ji
post,i

(

�

(

0∶ tj
)

, �i
post

(

tj+1 ∶T
)

, tj
)

,

Fig. 3  Workflow for IPO with a single observation time
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part of the workflow (indicated in yellow) remains the same as in Fig. 2; the only 

difference being that, for the optimization problem, we are only interested in evalu-

ating the new cost function Ji
post,j

 for each plausible truth and not in computing the 

associated VOI. Note that, for the case with a single observation time, the optimiza-

tions required in this (yellow) part of the workflow reduce to the conventional robust 

optimization problem, because there are no more future measurements to be consid-

ered after tj . Therefore, the optimal strategies �i
post

(tj+1 ∶T) can be determined by 

following the conventional robust optimization approach proposed by Van Essen 

et al. (2009). Note also that, just like the VOI workflow can be simplified to quantify 

the value of clairvoyance (VOC) (Barros et  al. 2016a), the IPO procedure can be 

modified to perform optimization under the assumption that perfect revelation of the 

truth will be possible in the future.

By recommending a single �
IPO

(0∶ tj) and multiple �i
post

(tj+1 ∶T) we design a flex-

ible production strategy that accounts for the fact that we have the opportunity to 

update well controls after collecting the measurements at tj . Because we consider an 

ensemble of plausible truths, we recognize that the outcome of the future measure-

ments (or future clairvoyance) is unknown, and that the ensemble of �i
post

(tj+1 ∶T) 

controls should reflect this uncertainty in the production strategy to be implemented 

after tj . Only when we proceed with the reservoir operations (i.e., by truly imple-

menting �
IPO

(0∶ tj) ) and the actual measurements take place at tj , the uncertainty 

model can be updated and the optimal strategy to be implemented for the remaining 

time can be determined.

From the algorithmic point of view, this nested optimization can be solved just as 

any other optimization problem. The same methods used in the conventional robust 

approach apply but the cost function to be evaluated is more complex. Here, we use 

gradient-based methods for both the inner and the outer optimizations. In this set-

ting, the main challenges concern the outer optimization, in particular for the defini-

tion of the starting point and the computation of the gradient for such a complex cost 

function. We explain the details of our implementation when we describe our case 

study in Sect. 3.1.

3.1  Example

To test our approach, we used a simple two-dimensional (2D) reservoir simulation 

model with an inverted five-spot well pattern (i.e., 4 production wells placed at the 

corners of the reservoir and 1 (water) injection well placed in the middle). This 

case study follows the exact same configuration with heterogeneous permeability 

and porosity fields as the example in one of our previous papers. See Barros et al. 

(2016a) for a more detailed description. We used N
truth

= 50 plausible truths and 

N
truth

= 50 ensembles of N = 49 realizations of the porosity and permeability fields, 

conditioned to hard data in the wells, to model the geological uncertainties. The 

simulations were used to determine the set of well controls (bottom-hole pressures) 

that maximizes the NPV. The optimizations were run for a T = 1, 500-day time hori-

zon with well controls updated every 150 days, i.e. M = 10 , and, with five wells, u 

had 50 elements. We applied bound constraints to the optimization variables (200 
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bar ≤ pprod ≤ 300 bar and 300 bar ≤ pinj ≤ 500 bar). The whole exercise was per-

formed in the open-source reservoir simulator MRST (Lie et al. 2012). For the inner 

part of the IPO workflow (shown in yellow in Fig. 3), we used the same setup as 

the one used in our previous work: a CLRM environment created by combining the 

adjoint-based optimization and EnKF modules available with MRST (see Barros 

et al. 2016a).

To perform the outer optimization (shown in blue in Fig. 3), we used an imple-

mentation of the StoSAG method (Fonseca et al. 2016). The ensemble-based gradi-

ent computation was very convenient for our IPO problem, allowing us to use a 

black-box approach to obtain the gradients for the complex and expensive cost func-

tion while benefiting from the computational advantages for cases with the presence 

of uncertainties. The main difference with the use of StoSAG in a conventional pro-

duction optimization problem is that here the uncertainties are characterized by the 

ensemble of plausible truths. Thus we pair each of the Npert = 50 perturbations of 

the well controls to one of the N
truth

= 50 plausible truths and we estimate the search 

direction by an approximate linear regression of their Ji
post,j

 values. We used a stand-

ard deviation of �pert = 0.01 to generate the perturbations of the well controls. The 

starting point for the outer optimization is the solution obtained with the conven-

tional robust optimization procedure.

