
Informer: Beyond Efficient Transformer for Long Sequence
Time-Series Forecasting

Haoyi Zhou, 1 Shanghang Zhang, 2 Jieqi Peng, 1 Shuai Zhang, 1 Jianxin Li, 1

Hui Xiong, 3 Wancai Zhang 4

1 SCSE and BDBC, Beihang University, Beijing, China
2 UC Berkeley, California, US

3 Rutgers University, New Jersey, US
4 Beijing Guowang Fuda Science & Technology Development Company

{zhouhy, pengjq, zhangs, lijx}@act.buaa.edu.cn, shz@eecs.berkeley.edu, {xionghui,zhangwancaibuaa}@gmail.com

Abstract

Many real-world applications require the prediction of long
sequence time-series, such as electricity consumption plan-
ning. Long sequence time-series forecasting (LSTF) demands
a high prediction capacity of the model, which is the ability
to capture precise long-range dependency coupling between
output and input efficiently. Recent studies have shown the
potential of Transformer to increase the prediction capacity.
However, there are several severe issues with Transformer
that prevent it from being directly applicable to LSTF, includ-
ing quadratic time complexity, high memory usage, and in-
herent limitation of the encoder-decoder architecture. To ad-
dress these issues, we design an efficient transformer-based
model for LSTF, named Informer, with three distinctive char-
acteristics: (i) a ProbSparse self-attention mechanism, which
achieves O(L logL) in time complexity and memory usage,
and has comparable performance on sequences’ dependency
alignment. (ii) the self-attention distilling highlights dominat-
ing attention by halving cascading layer input, and efficiently
handles extreme long input sequences. (iii) the generative
style decoder, while conceptually simple, predicts the long
time-series sequences at one forward operation rather than
a step-by-step way, which drastically improves the inference
speed of long-sequence predictions. Extensive experiments
on four large-scale datasets demonstrate that Informer sig-
nificantly outperforms existing methods and provides a new
solution to the LSTF problem.

Introduction

Time-series forecasting is a critical ingredient across many
domains, such as sensor network monitoring (Papadimitriou
and Yu 2006), energy and smart grid management, eco-
nomics and finance (Zhu and Shasha 2002), and disease
propagation analysis (Matsubara et al. 2014). In these sce-
narios, we can leverage a substantial amount of time-series
data on past behavior to make a forecast in the long run,
namely long sequence time-series forecasting (LSTF). How-
ever, existing methods are mostly designed under short-term
problem setting, like predicting 48 points or less (Hochreiter
and Schmidhuber 1997; Li et al. 2018; Yu et al. 2017; Liu

Copyright © 2021, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

2d 4d 6d 8d Time0d

Ground truth

Prediction

Short

Long

(a) Sequence Forecasting.

1248 96 192 480
The predict sequence length

2

4

6

M
SE

 sc
or

e

10−1

100

Th
e

pr
ed

ic
tio

ns
/se

c
(in

 lo
g

sc
al

e)MSE score
Inference speed

(b) Run LSTM on sequences.

Figure 1: (a) LSTF can cover an extended period than
the short sequence predictions, making vital distinction in
policy-planning and investment-protecting. (b) The predic-
tion capacity of existing methods limits LSTF’s perfor-
mance. E.g., starting from length=48, MSE rises unaccept-
ably high, and the inference speed drops rapidly.

et al. 2019; Qin et al. 2017; Wen et al. 2017). The increas-
ingly long sequences strain the models’ prediction capacity
to the point where this trend is holding the research on LSTF.
As an empirical example, Fig.(1) shows the forecasting re-
sults on a real dataset, where the LSTM network predicts the
hourly temperature of an electrical transformer station from
the short-term period (12 points, 0.5 days) to the long-term
period (480 points, 20 days). The overall performance gap
is substantial when the prediction length is greater than 48
points (the solid star in Fig.(1b)), where the MSE rises to
unsatisfactory performance, the inference speed gets sharp
drop, and the LSTM model starts to fail.

The major challenge for LSTF is to enhance the predic-
tion capacity to meet the increasingly long sequence de-
mand, which requires (a) extraordinary long-range align-
ment ability and (b) efficient operations on long sequence in-
puts and outputs. Recently, Transformer models have shown
superior performance in capturing long-range dependency
than RNN models. The self-attention mechanism can re-
duce the maximum length of network signals traveling paths
into the theoretical shortest O(1) and avoid the recurrent
structure, whereby Transformer shows great potential for
the LSTF problem. Nevertheless, the self-attention mecha-
nism violates requirement (b) due to its L-quadratic compu-
tation and memory consumption on L-length inputs/outputs.
Some large-scale Transformer models pour resources and

The Thirty-Fifth AAAI Conference on Artificial Intelligence (AAAI-21)

11106

yield impressive results on NLP tasks (Brown et al. 2020),
but the training on dozens of GPUs and expensive deploying
cost make theses models unaffordable on real-world LSTF
problem. The efficiency of the self-attention mechanism and
Transformer architecture becomes the bottleneck of apply-
ing them to LSTF problems. Thus, in this paper, we seek to
answer the question: can we improve Transformer models to
be computation, memory, and architecture efficient, as well
as maintaining higher prediction capacity?

Vanilla Transformer (Vaswani et al. 2017) has three sig-
nificant limitations when solving the LSTF problem:

1. The quadratic computation of self-attention. The atom
operation of self-attention mechanism, namely canonical
dot-product, causes the time complexity and memory us-
age per layer to be O(L2).

2. The memory bottleneck in stacking layers for long in-
puts. The stack of J encoder/decoder layers makes total
memory usage to be O(J · L2), which limits the model
scalability in receiving long sequence inputs.

3. The speed plunge in predicting long outputs. Dynamic
decoding of vanilla Transformer makes the step-by-step
inference as slow as RNN-based model (Fig.(1b)).

There are some prior works on improving the efficiency of
self-attention. The Sparse Transformer (Child et al. 2019),
LogSparse Transformer (Li et al. 2019), and Longformer
(Beltagy, Peters, and Cohan 2020) all use a heuristic method
to tackle limitation 1 and reduce the complexity of self-
attention mechanism to O(L logL), where their efficiency
gain is limited (Qiu et al. 2019). Reformer (Kitaev, Kaiser,
and Levskaya 2019) also achieves O(L logL) with locally-
sensitive hashing self-attention, but it only works on ex-
tremely long sequences. More recently, Linformer (Wang
et al. 2020) claims a linear complexity O(L), but the project
matrix can not be fixed for real-world long sequence in-
put, which may have the risk of degradation to O(L2).
Transformer-XL (Dai et al. 2019) and Compressive Trans-
former (Rae et al. 2019) use auxiliary hidden states to cap-
ture long-range dependency, which could amplify limitation
1 and be adverse to break the efficiency bottleneck. All these
works mainly focus on limitation 1, and the limitation 2&3
remains unsolved in the LSTF problem. To enhance the pre-
diction capacity, we tackle all these limitations and achieve
improvement beyond efficiency in the proposed Informer.

