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Trial-to-trial fluctuations in an observer’s state of mind have a direct influence on their behavior. However,
characterizing an observer’s state of mind is difficult to do with behavioral data alone, particularly on a
single-trial basis. In this article, we extend a recently developed hierarchical Bayesian framework for
integrating neurophysiological information into cognitive models. In so doing, we develop a novel extension
of the well-studied drift diffusion model (DDM) that uses single-trial brain activity patterns to inform the
behavioral model parameters. We first show through simulation how the model outperforms the traditional
DDM in a prediction task with sparse data. We then fit the model to experimental data consisting of a
speed-accuracy manipulation on a random dot motion task. We use our cognitive modeling approach to show
how prestimulus brain activity can be used to simultaneously predict response accuracy and response time.We
use our model to provide an explanation for how activity in a brain region affects the dynamics of the
underlying decision process through mechanisms assumed by the model. Finally, we show that our model
performs better than the traditional DDM through a cross-validation test. By combining accuracy, response
time, and the blood oxygen level–dependent response into a unified model, the link between cognitive
abstraction and neuroimaging can be better understood.
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As psychologists, our ultimate goal is to fully understand how the
mind produces behavior. However, the path to achieving this goal is
riddled with obstacles that make our endeavor difficult, if not impos-
sible. The challenge lies in the logistics of studying a highly flexible
and dynamic system that is constantly evolving as a consequence of
the task environment (cf. Criss, Malmberg, & Shiffrin, 2011; Logan,
1988; Turner, Van Zandt, & Brown, 2011). To make matters worse,
the experimental data we use to understand this process may or may
not even be cognitively relevant. For example, data obtained from a
distracted or fatiguing subject may be inconsistent with the assump-

tions made in our particular cognitive model. Some would argue that
these data completely invalidate our model, whereas others would
simply treat these data as contaminants, effectively striking them from
the analysis.
Given the ever-changing nature of the mind, perhaps the most

comprehensive account of cognition would strive for trial-to-trial
explanations of the mind’s internal representation and how this
representation might be used to generate behavior. Here we focus
on how the dynamics of the mind’s internal representations affect
the decision-making behavior. There are many ways to incorporate
trial-to-trial effects into cognitive models of decision making,
including designating separate parameters for each trial (e.g., De-
Carlo, 2011; Pratte & Rouder, 2011; Vandekerckhove, Tuerlinckx,
& Lee, 2008, 2011; van Maanen et al., 2011), defining a statistical
dependence on the basis of response choice or feedback (e.g.,
Craigmile, Peruggia, & Zandt, 2010; Kac, 1962, 1969; Peruggia,
Van Zandt, & Chen, 2002; Treisman & Williams, 1984), or ex-
plicitly specifying how the task environment (e.g., the stimuli or an
observer’s responses) shapes an observer’s representation over
time (e.g., Criss et al., 2011; Howard & Kahana, 2002; Logan,
1988; Polyn, Norman, & Kahana, 2009; Sederberg, Howard, &
Kahana, 2008; Turner et al., 2011; Vickers & Lee, 1998, 2000).
Although all of these approaches have provided—in one way or
another—a greater understanding of the dynamics of decision
making, they are only designed to account for behavioral data.
As a consequence, the insight they provide about an observer’s
state of mind on a given trial is limited to the abstractions
assumed by the model. Furthermore, they can only provide
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predictions about behavioral performance on the basis of past
behavior. That is, for a particular trial, these models are inca-
pable of incorporating the observer’s state of mind into predic-
tions about subsequent behavioral outcomes.
We now have tools to examine an observer’s state of mind at the

neurophysiological level, through techniques such as functional MRI
(fMRI) or electroencephalography (EEG). The importance of these
measures in characterizing an observer’s state of mind has been
demonstrated by many authors (cf. Forstmann & Wagenmakers,
2014; Forstmann, Wagenmakers, Eichele, Brown, & Serences, 2011).
In this article, we develop a new statistical approach for augmenting
cognitive models with neurophysiological measures. Our approach
extends the joint modeling framework (Turner, Forstmann, et al.,
2013) to establish the first model of perceptual decision making that
accounts for both neural and behavioral data at the single-trial level.
The model allows us to study how trial-to-trial fluctuations in the
pattern of neural data lead to systematic fluctuations in behavioral
response patterns. We begin by presenting the conceptual and tech-
nical details of the model. We then show how the inclusion of
trial-to-trial measures of neural activity can greatly affect the accuracy
of the model’s predictions relative to a model that captures only
behavioral data. We then apply our model to data from a perceptual
decision-making experiment, which allows us to interpret neurophys-
iological patterns on the basis of the mechanisms assumed by our
cognitive model.