For this case study, we considered the availability of oil flow rate measure-

ments in the producers with absolute measurement errors ( �oil = 5 m3∕day ). 

Just like in our previous paper (Barros et  al. 2016a), the proposed workflow con-

siders a single observation time but was repeated for different observation times, 

tdata = {150, 300,… , 1350} days. After applying the IPO procedure, we computed 

the VOI for each of the nine observation times to compare with the VOI obtained 

when using conventional robust optimization. In addition to that, we repeated the 

experiments by considering future availability of clairvoyance instead of imperfect 

measurements.

Figure 4 illustrates the motivation for us to select oil rate measurements for this 

example. It compares the VOC with the value of observing total rates and water-cuts 

and the value of measuring only oil rates, all obtained by following the conventional 

optimization approach and displayed in terms of their mean values. We observe that 

the VOI of total rate and water-cut measurements is very close to the VOC, where 

the latter represents an upper bound. On the other hand, the VOI of oil rate measure-

ments is considerably lower than the VOC, which suggests that there is room for 

improvement. The low values, especially for the measurements at t
data

= 300 days, 

are related to the inability of the oil rate measurements alone to accurately provide 

information about the water breakthrough time in the producers, whose prediction is 

paramount to achieve optimal reservoir management in this example. Since our goal 

here was to verify the potential of our proposed IPO approach to enhance the value 

produced by the asset, we considered the case with oil rate measurements to be a 

more suitable case study.

Note that the high VOI of oil rate measurements at t
data

= 150 days is the excep-

tion here. This is related to the nature of the waterflooding and decision making 

(re-optimization) processes. Initially, only oil is present in the system. The injected 
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water flows slowly through the reservoir pores towards the location of the produc-

tion wells. When the water reaches the production wells (i.e., water breakthrough), 

the flow of oil starts competing with the flow of water and oil rates start being 

affected by the fraction of water. This introduces some highly nonlinear effects to the 

observed response. At t
data

= 150 days, none of the production wells has yet experi-

enced water breakthrough, so oil rate measurements provide better evidence to dis-

tinguish the model realizations than oil rate measurements at later times. Besides 

that, VOI is also a function of the timing of the measurements because a reduction 

in uncertainty early in time increases the chances of the re-optimization step effec-

tively improving the remaining well controls, which will result in additional value.

Figure 5 shows the results obtained with the IPO approach in comparison to 

those obtained when using the conventional robust optimization approach. First, 
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Fig. 4  Results for the VOI analysis of production data (2D five-spot model): expected VOC, VOI of total 

rate and water-cut measurements, and VOI of oil rate measurements
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we notice that the IPO does not improve significantly the VOC. This happens 

because, in the unrealistic case of clairvoyance, the revelation of the truth is, by 

definition, perfect, irrespective of the production strategy that is implemented 

prior to it. Thus, the gain of using the IPO approach would be more important in 

cases where the sub-optimality of �prior(0∶ tj) cannot be compensated by the re-

optimization of the remaining degrees of freedom �i
post

(tj+1 ∶T) with perfect reve-

lation of the truth, which does not seem to be the case for this example.

On the other hand, for the case with imperfect oil rate measurements, we 

observe a higher VOI for the IPO approach (Fig. 5). Note that, for the VOI cal-

culation, the values without information are identical for both approaches. This 

means that the IPO was able to determine production strategies that create more 

value when applied to the plausible truths. Besides that, this shows that there is 

indeed room to achieve improved reservoir management by accounting for the 

availability of future information when searching for the optimal well controls. 

We highlight the significant increase in VOI obtained for the measurements at 

t
data

= 300 days, resulting in an improvement of approximately $ 0.8 million.