To this end, our work delves explicitly into these three is-
sues. We investigate the sparsity in the self-attention mecha-
nism, make improvements of network components, and con-
duct extensive experiments. The contributions of this paper
are summarized as follows:

• We propose Informer to successfully enhance the predic-
tion capacity in the LSTF problem, which validates the
Transformer-like model’s potential value to capture in-
dividual long-range dependency between long sequence
time-series outputs and inputs.

• We propose ProbSparse self-attention mechanism to ef-
ficiently replace the canonical self-attention. It achieves
the O(L logL) time complexity and O(L logL) memory
usage on dependency alignments.

• We propose self-attention distilling operation to privi-
lege dominating attention scores in J-stacking layers and

Decoder

Outputs

Masked Multi-head
ProbSparse

Self-attention

Multi-head
Attention

Encoder

Inputs: Xen

Concatenated Feature Map

Inputs: Xde={Xtoken, X0}

0 0 0 0 0 0 0

Fully Connected Layer

Multi-head
ProbSparse

Self-attention

Multi-head
ProbSparse

Self-attention

Figure 2: Informer model overview. Left: The encoder re-
ceives massive long sequence inputs (green series). We re-
place canonical self-attention with the proposed ProbSparse
self-attention. The blue trapezoid is the self-attention distill-
ing operation to extract dominating attention, reducing the
network size sharply. The layer stacking replicas increase ro-
bustness. Right: The decoder receives long sequence inputs,
pads the target elements into zero, measures the weighted
attention composition of the feature map, and instantly pre-
dicts output elements (orange series) in a generative style.

sharply reduce the total space complexity to be O((2 −
ǫ)L logL), which helps receiving long sequence input.

• We propose generative style decoder to acquire long se-
quence output with only one forward step needed, simul-
taneously avoiding cumulative error spreading during the
inference phase.

Preliminary

We first provide the LSTF problem definition. Under the
rolling forecasting setting with a fixed size window, we have
the input X t = {xt

1, . . . ,x
t
Lx

| xt
i ∈ R

dx} at time t,

and the output is to predict corresponding sequence Yt =
{yt

1, . . . ,y
t
Ly

| yt
i ∈ R

dy}. The LSTF problem encourages

a longer output’s length Ly than previous works (Cho et al.
2014; Sutskever, Vinyals, and Le 2014) and the feature di-
mension is not limited to univariate case (dy ≥ 1).

Encoder-decoder architecture Many popular models are
devised to “encode” the input representations X t into a hid-
den state representations Ht and “decode” an output rep-
resentations Yt from Ht = {ht

1, . . . ,h
t
Lh

}. The inference
involves a step-by-step process named “dynamic decoding”,
where the decoder computes a new hidden state ht

k+1 from

the previous state ht
k and other necessary outputs from k-th

step then predict the (k + 1)-th sequence yt
k+1.

Input Representation A uniform input representation is
given to enhance the global positional context and local tem-
poral context of the time-series inputs. To avoid trivializing
description, we put the details in Appendix B.

Methodology

Existing methods for time-series forecasting can be roughly
grouped into two categories1. Classical time-series mod-
els serve as a reliable workhorse for time-series forecast-

1Related work is in Appendix A due to space limitation.

11107

ing (Box et al. 2015; Ray 1990; Seeger et al. 2017; Seeger,
Salinas, and Flunkert 2016), and deep learning techniques
mainly develop an encoder-decoder prediction paradigm by
using RNN and their variants (Hochreiter and Schmidhuber
1997; Li et al. 2018; Yu et al. 2017). Our proposed Informer
holds the encoder-decoder architecture while targeting the
LSTF problem. Please refer to Fig.(2) for an overview and
the following sections for details.

Efficient Self-attention Mechanism

The canonical self-attention in (Vaswani et al. 2017) is de-
fined based on the tuple inputs, i.e, query, key and value,
which performs the scaled dot-product as A(Q,K,V) =

Softmax(QK⊤/
√
d)V, where Q ∈ R

LQ×d, K ∈ R
LK×d,

V ∈ R
LV ×d and d is the input dimension. To further discuss

the self-attention mechanism, let qi, ki, vi stand for the i-th
row in Q, K, V respectively. Following the formulation in
(Tsai et al. 2019), the i-th query’s attention is defined as a
kernel smoother in a probability form:

A(qi,K,V) =
∑

j

k(qi,kj)
∑

l k(qi,kl)
vj = Ep(kj |qi)[vj] , (1)

where p(kj |qi) = k(qi,kj)/
∑

l k(qi,kl) and k(qi,kj)

selects the asymmetric exponential kernel exp(qik
⊤
j /

√
d).

The self-attention combines the values and acquires outputs
based on computing the probability p(kj |qi). It requires
the quadratic times dot-product computation and O(LQLK)
memory usage, which is the major drawback when enhanc-
ing prediction capacity.

Some previous attempts have revealed that the distribution
of self-attention probability has potential sparsity, and they
have designed “selective” counting strategies on all p(kj |qi)
without significantly affecting the performance. The Sparse
Transformer (Child et al. 2019) incorporates both the row
outputs and column inputs, in which the sparsity arises
from the separated spatial correlation. The LogSparse Trans-
former (Li et al. 2019) notices the cyclical pattern in self-
attention and forces each cell to attend to its previous one
by an exponential step size. The Longformer (Beltagy, Pe-
ters, and Cohan 2020) extends previous two works to more
complicated sparse configuration. However, they are limited
to theoretical analysis from following heuristic methods and
tackle each multi-head self-attention with the same strategy,
which narrows their further improvement.

To motivate our approach, we first perform a qualitative
assessment on the learned attention patterns of the canoni-
cal self-attention. The “sparsity” self-attention score forms
a long tail distribution (see Appendix C for details), i.e., a
few dot-product pairs contribute to the major attention, and
others generate trivial attention. Then, the next question is
how to distinguish them?

