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Abstract

We solve a multi-period model of strategic trading with long-lived information in multiple
assets with correlated innovations in fundamental values. Market makers in each asset can only
condition their price functions on trading in the that asset (but not on trading in the other asset).
Using daily non-public data from the New York Stock Exchange we test the model’s predictions
on the conditional and unconditional lead-lag relations of institutional order flows and returns
within portfolios. We find support for the model prediction of positive autocorrelations in
portfolio returns as well as the predictions for how informed order flow positively predicts future
returns and future informed order flow. As the model predicts we find these relations strengthen
for portfolios formed from assets with higher correlation of fundamental values.

1 Introduction

Asset prices following a random walk is the basis for much of theoretical and empirical asset pricing.

Therefore, an examination of the predictability of asset returns is the first non-introduction chapter

in Campbell, Lo, and MacKinlay (1997). Lo and MacKinley (1988) show that the autocorrelations

of equal-weighted portfolio returns are significantly positive while the autocorrelations of individual

asset returns are generally negative. Together these point to positive cross-autocorrelations in asset

returns (Lo and MacKinley (1990a)). We study whether or not informed institutional trading is

a source of these correlation patterns. We construct a multi-period model of strategic trading

with long-lived information in multiple assets with correlated fundamental values. The model’s key

assumption is that in each trading period prices in each asset are functions of only trading in that

asset (and not trading in the other asset). We find support for the model’s prediction of positive

autocorrelations in daily portfolio returns as well as the predictions for how informed order flow
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positively predicts future returns and future informed order flow. We also test and find support for

the model’s comparative static predictions on the fundamental correlation of assets by examining

portfolios formed from stocks in the same industry versus portfolios formed from stocks randomly

chosen from different industries.

Explanations other than asymmetric information and the slow diffusion of information have been

suggested to explain the positive autocorrelation in daily and weekly portfolio returns. Conrad

and Kaul (1988) propose time varying risk premia. Lo and MacKinley (1990b) and Boudoukh,

Richardson, and Whitelaw (1994) explore asynchronous trading. However, these have proven

unsatisfactory, e.g., using several tests based on transaction data Anderson, Eom, Hahn, and Park

(2008) find that partial price adjustment is the major source of the portfolio autocorrelations. Lo

and MacKinley (1990b), Brennan, Jagadeesh and Swaminathan (1993), Chan (1993), and others

suggest that slow adjustment to common information is the source for partial price adjustment; but,

Bernhardt and Mahani (2008) show that it is difficult to construct a model in which asymmetric

information with strategic trading that leads to positive autocorrelations in portfolio returns.

We propose a simple friction that generates positive autocorrelation in portfolio returns in a

multi-period Kyle (1985) style model with strategic trading on long-lived information in multiple

assets with correlated innovations in the assets’ fundamental values. The key assumption is that in

each asset the market makers can only condition their pricing rule on trading in that asset. This

friction exists in virtually all markets.1 This same assumption arises from any friction that prevents

market makers from observing and perfectly interpreting information from trading in all other

assets continuously and instantaneously.2 Because assets’ fundamental values are correlated, order

flows in both assets are informative about payoffs in both assets.The informed trader strategically

anticipate this by conditioning his orders in each asset on information not directly relevant to that

asset’s signal (the signal in the other asset).

The model has an analytical solution in the case of two assets traded over two trading rounds

when assets have symmetrically distributed fundamental values and liquidity trades are independent

across time and assets with the same variance. The informed trader minimizes the informational

impact of his trades in both assets by strategically choosing informational trading intensities across
1Allowing orders to be contingent on trading in multiple asset can prevent market clearing as the contingencies

on the different orders can be mutually exclusive.
2In a model without informed trading Chan (1993) uses a similar assumption. In a model with informed trading

Chordia, Sarkar, and Subrahmanyam (2008) use a related assumption to examine short-lived information—the
informed traders only have one period to trade on their information which is revealed before the informed can trade
again. The short-lived information along with the assumption that common factor information is only traded on in
the large stocks allows Chordia, Sarkar, and Subrahmanyam to examine time variation in liquidity and information
diffusion.
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time and assets. The informed trader does this across time by curbing the aggressiveness of

his trades in both assets in the first period in a manner similar to a two-period version of the

original Kyle (1985) model. His cross-asset strategy is quite different. The informed trader sets the

sensitivities of his trading demand in either asset to be positive in his information about the asset

he trades in and negative in his information about the other asset. This signal jamming strategy

reduces the market maker’s ability to learn about the value of either asset from both order flows.

The main time-series implications of the model is that individual assets’ returns are independent

across time while returns on a portfolio of the assets are positively auto-correlated. The individual

assets’ returns are independent across time because asset-specific order flows are sufficient statistics

for prices of their respective assets. In other words, the informed trader does not reuse any

information he has traded on in the past since it has been already incorporated into the price.

This property of the model also makes current order flow independent of lagged returns.

The intuition behind positive cross-autocorrelation can be illustrated by the following example.

Suppose that there are two assets and that in the first trading round the market maker in the

first asset receives a large positive order flow in his asset but cannot condition on order flow in the

other asset. Because the total order flow contains a noisy liquidity component, the market maker

adjusts her assets’s price only partially upward in response to the large positive order flow. After

the transaction takes place, she examines the transaction price of the second asset and uncovers its

order flow which contains additional information about her asset. If it is also large and positive, she

is more confident about the favorable information and adjusts her asset’s price further upward. If it

is not, she is less confident about the favorable information and revises the asset’s price downward.

Therefore, the price change of the first asset in the second trading round is positively correlated

with the price change of the second asset in the first trading round. It is worth noting that there

is no opportunity for anyone without the informed trader’s information to construct a profitable

trading strategy based on the positive autocorrelation in portfolio returns. In this sense our results

support market efficiency even though there is predictability in portfolio returns.

Except for the zero correlation between informed order flow and lagged returns, the model

predicts that portfolios lead-lag autocorrelations between returns and informed order flows increase

in the correlation between innovations in the assets’ fundamental values. The model also allows for

a joint test of return and informed order flow predictability in a conventional vector autoregression

setting.

We use daily non-public data from the New York Stock Exchange (NYSE) to test the model’s

predictions on the correlations of institutional order flows and returns within portfolios and within
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the asset making up the portfolios. The data set contains seven years from January 1999 to

December of 2005 of daily buy and sell volume of executed institutional investor orders for a

large cross-section of NYSE stocks.3 The data set was constructed from the NYSE’s Consolidated

Equity Audit Trail Data (CAUD) files that contain detailed information on all executed orders.

One of the fields associated with each order, Account Type, specifies whether the order comes

from an institution. We use institutional order flow (buy volume minus sell volume) normalized

by the market cap as a data proxy for the informed order flow in the model. We first test the

model’s predictions on the market portfolio. We find support for the model’s predictions: positive

autocorrelations in portfolio returns as well as the predictions for how informed order flow positively

predicts future returns and future informed order flow, while returns do not predict informed order

flow.

We also test and find support for the model’s comparative static predictions on the fundamental

correlation of assets by examining portfolios formed from stocks in the same industry versus

portfolios formed from stocks randomly chosen from different industries. We show that the lead-

lag correlations between returns and informed order flow is higher in industry portfolio than in

randomly formed portfolios. We also show that the relevant vector autoregression coefficients

for industry portfolios are higher and lower, as predicted, than the same coefficients for random

portfolios.

The the paper is organized as follows. The model is presented in Section 2. Our empirical

analysis are reported in Section 3. Section 4 concludes.

2 The Model

2.1 Set Up

We consider an economy in which two risky assets are traded in the financial market over two

trading rounds.4 There are three types of risk-neutral agents in the economy: an informed trader,

competitive market makers, and a number of liquidity (“noise”) traders. At t = 0 the informed

trader learns the fundamental values of both risky assets, V = (V1, V2)
′
, simultaneously drawn from

3Badrinath, Kale, and Noe (1995) and Sias and Starks (1997) show how the fraction of firms owned by institutions
affects portfolio return autocorrelations, but do not examine the relations between institutional flows and returns
that is the focus of this paper.

4The analysis can be extended to the case of multiple risky assets
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the joint normal distribution

Ṽ =
(

Ṽ1

Ṽ2

)
∼ N

((
0
0

)
, σ2

0

(
1 ρ

ρ 1

))
. (1)

The statistical properties of the assets’ fundamental values are summarized in Assumption 1.5

ASSUMPTION 1: The fundamental values of the assets, Ṽ1,2, are positively correlated, ρ > 0 ,

have means normalized to zero, and the same variance, σ2
0.

Each asset is handled by competitive market makers. Market makers do not know V1 and V2

until the announcement after the second and final trading round. Before any trading takes place,

market makers know the unconditional joint distribution of Ṽ and thus quote P(0) = E[Ṽ] = 0 at

t = 0. The aggregate liquidity demand in asset i = 1, 2 at time t = 1, 2, u (t) = (u1(t), u2(t))
′
, is

normally distributed with zero mean and variance equal to σu

u (t) ∼ N
(
0, σ2

uI
)
, (2)

where I is a 2× 2 unit matrix. Assumption 2 outlines cross-sectional and intertemporal properties

of the liquidity demands. This assumption simplifies the market makers’ inference problem, but is

not crucial.

ASSUMPTION 2: The liquidity demands are independent across assets, Cov(ui (t) , uj (t)) = 0,

and time, Cov(ui (1) , ui (2)) = 0.