In order to explain why the strategies determined by the IPO approach are 

better, we looked also at how they affect the information content of the meas-

urements. For that, we computed the observation impact I
GAI

 (Krymskaya et al. 

2010) and the uncertainty reduction ��
NPV

 associated with the measurements just 

like we did in one of our previous papers (Barros et  al. 2016a). Figure  6 dis-

plays these results for comparison with the VOI in Fig. 5. The observation impact 

plot indicates that the production strategies obtained with both optimization 

approaches produce oil rate measurements with similar information content, in 

terms of predicting its own outcome (i.e. observation self-sensitivity). The results 

in Fig. 6 (right) also suggest that both optimization approaches perform similarly 

in terms of producing measurements to reduce the uncertainty (spread) in NPV 

forecasts. We note, however, an increase in the uncertainty reduction obtained 

with the IPO approach for the measurements at t
data

= 300 and t
data

= 450 days, 

which is consistent with the improvement observed in terms of VOI for those 

observation times (Fig. 5).
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Figure  7 shows the production strategies obtained with both optimization 

approaches for the case considering measurements at t
data

= 300 days, which cor-

respond to the largest improvement in terms of VOI. For both approaches we 

observe a single production strategy defined until t
data

= 300 days ( �prior(0∶300) 

and �
IPO

(0∶300) ) and multiple strategies �i

post
 after that. We notice small differ-

ences between the �prior and �
IPO

 strategies but a reasonable difference in the 

range of the �i

post
 strategies. Thus, for this example, small changes in �prior seem to 

have a significant impact on the optimization of the remaining controls �i

post
.

The re-optimization of �i

post
 is performed over the posterior ensembles which 

will differ in both optimization approaches because the outcome of the measure-

ments gathered at t
data

= 300 days correspond to the response of the true reser-

voirs �i

truth
 to different well controls �prior(0∶300) and �

IPO
(0∶300) . The fact that 

the �i

post
 derived with IPO are more scattered than in conventional optimization 

indicates that IPO enabled the re-optimization step to better exploit the available 

flexibility of the remaining degrees of freedom, thus unlocking more value.

We conclude that, for this example, the increase in VOI due to the IPO 

approach can be partially attributed to the ability of the improved production 

strategies to yield measurements that result in additional uncertainty reduction 

in terms of the quantity of interest (NPV). Nevertheless, there seem to be other 

effects that enable the IPO strategies to perform better for the plausible truths. 

This could be related to an enhanced controllability of the reservoir states once 

the measurements reveal some of the initial uncertainty. Overall, these results 

suggest that, when relying on measurements with limited information content, 

wrong reservoir management decisions cannot be entirely compensated by re-

optimizing the subsequent decisions. In such cases, an approach which is merely 
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Fig. 7  Production strategies obtained for oil rate measurements at t
data

= 300 days (2D five-spot model): 

conventional optimization (left) and IPO (right)
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reactive to measurements is more likely to result in poorer decisions than an 

approach that anticipates the availability of future information.

4  Multistage IPO

The results of the example above show that the IPO approach can be valuable for 

cases with imperfect measurements. However, the procedure depicted in Fig. 3 only 

addresses the case considering a single observation time, which is not realistic for 

well production measurements. Therefore, we discuss here what can be done to 

apply the same reasoning in problems with multiple observation times.

In another of our previous papers (Barros et al. 2015), we showed how our origi-

nal methodology for VOI assessment can be modified to account for multiple obser-

vation times. We demonstrated that, contrary to what one would expect, the com-

putational costs of assessing the value of multiple measurements do not increase 

beyond reasonable levels. The reason is that, although one might think that we need 

to consider new additional plausible truths for every observation time, this is not 

necessary. Once a realization of the initial ensemble is picked to be the plausible 

truth, the same realization plays the role of truth and the loop is closed as many 

times as the number of observation times, because that is the only way of ensuring 

consistency of the synthetic future measurements that we need to generate in order 

to assess their VOI. Thus, the computational costs of assessing the VOI for multiple 

observation times is the same as those of the VOI assessment for a single observa-

tion time repeated for different observation times, just like what was done in the 

example above.

