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Abstract— Rapidly-exploring random trees (RRTs) are pop-
ular in motion planning because they find solutions efficiently
to single-query problems. Optimal RRTs (RRT*s) extend RRTs
to the problem of finding the optimal solution, but in doing so
asymptotically find the optimal path from the initial state to
every state in the planning domain. This behaviour is not only
inefficient but also inconsistent with their single-query nature.

For problems seeking to minimize path length, the subset
of states that can improve a solution can be described by a
prolate hyperspheroid. We show that unless this subset is sam-
pled directly, the probability of improving a solution becomes
arbitrarily small in large worlds or high state dimensions. In
this paper, we present an exact method to focus the search by
directly sampling this subset.

The advantages of the presented sampling technique are
demonstrated with a new algorithm, Informed RRT*. This
method retains the same probabilistic guarantees on complete-
ness and optimality as RRT* while improving the convergence
rate and final solution quality. We present the algorithm as a
simple modification to RRT* that could be further extended
by more advanced path-planning algorithms. We show exper-
imentally that it outperforms RRT* in rate of convergence,
final solution cost, and ability to find difficult passages while
demonstrating less dependence on the state dimension and
range of the planning problem.

I. INTRODUCTION

The motion-planning problem is commonly solved by

first discretizing the continuous state space with either a

grid for graph-based searches or through random sampling

for stochastic incremental searches. Graph-based searches,

such as A* [1], are often resolution complete and resolution

optimal. They are guaranteed to find the optimal solution,

if a solution exists, and return failure otherwise (up to the

resolution of the discretization). These graph-based algorithms

do not scale well with problem size (e.g., state dimension or

problem range).

Stochastic searches, such as Rapidly-exploring Random

Trees (RRTs) [2], Probabilistic Roadmaps (PRMs) [3], and

Expansive Space Trees (ESTs) [4], use sampling-based

methods to avoid requiring a discretization of the state space.

This allows them to scale more effectively with problem size

and to directly consider kinodynamic constraints; however,

the result is a less-strict completeness guarantee. RRTs are

probabilistically complete, guaranteeing that the probability

of finding a solution, if one exists, approaches unity as the

number of iterations approaches infinity.
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Fig. 1. Solutions of equivalent cost found by RRT* and Informed RRT* on
a random world. After an initial solution is found, Informed RRT* focuses
the search on an ellipsoidal informed subset of the state space, X

f̂
⊆ X ,

that contains all the states that can improve the current solution regardless
of homotopy class. This allows Informed RRT* to find a better solution
faster than RRT* without requiring any additional user-tuned parameters.

Until recently, these sampling-based algorithms made no

claims about the optimality of the solution. Urmson and

Simmons [5] had found that using a heuristic to bias sampling

improved RRT solutions, but did not formally quantify the

effects. Ferguson and Stentz [6] recognized that the length

of a solution bounds the possible improvements from above,

and demonstrated an iterative anytime RRT method to solve

a series of subsequently smaller planning problems. Karaman

and Frazzoli [7] later showed that RRTs return a suboptimal

path with probability one, demonstrating that all RRT-based

methods will almost surely be suboptimal and presented a new

class of optimal planners. They named their optimal variants

of RRTs and PRMs, RRT* and PRM*, respectively. These

algorithms are shown to be asymptotically optimal, with the

probability of finding the optimal solution approaching unity

as the number of iterations approaches infinity.

RRTs are not asymptotically optimal because the existing

state graph biases future expansion. RRT* overcomes this

by introducing incremental rewiring of the graph. New

states are not only added to a tree, but also considered as

replacement parents for existing nearby states in the tree.

With uniform global sampling, this results in an algorithm

that asymptotically finds the optimal solution to the planning

problem by asymptotically finding the optimal paths from

the initial state to every state in the problem domain. This

is inconsistent with their single-query nature and becomes

expensive in high dimensions.

In this paper, we present the focused optimal planning

problem as it relates to the minimization of path length in

Rn. For such problems, a necessary condition to improve

the solution at any iteration is the addition of states from
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Fig. 2. The solution cost versus computational time for RRT* and Informed RRT* on a random world problem. Both planners were run until they found a
solution of the same cost. Figs. (a, c) show the final result, while Fig. (b) shows the solution cost versus computational time. From Fig. (a), it can be
observed that RRT* spends significant computational resources exploring regions of the planning problem that cannot possibly improve the current solution,
while Fig. (c) demonstrates how Informed RRT* focuses the search. .

an ellipsoidal subset of the planning domain [6], [8]–[10].