Figure 1 illustrates the sequence of events and the information sets of all agents. In the first

trading rounds the informed trader takes into account the correlation between assets by conditioning

his demand in each asset, x(t) = (x1(t), x2(t))
′
, on the value of the other asset, Vj 6=i. The informed

order flows at t = 1 are given by

x (1) =

(
β11 (1) β12 (1)
β12 (1) β22 (1)

)(
V1

V2

)
= β (1)V, (3)

and the corresponding total order flows, y(t) = (y1(t), y2(t))
′
, are given by

y (1) = β (1)V + u (1) . (4)
5This and some other assumptions are made for the sake of clarity and tractability. Under these assumptions

the model can be solved analytically. By reducing the degrees of freedom these assumptions also put a much higher
hurdle on the model fit to the data.
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[insert Figure 1]

During the trading rounds market makers observe order flows and use Bayes rule to update

their beliefs about V1 and V2. Assumption 3 outlines the strategies available to the market makers.

ASSUMPTION 3: In both trading rounds the market makers condition their pricing functions in

an asset on order flow in that asset (and not on order flow in the other asset). After the first

trading round, time t = 1+, market makers observe the prices of both assets, infer order flow in

both assets, and adjust prices before the second trading round.

At a high enough frequency, Assumption 3 is consistent with the fact that no market structure

allows market makers (or any traders) to condition their prices in one asset on trading in another

asset. Even if market makers could condition their pricing function in an asset on order flow in

other assets, Assumption 3 is a reduced-form way of capturing any friction precluding the market

makers’ from instantaneously and fully processing and acting on all information in all securities.6

Assumption 3 is crucial for our analysis. If market makers observe and condition prices on

order flows in both assets, then, as in Kyle (1985), prices would be fully informationally efficient:

information in the current order flow for either asset being orthogonal to the information in the

next period order flow for both assets. As a result, order flows and, therefore, returns for individual

assets and their equal-weighted portfolio would not be predictable.

When Assumption 3 holds market makers condition prices only on their own order flows their

prices are less than fully informationally efficient and the pricing error of the first asset is correlated

with the order flow in the second asset. This is because the assets’ fundamental values are correlated

and, therefore, the order flows they do not observe contain additional information about the asset

they make. Further, although each asset price is an unbiased estimate of the true asset value

conditional on its own order flow, the sum of asset prices (the price of an equal-weighted portfolio) is

not an unbiased estimate of the true aggregate value conditional on both order flows. Consequently,

when market makers correct pricing errors using order flow inferred from the price change of the

other asset, stock returns will be positively cross-autocorrelated.

In accordance with Assumption 3, competitive market makers observe the order flows in the

assets they make and set prices at t = 1 according to the schedules

P (1) =
(

E[Ṽ1|y1 (1)]
E[Ṽ2|y2 (1)]

)
= λ (1)y (1) . (5)

6The informed trader acts strategically to take advantage of this inefficiency in order to maximize his expected
profits.
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In the spirit of Kyle (1985), the inverse market depth parameter λi (1) in (5) is a slope coefficient

in the linear regression of Ṽi on yi (1):

λ (1) =




Cov(Ṽ1,y1(1))
Var(y1(1)) 0

0 Cov(Ṽ2,y2(1))
Var(y2(1))


 = (6)

=




β11(1)+ρβ12(1)
β2
11(1)+2ρβ11(1)β12(1)+β2

12(1)+β2
K

0

0 β22(1)+ρβ21(1)
β2
22(1)+2ρβ22(1)β21(1)+β2

21(1)+β2
K


 ,

where βK ≡ σu
σ0

refers to the elasticity of informed order flow to private information in Kyle (1985).

At the end of the first trading round, t = 1+, after trades take place the market makers observe

prices of the assets they do not make. Market makers use posted prices to infer order flows they

did not observe at the start of the first trading round and use them to adjust the prices of their

assets to the full information level according to

P(1+) = E[Ṽ|y1 (1) , y2 (1)] =

(
Λ11 Λ12

Λ12 Λ22

)(
y1 (1)
y2 (1)

)
= Λy (1) . (7)

where Λij are slope coefficients in the linear regression of Ṽi on yj (1)

Λi1 =
Cov(Ṽi, y1 (1))Var(y2 (1))− Cov(Ṽi, y2 (1))Cov(y1 (1) , y2 (1))

Var(y1 (1))Var(y2 (1))− (Cov(y1 (1) , y2 (1)))2
, (8)

Λi2 =
Cov(Ṽi, y2 (1))Var(y1 (1))− Cov(Ṽi, y1 (1))Cov(y1 (1) , y2 (1))

Var(y1 (1))Var(y2 (1))− (Cov(y1 (1) , y2 (1)))2
, i = 1, 2.

Evaluating the slope coefficients yields

Λ = Ψ−1β(1)
′
, (9)

where the covariance matrix of the fundamental values conditional on the order flows,

Cov
(
Ṽ| y (1)

)
, is

Ψ =

(
ψ11 ψ12

ψ12 ψ22

)
=




β2
K

1−ρ2 + β1 (1)β
′
1 (1) − ρβ2

K
1−ρ2 + β1 (1)β

′
2 (1)

− ρβ2
K

1−ρ2 + β1 (1)β
′
2 (1) β2

K
1−ρ2 + β2 (1)β

′
2 (1)


 , (10)

where βi (1) denotes ith row of the matrix β (1). The “efficient” prices (7) are quoted to the

informed trader at the start of the second trading round.
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At the beginning of the second trading round, t = 2, the informed trader submits market orders

x (2) = β (2)
(
V −P(1+)

)
, (11)

and market makers receive the following total order flows

y (2) = β (2)
(
V −P(1+)

)
+ u (2) . (12)

Analogous to the first trading period, market makers can only condition their pricing functions on

the order flows in each assets and not on the order flows in the other asset:

P (2) = P(1+) + λ (2)y (2) . (13)

where the inverse market depth parameter λ (2) in (13) is the slope coefficient in the linear regression

of : Ṽi −P1(1+) on yi (2)

λ (2) =




Cov(Ṽ1−P1(1+),y1(2))
Var(y1(2)) 0

0 Cov(Ṽ2−P2(1+),y2(2))
Var(y2(2))


 . (14)

At the end of the second trading round V is revealed to all agents and payoffs are realized.

2.2 Solution and Results

The model is solved by finding a vector of trading strategies, x∗(t), which maximizes the informed

trader’s expected profits over both trading rounds

x∗ (t) = arg max
x(t)

E

[
2∑

t=1

2∑

i=1

xi (t) (Vi − Pi(t)) |Ṽ = V

]

︸ ︷︷ ︸
Informed trader’s total expected payoff

. (15)

The following theorem summarizes the solution of the model. The symmetry of the asset values’

statistical properties together with the independence of liquidity demand across assets and time

allow for the model to be solved up to a system of nonlinear equations.

THEOREM 1: There exists a linear solution to the informed trader’s profit maximization problem

(15) characterized by the following parameters.

At time t = 1 the informed trader’s strategy, x (1) = β (1)V, is characterized by β11 (1) =

β22 (1) ≡ β+ and β12 (1) = β21 (1) ≡ β− which are the solutions to the system of nonlinear
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equations:

β+ + β− = βK


2βKλ1 +


2λ2βK(1 + ρ)

(
1

(1 + ρ)
+

(
β+ + β−

βK

)2
)2



−1 


−1

, (16)

β+ − β− = βK


2βKλ1 +


2λ2βK(1− ρ)

(
1

(1− ρ)
+

(
β+ − β−

βK

)2
)2



−1 


−1

.

The market maker pricing function is P (1) = λ (1) (β (1)V + u (1)) = λ (1)y (1), with:

λ1(1) = λ2(1) ≡ λ1 =
β+ + ρβ

β2
+ + 2ρβ+β− + β2− + β2

K

. (17)

At time t = 1+ the asset prices are updated using both order flows P(1+) = Λy (1), with

Λ11 = Λ22 ≡ Λ+ =
ψ+β+ − ψ−β−

ψ2
+ − ψ2−

, (18)

Λ12 = Λ21 ≡ Λ− =
ψ+β− − ψ−β+

ψ2
+ − ψ2−

,

where ψ+ = β2
K

1−ρ2 + β2
+ + β2− and ψ− = − ρβ2

K
1−ρ2 + 2β+β−.

At time t = 2 the informed trader’s strategy is x (2) = β (2) (V −P(1+)) and the market maker

pricing function is P (2) = P(1+) + λ(2) (x (2) + u (2)), with

β11 (2) = β22 (2) =
1
λ2

, (19)

β12 (2) = β21 (2) = 0,

λ1 (2) = λ2 (2) ≡ λ2 =

√
1− β+Λ+ − β−Λ− − ρ (β+Λ− + β−Λ+)

4β2
K

. (20)

Proof: All proofs are in the Appendix.

Figure 2 provides a graphical illustration of the parameters that characterize Theorem 1 as a

function of the correlation of the fundamental values of the assets (ρ). The symmetry of the assets

and the independence of the liquidity demand across both time and assets leads to a symmetric

solution. The friction of the market makers not being able to condition their prices on order flow

in both assets leads to complex first-period trading strategy by the informed traders characterized

by (16). The informed trader’s strategy solves the fixed point problem discussed in the proof that

translates into the system of nonlinear equations (16). The solution is unique and can be solved
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for numerically. Figure 2 does this fixing the parameter βK = 1 and solving equations (16) for all

values of ρ.

[insert Figure 2]

Panel A of Figure 2 graphs the informed trader’s first-period trading strategy. The solution is

symmetric and is described by the linear trading intensity in each asset as a function of the final

payoff in that asset, β+, and the linear trading intensity of in each asset as a function of the final

payoff in the other asset, β−. Panel A has 4 lines: β+, β−, β+ + β−, and β+(ρ = 0). The latter

two lines are included to illustrate how the solution changes with ρ. When the correlation between

assets is zero β+ is simply the first-period β in a standard 2-period Kyle (1985) model. Because

the informed knows the final payoffs with certainty there is no reason to trade on the information

in one asset in the other asset and the cross-asset β is zero, β− = 0. As the assets become more

correlated, ρ increases, the informed trader increases his first-period trading intensity, β+. This is

because the correlation of the assets improves the market makers ability to learn when observing

prices of both assets. This makes the second-period prices P(1+) more informative and decreases

the profitability of the informed’s second-period profits. Knowing this the informed increases his

first-period trading intensity.