Unfortunately, the extension of IPO to cases with multiple observation times is 

not that simple. In VOI assessment only, the plausible truths are not directly involved 

in the optimization, but they do play a role in the IPO. Thus, sticking to one of the 

realizations as the plausible truth throughout all the observation times would imply 

that we can identify the truth with the measurements obtained at the first observa-

tion time, which corresponds to the availability of clairvoyance. Since we are deal-

ing with imperfect measurements, in order to be realistic, we need to update the 

uncertainty model given by our ensemble of plausible truths. This means that, in 

principle, the size of the problem grows exponentially with the number of observa-

tion times considered, if it is to be solved rigorously. In other words, the number of 

branches on the scenario tree associated with the problem would be multiplied for 

every new observation. Figure  8 displays a decision tree for a problem with four 

observation times where the uncertainty is represented by three new plausible truths 

each time. We notice the rapid increase in the number of scenarios, which would 

be even more dramatic if we consider tens of plausible truths and more observation 

times.

Given the already prohibitive computational costs of VOI assessment, it is safe to 

say that the rigorous solution of this scenario tree is not feasible for problems rely-

ing on reservoir simulation models. Gupta and Grossmann (2011) and Tarhan et al. 

(2013) have proposed strategies to solve multistage stochastic programming models 
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more efficiently through approximate solutions involving decomposition and con-

straint relaxation methods.

Here, we propose to use a more intuitive approach to simplify this problem. The 

first branching before t
1
 is the most important one, as it introduces the different plau-

sible truths that will be used to generate the synthetic measurements and to evaluate 

the performance of the production strategies derived. The second branching before 

t
2
 is also important because it establishes that the respective plausible truth is not 

perfectly revealed by the imperfect observations made at t
1
 . However, the branching 

events associated with the remaining observation times are of smaller importance, 

because the one at t
2
 already guarantees that there are always multiple branches 

below each plausible truth, reflecting the fact that at any time the uncertainty around 

the plausible truths is never revealed through unrealistic clairvoyance. This allows 

us to prune the scenario tree and reduce the size of the problem to be solved for IPO 

with multiple observation times. Figure 9 shows the pruned scenario tree. Note that 

after t
2
 the number of branches does not increase, which means that, by applying this 

pruning strategy, we can obtain approximate solutions for three-stage and M-stage 

stochastic problem at similar computational costs.

To put this idea into practice and extend the two-stage IPO (Fig. 3) to M-stage 

IPO (with M−1 observation times), we need to make a few changes in the workflow. 

Figure 10 depicts the modified procedure. First, we introduce an additional ensem-

ble of N
truth

 truths �i

truth
 for each one of the original plausible truths �i

truth
 of our 

initial ensemble �
truth

 . This corresponds to the second branching of the scenario 

tree before t
2
 (Fig. 9). From there on, the tree does not develop new branches but, for 

every observation time, �i

truth
 is updated through history matching of the synthetic 

measurements generated with �i

truth
 . After the last observation, we derive the 

Fig. 8  Full plausible truth scenario tree for rigorous solution of IPO with four observation times and 

ensembles of three realizations

Fig. 9  Pruned plausible truth scenario tree for approximate solution of IPO with four observation times 

and ensembles of three realizations
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posterior ensemble of truths �i

truth,M−1
= {�

i,1

truth
,�

i,2

truth
,… ,�

i,Ntruth−1

truth
} and we reach 

the last decision stage. Like for the two-stage IPO (Fig. 3), the decisions in the last 

stage are optimized following the conventional robust optimization approach. We 

use the posterior truths �
i,j

truth
 to generate synthetic measurements and derive the 

posterior ensembles �
i,j

post,M−1
 through history matching. And finally we perform 

robust optimization over �
i,j

post,M−1
 . Because we do not introduce additional truth 

scenarios after the second stage, the nested optimization can group the intermediate 

stages into a single one. Thus, the M-stage IPO reduces to a nested optimization at 

three levels: the outer optimization (shown in blue in Fig. 10), the intermediate opti-

mization (in yellow) and the inner optimization (in purple). In the end, the produc-

tion strategies obtained ( �post

(

0∶ t1

)