We show that the probability of adding such states through

uniform sampling becomes arbitrarily small as the size of the

planning problem increases or the solution approaches the

theoretical minimum, and present an exact method to sample

the ellipsoidal subset directly. It is also shown that with

strict assumptions (i.e., no obstacles) that this direct sampling

results in linear convergence to the optimal solution.

This direct-sampling method allows for the creation of

informed-sampling planners. Such a planner, Informed RRT*,

is presented to demonstrate the advantages of informed

incremental search (Fig. 1). Informed RRT* behaves as RRT*

until a first solution is found, after which it only samples

from the subset of states defined by an admissible heuristic to

possibly improve the solution. This subset implicitly balances

exploitation versus exploration and requires no additional

tuning (i.e., there are no additional parameters) or assumptions

(i.e., all relevant homotopy classes are searched). While

heuristics may not always improve the search, their promi-

nence in real-world planning demonstrates their practicality.

In situations where they provide no additional information

(e.g., when the informed subset includes the entire planning

problem), Informed RRT* is equivalent to RRT*.

Informed RRT* is a simple modification to RRT* that

demonstrates a clear improvement. In simulation, it performs

as well as existing RRT* algorithms on simple configurations,

and demonstrates order-of-magnitude improvements as the

configurations become more difficult (Fig. 2). As a result of

its focused search, the algorithm has less dependence on the

dimension and domain of the planning problem as well as

the ability to find better topologically distinct paths sooner. It

is also capable of finding solutions within tighter tolerances

of the optimum than RRT* with equivalent computation, and

in the absence of obstacles can find the optimal solution to

within machine zero in finite time (Fig. 3). It could also

be used in combination with other algorithms, such as path-

smoothing, to further reduce the search space.

The remainder of this paper is organized as follows.

Section II presents a formal definition of the focused op-

timal planning problem and reviews the existing literature.

Section III presents a closed-form estimate of the subset of

states that can improve a solution for problems seeking to

minimize path length in Rn and analyzes the implications

on RRT*-style algorithms. Section IV presents a method to

sample this subset directly. Section V presents the Informed

RRT* algorithm and Section VI presents simulation results

comparing RRT* and Informed RRT* on simple planning

problems of various size and configuration and random

problems of various dimension. Section VII concludes the

paper with a discussion of the technique and some related

ongoing work.

II. BACKGROUND

A. Problem Definition

We define the optimal planning problem similarly to [7].

Let X ⊆ Rn be the state space of the planning problem.

Let Xobs ( X be the states in collision with obstacles and

Xfree = X \Xobs be the resulting set of permissible states.

Let xstart ∈ Xfree be the initial state and xgoal ∈ Xfree be

the desired final state. Let σ : [0, 1] 7→ X be a sequence of

states (a path) and Σ be the set of all nontrivial paths.

The optimal planning problem is then formally defined

as the search for the path, σ∗, that minimizes a given cost

function, c : Σ 7→ R≥0, while connecting xstart to xgoal

through free space,

σ∗ = argmin
σ∈Σ

{c (σ) | σ(0) = xstart, σ(1) = xgoal,

∀s ∈ [0, 1] , σ (s) ∈ Xfree} ,
where R≥0 is the set of non-negative real numbers.

Let f (x) be the cost of an optimal path from xstart to xgoal

constrained to pass through x. Then the subset of states that

can improve the current solution, Xf ⊆ X , can be expressed

in terms of the current solution cost, cbest,

Xf = {x ∈ X | f (x) < cbest} . (1)

The problem of focusing RRT*’s search in order to increase

the convergence rate is equivalent to increasing the probability

of adding a random state from Xf .

As f (·) is generally unknown, a heuristic function, f̂ (·),
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59 iterations, cbest = 148.24 175 iterations, cbest = 107.12 1142 iterations, cbest = 100
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After an initial solution is found all
possible improvements lie within an
ellipse.

As the solution is improved the area of
the ellipse decreases.

In the absence of obstacles the
ellipse degenerates to a line.

Fig. 3. Informed RRT* converging to within machine zero of the optimum in the absence of obstacles. The start and goal states are shown as green and
red, respectively, and are 100 units apart. The current solution is highlighted in magenta, and the ellipsoidal sampling domain, X

f̂
, is shown as a grey

dashed line for illustration. Improving the solution decreases the size of the sampling domain, creating a feedback effect that converges to within machine
zero of the theoretical minimum. Fig. (a) shows the first solution at 59 iterations, (b) after 175 iterations, and (c), the final solution after 1142 iterations, at
which point the ellipse has degenerated to a line between the start and goal.

may be used as an estimate. This heuristic is referred to as

admissible if it never overestimates the true cost of the path,

i.e., ∀x ∈ X, f̂ (x) ≤ f (x). An estimate of Xf , X
f̂

, can

then be defined analogously to (1). For admissible heuristics,

this estimate is guaranteed to completely contain the true set,

X
f̂
⊇ Xf , and thus inclusion in the estimated set is also a

necessary condition to improving the current solution.