Query Sparsity Measurement From Eq.(1), the i-th
query’s attention on all the keys are defined as a probabil-
ity p(kj |qi) and the output is its composition with values v.
The dominant dot-product pairs encourage the correspond-
ing query’s attention probability distribution away from the
uniform distribution. If p(kj |qi) is close to a uniform dis-
tribution q(kj |qi) = 1/LK , the self-attention becomes a

trivial sum of values V and is redundant to the residential
input. Naturally, the “likeness” between distribution p and
q can be used to distinguish the “important” queries. We
measure the “likeness” through Kullback-Leibler divergence

KL(q||p) = ln
∑LK

l=1 e
qik

⊤
l /

√
d − 1

LK

∑LK

j=1 qik
⊤
j /

√
d −

lnLK . Dropping the constant, we define the i-th query’s
sparsity measurement as

M(qi,K) = ln

LK
∑

j=1

e
qik

⊤
j√
d − 1

LK

LK
∑

j=1

qik
⊤
j√
d

, (2)

where the first term is the Log-Sum-Exp (LSE) of qi on
all the keys, and the second term is the arithmetic mean on
them. If the i-th query gains a larger M(qi,K), its atten-
tion probability p is more “diverse” and has a high chance to
contain the dominate dot-product pairs in the header field of
the long tail self-attention distribution.

ProbSparse Self-attention Based on the proposed mea-
surement, we have the ProbSparse self-attention by allowing
each key to only attend to the u dominant queries:

A(Q,K,V) = Softmax(
QK⊤
√
d

)V , (3)

where Q is a sparse matrix of the same size of q and it
only contains the Top-u queries under the sparsity measure-
ment M(q,K). Controlled by a constant sampling factor c,
we set u = c · lnLQ, which makes the ProbSparse self-
attention only need to calculate O(lnLQ) dot-product for
each query-key lookup and the layer memory usage main-
tains O(LK lnLQ). Under the multi-head perspective, this
attention generates different sparse query-key pairs for each
head, which avoids severe information loss in return.

However, the traversing of all the queries for the measure-
ment M(qi,K) requires calculating each dot-product pairs,
i.e., quadratically O(LQLK), besides the LSE operation has
the potential numerical stability issue. Motivated by this, we
propose an empirical approximation for the efficient acqui-
sition of the query sparsity measurement.

Lemma 1. For each query qi ∈ R
d and kj ∈ R

d in the
keys set K, we have the bound as lnLK ≤ M(qi,K) ≤
maxj{qik

⊤
j /

√
d}− 1

LK

∑LK

j=1{qik
⊤
j /

√
d}+ lnLK . When

qi ∈ K, it also holds.

From the Lemma 1 (proof is given in Appendix D.1), we
propose the max-mean measurement as

M(qi,K) = max
j

{
qik

⊤
j√
d

} − 1

LK

LK
∑

j=1

qik
⊤
j√
d

. (4)

The range of Top-u approximately holds in the bound-
ary relaxation with Proposition 1 (refers in Appendix D.2).
Under the long tail distribution, we only need to randomly
sample U = LK lnLQ dot-product pairs to calculate the

M(qi,K), i.e., filling other pairs with zero. Then, we se-

lect sparse Top-u from them as Q. The max-operator in
M(qi,K) is less sensitive to zero values and is numeri-
cal stable. In practice, the input length of queries and keys
are typically equivalent in the self-attention computation, i.e
LQ = LK = L such that the total ProbSparse self-attention
time complexity and space complexity are O(L lnL).

11108

Scalar

Stamp

T = t

T = t +Dx

L
d

Conv1d

L
d

Embedding

+

L

k

L

n-heads
Attention Block 1

Conv1d

M
ax
Po
ol
1d
,

pa
dd
in
g=
2L/2

k
L/
2

n-heads
Attention Block 2

Conv1d

M
ax
Po
ol
1d
,

pa
dd
in
g=
2L/4

k L/
4

n-heads
Attention Block 3

L/
4d

Feature
Map

Figure 3: The single stack in Informer’s encoder. (1) The horizontal stack stands for an individual one of the encoder replicas
in Fig.(2). (2) The presented one is the main stack receiving the whole input sequence. Then the second stack takes half slices
of the input, and the subsequent stacks repeat. (3) The red layers are dot-product matrixes, and they get cascade decrease by
applying self-attention distilling on each layer. (4) Concatenate all stacks’ feature maps as the encoder’s output.

Encoder: Allowing for Processing Longer
Sequential Inputs under the Memory Usage
Limitation

The encoder is designed to extract the robust long-range de-
pendency of the long sequential inputs. After the input rep-
resentation, the t-th sequence input X t has been shaped into
a matrix Xt

en ∈ R
Lx×dmodel . We give a sketch of the encoder

in Fig.(3) for clarity.
Self-attention Distilling As the natural consequence of

the ProbSparse self-attention mechanism, the encoder’s fea-
ture map has redundant combinations of value V. We use
the distilling operation to privilege the superior ones with
dominating features and make a focused self-attention fea-
ture map in the next layer. It trims the input’s time dimension
sharply, seeing the n-heads weights matrix (overlapping red
squares) of Attention blocks in Fig.(3). Inspired by the di-
lated convolution (Yu, Koltun, and Funkhouser 2017; Gupta
and Rush 2017), our “distilling” procedure forwards from
j-th layer into (j + 1)-th layer as:

Xt
j+1 = MaxPool

(

ELU(Conv1d([Xt
j]AB))

)

, (5)

where [·]AB represents the attention block. It contains the
Multi-head ProbSparse self-attention and the essential op-
erations, where Conv1d(·) performs an 1-D convolutional
filters (kernel width=3) on time dimension with the ELU(·)
activation function (Clevert, Unterthiner, and Hochreiter
2016). We add a max-pooling layer with stride 2 and down-
sample Xt into its half slice after stacking a layer, which
reduces the whole memory usage to be O((2 − ǫ)L logL),
where ǫ is a small number. To enhance the robustness of
the distilling operation, we build replicas of the main stack
with halving inputs, and progressively decrease the number
of self-attention distilling layers by dropping one layer at a
time, like a pyramid in Fig.(2), such that their output dimen-
sion is aligned. Thus, we concatenate all the stacks’ outputs
and have the final hidden representation of encoder.

Decoder: Generating Long Sequential Outputs
Through One Forward Procedure

We use a standard decoder structure (Vaswani et al. 2017) in
Fig.(2), and it is composed of a stack of two identical multi-
head attention layers. However, the generative inference is
employed to alleviate the speed plunge in long prediction.
We feed the decoder with the following vectors as

Xt
de = Concat(Xt

token,X
t
0) ∈ R

(Ltoken+Ly)×dmodel , (6)

where Xt
token ∈ R

Ltoken×dmodel is the start token, Xt
0 ∈

R
Ly×dmodel is a placeholder for the target sequence (set

scalar as 0). Masked multi-head attention is applied in the
ProbSparse self-attention computing by setting masked dot-
products to −∞. It prevents each position from attending
to coming positions, which avoids auto-regressive. A fully
connected layer acquires the final output, and its outsize dy
depends on whether we are performing a univariate forecast-
ing or a multivariate one.