 , �i

post

(

t1 ∶ t
M−1

)

 and �
i,j

post

(

tM−1 ∶T
)

 ) are applied 

to the respective original plausible truth �i

truth
 . We calculate their performances J

i,j

post
 

in terms of our objective function and, finally, we compute the cost function as the 

mean over all the realizations. Thus, the M-stage IPO problem can be formulated as

(5)

�IPO

(

0∶ t1
)

= arg max
�

=
1

(

Ntruth

)2

Ntruth
∑

i=1

Ntruth
∑

j=1

J
i,j

post,j

(

�

(

0∶ t1
)

, �i
post

(

t1 ∶ tM−1

)

, �
i,j

post

(

tM−1 ∶T
)

, t1
)

,

Fig. 10  Workflow for IPO with multiple observation times
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where the outcome of the optimization is a single optimal production strategy 

�
IPO

(

0∶ t
1

)

 until the first observation time t
1
 , N

truth
 optimal strategies �i

post

(

t1 ∶ t
M−1

)

 , 

i = 1, 2,… , Ntruth , for the period between the first and the last observation, and 

N
truth

2 optimal strategies �
i,j

post

(

tM−1 ∶T
)

 , i = 1, 2,… , Ntruth , j = 1, 2,… , Ntruth , for 

the remaining producing time.

The M-stage IPO workflow can be realized in a similar implementation as the one 

described for our case study. The inner optimization can be performed with the help 

of the adjoint-based gradients, while the intermediate and outer optimizations can 

make use of the StoSAG method to estimate the required gradients.

4.1  Example

To test the IPO approach with multiple observation times, we used again the 2D 

five-spot example, but with a small modification: instead of M = 10 , we consid-

ered M = 3 control time intervals. We assumed oil production measurements to be 

available at tdata = {500, 1000} days, with the same measurement error as before. 

In order to make the problem more tractable, we used the acceleration measures 

presented in Barros et al. (2016b), and we reduced the number of plausible truths to 

N
repr

truth
= 10 representative ones and the size of the ensembles for robust optimization 

to Nrepr = 5 . The history matching step with the EnKF was performed over the full 

ensembles.

Figure  11 displays the VOI of the multiple oil rate measurements obtained 

through the procedure from Barros et  al. (2015) with the conventional optimiza-

tion approach. Figure 11 (bottom) shows that the VOI for the last observation time 

( t
data

= 1000 days) is significant lower than the VOC, which suggests that there 

might be scope to improve them with the IPO approach. Thus, the goal of the IPO 

here can be understood as an optimization of the VOI at t
data

= 1000 days, by maxi-

mizing the J
i,j

post
 achievable through the CLRM framework with the measurements at 

tdata = {500, 1000} days.

Figure 12 displays the results obtained in terms of the NPV achieved by the plau-

sible truths. Figure 12 (left) compares the mean NPV for different cases: in red, we 

have the value attained by the production strategies optimized under prior uncer-

tainty; in blue and in black, the NPV values corresponding to the VOI and VOC 

at t
data

= 1000 days (Fig.  11); and, in green, the value for the IPO approach. We 

observe an improvement of approximately $ 55,000 for the mean NPV achieved 

with the IPO (green) in comparison with the mean NPV for the CLRM using the 

conventional optimization approach, which represents an increase of 0.1%, or of 

4% if expressed in terms of VOI. We note that the incremental gain is small but 

should be understood as an attempt to improve a solution already close to optimal 

for this example. This suggests that, in this example with more observations, the 

CLRM framework with the conventional optimization approach was able to suffi-

ciently compensate for previous suboptimal decisions, resulting in production strate-

gies almost as good as the ones determined through IPO.