B. Prior Work

Prior work to focus RRT and RRT* has relied on sample

biasing, heuristic-based sample rejection, heuristic-based

graph pruning, and/or iterative searches.

1) Sample Biasing: Sample biasing attempts to increase

the frequency that states are sampled from Xf by biasing the

distribution of samples drawn from X . This continues to add

states from outside of Xf that cannot improve the solution. It

also results in a nonuniform density over the problem being

searched, violating a key RRT* assumption.

a) Heuristic-biased Sampling: Heuristic-biased sam-

pling attempts to increase the probability of sampling Xf

by weighting the sampling of X with a heuristic estimate of

each state. It is used to improve the quality of a regular RRT

by Urmson and Simmons [5] in the Heuristically Guided

RRT (hRRT) by selecting states with a probability inversely

proportional to their heuristic cost. The hRRT was shown to

find better solutions than RRT; however, the use of RRTs

means that the solution is almost surely suboptimal [7].

Kiesel et al. [11] use a two-stage process to create an RRT*

heuristic in their f-biasing technique. A coarse abstraction of

the planning problem is initially solved to provide a heuristic

cost for each discrete state. RRT* then samples new states

by randomly selecting a discrete state and sampling inside it

with a continuous uniform distribution. The discrete sampling

is biased such that states belonging to the abstracted solution

have the highest probability of selection. This technique

provides a heuristic bias for the full duration of the RRT*

algorithm; however, to account for the discrete abstraction it

maintains a nonzero probability of selecting every state. As

a result, states that cannot improve the current solution are

still sampled.

b) Path Biasing: Path-biased sampling attempts to

increase the frequency of sampling Xf by sampling around

the current solution path. This assumes that the current

solution is either homotopic to the optimum or separated

only by small obstacles. As this assumption is not generally

true, path-biasing algorithms must also continue to sample

globally to avoid local optima. The ratio of these two sampling

methods is frequently a user-tuned parameter.

Alterovitz et al. [12] use path biasing to develop the

Rapidly-exploring Roadmap (RRM). Once an initial solution

is found, each iteration of the RRM either samples a new

state or selects an existing state from the current solution and

refines it. Path refinement occurs by connecting the selected

state to its neighbours resulting in a graph instead of a tree.

Akgun and Stilman [13] use path biasing in their dual-

tree version of RRT*. Once an initial solution is found, the

algorithm spends a user-specified percentage of its iterations

refining the current solution. It does this by randomly selecting

a state from the solution path and then explicitly sampling

from its Voronoi region. This increases the probability of

improving the current path at the expense of exploring other

homotopy classes. Their algorithm also employs sample

rejection in exploring the state space (Section II-B.2).

Nasir et al. [14] combine path biasing with smoothing in

their RRT*-Smart algorithm. When a solution is found, RRT*-

Smart first smooths and reduces the path to its minimum

number of states before using these states as biases for further

sampling. This adds the complexity of a path-smoothing

algorithm to the planner while still requiring global sampling

to avoid local optima. While the path smoothing quickly

reduces the cost of the current solution, it may also reduce the

probability of finding a different homotopy class by removing

the number of bias points about which samples are drawn

and further violates the RRT* assumption of uniform density.

Kim et al. [15] use a visibility analysis to generate an initial

bias in their Cloud RRT* algorithm. This bias is updated as a

solution is found to further concentrate sampling near the path.

2) Heuristic-based Sample Rejection: Heuristic-based

sample rejection attempts to increase the real-time rate of

sampling Xf by using rejection sampling on X to sample
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X
f̂

. Samples drawn from a larger distribution are either

kept or rejected based on their heuristic value. Akgun and

Stilman [13] use such a technique in their algorithm. While

this is computationally inexpensive for a single iteration, the

number of iterations necessary to find a single state in X
f̂

is

proportional to its size relative to the sampling domain. This

becomes nontrivial as the solution approaches the theoretical

minimum or the planning domain grows.

Otte and Correll [8] draw samples from a subset of the

planning domain in their parallelized C-FOREST algorithm.