Because the asset correlation improves the market makers’ learning from trading in both assets,

the informed tries to disguise his first-period trading by negatively trading on the cross-asset

information: β− is negative and decreasing in ρ. This negatively trading on information that

is irrelevant to the final value of that asset, but relevant to the market makers’ learning, reduces

the informed trader’s first-period profits.7 However, jamming the market makers’ inference problem

increases the informed’s second-period profits even more. This leads to the overall trading intensity

dropping with the asset correlation, β− + β+ decreases in ρ relative to β+(ρ = 0).

The signal jamming affects the market makers’ pricing function in period 1, λ1 from equation

(17), and period 2, Λ+, Λ−, and λ2 from equations (18) and (20). The parameters that characterize

these are graphed in Panels B and C of Figure 2. The optimal tradeoff between increasing the

within asset trading intensity β+ and decreasing the cross-asset trading intensity β− is reflected in

the market makers updating after the first period trading. The within asset price impact function
7While this is the first instance of signal jamming in the strategic trading literature, signal jamming has been

studied in other settings. Fudenberg and Tirole (1986) consider the situation in which the information available to
an entrant (who is uncertain about future profitability) is distorted by an incumbent through the use of predatory
pricing. Stein (1989) considers a signal-jamming model of managerial incentives in a capital market, where managers
distort current earnings by borrowing at adverse rates from the future. We are not aware of prior work on signal
jamming in a multidimensional signaling setting.
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is given by Λ+ and the cross-asset price impact Λ−. At ρ = 0 the price impact functions are the

standard Kyle (1985) 2-period solution: Λ− = 0 and Λ+ = λ1. As the correlation increases the

informed trader tries to jam the market maker by making β− more negative. Because the jamming

is less than complete the effect of the correlation in signals is greater than the jamming and the

maker makers respond by increasing the sensitivity of price to the cross asset order flows at time

t = 1+: Λ− increases in ρ. The signal jamming does reduce the within asset price impact at time

t = 1+, Λ+. Because signal jamming is costly to first-period profits, the informed trader only

partially jams the signal and the total price impact at time t = 1+, Λ+ +Λ−, increases. The signal

jamming also increases first-period depth as seen by the decrease in the t = 1 price impact λ1. The

less than full signal jamming also means that more information in revealed before second trading

period begins so the market makers use a smaller second period price impact λ2.

Using the equilibrium given in Theorem 1 we analyze the lead-lag correlations of individual

assets’ returns and informed order flows. As is standard we use incremental price changes,

∆Pi (t) = Pi(t)−Pi(t−1), as a proxy for assets’ returns. Proposition 1 summarizes the within asset

and across asset lead-lag relations. In the data we will follow the usual convention of examining

autocorrelations and cross-autocorrelations. We present covariances here because the expressions

are simpler and of the same sign as the corresponding correlations.

PROPOSITION 1: The lead-lag covariances of assets’ returns are given by

Cov (∆Pi (1) ,∆Pi (2)) = 0, i = 1, 2, (21)

Cov (∆Pi (1) , ∆Pj 6=i (2)) =

(
1− ρ2

)
λ1(λ1 − Λ+)

(
ψ2

+ − ψ2−
)

ρ
(
β2

+ + β2−
)

+ 2β+β−
σ2

0 ≥ 0, i, j = 1, 2.

The lead-lag covariances of informed order flows are given by

Cov (xi (1) , xi (2)) =
Λ+

2λ2
σ2

u > 0, i = 1, 2, (22)

Cov (xi (1) , xj 6=i (2)) =
Λ−
2λ2

σ2
u ≥ 0, i, j = 1, 2.

The lead-lag covariances of informed order flows and price returns are given by

Cov (xi (1) , ∆Pi (2)) = (2λ1 − Λ+)
σ2

u

2
> 0, i = 1, 2, (23)

Cov (xi (1) , ∆Pj 6=i (2)) =
(

Λ+

2
− Λ−

)
σ2

u +
1
λ1

Cov (∆Pi (1) ,∆Pj 6=i (2)) ≥ 0, i, j = 1, 2,
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and

Cov (∆Pi (1) , xj (2)) = 0, i, j = 1, 2. (24)

The intuition behind the autocovariances and cross-autocovariances is straightforward. Because

the informed trader strategically trades so as to not reveal all of his information in the first period

the within asset informed order flow positively autocovary, Cov(xi(1), xi(2)) > 0. Because the

assets final values are positively correlated the informed order flow has positive contemporaneous

covariance, Cov(x1(1), x2(1)) > 0, and cross autocovariance, Cov(x1(1), x2(2)) > 0. Because order

flow has positive price impact and the uniformed order flow is not observable to the market makers,

the covariance of informed order flows with subsequent price changes has the positive signs as with

subsequent informed order flow: Cov(xi(1), ∆Pj(2)) > 0.

As is standard in Kyle models price changes in each asset are a martingale:

Cov(∆Pi(1), ∆Pi(2)) = 0. This is because asset-specific order flows are sufficient statistics for prices

of their respective assets. In other words, the informed trader does not reuse any information he

has traded on in the past because it has been already incorporated into the price. This property of

the model also makes current order flows independent of lagged returns: Cov(∆Pi(1), xj(2)) = 0.

The positive cross-autocovariance follows from market makers’ cross-asset learning about

information that is common across assets. Upon observing the order flow in one asset the market

makers fully update that asset’s price based on the information in order flow. Upon observing

the price in the other asset the market makers can infer the order flow in the other asset. The

correlation in the assets fundamental values allows the market makers to use both asset prices/order

flows to better filter out the noise trading. If the price change in the second asset is consistent with

the price change in the first asset, then the market makers further update prices in same direction.

If the price change in the second asset is not consistent with the price change in the first asset,

then the market makers revises price in the opposite direction.

Proposition 1’s results on the within and cross asset autocovariances provide the intuition

necessary to understand the results for a portfolio of the assets. Next we combine both assets into

the equal-weighted portfolio

∆Pp (t) =
1
2

(∆P1 (t) + ∆P2 (t)) , (25)

xp (t) =
1
2

(x1 (t) + x2 (t)) ,

and study its lead-lag covariances in Proposition 2.
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PROPOSITION 2: The equal-weighted portfolio of securities is characterized by the following

lead-lag covariances

Cov (∆Pp (1) , ∆Pp (2)) =
1
2
Cov (∆P1 (1) , ∆P2 (2)) ≥ 0, (26)

Cov (xp (1) , xp (2)) =
Λ+ + Λ−

4λ2
σ2

u > 0,

Cov (xp (1) , ∆Pp (2)) = (λ1 − Λ−) σ2
u +

1
λ1

Cov (∆P1 (1) , ∆P2 (2)) ≥ 0,

Cov (∆Pp (1) , xp (2)) = 0.

The portfolio autocoviances in Proposition 2 are averages of the within and across asset

autocovariances in Proposition 1. Because within asset price changes have zero autocovariance and

price changes have positive cross autocovariance the portfolio price changes positively autocovary.

Informed trading in each individual asset predicts subsequent informed order flow and price changes

in both assets so the informed order flow in the portfolio has positive autocovariance with the

subsequent informed order flow and price changes in the portfolio. Past price changes in each asset

do not covary with subsequent order flow in either asset so consequently the price change of the

portfolio has zero covariance with informed trading in the portfolio.

3 Empirical Tests

To test the empirical predictions of the model we need to choose a time horizon corresponding to the

trading periods in the model. In our standard Kyle setting trading occurs in batches. Assumption

3 requires that the time period is short enough that the market makers cannot condition their

trading on order flow in both assets. However, we also would like to see if the effects of the friction

in Assumption 3 are relevant at more than very short horizons. To balance these considerations

we focus on daily returns and trading. We expect the effects to be larger at shorter horizons and

attenuate at longer horizons. Below we examine correlations and regressions using lags longer than

one and the results confirm the intuition that the results are stronger at shorter horizons. To proxy

for informed order flow we will use a measure of institutional trading from the NYSE.

3.1 Data

The data set contains seven years of daily buy and sell volume of executed institutional investor

orders for all NYSE common domestic stocks that were traded on the NYSE any time between

January 1, 1999 and December 31, 2005. The data set was constructed from the NYSE’s
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Consolidated Equity Audit Trail Data (CAUD) files that contain detailed information on all orders

that execute on the exchange, both electronic (from the limit order book) and manual (those

handled by floor brokers). One of the fields associated with the buyer and seller of each order,

Account Type, specifies whether the order comes from an institutional investor. We use the

institutional order flow (buy volume minus sell volume) as a proxy for informed trading. The

CAUD data was first provided to academics as part of the TORQ dataset constructed by Joel

Hasbrouck. Our CAUD data is complemented by the daily data on returns (from transaction

price in CRSP and from closing quotes in TAQ),trading volume (CRSP), and market capitalization

(number of shares outstanding times price from CRSP).

3.2 Market-Level Tests

We begin testing the lead-lag portfolio relations between informed order flows and returns given in

Proposition 2. To do this we construct an equal-weight market portfolio for returns and informed

order flow for all stocks each day. We use institutional order flow (buy volume minus sell volume)

measured as a percent of a total market cap as a proxy for informed order flows in the model. Table 1

provides overview statistics for these market portfolios. The mean market return is 5.7 basis points

per day and the standard deviation of the market return is almost 1% per day. Institutions’ order

flow is slightly positive over the sample period. The standard deviation of institutional order flow

is a little less than 1 basis point of market capitalization per day. The last two rows of Table 1

provide evidence on the size of institutional trading volume (as opposed to order flow). Institutional

trading is 40.95% of NYSE trading volume. Unless such a large fraction of the total trading is due

to informed trading the institutional trading proxy likely includes some noise trading as well, e.g.,

mutual funds facing redemptions. This does not affect the signs of the lead-lag covariances in

Proposition 2, but can affect any analysis where both returns and our informed order flow proxy

are both included as explanatory variables.

