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ABSTRACT

This paper studies the welfare economics of informed stock market trading.

We analyze the effect of more informative prices on investment, given that this

dependence will itself be reflected in equilibrium prices. While a higher incidence

of informed speculation always increases firm value through a more informative

trading process, the effect on agents’ welfare depends on how revelation of infor-

mation changes risk-sharing opportunities in the market. Greater revelation of

information that agents wish to insure against reduces their hedging opportuni-

ties. On the other hand, early revelation of information that is uncorrelated with

hedging needs allows agents to construct better hedges.

1. Introduction

Our objective in this paper is to set out a framework that allows an analytically rigorous

discussion of the costs and benefits of stock market speculation by privately informed traders.

In particular, we focus on the role of security prices in aggregating information and thereby

influencing the allocation of risk, as well as the allocation of investment resources in the

real sector. The effects studied in this paper have been identified in the existing literature,

but have been analyzed individually and using a variety of different models. Our intended

contribution is not to point out previously unknown effects, but to carry out a complete

welfare analysis in a single canonical model.
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Business School, Southampton, University College London, and Warwick. We would also like to thank Luca
Anderlini and Hayne Leland. This research is partly funded by the European Commission TMR Network
on Financial Market Efficiency and Economic Efficiency, grant no. FMRX–CT96–0054.



– 2 –

The standard framework for analyzing economic welfare is the Walrasian model with full

information (the definitive treatment of full-information welfare economics is Graaff (1957)).

The competitive rational expectations equilibrium (REE) model is the generalization of this

paradigm to asymmetric information. In order to prevent private information from being

fully revealed in equilibrium, noise is added to the model, for example in the form of a

random disturbance to the economy’s excess demand as in Grossman and Stiglitz (1980).

The noise is usually interpreted as resulting from unmodeled, uninformed traders (“noise

traders”) trading for liquidity motives. This makes it impossible to work out a standard

economic welfare analysis based on agents’ utilities. Hence, although the noisy REE model

is the natural extension of the Walrasian model to describe financial markets, unlike the

Walrasian model it has not been developed as a tool for welfare analysis.

While some papers have explicitly modeled the motives of noise traders, they are either

not concerned with welfare issues or are restricted to settings in which information has

no social value. The latter is true more generally of both the noisy rational expectations

literature and the literature on market microstructure. Holmström and Tirole (1993) describe

the situation thus:

There is a vast literature in finance devoted to the analysis of information flows in

stock markets, including how completely and how fast information is incorporated

into prices. But in almost no model is information socially useful.

In contrast, in our model there are two possible benefits of information, arising from two

modifications to the standard set-up. The first comes from the way we endogenize noise

trading. We introduce a shock to traders’ endowments, that gives them a risk-sharing motive

for trade as well as preventing the price from being fully revealing. This allows us to study

the conditions under which more information is beneficial or harmful to agents who trade

to insure their endowment shock. The effect of more informative prices on risk-sharing

depends on the correlation of the information that is revealed with agents’ hedging needs. In

general, an asset that is used as a hedging instrument will not be perfectly correlated with

the initial risk exposure (in this case, the agents’ endowments), i.e. its value at the end of the

holding period will be influenced by other risk factors. Early resolution of this extraneous

uncertainty will help traders who want to hold the asset as a hedging instrument. We call

this the spanning effect. On the other hand, if speculators have information that is highly

correlated with the hedgers’ endowment shock, and this becomes incorporated into the price,

then hedgers will be worse off. This is the Hirshleifer effect: one cannot hedge a risk when

the market price already reflects the realization of that risk (Hirshleifer (1971)). In previous

literature, the device of replacing a shock to asset demand by a shock to endowments was
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introduced by Diamond and Verrecchia (1981). The particular variant employed in this

paper can be found in Maŕın and Rahi (1999, 2000), who also discuss the Hirshleifer effect.

The second modification we make to the REE framework is to allow asset prices to affect

corporate investment decisions. The setting we have in mind is that of the secondary market

for shares where outside investors possess private information that is pertinent to firms’

investment policy. While an individual investor may have only a small piece of information

about production possibilities beyond what managers already know, the pooled information

of outside investors may be substantial. Hence there is an important role for stock prices

in aggregating dispersed information that is useful for making production decisions. Indeed

it is this mechanism through which financial markets direct resource allocation elsewhere in

the economy.