This subset is defined as the hyperrectangle that bounds the

prolate hyperspheroidal informed subset. While this improves

the performance of sample rejection, its utility decreases as

the dimension of the problem increases (Remark 2).

3) Graph Pruning: Graph pruning attempts to increase the

real-time exploration of Xf by using a heuristic function

to limit the graph to X
f̂

. States in the planning graph

with a heuristic cost greater than the current solution are

periodically removed while global sampling is continued.

The space-filling nature of RRTs biases the expansion of the

pruned graph towards the perimeter of X
f̂

. After the subset

is filled, only samples from within X
f̂

itself can add new

states to the graph. In this way, graph pruning becomes a

rejection-sampling method after greedily filling the target

subset. As adding a new state to an RRT requires a call to

a nearest-neighbour algorithm, graph pruning will be more

computationally expensive than simple sample rejection while

still suffering from the same probabilistic limitations.

Karaman et al. [16] use graph pruning to implement an

anytime version of RRT* that improves solutions during

execution. They use the current vertex cost plus a heuristic

estimate of the cost from the vertex to the goal to periodically

remove states from the tree that cannot improve the current

solution. As RRT* asymptotically approaches the optimal

cost of a vertex from above, this is an inadmissible heuristic

for the cost of a solution through a vertex (Section III). This

can overestimate the heuristic cost of a vertex resulting in

erroneous removal, especially early in the algorithm when the

tree is coarse. Jordan and Perez [17] use the same inadmissible

heuristic in their bidirectional RRT* algorithm.

Arslan and Tsiotras [18] use a graph structure and lifelong

planning A* (LPA*) [19] techniques in the RRT# algorithm

to prune the existing graph. Each existing state is given a

LPA*-style key that is updated after the addition of each new

state. Only keys that are less than the current best solution are

updated, and only up-to-date keys are available for connection

with newly drawn samples.

4) Anytime RRTs: Ferguson and Stentz [6] recognized

that a solution bounds the subset of states that can provide

further improvement from above. Their iterative RRT method,

Anytime RRTs, solves a series of independent planning

problems whose domains are defined by the previous solution.

They represent these domains as ellipses [6, Fig. 2], but do

not discuss how to generate samples. Restricting the planning

domain encourages each RRT to find a better solution than

the previous; however, to do so they must discard the states

already found in X
f̂

.

The algorithm presented in this paper calculates X
f̂

xstart xgoal

cbest

√

c
2
best − c

2
min

cmin

Fig. 4. The heuristic sampling domain, X
f̂

, for a R2 problem seeking to

minimize path length is an ellipse with the initial state, xstart, and the goal
state, xgoal as focal points. The shape of the ellipse depends on both the
initial and goal states, the theoretical minimum cost between the two, cmin,
and the cost of the best solution found to date, cbest. The eccentricity of
the ellipse is given by cmin/cbest.

explicitly and samples from it directly. Unlike path biasing

it makes no assumptions about the homotopy class of the

optimum and unlike heuristic biasing does not explore states

that cannot improve the solution. As it is based on RRT*,

it is able to keep all states found in X
f̂

for the duration of

the search, unlike Anytime RRTs. By sampling X
f̂

directly,

it always samples potential improvements regardless of the

relative size of X
f̂

to X . This allows it to work effectively

regardless of the size of the planning problem or the relative

cost of the current solution to the theoretical minimum,

unlike sample rejection and graph pruning methods. In

problems where the heuristic does not provide any additional

information, it performs identically to RRT*.

III. ANALYSIS OF THE ELLIPSOIDAL INFORMED SUBSET

Given a positive cost function, the cost of an optimal path

from xstart to xgoal constrained to pass through x ∈ X ,

f (x), is equal to the cost of the optimal path from xstart to

x, g (x), plus the cost of the optimal path from x to xgoal,

h (x). As RRT*-based algorithms asymptotically approach

the optimal path to every state from above, an admissible

heuristic estimate, f̂ (·), must estimate both these terms. A

sufficient condition for admissibility is that the components,

ĝ (·) and ĥ (·), are individually admissible heuristics of g (·)
and h (·), respectively.

For problems seeking to minimize path length in Rn,

Euclidean distance is an admissible heuristic for both terms

(even with motion constraints). This informed subset of states

that may improve the current solution, X
f̂
⊇ Xf , can then be

expressed in closed form in terms of the cost of the current

solution, cbest, as

X
f̂
=

{
x ∈ X

∣∣ ||xstart − x||2 + ||x− xgoal||2 ≤ cbest
}
,

which is the general equation of an n-dimensional prolate

hyperspheroid (i.e., a special hyperellipsoid). The focal points

are xstart and xgoal, the transverse diameter is cbest, and the

conjugate diameters are
√
c2best − c2min (Fig. 4).