[insert Table 1]

The model has 2 trading periods so the correlation calculations in Proposition 2 are for a single

lag. As discussed above it is an open question as to what calendar time period corresponds to

the trading periods in the model, we also examine lags up to 4 days. This allows for time-series

dependencies in returns and institutional order flow beyond one day.

The correlation results are shown in Table 2. Panel A of this table reports the correlation

coefficients of equal-weighted market returns, Rm(t), with lagged equal-weighted market returns
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and market institutional order flow, xm(t). In agreement with the model’s predictions, lagged

returns do not predict institutional order flow, but lagged returns do predict returns. Panel B of

this table reports correlation coefficients of daily market institutional order flow with lagged equal-

weighted market returns and market institutional order flow. With an exception of a two-day

lag, correlations between returns and lagged institutional order flow are positive and statistically

significant, as the model predicts. Institutional order flow is positively serially correlated, again in

an agreement with the model.

[insert Table 2]

In the data, however, cross-autocorrelations between informed order flows and returns can be

the manifestation of the high autocorrelations of institutional order flow combined with a high

contemporaneous correlation between institutional order flow and returns. Under such a scenario,

the lagged institutional order flow is a noisy proxy for the lagged returns and, once we control for

lagged returns, the lead-lag effect will disappear. To address this alternative hypothesis we estimate

joint autoregression described in Proposition 3.

PROPOSITION 3: Consider the following vector autoregression (VAR) of the equal-weighted

portfolios (
∆Pp (t)
xp (t)

)
=

(
a1

a2

)
+

(
b11 b12

b21 b22

)(
∆Pp (t− 1)
xp (t− 1)

)
+

(
ε1(t)
ε2(t)

)
. (27)

The coefficients bij are given in the model by

b11 =
Λ−
λ1

(1− ρ) (β+ − β−)2 + β2
K

β2
+ + β2− + 2ρβ+β− + β2

K

+
b21

λ2
, (28)

b12 = 2λ2b22 > 0,

b21 = −Λ+ + Λ−
4λ1λ2

< 0,

b22 =
(

1 +
β2

K

(1 + ρ) (β+ + β−)2

)
Λ+ + Λ−

4λ2
> 0.

Regression models similar to Proposition 3 are used in Brennan et al. (1993) and Chordia and

Swaminathan (2000) to study the lead-lag relations between stocks with different levels of analyst

coverage and trading volume and by Hou (2007) to study lead-lag relations between large and small

stocks within and across industries. The unconditional relations (correlations) in Proposition 2 and

the conditional relations (regression coefficients) in Proposition 3 have the same sign when the
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lagged variable is informed order flow as b12 and b22 are positive. However the conditional relations

between past price changes and subsequent price changes and informed order flow change.

In Proposition 2 there is no relation between past prices changes and informed order flow.

However, liquidity trading is a component of returns. In the second period the informed trader

trades against price changes due to noise. Thus, b21 is negative. Price changes due to noise are

subsequently reversed, but the informed order flow also includes noise due to the signal jamming

(negative cross-asset β, β−). This makes the coefficient on returns in the returns equation b11

ambiguously signed.

We estimate equations (27) with one (K = 1) and four (Panel B, K = 4) lags in the data

Rm(t) = a0,1 +
K∑

k=1

akRm(t− k) +
K∑

k=1

bkxm(t− k) + ε1(t), (29)

xm(t) = a0,2 +
K∑

k=1

ckRm(t− k) +
K∑

k=1

dkxm(t− k) + ε2(t). (30)

Table 3 reports the VAR results with Newey-West corrected t- and F -statistics. In agreement

with the model, the coefficients on institutional order flow in the returns equation, the sum of bk,

are positive and statistically significant at the 1% level for one-lag regressions (Panel A, 5.1719,

t-statistic = 4.70) and at the 5% level for four-lag regressions (Panel B, 7.284, F -statistic = 3.96).

Thus, lagged institutional order flow contains information about future market returns beyond

that contained in lagged market returns. Also in agreement with the model the coefficients on

institutional order flow in the institutional order flow equation, the sum of dk, are positive and

statistically significant at the 1% level, 0.0810 with a t-statistic = 10.83 for one-lag (Panel A) and

0.1575 with a F -statistic = 11.83 for four lags (Panel B). The provide further support our use of

institutional order flow as a proxy for informed order flow and also support the model.

[insert Table 3]

The signs of the coefficients on returns in the returns equation, the sum of ak, are ambiguous

in Proposition 3 while positive and statistically significant in the data, at the 1% level for one-lag

(Panel A, 0.0810, t-statistic = 10.83) and four-lag (Panel B, 0.1575, F -statistic = 11.83) regressions.

The coefficients on returns in the institutional order flow equation, the sum of ck, is negative in

Proposition 3. In the data there is no relation between returns and subsequent informed order flow.

This may be due to noise (non informed trading) in institutional order flow.

16



3.3 Industry-Level Test: The Impact of Asset Correlation (ρ)

While the market-level analysis is supportive of the model, the correlation in the fundamental

values of the assets is a key driver of the model. To further study the model’s relation to the

data we examine how increasing this correlation (ρ) change the correlation and VAR coefficients in

Propositions 2 and 3 and Tables 2 and 3. Panel A of Figure 3 presents the correlation coefficients

as a function of ρ. As noted in Proposition 2 the covariance of informed order flow with lagged

price changes, Cov [∆Pp (1) , xp (2)], is zero for all values of ρ so the corresponding correlation is

omitted. The other correlation coefficients all increase with ρ. These follow from the informed

trader’s order flow becoming more correlated as the fundamental correlation increases. However,

the informed tries to jam the market makers’ inference problem which leads to the autocorrelation

of informed order flow growing more slowly than the other two correlations.

[insert Figure 3]

Similarly, Panel B of Figure 3 graphs the VAR coefficients from Proposition 3 as a function of

ρ. As seen in Panel A the autocorrelation of the informed trader’s trading increases in ρ, this leads

to the coefficients on lagged order flow in both the returns and order flow equations, b12 and b22,

increasing with ρ. The coefficient on lagged returns in the returns equation, b11, starts off negative

at ρ = 0 and increases with ρ; b11 increases faster than b12 and b22 because the informed trader

increases the signal jamming strategy with ρ, but not fast enough to counteract the market makers’

improved cross-asset learning. The coefficient of lagged returns in the informed order flow equation

becomes increasingly negative with ρ. This is because the increased correlation of fundamentals

means that the informed trades more aggressively against noise in the portfolio return.

Testing the impact of ρ requires identification of assets that have higher or lower fundamental

correlation. We follow Hou (2007) in using industry designation as a proxy for where the

fundamental correlation is higher. We use the 12 industry SIC-code-based classifications from

Ken French’s website. The final of the 12 industries includes stocks that do not fit the first 11

industries and is referred to as “other.” The “other” group is by far the largest group (763 stocks

in our sample period as compared to the next largest which is “Manufacturing” with 314 stocks).

To ensure that all of our tests do not reuse any data we will use this other category to form random

(non-industry) portfolios.

To construct portfolios we take stocks in the the first 11 industry portfolios and calculate returns

and informed order flows as we did for the market portfolio. For the other category we randomly

divide stocks in it into 11 portfolios and calculate returns and informed order flows for each. Thus,
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we have 22 portfolios where 11 are formed from stocks within the same industry and 11 which are

formed from stocks chosen from random industries. To focus on the industry-level effects we remove

the market-level effects from the within industry and random portfolios by using the residuals from

the regression of returns (order flows) of each portfolio on the market returns (order flows). To

avoid creating correlation in the residuals across the industry and random categories portfolios in

each group are regressed on the “market” formed from stocks only within the 11 portfolios in the

same category.

Similar to Table 2 for the market-level analysis, Table 4 examines the lead-lag correlations

coefficients for the 11 portfolios formed within industries and the 11 randomly formed portfolios.

The correlation coefficients for each of the 22 portfolios are estimated individually. To allow for

statistical inference that properly accounts for possible correlations across portfolios and time we

estimate the full covariance matrix for the 22 coefficients via seemingly unrelated regression (SUR)

with the Newey-West approach to control for heteroskedasticity and autocorrelation.

[insert Table 4]

Panel A of Table 4 reports the correlation coefficients for the 11 within industry portfolios.

Average coefficients across each category of portfolios are reported along with the corresponding F -

statistics. As in the market portfolio and in the model returns are significantly positively correlated

with lagged returns and lagged informed order flow. Order flow is positively autocorrelated. Order

flow is not correlated with the first two lags of returns. These correlations are consistent with the

model.

Panel B of Table 4 reports the correlation coefficients for the 11 randomly formed portfolios.

For the random portfolios the only autocorrelation that is reliably different from zero is order flow.

Given that lagged order flow is not positively correlated with returns, this suggests that institutional

order flow that is orthogonal to the systematic institutional order has some persistent component

that appears unrelated to information.

Panel C tests the differences in each correlation coefficient between the industry portfolios

(Panel A) and random portfolios (Panel B). The differences in average coefficient between the two

categories is given along with the F -statistic that the difference does not equal zero. Given that

the coefficients in Panel B other than the autocorrelation of order flow show little difference from

zero, it is not surprising that the differences in Panel C are similar in magnitude and statistical

significance to the within industry correlations in Panel A. The differences in the autocorrelation

of order flow is positive and statistically significant. These differences match the model predictions
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that the correlation coefficients are increasing in ρ shown in Panel A of Figure 3.