While the idea of stock prices influencing investment is straightforward, it introduces

the complication that the prices themselves must reflect the changes in investment that are

made in response to information revealed by them. This is the “feedback effect” described

by Bresnahan, Milgrom and Paul (1992, p. 213, fn 16):

We assume . . . there are no tricky gaming issues between management and the

outsider traders. Suppose, for example, that the manager will withdraw the

project if the stock market reaction is adequately adverse. Then the value of the

security reflects this prospect . . .

In this paper, we model the feedback effect in equilibrium. Stock prices guide investment,

and this dependence is incorporated into the equilibrium price formation process.

Several papers in the literature have been concerned with the effect on investment of

contemporaneously determined stock prices. Leland’s (1992) model of insider trading has

the feature that production is responsive to the stock price, but the firm does not make

any inferences from the price (in the usual sense of rational expectations). Henrotte (1992)

analyzes the impact of security prices on a firm’s output decisions, in the spirit of our

feedback effect. However, his security is a futures contract on the firm’s output and hence a

change in firm value does not directly affect the security value. Boot and Thakor (1997) and

Dow and Gorton (1997) do model the feedback effect fully. But the presence of exogenous

liquidity traders in these models precludes a complete welfare analysis.

In Section 2 we set out a general model of a security market with agents who trade for

informational and hedging motives. Apart from the feedback effect, this is a competitive

rational expectations equilibrium model with a mass of risk-neutral uninformed agents. In

other words, it differs from standard REE models such as Diamond and Verrecchia (1981)
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merely by the addition of risk-neutral uninformed agents who are analogous to the market

maker in Kyle (1985). Likewise, it differs from Kyle-type microstructure models only insofar

as it allows limit orders, as opposed to market orders, and assumes competitive price-taking

behavior.1 In Section 3 we consider a parametric specification of the model with one type of

informed agent and two types of hedgers, with the equilibrium computed in Section 4. The

feedback effect is analyzed in Section 5. In Section 6, we derive equilibrium ex ante expected

utilities (Proposition 6.1) and present comparative statics results (Proposition 6.2). Section 7

concludes. All proofs are in the Appendix.

2. A General Model

We consider a firm, the value of whose productive assets is given by

v = f(k, y),

where k represents the level of investment, and y is a random variable affecting profitability.

The firm is managed so as to maximize its expected value.2 We normalize the number of

outstanding shares to one. In addition to these shares a riskless bond is available for trade,

which we take to be the numeraire, normalizing the interest rate to zero. There are n agents

who trade to exploit superior information or to hedge their risk exposures. There is also a

risk-neutral uninformed agent, agent 0, who can be thought of as a market maker. All agents

are competitive price-takers (i.e. each should be interpreted as a continuum of infinitesimal

traders). Agent i (i = 1, . . . , n) has a von Neumann-Morgenstern utility function Ui, and

a stochastic endowment ei. He privately observes (si, xi), where the signal si is correlated

with the firm’s profitability parameter y, and xi, which is independent of si, parameterizes

the agent’s risk exposure to a random variable z. Taking an asset position ti at the market

price p leaves him with terminal wealth

wi = ei(xi, z) + ti(v − p). (1)

1This paper is about traders with superior private information, and not specifically about insider traders.
We interpret the term “private information” broadly to include any situation where an analyst or fund
manager has a better insight than the market into general economic conditions, prospects for the interest
rate term structure, the financial situation of an individual company, etc. In this context it is natural to
think of informed traders as “informationally small.” Hence the assumption of competitive behavior.

2This can be rationalized by assuming that the firm is originally owned by risk-neutral (uninformed)
shareholders. This avoids the well-known problems of defining the objective of a firm in an incomplete
markets economy.
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Definition 2.1 A rational expectations equilibrium is a price function p(s1, . . . , sn, x1, . . . , xn),

order flow t(s1, . . . , sn, x1, . . . , xn), a trade ti for each agent i = 1, . . . , n, and an investment

level k, such that:

(a) ti ∈ arg max E[Ui(wi)|si, xi, p, t], (i = 1, . . . , n),

(b) t =
∑n

i=1 ti,

(c) p = E(v|p, t), and

(d) k ∈ arg max E(v|p, t).