Admissibility of f̂ (·) makes adding a state in X
f̂

a

necessary condition to improve the solution. With the space-

filling nature of RRT, the probability of adding such a state

quickly becomes the probability of sampling such a state1.

Thus, the probability of improving the solution at any iteration

by uniformly sampling a larger subset, xi+1 ∼ U (Xs) , Xs ⊇
1States may be added to X

f̂
with a sample from outside the subset until

it is filled to within the RRT growth-limiting parameter, η, of its boundary.

3000



X
f̂

, is less than or equal to the ratio of set measures λ (·),
P
(
ci+1
best < cibest

)
≤ P

(
x
i+1 ∈ Xf

)
(2)

≤ P
(
x
i+1 ∈ X

f̂

)
=

λ(Xf̂)
λ(Xs)

.

Using the volume of a prolate hyperspheroid in Rn gives

P
(
ci+1
best < cibest

)
≤

ci
best

(
ci

2

best
−c2

min

)n−1
2 ζn

2nλ(Xs)
, (3)

with ζn being the volume of a unit n-ball.

Remark 1 (Rejection sampling): From (3) it can be ob-

served that the probability of improving a solution through

uniform sampling becomes arbitrarily small for large subsets

(e.g., global sampling) or as the solution approaches the

theoretical minimum.

Remark 2 (Rectangular rejection sampling): Let Xs be a

hyperrectangle that tightly bounds the informed subset (i.e.,

the widths of each side correspond to the diameters of the

prolate hyperspheroid) [8]. From (3), the probability that a

sample drawn uniformly from Xs will be in X
f̂

is then ζn
2n ,

which decreases rapidly with n. For example, with n = 6 this

gives a maximum 8% probability of improving a solution at

each iteration through rejection sampling regardless of the

specific solution, problem, or algorithm parameters.

Theorem 1 (Obstacle-free linear convergence): With uni-

form sampling of the informed subset, x ∼ U
(
X

f̂

)
, the cost

of the best solution, cbest, converges linearly to the theoretical

minimum, cmin, in the absence of obstacles.

Proof: The heuristic value of a state is equal to the

transverse diameter of a prolate hyperspheroid that passes

through the state and has focal points at xstart and xgoal.

With uniform sampling, the expectation is then [20]

E
[
f̂ (x)

]
=

nc2
best

+c2
min

(n+1)cbest

. (4)

We assume that the RRT* rewiring parameter is greater than

the diameter of the informed subset, similarly to how the proof

of the asymptotic optimality of RRT* assumes that η is greater

than the diameter of the planning problem [7]. The expectation

of the solution cost, cibest, is then the expectation of the

heuristic cost of a sample drawn from a prolate hyperspheroid

of diameter ci−1
best, i.e., E

[
cibest

]
= E

[
f̂
(
x
i
)]

. From (4) it

follows that the solution cost converges linearly with a rate,

µ, that depends only on the state dimension [20],

µ =
∂E[cibest]
∂c

i−1

best

∣∣∣∣
c
i−1

best
=cmin

= n−1
n+1 .

While the obstacle-free assumption is impractical, Thm. 1

illustrates the fundamental effectiveness of direct informed

sampling and provides possible insight for future work.

IV. DIRECT SAMPLING OF AN ELLIPSOIDAL SUBSET

Uniformly distributed samples in a hyperellipsoid,

xellipse ∼ U (Xellipse), can be generated by transforming

uniformly distributed samples from the unit n-ball, xball ∼
U (Xball),

xellipse = Lxball + xcentre,

where xcentre = (xf1 + xf2) /2 is the centre of the hyper-

ellipsoid in terms of its two focal points, xf1 and xf2, and

Xball = {x ∈ X | ||x||2 ≤ 1} [21].
This transformation can be calculated by Cholesky decom-

position of the hyperellipsoid matrix, S ∈ Rn×n,

LL
T ≡ S,

where
(x− xcentre)

T
S (x− xcentre) = 1,

with S having eigenvectors corresponding to the axes of the

hyperellipsoid, {ai}, and eigenvalues corresponding to the

squares of its radii,
{
r2i
}

. The transformation, L, maintains

the uniform distribution in Xellipse [22].
For prolate hyperspheroids, such as X

f̂
, the transformation

can be calculated from just the transverse axis and the radii.