Figure 12 (right) depicts the same results but showing the empirical probability 

distribution function (pdf) curves derived with the NPV of the N
repr

truth
 = 10 plausible 
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truths considered. The differences between the curves for the CLRM and IPO are 

small. However, the distribution for the IPO approach seems to achieve higher val-

ues at its peak, which suggests a reduction in the spread of the NPV values. Note 

that the pdf curves displayed here are the result of curve fitting with a small num-

ber of samples ( N
repr

truth
= 10 ), but that the empirical histograms exhibit similar trends 

(Fig. 12 (bottom)).

Figure 13 shows the production strategies determined by the different approaches 

compared in Fig. 12. A single production strategy �prior(0∶500) is derived for the 

conventional robust optimization approach. On the other extreme, a different opti-

mal strategy is determined for each of the N
repr

truth
= 10 plausible truths considered, 

under the assumption of clairvoyance at t = 0 . In between, for the CLRM, the solu-

tions obtained consist of the same single strategy as �prior(0∶500) for the first con-

trol time interval, and N
repr

truth
= 10 different strategies �i

post
(500∶1500) for the remain-

ing of the time. Finally, we see the outcome of the IPO for this three-stage problem: 

a single optimal production strategy �
IPO(0∶500) until the first observation time 

t
1
= 500 days, N

repr

truth
= 10 optimal strategies �i

post
(500∶1000) , i = 1, 2,… , N

repr

truth
 , for 

the period between t
1
= 500 and t2 = 1, 000 days, and 

(

N
repr

truth

)2
= 100 optimal strate-

gies �
i,j

post(1000∶1500) , i = 1, 2,… , N
repr

truth
, j = 1, 2,… , N

repr

truth
 , from t2 = 1, 000 until 

T = 1, 500 days. The larger number of possibilities associated with future control 

time intervals allows the IPO strategies to account for the flexibility of the reservoir 

management problem. We also note that �
IPO(0∶500) is not the same as 
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Fig. 11  Results for the VOI analysis with the conventional robust optimization (2D five-spot model with 

M = 3 control time intervals)
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�prior(0∶500) and that the difference between them enables the IPO approach to 

result in improved NPV values, as seen in Fig. 12.

5  Discussion and conclusions

We have proposed a new approach for production optimization under geologi-

cal uncertainty. The informed production optimization (IPO) approach consid-

ers the endogenous nature of these uncertainties and includes the availability of 

future information to circumvent the limitations of the conventional robust opti-

mization. To achieve this, the approach accounts for the fact that there is uncer-

tainty about the optimal well settings to be implemented after additional meas-

urements are processed in the future, and that this uncertainty depends on the 

outcome of these measurements. As a consequence, we perform robust IPO over 

an ensemble of plausible truths resulting in a single optimal production strategy 

until the moment that future measurements take place and a range of optimal 

production strategies for the period after them. We applied IPO to a simple case 

study, which resulted in a significant increase of the VOI obtained from imperfect 

measurements, reflecting the improvement in the production optimization. After 

demonstrating the potential value of the IPO approach for a case with a single 

prior CLRM IPO clairvoyance
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observation time, we discussed how it can be extended to situations with multiple 

observation times and we applied it to the same simple example in a three-stage 

decision problem. The improvements achieved were more modest, which sug-

gests that, with more measurements, the CLRM framework with the conventional 

optimization approach was able to make up for previous suboptimal decisions, at 

least for this example. Based on the results of these examples, we conclude that 

IPO can improve the way we approach the reservoir management problem, espe-

cially in situations where wrong decisions cannot be entirely compensated by the 

remaining degrees of freedom in the control problem.