Using the same approach as Table 4, Table 5 presents the VAR for returns and order flows

for the industry and random portfolios. As in Table 3 the VARs are estimated for both 1 lag

and 4 lags. As with the correlation coefficients in Table 4 the VAR coefficients for each of the 22

portfolios are estimated individually. To allow for statistical inference that properly accounts for

possible correlations all the VAR coefficients across the 22 portfolios are estimated simultaneously

via seemingly unrelated regression (SUR).

[insert Table 5]

Panel A of Table 5 presents the 1-lag and 4-lag VAR for the within industry portfolios. As with

the market portfolio the coefficients on lagged order flow are positive and statistically significant in

both the return and order flow equations. The coefficients on lagged returns in the return equation

are positive and statistically significant. Unlike the market results, but consistent with the model’s

predictions, the coefficients on returns in the order flow equation are negative.

Panel B of Table 5 provides the 1-lag and 4-lag VAR for the randomly formed portfolios. The

cross-equation coefficients, order flow in the return equations and returns in the order flow equation,

do not differ from zero. As with the correlation coefficients the coefficients on lagged order flow

are positive in the order flow equations. The coefficients on lagged returns in the returns equation

differ from zero, but have opposite signs in the 1-lag and 4-lag specifications.

Panel C tests the differences in the VAR coefficients between the industry portfolios (Panel A)

and random portfolios (Panel B). All the differences in coefficients have the signs predicted by the

model in Panel B of Figure 3.

4 Conclusion

We solve a multi-period model of strategic trading with long-lived information in multiple assets

with correlated innovations in fundamental values. The model assumes that market makers in

assets cannot condition their price functions in either asset on trading in the other asset. Using

daily non-public data from the New York Stock Exchange we test the model’s predictions on the

unconditional and conditional relations between our proxy for informed order flow (institutional

order flow) and returns within portfolios. We find support for the model’s prediction of positive

autocorrelations in portfolio returns as well as the predictions for how informed order flow positively

predicts future returns and future informed order flow. We also test the model’s comparative static
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predictions for how the relations between informed order flow and returns depend on and the

fundamental correlation of assets within a portfolio. We find support for many of the predicted

relations in the data.

The predictability of a portfolio of asset returns, but no predictability within the individual

assets, follows from the market makers’ inability to condition their pricing functions in each asset

on trading in all the assets. The correlation in the informed order flow across assets reveals

additional information which the market makers incorporate into price before the next trading

opportunity. Therefore, while returns are predictable, there is no opportunity for anyone without

the informed trader’s information to construct a profitable trading strategy based on the positive

autocorrelation in portfolio returns. In this sense our results support market efficiency even though

there is predictability in portfolio returns.
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Appendix A. Proofs

Proof of Theorem 1. The informed trader’s total expected payoff, πI , is given by

πI = E

[
2∑

t=1

2∑

i=1

xi (t) (Vi − Pi(t)) |Ṽ = V

]
, (A1)

where the expectation is performed with respect to both the liquidity demand and the realizations
of the fundamentals8.

Combining (A1) with (5), (7), and (13), we obtain

πI = E [x1 (1) (V1 − λ1 (1)x1 (1))]+ (A2)
+ E [x1 (2) (V1 − (Λ11y1 (1) + Λ12y2 (1))− λ1 (2)x1 (2))]
+ E [x2 (1) (V2 − λ2 (1)x2 (1))]
+ E [x2 (2) (V2 − (Λ21y1 (1) + Λ22y2 (1))− λ2 (2)x2 (2))] .

Following Kyle (1985) the optimization is performed in two steps using backward induction. First,
we optimize (A2) with respect to x1 (2) and x2 (2), to obtain

x∗i (2) = arg max
xi(2)

xi (2)
(
Vi − Pi(1+)− λi (2)xi (2)

)
, i = 1, 2, (A3)

which after comparing with (11) implies that the optimal matrix β (2) is diagonal

β11 (2) =
1

2λ1 (2)
, β22 (2) =

1
2λ2 (2)

, (A4)

β21 (2) = β12 (2) = 0.

This is because all agents know that t = 2 is the last trading round before the fundamentals are
revealed. Clearly, this is not the case for the first trading round, and, therefore, we do not expect
β (1) to be diagonal.

Second, we substitute x∗i (2) back into (A2) and optimize it with respect to x1 (1) and x2 (1)
taking x∗i (2) as given

x∗1 (1) = arg max
x1(1)

x1 (1) (V1 − Λ11x
∗
1 (2)− Λ21x

∗
2 (2)− λ1 (1) x1 (1)), (A5)

x∗2 (1) = arg max
x2(1)

x2 (1) (V2 − Λ12x
∗
1 (2)− Λ22x

∗
2 (2)− λ2 (1) x2 (1)) ,

The first order conditions for x∗i (1) which follow from (A5) can be written in the matrix form as

x∗ (1) =
1

2λ (1)

(
V −Λ′ 1

2λ (2)
(V −Λx∗ (1))

)
, (A6)

taking into account that

x∗ (2) =
1

2λ (2)
(V −Λx∗ (1)) . (A7)

8Note that the expectations with respect to u (1) and u (2) are ”nested” because the liquidity demand in the first
trading round is observed in the second trading round and the insider’s strategy is conditioned on this.
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Combining (A6) with (3), β (1) can be found as a solution of the following fixed-point condition for

β (1) =
(
I− 1

2λ (1)
Λ′ 1

2λ (2)
Λ

)−1 1
2λ (1)

(
I−Λ′ 1

2λ (2)

)
, (A8)

where I stands for the unit matrix.
We proceed with a proof in two steps. First, we guess that solution is symmetric

λ1 (1) = λ2 (1) = λ1, (A9)
λ1 (2) = λ2 (2) = λ2,

β11 (1) = β22 (1) = β+,

β12 (1) = β21 (1) = β−,

Λ11 = Λ22 = Λ+,

Λ12 = Λ21 = Λ−.

Second, we will verify that solution (A9) exists and satisfies all the necessary conditions.
In the symmetric case, the fixed point condition (A8) is simplified to

(
I− 1

4λ1λ2
Λ2

)
β (1) =

1
2λ1

(
I− 1

2λ2
Λ

)
, (A10)

and effectively represents a system of two equations for β+ and β−
(

1− Λ2
+ + Λ2−
4λ1λ2

)
β+ − Λ+Λ−

2λ1λ2
β− =

1
2λ1

(
1− Λ+

2λ2

)
, (A11)

−Λ+Λ−
2λ1λ2

β+ +
(

1− Λ2
+ + Λ2−
4λ1λ2

)
β− = − Λ−

4λ1λ2
.

Next, we introduce new “auxiliary” variables

z± ≡
√

1± ρ
(β+ ± β−)

βK
. (A12)

The subscript ± on a variable is used to represent two equations where in the first (second) equation
the relevant variable with subscript ± is replaced by that variable with subscript + (−). Similarly
if ± is used as an operator it means + in the first equation and − in the second equation. Therefore
(A12) represents two equations: z+ =

√
1 + ρ (β++β−)

βK
and z− =

√
1− ρ (β+−β−)

βK
. z+ represents a

rescaling of the expected informed trading intensity, β+ + β−, and z− represents a rescaling of the
difference between the within and across asset expected informed trading intensity, β+ − β−. The
properties of z± which we will examine later simplify many of the following proofs. Next we guess
that

Λ+ ± Λ− =
1

βK

√
1± ρz±
1 + z2±

. (A13)

Substituting both (A12) and (A13) back into the system (A11) yields a system of nonlinear
equations for z±. Next we verify that our guess for Λ± is self-consistent. It can be easily shown
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that in the case of the symmetric solution matrix Ψ takes the following form

ψ11 = ψ22 ≡ ψ+ =
β2

K

2

(
1 + z2

+

1 + ρ
+

1 + z2−
1− ρ

)
, (A14)

ψ12 = ψ21 ≡ ψ− =
β2

K

2

(
1 + z2

+

1 + ρ
− 1 + z2−

1− ρ

)
,

It follows from (9) that

Λ+ =
ψ+β+ − ψ−β−

ψ2
+ − ψ2−

=
1

2βK

(√
1 + ρz+

1 + z2
+

+
√

1− ρz−
1 + z2−

)
, (A15)

Λ− =
ψ+β− − ψ−β+

ψ2
+ − ψ2−

=
1

2βK

(√
1 + ρz+

1 + z2
+

−
√

1− ρz−
1 + z2−

)
.

which verifies (A13). Finally, using (A14) we find λ1

λ1 =
β+ + ρβ

β2
+ + 2ρβ+β− + β2− + β2

K

=
1

βK

√
1 + ρz+ +

√
1− ρz−

2 + z2
+ + z2−

. (A16)

Using equations (14) and (A25) we find λ2

λ2
2 =

1− β+Λ+ − β−Λ− − ρ (β+Λ− + β−Λ+)
4β2

K

=
1

8β2
K

(
1 + ρ

1 + z2
+

+
1− ρ

1 + z2−

)
, (A17)

which completes the proof.¥

LEMMA 1: Λ−(ρ) is nonnegative on the interval ρ ∈ [0, 1].

Proof:

Λ−(ρ)Λ+(ρ) =
1

4β2
K

(
(1 + ρ) z2

+(
1 + z2

+

)2 −
(1− ρ) z2−(
1 + z2−

)2

)
= (A18)

1
4β2

K

z2
+

(
1 + z2−

)2 − z2−
(
1 + z2

+

)2 + ρ
(
z2
+

(
1 + z2−

)2 + z2−
(
1 + z2

+

)2
)

(
1 + z2

+

)2 (
1 + z2−

)2 .