The hyperellipsoid matrix in a coordinate system aligned with

the transverse axis is the diagonal matrix

S = diag
{

c2
best

4 ,
c2
best

−c2
min

4 , . . . ,
c2
best

−c2
min

4

}
,

with a resulting decomposition of

L = diag

{
cbest

2 ,

√
c2
best

−c2
min

2 , . . . ,

√
c2
best

−c2
min

2

}
, (5)

where diag {·} denotes a diagonal matrix.
The rotation from the hyperellipsoid frame to the world

frame, C ∈ SO (n), can be solved directly as a general

Wahba problem [23]. It has been shown that a valid solution

can be found even when the problem is underspecified [24].

The rotation matrix is given by

C = U diag {1, . . . , 1, det (U) det (V)}VT , (6)

where det (·) is the matrix determinant and U ∈ Rn×n and

V ∈ Rn×n are unitary matrices such that UΣV
T ≡ M via

singular value decomposition. The matrix M is given by the

outer product of the transverse axis in the world frame, a1,

and the first column of the identity matrix, 11,

M = a11
T
1 ,

where
a1 = (xgoal − xstart) / ||xgoal − xstart||2 .

A state uniformly distributed in the informed subset,

x
f̂
∼ U

(
X

f̂

)
, can thus be calculated from a sample drawn

uniformly from a unit n-ball, xball ∼ U (Xball), through a

transformation (5), rotation (6), and translation,

x
f̂
= CLxball + xcentre. (7)

This procedure is presented algorithmically in Alg. 2.

V. INFORMED RRT*

An example algorithm using direct informed sampling,

Informed RRT*, is presented in Algs. 1 and 2. It is identical

to RRT* as presented in [7], with the addition of lines 3, 6,

7, 30, and 31. Like RRT*, it searches for the optimal path,

σ∗, to a planning problem by incrementally building a tree

in state space, T = (V,E), consisting of a set of vertices,

V ⊆ Xfree, and edges, E ⊆ Xfree ×Xfree. New vertices are

added by growing the graph in free space towards randomly

selected states. The graph is rewired with each new vertex

such that the cost of the nearby vertices are minimized.
The algorithm differs from RRT* in that once a solution

is found, it focuses the search on the part of the planning
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Algorithm 1: Informed RRT*(xstart,xgoal)

1 V ← {xstart};
2 E ← ∅;
3 Xsoln ← ∅;
4 T = (V,E);
5 for iteration = 1 . . . N do

6 cbest ← min
xsoln∈Xsoln

{Cost (xsoln)};
7 xrand ← Sample

(

xstart,xgoal, cbest
)

;

8 xnearest ← Nearest (T ,xrand);
9 xnew ← Steer (xnearest,xrand);

10 if CollisionFree (xnearest,xnew) then
11 V ← ∪{xnew};
12 Xnear ← Near (T ,xnew, rRRT∗ );
13 xmin ← xnearest;
14 cmin ← Cost (xmin) + c · Line (xnearest,xnew);
15 for ∀xnear ∈ Xnear do

16 cnew ← Cost (xnear) + c · Line (xnear,xnew);
17 if cnew < cmin then

18 if CollisionFree (xnear,xnew) then

19 xmin ← xnear;
20 cmin ← cnew;

21 E ← E ∪ {(xmin,xnew)};
22 for ∀xnear ∈ Xnear do

23 cnear ← Cost (xnear);
24 cnew ← Cost (xnew) + c · Line (xnew,xnear);
25 if cnew < cnear then

26 if CollisionFree (xnew,xnear) then
27 xparent ← Parent (xnear);
28 E ← E \ {(xparent,xnear)};
29 E ← E ∪ {(xnew,xnear)};

30 if InGoalRegion (xnew) then

31 Xsoln ← Xsoln ∪ {xnew};

32 return T ;

problem that can improve the solution. It does this through

direct sampling of the ellipsoidal heuristic. As solutions are

found (line 30), Informed RRT* adds them to a list of possible

solutions (line 31). It uses the minimum of this list (line 6) to

calculate and sample X
f̂

directly (line 7). As is conventional,

we take the minimum of an empty set to be infinity. The

new subfunctions are described below, while descriptions of

subfunctions common to RRT* can be found in [7]:

Sample: Given two poses, xfrom, xto ∈ Xfree and

a maximum heuristic value, cmax ∈ R, the function

Sample (xfrom,xto, cmax) returns independent and identically

distributed (i.i.d.) samples from the state space, xnew ∈ X ,

such that the cost of an optimal path between xfrom and

xto that is constrained to go through xnew is less than cmax

as described in Section III and Alg. 2. In most planning

problems, xfrom ≡ xstart, xto ≡ xgoal, and lines 2 to 4 of

Alg. 2 can be calculated once at the start of the problem.