Agents know the price and order flow functions and learn from their observation of

prices and order flows.3 In particular the firm is guided in its investment decisions by the

information aggregated and conveyed by prices. Simultaneously the price itself reflects this

dependence. Since the market maker is risk-neutral and competitive, he determines the price

through condition (c), and absorbs the aggregate trade of the other agents. This ensures

market-clearing.

One property of our model is worth commenting on: in equilibrium the expected trading

profits of an uninformed agent are zero. Agent i is uninformed if si and xi are degenerate

random variables, but he nevertheless learns from prices and the order flow. His expected

trading profit is

E[ti(v − p)] = E[E(ti(v − p)|p, t)]
= E[ti(E(v|p, t)− p)]

= 0

where we have used condition (c) in Definition 2.1 and the fact that ti is (p, t)-measurable.

Note that in general ti will be nonzero (as can be seen in the parametric model below).

It is interesting to contrast this “no-loss” result to results on the equilibrium profits of

uninformed agents in the Kyle model. In Kyle (1985) noise traders lose money on average.

In the variant proposed by Spiegel and Subrahmanyam (1992) noise traders are replaced by

rational uninformed hedgers who also lose money on average. This feature of uninformed

traders making losses has been identified with the presence of adverse selection in markets

3Note that we allow uninformed traders to make inferences from the order flow, in addition to the
equilibrium price. As will be seen below in our discussion of the parametric model, this assumption is made
for technical reasons to retain linearity in the CARA/Normal setting in the presence of the feedback effect.
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with asymmetrically informed agents. However, in our setting, which is very similar to

the standard Kyle model, uninformed traders break even. The key difference is that in

our model traders are allowed to use limit orders rather than market orders.4 This means

that traders can make inferences from prices and order flows, and hence are at least as well

informed as the market maker. Agents who have no private information about the asset value

(degenerate si) but have some information on their own hedging needs (non-degenerate xi)

will in general be better informed than the market maker in equilibrium, once they combine

their private information with the public signal (p, t). These agents may make positive or

negative trading profits depending on how strongly their hedging motive conflicts with their

speculative motive. On the other hand, agents with degenerate signals (si, xi) have exactly

the same information as the market maker. As we have shown, these agents face actuarially

fair prices, given their information, and just break even.

This does not mean that adverse selection is absent in our model, simply that losses

suffered by uninformed agents are not a necessary consequence of adverse selection. Consider,

for example, the case where n = 1 and both s1 and x1 are non-degenerate. In equilibrium

agent 1 is subject to adverse selection since the market maker cannot distinguish between s1

and x1. Effectively the different “types” of agent 1 are pooled together: the market maker

cannot tell the difference between the agent wanting to buy because he received a good signal

about the asset value and the agent wanting to buy because of a large hedging need. This

adverse selection clearly remains if we introduce another trader, agent 2, with degenerate

signals (s2, x2), even though this is an uninformed agent who makes no losses in equilibrium.

In order to carry out a complete welfare analysis that includes both the feedback effect

of stock prices on investment and the effect of asymmetric information on hedgers’ utilities,

we now study a parametric version of the model.

3. A Parametric Model

In this section we consider specific forms for the functions and random variables of the

model just described. The value of the firm is given by

v = ky − c

2
k2, (2)

where y denotes profitability per unit of investment, and c is a (positive) investment cost

parameter. All traders are infinitesimal price-taking agents. There is a measure qS ∈ (0,∞)

4Note that the no-loss result does not depend on whether informed traders behave strategically or are
competitive.



– 7 –

of identical privately informed speculators who observe a signal s that is correlated with y.

A speculator has no endowment. Taking an asset position tS at the market price p leaves

him with terminal wealth

wS = tS(v − p).

In addition there are two types of hedgers who are exposed to the random variable z.

The risk exposure of a hedger of type 1 is itself random: his initial endowment is e1 = xz

(where x is random). After privately observing x, he trades an amount t1 which results in

net wealth

w1 = xz + t1(v − p).

A hedger of type 2 has a constant risk exposure with endowment e2 = z, and trades t2 to

realize terminal wealth

w2 = z + t2(v − p).

There is a measure q1 ∈ (0,∞) of type 1 hedgers and we normalize the mass of type 2

hedgers to be one. For convenience we will henceforth refer to an individual speculator as

“the speculator” and likewise to a hedger of type i as “hedger i.”