We need to show that

z2
+

(
1 + z2

−
)2 − z2

−
(
1 + z2

+

)2 = (z+ − z−) (1− z+z−)
[
z+

(
1 + z2

−
)

+ z−
(
1 + z2

+

)] ≥ 0, (A19)

which follows from the property described below in (A20).
The below Figure graphs the numerical solution for z± (ρ) as functions of ρ. It shows that z+ (ρ)

is monotonically increasing on the interval ρ ∈ [0, 1] while z− (ρ) is monotonically decreasing on
the same interval. Importantly, the auxiliary functions z± (ρ) and z+ (ρ) satisfy the condition

1 > z+ (ρ) ≥ z− (ρ) ≥ 0, ρ ∈ [0, 1] , (A20)

Plot of Auxiliary Variables z±:
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The result of Lemma 1 follows since Λ+(ρ) is positive and Λ−(ρ)Λ+(ρ) ≥ 0 on ρ ∈ [0, 1] .¥

We will need the following Lemma for our further proofs.

LEMMA 2: Order flows have the following variances

Var (y1 (1)) = Var (y2 (1)) =
(

1 +
z2
+ + z2−

2

)
σ2

u, (A21)

Var (y1 (2)) = Var (y2 (2)) = 2σ2
u,

Var (x1 (1)) = Var (x2 (1)) =
(

z2
+ + z2−

2

)
σ2

u,

Var (x1 (2)) = Var (x2 (2)) = σ2
u,

Total order flows, yi(t), have the following covariances

Cov(y1 (1) , y2 (1)) =
(

z2
+ − z2−

2

)
σ2

u, (A22)

Cov(y1 (1) , y1 (2)) = Cov(y1 (1) , y2 (2)) = 0

Cov(y1 (2) , y2 (2)) = Cov(x1 (2) , x2 (2)) =
σ2

0

8λ2
2

(
1 + ρ

1 + z2
+

+
1− ρ

1 + z2−

)
.

Price changes have the following covariances

Var (∆P1 (1)) = Var (∆P2 (1)) = λ2
1Var (y1 (1)) , (A23)

Var (∆P1 (2)) = Var (∆P2 (2)) = 2λ2
2σ

2
u +

(
Λ2
− − (Λ+ − λ1)

2
)

Var (y1 (1)) ,

Cov(∆P1 (2) , ∆P2 (2)) = λ2
2Cov(y1 (2) , y2 (2))+

+
(
(Λ+ − λ1)

2 − Λ2
−
)

Cov(y1 (1) , y2 (1)).
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Proof: Var (y1 (1)) is equal to Var (y2 (1)) by symmetry and can be calculated directly

Var (y1 (1)) = σ2
0

(
β2

+ + β2
− + 2ρβ+β−

)
+ σ2

u = (A24)

=
σ2

0β
2
K

4

{
2z2

+

1 + ρ
+

2z2−
1− ρ

+ 2ρ

(
z2
+

1 + ρ
− z2−

1− ρ

)}
+ σ2

u =

=
(

1 +
z2
+ + z2−

2

)
σ2

u.

Because Var (y1 (1)) = Var (x1 (1)) + σ2
u the expression for Var (x1 (1)) follows immediately.

We can write x1 (2) as

x1 (2) =
1

2λ2

{
(1− β+Λ+ − β−Λ−) Ṽ1 − (β−Λ+ + β+Λ−) Ṽ2 − Λ+u1(1)− Λ−u2(1)

}
. (A25)

Then

Var (x1 (2)) =
1

4λ2
2

{[
(1− β+Λ+ − β−Λ−)2 + (β−Λ+ + β+Λ−)2− (A26)

−2ρ (1− β+Λ+ − β−Λ−) (β−Λ+ + β+Λ−)]σ2
0 +

(
Λ2

+ + Λ2
−
)
σ2

u

{
.

It can be easily verified that

1− β+Λ+ − β−Λ− =
1
2

(
1

1 + z2−
+

1
1 + z2

+

)
, (A27)

β−Λ+ + β+Λ− =
1
2

(
1

1 + z2−
− 1

1 + z2
+

)
,

(
Λ2

+ + Λ2
−
)
σ2

u =
(

1 + ρ

2
z2
+

1 + z2
+

+
1− ρ

2
z2−

1 + z2−

)
σ2

0.

Substituting (A27) into (A26) yields the desired result.
Cov(y1 (1) , y2 (1)) can be obtained as follows

Cov(y1 (1) , y2 (1)) = σ2
0

(
ρ

(
β2

+ + β2
−
)

+ 2β+β−
)

= (A28)

=
σ2

0β
2
K

4

{
2ρz2

+

1 + ρ
+

2ρz2−
1− ρ

+ 2
(

z2
+

1 + ρ
− z2−

1− ρ

)}
=

=
(

z2
+ − z2−

2

)
σ2

u.

In order to prove that the total order flows are not correlated across time we note that using the
symmetry of the solution (specifically that Var(y1 (1)) = Var(y2 (1))) the equations (8) can be
written as

Λ+ =
Cov(Ṽ1, y1 (1))Var(y1 (1))− Cov(Ṽ1, y2 (1))Cov(y1 (1) , y2 (1))

(Var(y1 (1)))2 − (Cov(y1 (1) , y2 (1)))2
, (A29)

Λ− =
Cov(Ṽ1, y2 (1))Var(y1 (1))− Cov(Ṽ1, y1 (1))Cov(y1 (1) , y2 (1))

(Var(y1 (1)))2 − (Cov(y1 (1) , y2 (1)))2
.
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Substituting y1 (2) into the covariance yields

Cov(y1 (1) , y1 (2)) =
1

2λ2

{
Cov(Ṽ1, y1 (1))− Λ+Var(y1 (1))− Λ−Cov(y1 (1) , y2 (1))

}
. (A30)

We just need to show that Λ+Var(y1 (1)) + Λ−Cov(y1 (1) , y2 (1)) = Cov(Ṽ1, y1 (1)), which directly
follows from (A29).

To prove the last identity note that ∆P1 (2) can be written as

∆P1 (2) = λ2y1 (2) + (Λ+ − λ1) y1 (1) + Λ−y2 (1) . (A31)

Consider now

Var (∆P1 (2)) = 2λ2
2σ

2
u +

(
Λ2
− + (Λ+ − λ1)

2
)

Var (y1 (1)) + 2Λ− (Λ+ − λ1)Cov(y1 (1) , y2 (1)).

(A32)

It follows from (A30) that

λ1 − Λ+

Λ−
=

Cov(y1 (1) , y2 (1))
Var (y1 (1))

=
z2
+ − z2−

2 + z2
+ + z2−

, (A33)

which upon substitution into (A32) yields the desired result.
Cov(y1 (2) , y2 (2)) can be obtained using (A25) and (A27)

Cov(y1 (2) , y2 (2)) = Cov(x1 (2) , x2 (2)) = (A34)

=
σ2

0

4λ2
2

{
ρ

(
(1− β+Λ+ − β−Λ−)2 + (β−Λ+ − β+Λ−)2

)
−

−2 (1− β+Λ+ − β−Λ−) (β−Λ+ − β+Λ−) + 2β2
KΛ+Λ−

}
=

=
σ2

0

8λ2
2

(
(1 + ρ) z2

+(
1 + z2

+

)2 −
(1− ρ) z2−(
1 + z2−

)2 +
1 + ρ(

1 + z2
+

)2 −
1− ρ(

1 + z2−
)2

)
,

and the result follows immediately.
Finally we find Cov(∆P1 (2) , ∆P2 (2)). Using (A31) we obtain

Cov(∆P1 (2) ,∆P2 (2)) = λ2
2Cov(y1 (2) , y2 (2))+ (A35)

+
(
Λ2
− + (Λ+ − λ1)

2
)

Cov(y1 (1) , y2 (1)) + 2Λ− (Λ+ − λ1)Var (y1 (1)) .

The result follows immediately after applying (A33) in (A35).¥

Proof of Proposition 1.
Because all variances are provided by Lemma 2, we only need to calculate all the necessary

covariances in order to prove Proposition 1. We will use result of Lemma 2 that total order flows
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are not correlated across time (second relation in (A22)) to prove (22)

Cov(y1 (1) , y1,2 (2)) = Cov(x1 (1) + u1(1), x1,2 (2)) (A36)

= Cov(x1 (1) , x1,2 (2))− 1
2λ2

Cov(u1(1), P1,2

(
1+

)
)

= Cov(x1 (1) , x1,2 (2))− 1
2λ2

Cov(u1(1),Λ±u1(1)) = 0.

It immediately follows that

Cov(x1 (1) , x1,2 (2)) =
Λ±
2λ2

σ2
u. (A37)

The lead-lag covariances of price changes are given by

Cov(∆P1 (1) , ∆P1 (2)) = λ1 (Λ+ − λ1)Var (y1 (1)) + λ1Λ−Cov(y1 (1) , y2 (1)), (A38)
Cov(∆P1 (1) , ∆P2 (2)) = λ1Λ−Var (y1 (1)) + λ1 (Λ+ − λ1)Cov(y1 (1) , y2 (1)).

Combining (A38) and (A33), we obtain

Cov(∆P1 (1) , ∆P1 (2)) = 0, (A39)

Cov(∆P1 (1) , ∆P2 (2)) =
λ1Λ−

Var (y1 (1))

(
Var (y1 (1))2 − Cov(y1 (1) , y2 (1))2

)
.