Generative Inference Start token is efficiently applied in
NLP’s “dynamic decoding” (Devlin et al. 2018), and we ex-
tend it into a generative way. Instead of choosing specific
flags as the token, we sample a Ltoken long sequence in the
input sequence, such as an earlier slice before the output se-
quence. Take predicting 168 points as an example (7-day
temperature prediction in the experiment section), we will
take the known 5 days before the target sequence as “start-
token”, and feed the generative-style inference decoder with
Xde = {X5d,X0}. The X0 contains target sequence’s time
stamp, i.e., the context at the target week. Then our proposed
decoder predicts outputs by one forward procedure rather
than the time consuming “dynamic decoding” in the conven-
tional encoder-decoder architecture. A detailed performance
comparison is given in the computation efficiency section.

Loss function We choose the MSE loss function on pre-
diction w.r.t the target sequences, and the loss is propagated
back from the decoder’s outputs across the entire model.

11109

Methods Informer Informer† LogTrans Reformer LSTMa DeepAR ARIMA Prophet

Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

E
T

T
h
1

24 0.098 0.247 0.092 0.246 0.103 0.259 0.222 0.389 0.114 0.272 0.107 0.280 0.108 0.284 0.115 0.275
48 0.158 0.319 0.161 0.322 0.167 0.328 0.284 0.445 0.193 0.358 0.162 0.327 0.175 0.424 0.168 0.330

168 0.183 0.346 0.187 0.355 0.207 0.375 1.522 1.191 0.236 0.392 0.239 0.422 0.396 0.504 1.224 0.763
336 0.222 0.387 0.215 0.369 0.230 0.398 1.860 1.124 0.590 0.698 0.445 0.552 0.468 0.593 1.549 1.820
720 0.269 0.435 0.257 0.421 0.273 0.463 2.112 1.436 0.683 0.768 0.658 0.707 0.659 0.766 2.735 3.253

E
T

T
h
2

24 0.093 0.240 0.099 0.241 0.102 0.255 0.263 0.437 0.155 0.307 0.098 0.263 3.554 0.445 0.199 0.381
48 0.155 0.314 0.159 0.317 0.169 0.348 0.458 0.545 0.190 0.348 0.163 0.341 3.190 0.474 0.304 0.462

168 0.232 0.389 0.235 0.390 0.246 0.422 1.029 0.879 0.385 0.514 0.255 0.414 2.800 0.595 2.145 1.068
336 0.263 0.417 0.258 0.423 0.267 0.437 1.668 1.228 0.558 0.606 0.604 0.607 2.753 0.738 2.096 2.543
720 0.277 0.431 0.285 0.442 0.303 0.493 2.030 1.721 0.640 0.681 0.429 0.580 2.878 1.044 3.355 4.664

E
T

T
m

1

24 0.030 0.137 0.034 0.160 0.065 0.202 0.095 0.228 0.121 0.233 0.091 0.243 0.090 0.206 0.120 0.290
48 0.069 0.203 0.066 0.194 0.078 0.220 0.249 0.390 0.305 0.411 0.219 0.362 0.179 0.306 0.133 0.305
96 0.194 0.372 0.187 0.384 0.199 0.386 0.920 0.767 0.287 0.420 0.364 0.496 0.272 0.399 0.194 0.396

288 0.401 0.554 0.409 0.548 0.411 0.572 1.108 1.245 0.524 0.584 0.948 0.795 0.462 0.558 0.452 0.574
672 0.512 0.644 0.519 0.665 0.598 0.702 1.793 1.528 1.064 0.873 2.437 1.352 0.639 0.697 2.747 1.174

W
ea

th
er

24 0.117 0.251 0.119 0.256 0.136 0.279 0.231 0.401 0.131 0.254 0.128 0.274 0.219 0.355 0.302 0.433
48 0.178 0.318 0.185 0.316 0.206 0.356 0.328 0.423 0.190 0.334 0.203 0.353 0.273 0.409 0.445 0.536

168 0.266 0.398 0.269 0.404 0.309 0.439 0.654 0.634 0.341 0.448 0.293 0.451 0.503 0.599 2.441 1.142
336 0.297 0.416 0.310 0.422 0.359 0.484 1.792 1.093 0.456 0.554 0.585 0.644 0.728 0.730 1.987 2.468
720 0.359 0.466 0.361 0.471 0.388 0.499 2.087 1.534 0.866 0.809 0.499 0.596 1.062 0.943 3.859 1.144

E
C

L

48 0.239 0.359 0.238 0.368 0.280 0.429 0.971 0.884 0.493 0.539 0.204 0.357 0.879 0.764 0.524 0.595
168 0.447 0.503 0.442 0.514 0.454 0.529 1.671 1.587 0.723 0.655 0.315 0.436 1.032 0.833 2.725 1.273
336 0.489 0.528 0.501 0.552 0.514 0.563 3.528 2.196 1.212 0.898 0.414 0.519 1.136 0.876 2.246 3.077
720 0.540 0.571 0.543 0.578 0.558 0.609 4.891 4.047 1.511 0.966 0.563 0.595 1.251 0.933 4.243 1.415
960 0.582 0.608 0.594 0.638 0.624 0.645 7.019 5.105 1.545 1.006 0.657 0.683 1.370 0.982 6.901 4.264

Count 32 12 0 0 0 6 0 0

Table 1: Univariate long sequence time-series forecasting results on four datasets (five cases).

Experiment

Datasets

We extensively perform experiments on four datasets, in-
cluding 2 collected real-world datasets for LSTF and 2 pub-
lic benchmark datasets.

ETT (Electricity Transformer Temperature)2: The ETT is
a crucial indicator in the electric power long-term deploy-
ment. We collected 2-year data from two separated counties
in China. To explore the granularity on the LSTF problem,
we create separate datasets as {ETTh1, ETTh2} for 1-hour-
level and ETTm1 for 15-minute-level. Each data point con-
sists of the target value ”oil temperature” and 6 power load
features. The train/val/test is 12/4/4 months.

ECL (Electricity Consuming Load)3: It collects the elec-
tricity consumption (Kwh) of 321 clients. Due to the missing
data (Li et al. 2019), we convert the dataset into hourly con-
sumption of 2 years and set ‘MT 320’ as the target value.
The train/val/test is 15/3/4 months.

Weather 4: This dataset contains local climatological data
for nearly 1,600 U.S. locations, 4 years from 2010 to 2013,
where data points are collected every 1 hour. Each data point

2We collected the ETT dataset and published it at https://
github.com/zhouhaoyi/ETDataset.