0 300 600 900 1200 1500

Time (days)

200

220

240

260

280

300

B
H

P
 (

b
a

r)

0 300 600 900 1200 1500

Time (days)

200

220

240

260

280

300

B
H

P
 (

b
a

r)

0 300 600 900 1200 1500

Time (days)

200

220

240

260

280

300

B
H

P
 (

b
a

r)

0 300 600 900 1200 1500

Time (days)

200

220

240

260

280

300

B
H

P
 (

b
a

r)

0 300 600 900 1200 1500

Time (days)

300

350

400

450

500

B
H

P
 (

b
a

r)

0 300 600 900 1200 1500

Time (days)

200

220

240

260

280

300

B
H

P
 (

b
a

r)

0 300 600 900 1200 1500

Time (days)

200

220

240

260

280

300

B
H

P
 (

b
a

r)

0 300 600 900 1200 1500

Time (days)

200

220

240

260

280

300

B
H

P
 (

b
a

r)

0 300 600 900 1200 1500

Time (days)

200

220

240

260

280

300

B
H

P
 (

b
a

r)

0 300 600 900 1200 1500

Time (days)

300

350

400

450

500

B
H

P
 (

b
a

r)

0 300 600 900 1200 1500

Time (days)

200

220

240

260

280

300

B
H

P
 (

b
a

r)

0 300 600 900 1200 1500

Time (days)

200

220

240

260

280

300

B
H

P
 (

b
a

r)

0 300 600 900 1200 1500

Time (days)

200

220

240

260

280

300

B
H

P
 (

b
a

r)

0 300 600 900 1200 1500

Time (days)

200

220

240

260

280

300

B
H

P
 (

b
a

r)

0 300 600 900 1200 1500

Time (days)

300

350

400

450

500

B
H

P
 (

b
a

r)

0 300 600 900 1200 1500

Time (days)

200

220

240

260

280

300

B
H

P
 (

b
a

r)

0 300 600 900 1200 1500

Time (days)

200

220

240

260

280

300

B
H

P
 (

b
a

r)

0 300 600 900 1200 1500

Time (days)

200

220

240

260

280

300

B
H

P
 (

b
a

r)

0 300 600 900 1200 1500

Time (days)

200

220

240

260

280

300

B
H

P
 (

b
a

r)

0 300 600 900 1200 1500

Time (days)

300

350

400

450

500

B
H

P
 (

b
a

r)

Fig. 13  Optimal production strategies for the plausible truths considered (2D five-spot model with M = 3 

control time intervals): optimized under prior uncertainty (top left); obtained through CLRM with addi-

tional production measurements (top right); determined by the IPO approach with future production 

measurements (bottom left); optimized under the assumption of clairvoyance available at t = 0 (bottom 

right)
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An important point that has not been addressed in this work concerns the gen-

eration of future synthetic measurements and, in particular, the contribution of the 

measurement noise. Here we assumed white noise with a pre-defined standard devi-

ation to be added to the simulated measurements, but, in practice, other choices may 

be more appropriate. Although, in most of the cases, small when compared to the 

geological uncertainties, this noise contribution may have an impact on the results 

obtained with the proposed IPO approach. Further research is required for a better 

understanding of its impact.

Another point for future work concerns the computational costs of such an 

approach, which are comparable or higher than those of VOI assessment workflows. 

The IPO ideas only make sense if uncertainty quantification is addressed carefully, 

and this may require a prohibitive amount of reservoir simulations. For example, 

in the results for two-stage IPO (Fig. 5), the IPO workflow required approximately 

0.5 − 1 × 106 (forward and backward) reservoir simulations for each t
data

 (depend-

ing on how many iterations of the outer optimization are performed), compared to 

approximately 0.1 × 10
6 simulations for the VOI assessment workflow from Bar-

ros et  al. (2016a). In order to be useful, the IPO needs to be tractable. In one of 

our previous papers (Barros et al. 2016b) we managed to reduce the number of res-

ervoir simulations required in VOI workflows by selecting representative models, 

a solution that can also be applied here. Besides that, the use of proxy models or 

multiscale methods may help to further reduce the number of high-fidelity reser-

voir simulations needed and make the IPO procedure more practical. Still regard-

ing the tractability of the problem, the procedure we proposed here to extend the 

IPO approach to cases with multiple observation times represents an approximation 

of the full multistage stochastic model. There may be other solutions to prune the 

decision tree and effectively reduce the problem to fewer relevant scenarios, as, e.g., 

suggested by Gupta and Grossmann (2011) and Tarhan et al. (2013). Therefore, also 

in this direction there is scope for future research.
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