Agent i (i = S, 1, 2) has constant absolute risk aversion ri and has information Ii, i.e.

IS is the partition generated by observing (s, p, t), and similarly I1 is induced by (x, p, t) and

I2 by (p, t). All random variables are joint normally distributed. Without loss of generality

we can take y = s + ε where s is independent of ε. We assume that
s

ε

z

x

 ∼ N

0,


Vs 0 Vzs 0

0 Vε Vzε 0

Vzs Vzε Vz 0

0 0 0 Vx


 .

We use the following notational convention: for random variables g and h, Vgh := Cov(g, h).

Also ρgh denotes the correlation coefficient between g and h, and βgh := VghV
−1
h is the

coefficient from the regression of g on h (the “beta” of g with respect to h).

In general, the risk z may be correlated with both s (the predictable component of y)

and ε (the residual), and these correlations may be different. The magnitude of hedger 1’s

risk exposure, x, is independent of all other random variables. We assume that the covariance

matrix above is positive definite, a necessary and sufficient condition for which is that all

variances be strictly positive and ρ2
zs + ρ2

zε < 1. We also take Vzs to be nonnegative, which

entails no loss of generality. Finally, to ensure that equilibria are not always fully revealing,

we assume that Vzε is nonzero.
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As we shall see, the “noise” in this model that prevents equilibrium from being fully

revealing arises from the trading of hedger 1. This agent trades a random amount which

depends on his privately observed endowment shock x. The endowment shock could equally

well be interpreted as a liquidity shock suffered by the agent resulting in a need to rebalance

his portfolio. Unlike the usual “noise-trader” or “liquidity-trader” model, hedger 1 maximizes

utility and makes inferences like any other rational trader.

The specification of hedger 1 and hedger 2 requires some comment. Why do we need

both hedgers, and why is their risk exposure not symmetric? If we only had hedger 1, then,

as we shall see below, in equilibrium there would be almost full revelation. The market

maker would not be able to distinguish separately the trade of informed and uninformed,

but each would be able to subtract his own demand from the total and infer the other’s

trade (and private information). Hence all traders, apart from the market maker, would be

fully informed and the equilibrium would be rather degenerate.

Given this, it would seem natural and more elegant to have two hedgers both with

different endowment shocks. However, the equilibrium for this model cannot be solved in

closed form. Hence the formulation we have chosen, which is the simplest one that admits a

non-degenerate closed-form solution.

4. Equilibrium

We now proceed to compute the equilibrium. The market maker sets the price equal to

his conditional expectation of the asset payoff given the order flow, i.e. p = E(v|p, t), where

t = qStS + q1t1 + t2. (3)

Agents observe the price and order flow. From this observation they can infer the firm’s

investment level k (k is (p, t)-measurable since the firm has no private information.) We see

from (2) that

p = kE(s|p, t)− c

2
k2. (4)

We look for a linear equilibrium where

E(s|p, t) = λs + µx (5)

for some parameters λ and µ that will be determined below. Note that it is clear from (4)

and (5) that (provided λ and µ are both nonzero) the speculator and hedger 1 have the same

information in equilibrium: IS = I1, which is the partition induced by knowing both s and

x, while the firm and hedger 2 are unable to isolate s from x.
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We can now apply the standard mean-variance certainty-equivalent analysis to the

agent’s optimization problem, since interim wealth is normally distributed conditional on

his information. Agent i’s expected utility is

E[−exp(−riwi)] = −E
[
E[exp(−riwi)|Ii]

]
= −E

[
exp

(
−ri

[
E(wi|Ii)−

ri

2
Var(wi|Ii)

])]
. (6)

Let

Ei := E(wi|Ii)−
ri

2
Var(wi|Ii). (7)

The agent’s optimization problem reduces to choosing a position ti to maximize Ei given his

information. From the expression (1) for wi:

Ei = E(ei|Ii) + ti

[
E(v|Ii)− p

]
− ri

2

[
Var(ei|Ii) + t2i Var(v|Ii) + 2tiCov(v, ei|Ii)

]
. (8)

The optimal portfolio is therefore

ti =
E(v|Ii)− p− riCov(v, ei|Ii)

riVar(v|Ii)
. (9)