Taking into account that

Var (y1 (1))2 − Cov(y1 (1) , y2 (1))2 =
(
1 + z2

+

) (
1 + z2

−
)
σ4

u, (A40)

we immediately obtain

Cov(∆P1 (1) , ∆P2 (2)) =
2λ1Λ−

(
1 + z2

+

) (
1 + z2−

)

2 + z2
+ + z2−

σ2
u ≥ 0. (A41)

(A41) combined with

ψ2
+ − ψ2

− = β4
K

(
1 + z2

+

) (
1 + z2−

)

1− ρ2
, (A42)

(A33) and (A28) yields (21).
The lead-lag covariances of informed order flows and returns are given by

Cov(x1 (1) ,∆P1 (2)) = λ2Cov(x1 (1) , x1 (2)) + (Λ+ − λ1)Var (x1 (1)) + Λ−Cov(y1 (1) , y2 (1))

=
Λ+

2
σ2

u − (Λ+ − λ1) σ2
u + (Λ+ − λ1)Var (y1 (1)) + Λ−Cov(y1 (1) , y2 (1))︸ ︷︷ ︸

0

=
(

λ1 − Λ+

2

)
σ2

u. (A43)
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Cov (x1 (1) , ∆P2 (2)) = λ2Cov(x1 (1) , x2 (2)) + Λ−Var (x1 (1)) + (Λ+ − λ1)Cov (y1 (1) , y2 (1))

=
Λ+

2
σ2

u − Λ−σ2
u + Λ−Var (y1 (1)) + (Λ+ − λ1)Cov (y1 (1) , y2 (1))

=
(

Λ+

2
− Λ−

)
σ2

u +
1
λ1

Cov(∆P1 (1) , ∆P2 (2)). (A44)

which in combination with (A33) yields

Cov(x1 (1) , ∆P1 (2)) = Λ+σ2
u

(
1
2

+
Λ−

(
z2
+ − z2−

)

Λ+

(
2 + z2

+ + z2−
)
)

> 0, (A45)

Cov(x1 (1) , ∆P2 (2)) = Λ−σ2
u

(
1
2

+
(z+ + z−)2(
2 + z2

+ + z2−
)
)
≥ 0. (A46)

Combining the covariances with results of Lemma 2 completes the proof.¥

Proof of Proposition 2. Result for Cov (∆Pp (1) , ∆Pp (2)) and Cov (∆Pp (1) , xp (2)) follow
immediately from Proposition 1. Next we consider

Cov(xp (1) , xp (2)) =
1
2

(Cov(x1 (1) , x1 (2)) + Cov(x1 (1) , x2 (2))) , (A47)

and the result follows when we use (A37) in (A47). Finally, consider

Cov(xp (1) , ∆Pp (2)) =
1
2

[Cov (x1 (1) , ∆P1 (2)) + Cov (x1 (1) , ∆P2 (2))] , (A48)

and the result follows immediately.¥
We need the following Lemma to prove Proposition 3.

LEMMA 3: Portfolio informed order flows have the following variances

Var (xp (1)) =
z2
+

2
σ2

u, (A49)

Var (xp (2)) =
1
2

(
σ2

u + Cov(x1 (2) , x2 (2))
)
,

Portfolio price changes have the following variances

Var (∆Pp (1)) =
λ2

1

(
1 + z2

+

)

2
σ2

u, (A50)

Var (∆Pp (2)) = λ2
2

(
σ2

u +
1
2
Cov(y1 (2) , y2 (2))

)
+

2Λ2−
(
1 + z2

+

) (
1 + z2−

)2

(
2 + z2

+ + z2−
)2 .

Portfolio price changes and informed order flows have the following covariance

Cov(xp (1) ,∆Pp (1)) = λ1Var (xp (1)) . (A51)
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Proof: The variance of xp (1) can be calculated as follows

Var (xp (1)) =
1
2

(Var (x1 (1)) + Cov(x1 (1) , x2 (1))) (A52)

=
σ2

u

2

(
z2
+ + z2−

2
+

z2
+ − z2−

2

)
.

Var (xp (2)) is equal to

Var (xp (2)) =
1
2


Var (x1 (2))︸ ︷︷ ︸

σ2
u

+ Cov(x1 (2) , x2 (2))


 , (A53)

and the result follows. The other proofs are straightforward except for Var (∆Pp (2)), which we
prove next.

Var (∆Pp (2)) =
1
2

(Var(∆P1 (2)) + Cov(∆P1 (2) , ∆P2 (2))) = (A54)

λ2
2

(
σ2

u +
1
2
Cov(y1 (2) , y2 (2))

)
+ Λ2

−

(
λ1 − Λ+

Λ−
− 1

)2

(Var (y1 (1)) + Cov(y1 (1) , y2 (1))) .

The result follows after substituting (A33) into (A32).¥
Proof of Proposition 3: The VAR coefficients b11 and b12 are found from

(
b11

b12

)
=

(
Var (∆Pp (1)) Cov(xp (1) , ∆Pp (1))

Cov(xp (1) , ∆Pp (1)) Var (xp (1))

)−1

︸ ︷︷ ︸
A

(
Cov(∆Pp (1) , ∆Pp (2))
Cov(xp (1) , ∆Pp (2))

)
. (A55)

We need to calculate

det(A) =
λ2

1z
2
+

2
σ4

u. (A56)

Next we find b11

b11 =
1

det(A)
(Cov(∆Pp (1) ,∆Pp (2))Var (xp (1))− Cov(xp (1) , ∆Pp (2))Cov(xp (1) , ∆Pp (1))) =

(A57)

=
2Λ−

(
1 + z2

+

) (
1 + z2−

)

λ1

(
2 + z2

+ + z2−
) − 1

λ1

(
Λ−

z2
+

(
1 + z2−

)

2 + z2
+ + z2−

+
Λ+ + Λ−

4

)
=

=
Λ−
λ1

σ2
u

(
1 + z2−

)

Var (y1 (1))
− Λ+ + Λ−

4λ1
.

The result follows after using the definition of z− (equation (A12)) and equation (A24) in (A57).
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b12 can be found analogously

b12 =
1

det(A)
(Cov(xp (1) , ∆Pp (2))Var (∆Pp (1))− Cov(∆Pp (1) ,∆Pp (2))Cov(xp (1) ,∆Pp (1))) =

(A58)

= 2

(
Λ−

(
1 + z2−

) (
1 + z2

+

)

2 + z2
+ + z2−

+
(Λ+ + Λ−)

(
1 + z2

+

)

4z2
+

)
− 2Λ−

(
1 + z2

+

) (
1 + z2−

)

2 + z2
+ + z2−

=

=
(

1 +
1
z2
+

)
Λ+ + Λ−

2
.

The result follows after using the definition of z+ (equation (A12)) in (A58). We can now find b22

and b21 which are equal to

(
b21

b22

)
=

(
Var (∆Pp (1)) Cov(xp (1) , ∆Pp (1))

Cov(xp (1) , ∆Pp (1)) Var (xp (1))

)(
Cov(∆Pp (1) , xp (2))
Cov(xp (1) , xp (2))

)
. (A59)

Therefore,

b21 =
1

det(A)


Cov(∆Pp (1) , xp (2))Var (xp (1))︸ ︷︷ ︸

0

− Cov(xp (1) , xp (2))Cov(xp (1) , ∆Pp (1))


 =

(A60)

= −Λ+ + Λ−
4λ1λ2

.

Finally,

b22 =
1

det(A)


Cov(xp (1) , xp (2))Var (∆Pp (1))− Cov(∆Pp (1) , xp (2))Cov(xp (1) , ∆Pp (1))︸ ︷︷ ︸

0


 =

(A61)

=
1
4

(
1 +

1
z2
+

)
Λ+ + Λ−

λ2
.

The result follows after using the definition of z+ (equation (A12)) in (A61).¥
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Table 1: Summary Statistics

This table reports summary statistics of equal-weighted market returns, Rm(t), market institutional order flows (buy

volume minus sell volume), xm(t), as well as ratios of total market institutional orders to market cap and trading

volume. Market portfolio is formed on any give day by equally weighing returns for all stocks with available data

that day from January 1999 to December 2005. Institutional order flow is measured as a percent of a total market

cap. Newey-West t-statistics are reported in the parentheses.

Mean Std. dev. Min. Max.

Rm(t) 5.7524× 10−4 9.7248× 10−3 −0.0521 0.0517

xm(t) 2.0824× 10−5 1.0079× 10−4 −3.9424× 10−4 5.5299× 10−5

buy(t)+sell(t)
2∗mktcap(t)

2.5120× 10−3 6.8296× 10−4 5.6341× 10−4 4.7912× 10−3

buy(t)+sell(t)
2∗vol(t)

0.4095 0.0491 0.2704 0.5985
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Table 2: Lead-Lag Correlation Coefficients for the Market Portfolio

Panel A of this table reports correlation coefficients of equal-weighted market returns, Rm(t), with lagged equal-

weighted market returns and market institutional order flows, xm(t). Panel B of this table reports correlation

coefficients of daily net market institutional order flow with lagged equal-weighted market returns and market

institutional volume. The correlations are reported up to four lags. All variables are daily. Market portfolios

are formed each day by equally weighing returns/institutional order flows for all stocks with available data that

day from January 1999 to December 2005. Institutional order flow is measured as a percent of a total market cap.

Newey-West t-statistics are reported in the parentheses. ***, **, and * denote statistical significance at the 1, 5, and

10% levels, respectively.

Panel A: Return

Rm(t− 1) Rm(t− 2) Rm(t− 3) Rm(t− 4)

Rm(t) 0.0673 0.0143 0.0458 0.0261
(2.14∗∗) (0.42) (1.34) (0.76)

xm(t) −0.0273 −0.0615 −0.0516 −0.0359
(−0.01) (−0.01) (−0.01) (−0.01)

Panel B: Informed Order Flow

xm(t− 1) xm(t− 2) xm(t− 3) xm(t− 4)

Rm(t) 0.0292 −0.0015 0.0115 0.0219
(27.99∗∗∗) (−1.45) (11.83∗∗∗) (21.89∗∗∗)

xm(t) 0.3071 0.2488 0.2324 0.2059
(10.65∗∗∗) (9.08∗∗∗) (9.19∗∗∗) (7.55∗∗∗)
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Table 3: Vector Autoregressions for the Market Portfolio

This table reports results of jointly estimating the following one-lag (Panel A, K = 1) and four-lag (Panel B, K = 4)
vector autoregressions, using daily equal-weighted market returns, Rm(t), and institutional order flow, xm(t), from
January 1999 to December 2005

Rm(t) = a0,1 +

K∑

k=1

akRm(t− k) +

K∑

k=1

bkxm(t− k) + ε1(t),

xm(t) = a0,2 +

K∑

k=1

ckRm(t− k) +

K∑

k=1

dkxm(t− k) + ε2(t).