3ECL dataset was acquired at https://archive.ics.uci.edu/ml/
datasets/ElectricityLoadDiagrams20112014.

4Weather dataset was acquired at https://www.ncei.noaa.gov/
data/local-climatological-data/.

consists of the target value “wet bulb” and 11 climate fea-
tures. The train/val/test is 28/10/10 months.

Experimental Details

We briefly summarize basics, and more information on net-
work components and setups are given in Appendix E.

Baselines: We have selected five time-series forecast-
ing methods as comparison, including ARIMA (Ariyo,
Adewumi, and Ayo 2014), Prophet (Taylor and Letham
2018), LSTMa (Bahdanau, Cho, and Bengio 2015), LST-
net (Lai et al. 2018) and DeepAR (Flunkert, Salinas, and
Gasthaus 2017). To better explore the ProbSparse self-
attention’s performance in our proposed Informer, we in-
corporate the canonical self-attention variant (Informer†),
the efficient variant Reformer (Kitaev, Kaiser, and Levskaya
2019) and the most related work LogSparse self-attention
(Li et al. 2019) in the experiments. The details of network
components are given in Appendix E.1.

Hyper-parameter tuning: We conduct grid search over
the hyper-parameters, and detailed ranges are given in Ap-
pendix E.3. Informer contains a 3-layer stack and a 1-layer
stack (1/4 input) in the encoder, and a 2-layer decoder. Our
proposed methods are optimized with Adam optimizer, and
its learning rate starts from 1e−4, decaying 0.5 times smaller
every epoch. The total number of epochs is 8 with proper
early stopping. We set the comparison methods as recom-
mended, and the batch size is 32. Setup: The input of each
dataset is zero-mean normalized. Under the LSTF settings,

11110

Methods Informer Informer† LogTrans Reformer LSTMa LSTnet

Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

E
T

T
h
1

24 0.577 0.549 0.620 0.577 0.686 0.604 0.991 0.754 0.650 0.624 1.293 0.901
48 0.685 0.625 0.692 0.671 0.766 0.757 1.313 0.906 0.702 0.675 1.456 0.960

168 0.931 0.752 0.947 0.797 1.002 0.846 1.824 1.138 1.212 0.867 1.997 1.214
336 1.128 0.873 1.094 0.813 1.362 0.952 2.117 1.280 1.424 0.994 2.655 1.369
720 1.215 0.896 1.241 0.917 1.397 1.291 2.415 1.520 1.960 1.322 2.143 1.380

E
T

T
h
2

24 0.720 0.665 0.753 0.727 0.828 0.750 1.531 1.613 1.143 0.813 2.742 1.457
48 1.457 1.001 1.461 1.077 1.806 1.034 1.871 1.735 1.671 1.221 3.567 1.687

168 3.489 1.515 3.485 1.612 4.070 1.681 4.660 1.846 4.117 1.674 3.242 2.513
336 2.723 1.340 2.626 1.285 3.875 1.763 4.028 1.688 3.434 1.549 2.544 2.591
720 3.467 1.473 3.548 1.495 3.913 1.552 5.381 2.015 3.963 1.788 4.625 3.709

E
T

T
m

1

24 0.323 0.369 0.306 0.371 0.419 0.412 0.724 0.607 0.621 0.629 1.968 1.170
48 0.494 0.503 0.465 0.470 0.507 0.583 1.098 0.777 1.392 0.939 1.999 1.215
96 0.678 0.614 0.681 0.612 0.768 0.792 1.433 0.945 1.339 0.913 2.762 1.542

288 1.056 0.786 1.162 0.879 1.462 1.320 1.820 1.094 1.740 1.124 1.257 2.076
672 1.192 0.926 1.231 1.103 1.669 1.461 2.187 1.232 2.736 1.555 1.917 2.941

W
ea

th
er

24 0.335 0.381 0.349 0.397 0.435 0.477 0.655 0.583 0.546 0.570 0.615 0.545
48 0.395 0.459 0.386 0.433 0.426 0.495 0.729 0.666 0.829 0.677 0.660 0.589

168 0.608 0.567 0.613 0.582 0.727 0.671 1.318 0.855 1.038 0.835 0.748 0.647
336 0.702 0.620 0.707 0.634 0.754 0.670 1.930 1.167 1.657 1.059 0.782 0.683
720 0.831 0.731 0.834 0.741 0.885 0.773 2.726 1.575 1.536 1.109 0.851 0.757

E
C

L

48 0.344 0.393 0.334 0.399 0.355 0.418 1.404 0.999 0.486 0.572 0.369 0.445
168 0.368 0.424 0.353 0.420 0.368 0.432 1.515 1.069 0.574 0.602 0.394 0.476
336 0.381 0.431 0.381 0.439 0.373 0.439 1.601 1.104 0.886 0.795 0.419 0.477
720 0.406 0.443 0.391 0.438 0.409 0.454 2.009 1.170 1.676 1.095 0.556 0.565
960 0.460 0.548 0.492 0.550 0.477 0.589 2.141 1.387 1.591 1.128 0.605 0.599

Count 33 14 1 0 0 2

Table 2: Multivariate long sequence time-series forecasting results on four datasets (five cases).

we prolong the prediction windows size Ly progressively,
i.e., {1d, 2d, 7d, 14d, 30d, 40d} in {ETTh, ECL, Weather},
{6h, 12h, 24h, 72h, 168h} in ETTm. Metrics: We use two
evaluation metrics, including MSE = 1

n

∑n
i=1(y − ŷ)2 and

MAE = 1
n

∑n
i=1 |y − ŷ| on each prediction window (aver-

aging for multivariate prediction), and roll the whole set with
stride = 1. Platform: All the models were trained/tested on
a single Nvidia V100 32GB GPU. The source code is avail-
able at https://github.com/zhouhaoyi/Informer2020.

Results and Analysis

Table 1 and Table 2 summarize the univariate/multivariate
evaluation results of all the methods on 4 datasets. We grad-
ually prolong the prediction horizon as a higher requirement
of prediction capacity, where the LSTF problem setting is
precisely controlled to be tractable on one single GPU for
each method. The best results are highlighted in boldface.