InGoalRegion: Given a pose, x ∈ Xfree, the function

InGoalRegion (x) returns True if and only if the state is in

the goal region, Xgoal, as defined by the planning problem,

otherwise it returns False. One common goal region is a

ball of radius rgoal centred about the goal, i.e.,

Xgoal =
{
x ∈ Xfree

∣∣ ||x− xgoal||2 ≤ rgoal
}
.

RotationToWorldFrame: Given two poses as the

focal points of a hyperellipsoid, xfrom, xto ∈ X , the function

RotationToWorldFrame (xfrom,xto) returns the rotation

matrix, C ∈ SO (n), from the hyperellipsoid-aligned frame

to the world frame as per (6). As previously discussed, in

Algorithm 2: Sample (xstart,xgoal, cmax)

1 if cmax <∞ then

2 cmin ←
∣

∣

∣

∣xgoal − xstart

∣

∣

∣

∣

2
;

3 xcentre ←
(

xstart + xgoal

)

/2;

4 C← RotationToWorldFrame
(

xstart,xgoal

)

;

5 r1 ← cmax/2;

6 {ri}i=2,...,n ←
(√

c2max − c2
min

)

/2;

7 L← diag {r1, r2, . . . , rn};
8 xball ← SampleUnitNBall;
9 xrand ← (CLxball + xcentre) ∩X;

10 else

11 xrand ∼ U (X);

12 return xrand;

most planning problems this rotation matrix only needs to

be calculated at the beginning of the problem.

SampleUnitNBall: The function, SampleUnitNBall

returns a uniform sample from the volume of an n-ball of

unit radius centred at the origin, i.e. xball ∼ U (Xball).

A. Calculating the Rewiring Radius

At each iteration, the rewiring radius, rRRT∗ , must be large

enough to guarantee almost-sure asymptotic convergence

while being small enough to only generate a tractable number

of rewiring candidates. Karaman and Frazzoli [7] present a

lower-bound for this rewiring radius in terms of the measure

of the problem space and the number of vertices in the graph.

Their expression assumes a uniform distribution of samples

of a unit square. As Informed RRT* uniformly samples the

subset of the planning problem that can improve the solution,

a rewiring radius can be calculated from the measure of this

informed subset and the related vertices inside it. This updated

radius reduces the amount of rewiring necessary and further

improves the performance of Informed RRT*. Ongoing work

is focused on finding the exact form of this expression, but

the radius provided by [7] appears appropriate. There also

exists a k-nearest neighbour version of this expression.

VI. SIMULATIONS

Informed RRT* was compared to RRT* on a variety

of simple planning problems (Figs. 5 to 7) and randomly

generated worlds (e.g., Figs. 1, 2). Simple problems were

used to test specific challenges, while the random worlds

were used to provide more challenging problems in a variety

of state dimensions.

Fig. 5(a) was used to examine the effects of the problem

range and the ability to find paths within a specified tolerance

of the true optimum, with the width of the obstacle, w, se-

lected randomly. Fig. 5(b) was used to demonstrate Informed

RRT*’s ability to find topologically distinct solutions, with

the position of the narrow passage, yg, selected randomly.

For these toy problems, experiments were ended when the

planner found a solution cost within the target tolerance of

the optimum. Random worlds, as in Fig. 2, were used to

test Informed RRT* on more complicated problems and in

higher state dimensions by giving the algorithms 60 seconds

to improve their initial solutions. For each variation of every

experiment, 100 different runs of both RRT* and Informed

RRT* were performed with a common pseudo-random seed

and map.
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Fig. 5. The two planning problems used in Section VI. The width of the
obstacle, w, and the location of the gap, yg , were selected randomly for
each experimental run.

The algorithms share the same unoptimized code, allowing

for the comparison of relative computational time2. While

further optimization would reduce the effect of graph size on

the computational cost and reduce the difference between the

two planners, as they have approximately the same cost per

iteration it will not effect the order. To minimize the effects of

the steer parameter on our results, we set it equal to the RRT*

rewiring radius at each iteration calculated from γRRT =
1.1γ∗

RRT, a choice we found improved the performance of

RRT*. As discussed in Section V-A, for Informed RRT* we

calculated the rewiring radius for the subproblem defined by

the current solution using the expression in [7].