Proposition 4.1 There exists a unique linear equilibrium. The price function is

p =
1

2c
(λs + µx)2,

the equilibrium investment is

k =
1

c
(λs + µx),

the equilibrium holdings of the agents are given by

tS =
(1− λ)s− µx

rSkVε

,

t1 =
(1− λ)s− (µ + r1Vzε)x

r1kVε

,

t2 = − (1− λ)Vzs + Vzε

k[(1− λ)Vs + Vε]
,

and the order flow is

t =
cq1V

2
zεVx

qVεVs

− c[(1− λ)Vzs + Vzε]

(λs + µx)[(1− λ)Vs + Vε]
,
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where

λ =
q2Vs

V 2
zεVx + q2Vs

,

µ = − qVzεVs

V 2
zεVx + q2Vs

,

and

q :=
qSr−1

S + q1r
−1
1

q1

.

The numerator of q is the risk tolerance-weighted average of the mass of traders who

know the signal s (in equilibrium). It measures the intensity of informed trading. The mass

of “random” hedgers q1, on the other hand, is a measure of the intensity of “noise trading.”

Thus q is the signal to noise ratio. Indeed | λ
µ
| is strictly increasing in q: a higher relative

intensity of informed trading makes the price more revealing. It is worth noting that λ is

also strictly increasing in q and induces a bijection from (0,∞) to (0, 1). This allows us to

work with λ or q interchangeably—as q goes from zero to infinity, or equivalently λ goes

from zero to one, the equilibrium goes from completely nonrevealing to fully revealing.

In this equilibrium uninformed agents can infer (λs + µx) from the price and the order

flow. If they were not allowed to condition on the order flow, they would be able to infer only

the absolute value of (λs + µx) from the price, and linearity of the solution would be lost.

This feature of the model arises from the feedback effect. Alternatively, we could assume

that agents condition only on prices if there is an additional piece of public information that

reveals the sign of (λs + µx).

5. The Feedback Effect

From Proposition 4.1 we see that the level of investment is more responsive to the share

price the lower is the adjustment cost (measured by the parameter c). This feeds back into

the equilibrium share price. The lower is c, the stronger is the feedback effect. We can easily

calculate the equilibrium volatility of investment as well as the mean and variance of the

share price.

Proposition 5.1 In equilibrium, the variance of the level of investment is

Var(k) =
λVs

c
,
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the mean and variance of the share price are, respectively,

E(p) =
λVs

2c
and

Var(p) =
λ2V 2

s

2c2
,

and the expected value of the firm is

E(v) =
λVs

2c
.

Note that the expected value of the firm is equal to the expected share price (since E(v) =

E[E(v|p, t)] = E(p)). With a greater intensity of informed trading and/or a lower cost

of investment, both the average share price and the volatility of the share price are higher.

Investment also is more volatile. The increased volatility, here, is beneficial from the point of

view of the firm. It reflects a more efficient price that leads to a better corporate investment

policy.

6. Welfare Analysis

We measure agents’ welfare in equilibrium in terms of their certainty-equivalent wealth.

We denote this by Ui for agent i and for convenience we refer to it as the agent’s payoff:

Ui := − 1

ri

ln
[
−EUi(wi)

]
= − 1

ri

ln
[
E[exp(−riwi)]

]
(10)

where expectations are taken over the ex ante distribution of wealth in equilibrium. No-

tice that, for agents S and 1, wealth is not normally distributed ex ante, and therefore

certainty-equivalent wealth cannot be computed by the usual mean-variance formula.5 In

the expression for agent i’s terminal wealth,

wi = ti(v − p) + ei(xi, z),

ti is the ratio of two normals (for agents S and 1), v and p are both the product of two

normals, while ei is either zero (in the case of agent S) or the product of two normals

(agent 1).

5The welfare analysis in Leland (1992) is therefore inconsistent with expected utility: there is no von
Neumann Morgenstern utility function that yields an objective that is linear in mean and variance of wealth
for arbitrary distributions of wealth.
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Proposition 6.1 The payoffs of the agents are:

US =
1

2rS

ln[1 + (1− λ)VsV
−1
ε ]

U1 =
1

2r1

ln[(1− r2
1VxVz)[1 + (1− λ)2VsV

−1
ε ] + (µ + r1[(1− λ)Vzs + Vzε])

2VxV
−1
ε ]

U2 =
r2

2

[
[(1− λ)Vzs + Vzε]

2

(1− λ)Vs + Vε

− Vz

]
.