Univariate Time-series Forecasting Under this setting,
each method attains predictions as a single variable over
time series. From Table 1, we can observe that: (1) The pro-
posed model Informer significantly improves the inference
performance (wining-counts in the last column) across all
datasets, and their predict error rises smoothly and slowly
within the growing prediction horizon, which demonstrates
the success of Informer in enhancing the prediction capacity
in the LSTF problem. (2) The Informer beats its canonical
degradation Informer† mostly in wining-counts, i.e., 32>12,
which supports the query sparsity assumption in providing

a comparable attention feature map. Our proposed method
also out-performs the most related work LogTrans and Re-
former. We note that the Reformer keeps dynamic decoding
and performs poorly in LSTF, while other methods benefit
from the generative style decoder as nonautoregressive pre-
dictors. (3) The Informer model shows significantly better
results than recurrent neural networks LSTMa. Our method
has a MSE decrease of 26.8% (at 168), 52.4% (at 336) and
60.1% (at 720). This reveals a shorter network path in the
self-attention mechanism acquires better prediction capac-
ity than the RNN-based models. (4) The proposed method
outperforms DeepAR, ARIMA and Prophet on MSE by de-
creasing 49.3% (at 168), 61.1% (at 336), and 65.1% (at 720)
in average. On the ECL dataset, DeepAR performs better
on shorter horizons (≤ 336), and our method surpasses on
longer horizons. We attribute this to a specific example, in
which the effectiveness of prediction capacity is reflected
with the problem scalability.

Multivariate Time-series Forecasting Within this set-
ting, some univariate methods are inappropriate, and LSTnet
is the state-of-art baseline. On the contrary, our proposed In-
former is easy to change from univariate prediction to mul-
tivariate one by adjusting the final FCN layer. From Table 2,
we observe that: (1) The proposed model Informer greatly
outperforms other methods and the findings 1 & 2 in the uni-
variate settings still hold for the multivariate time-series. (2)
The Informer model shows better results than RNN-based
LSTMa and CNN-based LSTnet, and the MSE decreases

11111

48 96 168 240 336 480 624 720
Prolong Input Length (Lx, Ltoken)

−0.1

0.0

0.1

0.2

0.3

0.4
M

SE
 sc

or
e

Encoder Input (horizon=48)
Decoder Token (horizon=48)
Encoder Input (horizon=168)
Decoder Token (horizon=168)

(a) Input length.

48 96 168 240 480 624 720
Encoder Input Length (Lx)

−0.1

0.0

0.1

0.2

0.3

0.4

M
SE

 sc
or

e

Informer, factor c=3
Informer, factor c=5
Informer, factor c=8
Informer, factor c=10

(b) Sampling Factor.

96 168 240 336 480 720
Encoder Input Length (Lx)

0.05

0.10

0.15

0.20

0.25

M
SE

 sc
or

e

L-scale Dependency
L/2-scale Dependency
L/4-scale Dependency
Informer Dependency

(c) Stacking Combination.

Figure 4: The parameter sensitivity of three components in Informer.

Prediction length 336 720

Encoder’s input 336 720 1440 720 1440 2880

Informer
MSE 0.249 0.225 0.216 0.271 0.261 0.257
MAE 0.393 0.384 0.376 0.435 0.431 0.422

Informer†
MSE 0.241 0.214 - 0.259 - -
MAE 0.383 0.371 - 0.423 - -

LogTrans
MSE 0.263 0.231 - 0.273 - -
MAE 0.418 0.398 - 0.463 - -

Reformer
MSE 1.875 1.865 1.861 2.243 2.174 2.113
MAE 1.144 1.129 1.125 1.536 1.497 1.434

1 Informer† uses the canonical self-attention mechanism.
2 The ‘-’ indicates failure for the out-of-memory.

Table 3: Ablation study of the ProbSparse self-attention mechanism.

Methods
Training Testing

Time Memory Steps

Informer O(L logL) O(L logL) 1

Transformer O(L2) O(L2) L

LogTrans O(L logL) O(L2) 1⋆

Reformer O(L logL) O(L logL) L

LSTM O(L) O(L) L

1 The LSTnet is hard to present in a closed form.
2 The ⋆ denotes applying our proposed decoder.

Table 4: L-related computation statics of each layer.

26.6% (at 168), 28.2% (at 336), 34.3% (at 720) in average.
Compared with the univariate results, the overwhelming per-
formance is reduced, and such phenomena can be caused by
the anisotropy of feature dimensions’ prediction capacity. It
is beyond the scope of this paper, and we will explore it in
the future work.

LSTF with Granularity Consideration We perform an
additional comparison to explore the performance with var-
ious granularities. The sequences {96, 288, 672} of ETTm1

(minutes-level) are aligned with {24, 48, 168} of ETTh1
(hour-level). The Informer outperforms other baselines even
if the sequences are at different granularity levels.

Parameter Sensitivity

We perform the sensitivity analysis of the proposed In-
former model on ETTh1 under the univariate setting. Input
Length: In Fig.(4a), when predicting short sequences (like
48), initially increasing input length of encoder/decoder de-
grades performance, but further increasing causes the MSE
to drop because it brings repeat short-term patterns. How-
ever, the MSE gets lower with longer inputs in predict-
ing long sequences (like 168). Because the longer encoder
input may contain more dependencies, and the longer de-
coder token has rich local information. Sampling Factor:
The sampling factor controls the information bandwidth of
ProbSparse self-attention in Eq.(3). We start from the small

factor (=3) to large ones, and the general performance in-
creases a little and stabilizes at last in Fig.(4b). It verifies
our query sparsity assumption that there are redundant dot-
product pairs in the self-attention mechanism. We set the
sample factor c = 5 (the red line) in practice. The Combi-
nation of Layer Stacking: The replica of Layers is comple-
mentary for the self-attention distilling, and we investigate
each stack {L, L/2, L/4}’s behavior in Fig.(4c). The longer
stack is more sensitive to the inputs, partly due to receiving
more long-term information. Our method’s selection (the red
line), i.e., joining L and L/4, is the most robust strategy.

Ablation Study: How well Informer works?

We also conducted additional experiments on ETTh1 with
ablation consideration.

The performance of ProbSparse self-attention mech-
anism In the overall results Table 1 & 2, we limited the
problem setting to make the memory usage feasible for the
canonical self-attention. In this study, we compare our meth-
ods with LogTrans and Reformer, and thoroughly explore
their extreme performance. To isolate the memory efficient
problem, we first reduce settings as {batch size=8, heads=8,
dim=64}, and maintain other setups in the univariate case.
In Table 3, the ProbSparse self-attention shows better per-
formance than the counterparts. The LogTrans gets OOM
in extreme cases because its public implementation is the

11112

Prediction length 336 480

Encoder’s input 336 480 720 960 1200 336 480 720 960 1200

Informer†
MSE 0.249 0.208 0.225 0.199 0.186 0.197 0.243 0.213 0.192 0.174
MAE 0.393 0.385 0.384 0.371 0.365 0.388 0.392 0.383 0.377 0.362

Informer‡
MSE 0.229 0.215 0.204 - - 0.224 0.208 0.197 - -
MAE 0.391 0.387 0.377 - - 0.381 0.376 0.370 - -

1 Informer‡ removes the self-attention distilling from Informer†.
2 The ‘-’ indicates failure for the out-of-memory.

Table 5: Ablation study of the self-attention distilling.