Experiments varying the width of the problem range, l,
while keeping a fixed distance between the start and goal show

that Informed RRT* finds a suitable solution in approximately

the same time regardless of the relative size of the problem

(Fig. 8). As a result of considering only the informed subset

once an initial solution is found, the size of the search space

is independent of the planning range (Fig. 6). In contrast,

the time needed by RRT* to find a similar solution increases

as the problem range grows as proportionately more time

is spent searching states that cannot improve the solution

(Fig. 8).

Experiments varying the target solution cost show that

Informed RRT* is capable of finding near-optimal solutions

in significantly fewer iterations than RRT* (Fig. 9). The

direct sampling of the informed subset increases density

around the optimal solution faster than global sampling and

therefore increases the probability of improving the solution

and further focusing the search. In contrast, RRT* has uniform

density across the entire planning domain and improving the

solution actually decreases the probability of finding further

improvements (Fig. 6).

Experiments varying the height of hg in Fig. 5(b) demon-

strate that Informed RRT* finds difficult passages that

improve the current solution, regardless of their homotopy

class, quicker than RRT* (Fig. 10). Once again, the result of

considering only the informed subset is an increased state

density in the region of the planning problem that includes the

optimal solution. Compared to global sampling, this increases

the probability of sampling within difficult passages, such as

narrow gaps between obstacles, decreasing the time necessary

2Experiments were run in Ubuntu 12.04 on an Intel i5-2500K CPU with
8GB of RAM.

5 seconds, cbest = 114.86 5 seconds, cbest = 112.52

(a) (b)

RRT* Informed RRT*

Fig. 6. An example of Fig. 5(a) after 5 seconds for a problem with
an optimal solution cost of 112.01. Note that the presence of an obstacle
provides a lower bound on the size of the ellipsoidal subset but that Informed
RRT* still searches a significantly reduced domain than RRT*, increasing
both the convergence rate and quality of final solution.

12.32 seconds 4.00 seconds

(a) (b)

RRT* Informed RRT*

Fig. 7. An example of Fig. 5(b) for a 3% off-centre gap. By focusing the
search space on the subset of states that may improve an initial solution
flanking the obstacle, Informed RRT* is able to find a path through the
narrow opening in 4.00 seconds while RRT* requires 12.32 seconds.

to find such solutions (Fig. 7).

Finally, experiments on random worlds demonstrate that

the improvements of Informed RRT* apply to a wide range

of planning problems and state dimensions (Fig. 11).

VII. DISCUSSION & CONCLUSION

In this paper, we discuss that a necessary condition for

RRT* algorithms to improve a solution is the addition of a

state from a subset of the planning problem, Xf ⊆ X . For

problems seeking to minimize path length in Rn, this subset

can be estimated, X
f̂
⊇ Xf , by a prolate hyperspheroid (a

special type of hyperellipsoid) with the initial and goal states

as focal points. It is shown that the probability of adding a new

state from this subset through rejection sampling of a larger

set becomes arbitrarily small as the dimension of the problem

increases, the size of the sampled set increases, or the solution

approaches the theoretical minimum. A simple method to

sample X
f̂

directly is presented that allows for the creation

of informed-sampling planners, such as Informed RRT*. It is

shown that Informed RRT* outperforms RRT* in the ability

to find near-optimal solutions in finite time regardless of

state dimension without requiring any assumptions about the

optimal homotopy class.

Informed RRT* uses heuristics to shrink the planning
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Fig. 8. The median computational time needed by RRT* and Informed
RRT* to find a path within 2% of the optimal cost in R2 for various map
widths, l, for the problem in Fig. 5(a). Error bars denote a nonparametric
95% confidence interval for the median number of iterations calculated from
100 independent runs.
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Fig. 9. The median computational time needed by RRT* and Informed
RRT* to find a path within the specified tolerance of the optimal cost, c∗,
in R2 for the problem in Fig. 5(a). Error bars denote a nonparametric 95%
confidence interval for the median number of iterations calculated from 100
independent runs.

problem to subsets of the original domain. This makes it

inherently dependent on the current solution cost, as it cannot

focus the search when the associated prolate hyperspheroid is

larger than the planning problem itself. Similarly, it can only

shrink the subset down to the lower bound defined by the

optimal solution. We are currently investigating techniques

to focus the search without requiring an initial solution.

These techniques, such as Batch Informed Trees (BIT*) [25],

incrementally increase the search subset. By doing so, they

prioritize the initial search of low-cost solutions.

An open motion planning library (OMPL) implementa-

tion of Informed RRT* is described at http://asrl.utias.

utoronto.ca/code.
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