Rm(t − 1 : t − k), k = 1 or 4, reports
∑K

k=1 ak or
∑K

k=1 ck, depending on the left-hand side variable. Similarly,

xm(t− 1 : t− k), k = 1 or 4, reports
∑K

k=1 bk or
∑K

k=1 dk, depending on the left-hand side variable. All variables are

daily. Market portfolios are formed each day by equally weighing returns/institutional order flow for all stocks with

available data that day. Newey-West t-statistics are reported in the parentheses. Italics indicate the F -statistics for

the hypothesis that the sum of the coefficients equals zero. ***, **, and * denote statistical significance at the 1, 5,

and 10% levels, respectively. Institutional order flow is measured as a percent of a total market cap.

Panel A: One-Lag

LHS Rm(t− 1) xm(t− 1)

Rm(t) 0.0810 5.1719
(10.83∗∗∗) (4.70∗∗∗)

xm(t) 0.0003 0.2623
(1.12) (119.52∗∗∗)

Panel B: Four-Lag

LHS Rm(t− 1 : t− 4) xm(t− 1 : t− 4)

Rm(t) 0.1576 7.2841
11.83 ∗∗∗ 3.96 ∗∗

xm(t) −0.0001 0.5070
0.04 198.46 ∗∗∗
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Table 4: Lead-Lag Correlation Coefficients for Within-Industry and Random Portfolios

This table compares lead-lag correlations between portfolios of assets with high and low correlation in fundamental

values, ρ. We start with 12 Fama and French industry portfolios using daily data from January 1999 to December

2005. To construct portfolios we take stocks in the the first 11 industry portfolios and calculate returns and informed

order flows as we did for the market portfolio. For the other category we randomly divide stocks in it into 11 portfolios

and calculate returns and informed order flows for each. Thus, we have 22 portfolios where 11 are formed from stocks

within the same industry and 11 which are formed from stocks chosen from random industries. To focus on the

industry-level effects we remove the market-level effects from the within industry and random portfolios by using

the residuals from the regression of returns (order flows) of each portfolio on the market returns (order flows). To

avoid creating correlation in the residuals across the industry and random categories portfolios in each group are

regressed on the “market” formed from stocks only within the 11 portfolios in the same category. Panel A reports

average correlation coefficients of returns, Ri(t), and institutional order flow, xi(t), with their lagged counterparts

for high ρ portfolios. Panel B reports average correlation coefficients of returns, Ri(t), and institutional order flow,

xi(t), with their lagged counterparts for low ρ portfolios. The correlations are reported up to four lags in both cases.

Panel C reports the differences between the average correlation coefficients from Panels A and B. Italics indicate the

F -statistics for the hypothesis that the sum of the correlation coefficients equals zero (Panels A and B) and that

the difference is equal to zero (Panel C). Institutional order flow is measured as a fraction of a total market cap.

Coefficients are estimated at the same time using seemingly unrelated regressions; ***, **, and * denote statistical

significance at the 1, 5, and 10% levels, respectively.

Ri(t− 1) Ri(t− 2) Ri(t− 3) Ri(t− 4) xi(t− 1) xi(t− 2) xi(t− 3) xi(t− 4)

Panel A. Within-Industry (High ρ)

Ri(t) 0.1075 0.0186 0.0175 -0.0002 0.0350 0.0017 0.0150 0.0074
226.32 ∗∗∗ 6.72 ∗∗∗ 5.89 ∗∗∗ 0.00 25.44 ∗∗∗ 0.00 3.87 ∗∗ 0.89

xi(t) −0.0089 0.0026 0.0245 0.0161 0.2581 0.1700 0.1477 0.1268
0.81 0.16 6.04 ∗∗∗ 3.71 ∗∗ 1380.70 ∗∗∗ 575.96 ∗∗∗ 431.00 ∗∗∗ 315.95 ∗∗

Panel B. Random (Low ρ)

Ri(t) 0.0021 -0.0116 −0.0147 −0.0193 −0.0011 −0.0053 −0.0109 −0.0090
0.09 2.62 ∗ 4.16 ∗∗∗ 7.18 ∗∗∗ 0.01 0.50 2.39 ∗ 1.56

xi(t) 0.0228 −0.0002 0.0051 0.0202 0.2314 0.1222 0.1012 0.0851
10.29 ∗∗∗ 0.00 0.49 7.28 ∗∗∗ 1094.55 ∗∗∗ 292.94 ∗∗∗ 200.90 ∗∗∗ 140.85 ∗∗∗

Panel C. High Minus Low

Ri(t) 0.1053 0.0303 0.0321 0.0191 0.0361 0.0070 0.0259 0.0164
107.97 ∗∗∗ 8.87 ∗∗∗ 9.98 ∗∗∗ 3.51 ∗∗ 21.43 ∗∗∗ 0.10 5.91 ∗∗∗ 1.89

xi(t) −0.0317 0.0028 0.0194 −0.0041 0.0267 0.0478 0.0465 0.0418
10.63 ∗∗∗ 0.04 0.26 2.26 ∗ 7.33 ∗∗∗ 22.68 ∗∗∗ 21.33 ∗∗∗ 17.10 ∗∗∗
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Table 5: Vector Autoregressions for Within-Industry and Random Portfolios

This table reports results of jointly estimating the following one-lag (Panel A, K = 1) and four-lag (Panel B, K = 4)
vector autoregressions. We start with 12 Fama and French industry portfolios using daily data from January 1999
to December 2005 which we split into two groups of 11 portfolios each. For within industry portfolios (high ρ) we
use the first 11 industries—everything but the “other” group. For the random portfolios (low ρ) we randomly divide
stocks in the “other” group into 11 equal-sized portfolios. Because assets in this case are industry specific, they have
a common industry component and thus proxy for assets with high ρ. We then remove a common market component
from each portfolio by regressing its return (institutional order flow) on the market return (institutional order flow)
and using the residuals. For each portfolio we calculate the daily equal-weighted returns, Ri(t), and institutional
order flow, xi(t). We estimate the following VAR for each portfolio:

Ri(t) = a0,i,1 +

K∑

k=1

ai,kRi(t− k) +

K∑

k=1

bi,kxi(t− k) + εi,1(t),

xi(t) = a0,i,2 +

K∑

k=1

ci,kRi(t− k) +

K∑

k=1

di,kxi(t− k) + εi,2(t).

The results in panel A are for portfolios of firms within the same industry. Ri(t− 1 : t− k), k = 1 or 4, reports the

average
∑K

k=1 ai,k or
∑K

k=1 ci,k, depending on the left-hand side variable. Similarly, xi(t − 1 : t − k), k = 1 or 4,

reports the average
∑K

k=1 bi,k or
∑K

k=1 di,k, depending on the left-hand side variable. Italics indicate the F -statistics

for the hypothesis that the average of the coefficients equals zero (Panels A and B) and that the difference is equal

to zero (Panel C). Institutional order flow is measured as a fraction of a total market cap. Coefficients are estimated

at the same time using seemingly unrelated regressions; ***, **, and * denote statistical significance at the 1, 5, and

10% levels, respectively.

One-Lag Four-Lags
Ri(t− 1) xi(t− 1) Ri(t− 1 : t− 4) xi(t− 1 : t− 4)

Panel A. Within-Industry (High ρ)

Ri(t) 0.1060 0.8280 0.1159 1.0094
211.99 ∗∗∗ 4.24 ∗∗∗ 75.75 ∗∗∗ 2.58 ∗

xi(t) −0.0011 0.2701 −0.0012 0.4387
55.15 ∗∗∗ 1460.26 ∗∗∗ 18.71 ∗∗∗ 1609.73 ∗∗∗

Panel B. Random (Low ρ)

Ri(t) 0.0134 −0.0819 −0.0304 −0.3477
3.45 ∗∗ 0.21 4.44 ∗∗∗ 1.40

xi(t) −0.0000 0.2315 0.0002 0.3592
0.01 108.40 ∗∗∗ 0.16 999.00 ∗∗∗

Panel B. High Minus Low

Ri(t) 0.0926 0.9099 0.1463 1.3571
81.40 ∗∗∗ 4.26 ∗∗∗ 55.56 ∗∗∗ 3.83 ∗∗

xi(t) −0.011 0.0386 −0.0014 0.0795
10.98 ∗∗∗ 15.00 ∗∗∗ 4.87 ∗∗∗ 25.42 ∗∗∗
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Figure 2: Graphical Illustration of Theorem 1

We plot the parameters of the solution defined in Theorem 1 as functions of ρ with βK = 1. Panel A shows elasticities

of the order flow to information in the first trading round, β±, given by (16). Panel B shows Λ± given by (18). Panel

C shows inverse market depth parameter for trading rounds one, λ1, given by (17), and two, λ2, given by (20).
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Figure 3: Model Correlations Coefficients and VAR Coefficients as a Function of Asset
Correlation

This figure compares comparative statics results with respect to ρ for equal-weighted portfolios of two stocks implied
by the model. Panel A plots various lead-lag correlation coefficients implied by the model as functions of ρ. Panel B
plots vector autoregression coefficients from the following regression

(
∆Pp (t)

xp (t)

)
=

(
a1

a2

)
+

(
b11 b12

b21 b22

) (
∆Pp (t− 1)

xp (t− 1)

)
+

(
ε1(t)

ε2(t)

)

as functions of ρ in the model with βK = 1.
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