Prediction length 336 480

Prediction offset +0 +12 +24 +48 +72 +0 +48 +96 +144 +168

Informer‡
MSE 0.207 0.209 0.211 0.211 0.216 0.198 0.203 0.203 0.208 0.208
MAE 0.385 0.387 0.391 0.393 0.397 0.390 0.392 0.393 0.401 0.403

Informer§
MSE 0.201 - - - - 0.392 - - - -
MAE 0.393 - - - - 0.484 - - - -

1 Informer§ replaces our decoder with dynamic decoding one in Informer‡.
2 The ‘-’ indicates failure for the unacceptable metric results.

Table 6: Ablation study of the generative style decoder.

48 96 168 336 720
Encoder Input length (Lx)

1

2

3

Tr
ai

n
tim

e
(d

ay
)

LSTnet
LSTM
Informer
Informer†

LogTrans
Reformer

48 96 168 336 720
Decoder predict length (Ly)

2

4

6

8

In
fe

re
nc

e
tim

e
(d

ay
) LSTnet

LSTM
Informer
Informer†

Informer§

LogTrans
Reformer

Figure 5: The total runtime of training/testing phase.

mask of the full-attention, which still has O(L2) memory
usage. Our proposed ProbSparse self-attention avoids this
from the simplicity brought by the query sparsity assump-
tion in Eq.(4), referring to the pseudo-code in Appendix E.2,
and reaches smaller memory usage.

The performance of self-attention distilling In this
study, we use Informer† as the benchmark to eliminate
additional effects of ProbSparse self-attention. The other
experimental setup is aligned with the settings of uni-
variate Time-series. From Table 5, Informer† has fulfilled
all the experiments and achieves better performance after
taking advantage of long sequence inputs. The compari-
son method Informer‡ removes the distilling operation and
reaches OOM with longer inputs (> 720). Regarding the
benefits of long sequence inputs in the LSTF problem, we
conclude that the self-attention distilling is worth adopting,
especially when a longer prediction is required.

The performance of generative style decoder In this
study, we testify the potential value of our decoder in acquir-
ing a “generative” results. Unlike the existing methods, the

labels and outputs are forced to be aligned in the training and
inference, our proposed decoder’s predicting relies solely on
the time stamp, which can predict with offsets. From Ta-
ble 6, we can see that the general prediction performance
of Informer‡ resists with the offset increasing, while the
counterpart fails for the dynamic decoding. It proves the de-
coder’s ability to capture individual long-range dependency
between arbitrary outputs and avoid error accumulation.

Computation Efficiency

With the multivariate setting and all the methods’ cur-
rent finest implement, we perform a rigorous runtime
comparison in Fig.(5). During the training phase, the In-
former (red line) achieves the best training efficiency among
Transformer-based methods. During the testing phase, our
methods are much faster than others with the generative
style decoding. The comparisons of theoretical time com-
plexity and memory usage are summarized in Table 4. The
performance of Informer is aligned with the runtime experi-
ments. Note that the LogTrans focus on improving the self-
attention mechanism, and we apply our proposed decoder in
LogTrans for a fair comparison (the ⋆ in Table 4).

Conclusion

In this paper, we studied the long-sequence time-series fore-
casting problem and proposed Informer to predict long se-
quences. Specifically, we designed the ProbSparse self-
attention mechanism and distilling operation to handle the
challenges of quadratic time complexity and quadratic mem-
ory usage in vanilla Transformer. Also, the carefully de-
signed generative decoder alleviates the limitation of tra-
ditional encoder-decoder architecture. The experiments on
real-world data demonstrated the effectiveness of Informer
for enhancing the prediction capacity in LSTF problem.

11113

Acknowledgments
This work was supported by grants from the Natural Science
Foundation of China (U20B2053, 61872022 and 61421003)
and State Key Laboratory of Software Development Envi-
ronment (SKLSDE-2020ZX-12). Thanks for computing in-
frastructure provided by Beijing Advanced Innovation Cen-
ter for Big Data and Brain Computing. This work was also
sponsored by CAAI-Huawei MindSpore Open Fund. The
corresponding author is Jianxin Li.

Ethics Statement
The proposed Informer can process long inputs and make
efficient long sequence inference, which can be applied
to the challenging long sequence times series forecasting
(LSTF) problem. The significant real-world applications in-
clude sensor network monitoring (Papadimitriou and Yu
2006), energy and smart grid management, disease propa-
gation analysis (Matsubara et al. 2014), economics and fi-
nance forecasting (Zhu and Shasha 2002), evolution of agri-
ecosystems, climate change forecasting, and variations in air
pollution. As a specific example, online sellers can predict
the monthly product supply, which helps to optimize long-
term inventory management. The distinct difference from
other time series problems is its requirement on a high de-
gree of prediction capacity. Our contributions are not lim-
ited to the LSTF problem. In addition to acquiring long se-
quences, our method can bring substantial benefits to other
domains, such as long sequence generation of text, music,
image, and video.

Under the ethical considerations, any time-series forecast-
ing application that learns from the history data runs the
risk of producing biased predictions. It may cause irrepara-
ble losses to the real owners of the property/asset. Domain
experts should guide the usage of our methods, while the
long sequence forecasting can also benefit the work of the
domain experts. Taking applying our methods to electrical
transformer temperature prediction as an example, the man-
ager will examine the results and decide the future power
deployment. If a long enough prediction is available, it will
be helpful for the manager to prevent irreversible failure in
the early stage. In addition to identifying the bias data, one
promising method is to adopt transfer learning. We have do-
nated the collected data (ETT dataset) for further research
on related topics, such as water supply management and 5G
network deployment. Another drawback is that our method
requires high-performance GPU, which limits its application
in the underdevelopment regions.

References
Ariyo, A. A.; Adewumi, A. O.; and Ayo, C. K. 2014. Stock
price prediction using the ARIMA model. In The 16th In-
ternational Conference on Computer Modelling and Simu-
lation, 106–112. IEEE.

Bahdanau, D.; Cho, K.; and Bengio, Y. 2015. Neural Ma-
chine Translation by Jointly Learning to Align and Trans-
late. In ICLR 2015.

Beltagy, I.; Peters, M. E.; and Cohan, A. 2020. Longformer:
The Long-Document Transformer. CoRR abs/2004.05150.

Box, G. E.; Jenkins, G. M.; Reinsel, G. C.; and Ljung, G. M.
2015. Time series analysis: forecasting and control. John
Wiley & Sons.