We now wish to assess the welfare impact of changing q, the relative intensity of informed

trading.

Proposition 6.2 The speculator’s payoff US is decreasing, with respect to q, while the un-

informed hedger’s payoff U2 is

(a) decreasing if and only if |βzs − βzε | ≤ βzs,

(b) increasing if and only if |βzs − βzε | ≥ VyV
−1
ε βzs, and

(c) strictly convex and attains a minimum if and only if βzs < |βzs − βzε | < VyV
−1
ε βzs.

Here we use the terms increasing and decreasing in the strict sense. Since λ is increasing in

q, the statement regarding the speculator’s payoff is immediate from Proposition 6.1. The

interpretation is straightforward: an individual speculator’s payoff US is decreasing in q since

a more revealing trading process means less favorable opportunities for speculative profit.

The comparative statics for the uninformed hedger are more subtle. Recall that βgh is

the regression coefficient from the regression of g on h. Whether hedger 2 prefers to be less

or more informed in equilibrium depends on the relative size of the two betas, βzs and βzε. A

bigger βzs means a stronger Hirshleifer effect: observing a signal that is highly informative

about endowments reduces risk-sharing opportunities in the market. On the other hand,

the bigger is the magnitude of βzε, the more desirable it is to obtain a good estimate of

s so that the endowment risk associated with ε can be hedged more effectively. If βzε is

very small relative to βzs (case (a)), the Hirshleifer effect dominates and the hedger is worse

off as informed trading increases and more information is revealed by the market. In case

(b) the opposite is true: the hedger prefers more revelation to less since the speculator’s

information resolves a lot of uncertainty regarding the asset payoff and not much regarding

the endowment. In the intermediate case (c), the hedger prefers the equilibrium to be either

fully revealing or not revealing at all.
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It has been observed that the typical daily pattern of trading volume in financial markets

is U-shaped, with heavy trading in the morning and late afternoon and relatively little

activity in the middle of the day. This is consistent with case (c) above: if prices are more

revealing as the trading day progresses, uninformed hedgers would prefer to trade either at

the open or the close.

7. Conclusions

In this paper, we have presented a general model of a security market with agents who

trade for informational and hedging motives. The model also incorporates the feedback effect

of investment policy (as a function of the price) back onto price formation.

To analyze the welfare effects of informed trading, we use a parametric model where

all agents are rational utility-maximizers and we compute explicit closed-form solutions for

their equilibrium utility levels. We obtain a continuous parameterization of equilibrium

with respect to the intensity of informed trading. A greater degree of informed trading

reduces the returns to speculation. The effect on uninformed hedgers is not unambiguous: it

depends on the whether the information being revealed is primarily about endowment risk

(the Hirshleifer effect), or about extraneous uncertainty in the asset payoff (the spanning

effect). From the point of view of investment efficiency, more informed trading is always

beneficial, even though it entails higher volatility of the share price and of investment.
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A. Appendix

Lemma A.1 Suppose A is a symmetric m × m matrix, b is an m-vector, d is a scalar,

and w is an m-dimensional normal variate: w ∼ N(0, Σ), Σ positive definite. Then

E[exp(w>Aw + b>w + d)] is well-defined if and only if (I − 2ΣA) is positive definite,

and

E[exp(w>Aw + b>w + d)] = |I− 2ΣA|−
1
2 exp[

1

2
b>(I− 2ΣA)−1Σb + d].

This is a standard formula that we will use to compute ex ante expected utilities. For a

proof see, for example, Maŕın and Rahi (1999).

Proof of Proposition 4.1. The firm solves the problem:

max
k∈IR

kE(s|p, t)− c

2
k2,

giving k = c−1E(s|p, t) = c−1(λs + µx), using (4). Also, from (4) and (5),

p = k(λs + µx)− c

2
k2.

By substituting in the equilibrium k we obtain the desired expression for the price function.

For the speculator, using (2) and (9), and standard properties of the normal distribution

(see, for example, Anderson (1984)), we get

tS =
E(v|s)− p

rSVar(v|s)

=
ks− c

2
k2 − [k(λs + µx)− c

2
k2]

rSk2Vε

=
(1− λ)s− µx

rSkVε

.