Brown, T. B.; Mann, B.; Ryder, N.; Subbiah, M.; Kaplan, J.;
Dhariwal, P.; Neelakantan, A.; Shyam, P.; Sastry, G.; Askell,
A.; Agarwal, S.; Herbert-Voss, A.; Krueger, G.; Henighan,
T.; Child, R.; Ramesh, A.; Ziegler, D. M.; Wu, J.; Winter,
C.; Hesse, C.; Chen, M.; Sigler, E.; Litwin, M.; Gray, S.;
Chess, B.; Clark, J.; Berner, C.; McCandlish, S.; Radford,
A.; Sutskever, I.; and Amodei, D. 2020. Language Models
are Few-Shot Learners. CoRR abs/2005.14165.

Child, R.; Gray, S.; Radford, A.; and Sutskever, I. 2019.
Generating Long Sequences with Sparse Transformers.
arXiv:1904.10509 .

Cho, K.; van Merrienboer, B.; Bahdanau, D.; and Bengio,
Y. 2014. On the Properties of Neural Machine Trans-
lation: Encoder-Decoder Approaches. In Proceedings of
SSST@EMNLP 2014, 103–111.

Clevert, D.; Unterthiner, T.; and Hochreiter, S. 2016. Fast
and Accurate Deep Network Learning by Exponential Lin-
ear Units (ELUs). In ICLR 2016.

Dai, Z.; Yang, Z.; Yang, Y.; Carbonell, J.; Le, Q. V.; and
Salakhutdinov, R. 2019. Transformer-xl: Attentive language
models beyond a fixed-length context. arXiv:1901.02860 .

Devlin, J.; Chang, M.-W.; Lee, K.; and Toutanova, K. 2018.
Bert: Pre-training of deep bidirectional transformers for lan-
guage understanding. arXiv:1810.04805 .

Flunkert, V.; Salinas, D.; and Gasthaus, J. 2017. DeepAR:
Probabilistic forecasting with autoregressive recurrent net-
works. arXiv:1704.04110 .

Gupta, A.; and Rush, A. M. 2017. Dilated convolu-
tions for modeling long-distance genomic dependencies.
arXiv:1710.01278 .

Hochreiter, S.; and Schmidhuber, J. 1997. Long short-term
memory. Neural computation 9(8): 1735–1780.

Kitaev, N.; Kaiser, L.; and Levskaya, A. 2019. Reformer:
The Efficient Transformer. In ICLR.

Lai, G.; Chang, W.-C.; Yang, Y.; and Liu, H. 2018. Model-
ing long-and short-term temporal patterns with deep neural
networks. In ACM SIGIR 2018, 95–104. ACM.

Li, S.; Jin, X.; Xuan, Y.; Zhou, X.; Chen, W.; Wang, Y.-X.;
and Yan, X. 2019. Enhancing the Locality and Breaking the
Memory Bottleneck of Transformer on Time Series Fore-
casting. arXiv:1907.00235 .

Li, Y.; Yu, R.; Shahabi, C.; and Liu, Y. 2018. Diffusion Con-
volutional Recurrent Neural Network: Data-Driven Traffic
Forecasting. In ICLR 2018.

Liu, Y.; Gong, C.; Yang, L.; and Chen, Y. 2019. DSTP-RNN:
a dual-stage two-phase attention-based recurrent neural net-
works for long-term and multivariate time series prediction.
CoRR abs/1904.07464.

Matsubara, Y.; Sakurai, Y.; van Panhuis, W. G.; and Falout-
sos, C. 2014. FUNNEL: automatic mining of spatially coe-
volving epidemics. In ACM SIGKDD 2014, 105–114.

11114

Papadimitriou, S.; and Yu, P. 2006. Optimal multi-scale pat-
terns in time series streams. In ACM SIGMOD 2006, 647–
658. ACM.

Qin, Y.; Song, D.; Chen, H.; Cheng, W.; Jiang, G.; and Cot-
trell, G. W. 2017. A Dual-Stage Attention-Based Recurrent
Neural Network for Time Series Prediction. In IJCAI 2017,
2627–2633.

Qiu, J.; Ma, H.; Levy, O.; Yih, S. W.-t.; Wang, S.; and Tang,
J. 2019. Blockwise Self-Attention for Long Document Un-
derstanding. arXiv:1911.02972 .

Rae, J. W.; Potapenko, A.; Jayakumar, S. M.; and Lillicrap,
T. P. 2019. Compressive transformers for long-range se-
quence modelling. arXiv:1911.05507 .

Ray, W. 1990. Time series: theory and methods. Journal of
the Royal Statistical Society: Series A (Statistics in Society)
153(3): 400–400.

Seeger, M.; Rangapuram, S.; Wang, Y.; Salinas, D.;
Gasthaus, J.; Januschowski, T.; and Flunkert, V. 2017.
Approximate bayesian inference in linear state space
models for intermittent demand forecasting at scale.
arXiv:1709.07638 .

Seeger, M. W.; Salinas, D.; and Flunkert, V. 2016. Bayesian
intermittent demand forecasting for large inventories. In
NIPS, 4646–4654.

Sutskever, I.; Vinyals, O.; and Le, Q. V. 2014. Sequence
to sequence learning with neural networks. In NIPS, 3104–
3112.

Taylor, S. J.; and Letham, B. 2018. Forecasting at scale. The
American Statistician 72(1): 37–45.

Tsai, Y.-H. H.; Bai, S.; Yamada, M.; Morency, L.-P.; and
Salakhutdinov, R. 2019. Transformer Dissection: An Uni-
fied Understanding for Transformer’s Attention via the Lens
of Kernel. In ACL 2019, 4335–4344.

Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones,
L.; Gomez, A. N.; Kaiser, Ł.; and Polosukhin, I. 2017. At-
tention is all you need. In NIPS, 5998–6008.

Wang, S.; Li, B.; Khabsa, M.; Fang, H.; and Ma, H.
2020. Linformer: Self-Attention with Linear Complexity.
arXiv:2006.04768 .

Wen, R.; Torkkola, K.; Narayanaswamy, B.; and Madeka,
D. 2017. A multi-horizon quantile recurrent forecaster.
arXiv:1711.11053 .

Yu, F.; Koltun, V.; and Funkhouser, T. 2017. Dilated residual
networks. In CVPR, 472–480.

Yu, R.; Zheng, S.; Anandkumar, A.; and Yue, Y. 2017. Long-
term forecasting using tensor-train rnns. arXiv:1711.00073
.

Zhu, Y.; and Shasha, D. E. 2002. StatStream: Statistical
Monitoring of Thousands of Data Streams in Real Time. In
VLDB 2002, 358–369.

11115