Similarly for the hedgers

t1 =
(1− λ)s− (µ + r1Vzε)x

r1kVε

,

t2 = −Cov(z, s|p, t) + Vzε

k(Var(s|p, t) + Vε)
. (A1)

Substituting into (3) we can write the aggregate order flow as

t = t2 +
q1

kVε

· τ,
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where

τ := q(1− λ)s− (qµ + Vzε)x,

and q is as defined in the statement of the proposition. We proceed under the assumption

that observing prices and the order flow is equivalent to observing (λs + µx). As we shall

see, this will turn out to be true in equilibrium. Then

E(s|p, t) = E(s|λs + µx)

=
λVs

λ2Vs + µ2Vx

· (λs + µx).

It follows from (5) that

λ2Vs + µ2Vx = λVs. (A2)

We conjecture that τ is proportional to (λs + µx). Then

λ

µ
= −q(1− λ)

qµ + Vzε

.

Cross-multiplying and simplifying, we get

λ

µ
= − q

Vzε

. (A3)

Equations (A2) and (A3) can now be solved for λ and µ.

The conditional moments for hedger 2, who observes only the price and order flow, are

equivalent to the moments conditional on (λs + µx). Using the standard properties of the

normal distribution, together with (A2), we get:

Var(s|p, t) = (1− λ)Vs (A4)

Cov(z, s|p, t) = (1− λ)Vzs. (A5)

Substituting into (A1) we obtain the desired formula for t2. The equilibrium order flow can

now be readily computed.

Proof of Proposition 5.1. The variance of k is immediate from the expression for k in

Proposition 4.1 and equation (A2). From the moment generating function of the normal

distribution, if X ∼ N(0, σ2), then E(X2) = σ2 and Var(X2) = 2σ4. Now we obtain the

mean and variance of the share price by using the expression for the price function from

Proposition 4.1 and equation (A2). Finally, note that E(v) = E[E(v|p, t)] = E(p).

Proof of Proposition 6.1. From (6), (7) and (10),

Ui = − 1

ri

ln
[
E[exp(−riEi)]

]
.
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Using (8) and (9), in equilibrium,

Ei = E(ei|Ii)−
ri

2
Var(ei|Ii) + ti

[
E(v|Ii)− p− riCov(v, ei|Ii)

]
− ri

2
t2i Var(v|Ii)

= E(ei|Ii)−
ri

2
Var(ei|Ii) +

ri

2
t2i Var(v|Ii). (A6)

Setting ei = 0 in (A6), substituting for the equilibrium holding of the speculator from

Proposition 4.1, and using Lemma A.1, we obtain

US =
1

2rS

ln
[
1 + V −1

ε [(1− λ)2Vs + µ2Vx]
]
.

The formula for the speculator’s payoff follows from (A2). Noting that hedger 1 has the same

information in equilibrium as the speculator, we can derive U1 by using (A6), Proposition

4.1, and Lemma A.1. For hedger 2,

E2 = E(z|p, t)− r2

2
Var(z|p, t) +

r2

2
t22Var(v|p, t).

Analogous to (A4) and (A5), we get

E(z|p, t) =
Vzs

Vs

[λs + µx]

Var(z|p, t) = Vz −
V 2

zs

Vs

λ

Var(v|p, t) = k2[(1− λ)Vs + Vε].

Substituting into the above expression for E2 and using Proposition 4.1 and Lemma A.1 we

obtain the formula for U2.

Proof of Proposition 6.2. Note that λ is increasing in q. The comparative statics for E(v) and

US are immediate from Proposition 6.1. From the expression for U2 we see that if Vzs = 0,

U2 is increasing in q. This case is covered by item (c) in the proposition. Henceforth we

restrict Vzs to be strictly positive (note our convention that Vzs ≥ 0). Differentiating U2 with

respect to λ, we obtain two critical points:

λ∗ = 1 +
Vε

Vs

· βzε

βzs

λ∗∗ = 1 +
Vε

Vs

(
2− βzε

βzs

)
.

Also we see that

sgn

[
∂2U2

(∂λ)2

]
λ=λ∗

= −sgn

[
∂2U2

(∂λ)2

]
λ=λ∗∗

= sgn (βzs − βzε).

The comparative statics for U2 can now be verified by considering each case in turn and

restricting λ to the unit interval (0, 1).
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