Integrating Neural and Behavioral Measures

An unsettling amount of what we know about human cognition has
evolved from two virtually exclusive groups of researchers. The first
group, known as mathematical psychologists, relies on a system of
mathematical and statistical mechanisms to describe the cognitive
process assumed to be underlying a decision. In an attempt to achieve
parsimony and psychological interpretability, mathematical models
are inherently abstract and rely on the estimation of latent model
parameters to guide the inference process. The second group, known
as cognitive neuroscientists, generally relies on statistical models
(e.g., the general linear model) to determine whether an experimental
manipulation produces a significant change in activity in a particular
brain region.1 Because this type of analysis makes no connection to an
explicit cognitive theory, a mechanistic understanding of brain func-
tion cannot be achieved.
Both approaches suffer from critical limitations as a direct result of

their focus on data at one level of analysis (cf. Marr, 1982). For
example, without a cognitive theory to guide the inferential process,
neuroscientists are (a) unable to interpret their results from a mecha-
nistic point of view, (b) unable to address many phenomena with only
contrast analyses (see, e.g., Todd, Nystrom, & Cohen, 2013), and (c)
unable to explain results from different paradigms under a common
theoretical framework. On the other hand, the cognitive models de-
veloped by mathematical psychologists are not informed by physiol-
ogy or brain function. Instead, these researchers posit the existence of
abstract mechanisms that are understood through the estimation of the
model’s parameters. For example, traditional sequential sampling
models assume that the presentation of a stimulus gives rise to a race
between decision alternatives to obtain a “threshold” amount of evi-
dence. The race involves sequentially sampling evidence for each
alternative at a rate dictated by another parameter, called the “drift
rate.” These models each make different assumptions about the types

of variability that are present either between or within trials, but
ultimately it is the estimate of the model parameters that serves as a
proxy for the underlying decision dynamics.
Given the unavoidable limitations of both approaches, recent cog-

nitive modeling endeavors have aimed at supporting cognitive theo-
ries by mapping the mechanistic explanations provided by cognitive
models to the neural signal present in the data. The motivation for
these efforts is clear: Neural data provide physiological signatures of
cognition that inform the development of formal cognitive models (de
Lange, Jensen, & Dehaene, 2010; de Lange, van Gaal, Lamme, &
Dehaene, 2011; O’Connell, Dockree, & Kelly, 2012), providing
greater constraint on cognitive theory than behavioral data alone
(Forstmann, Wagenmakers, et al., 2011). Despite the utility of neural
data, they are not the cure-all (e.g., Anderson et al., 2008). Without a
motivating theory for why particular brain regions become active,
interpretations regarding the functional role of brain regions can be
difficult to substantiate. We argue that to fully understand cognition,
the relationship between cognitive neuroscience and cognitive mod-
eling must be reciprocal (Forstmann, Wagenmakers, et al., 2011).
In light of the advantages of cognitive models, several authors have

used cognitive models in conjunction with neural measures, an ap-
proach we refer to as “model-based cognitive neuroscience” (Forst-
mann, Wagenmakers, et al., 2011). With some exceptions (Anderson,
Betts, Ferris, & Fincham, 2010; Anderson et al., 2008; Anderson,
Fincham, Schneider, & Yang, 2012; Mack, Preston, & Love, 2013;
Purcell et al., 2010; Turner, Forstmann, et al., 2013), model-based
neuroscientific analyses have been performed by way of a two-stage
correlational procedure (Forstmann et al., 2008; Forstmann et al.,
2010; Forstmann, Tittgemeyer, et al., 2011; Ho et al., 2012; Ho,
Brown, & Serences, 2009; Liu & Pleskac, 2011; Philiastides, Ratcliff,
& Sajda, 2006; Ratcliff, Philiastides, Sajda, 2009; Tosoni, Galati,
Romani, & Corbetta, 2008; van Vugt, Simen, Nystrom, Holmes, &
Cohen, 2012). In this procedure, the parameters of a cognitive model
are first estimated by fitting the model to the behavioral data inde-
pendently. Second, a neural signature of interest is extracted from the
neural data alone, by way of either a statistical model or raw data-
analytic techniques. Third, the behavioral model parameter estimates
are correlated against the neural signature. Finally, significant corre-
lations are used to substantiate claims of where the mechanisms
assumed by the cognitive model are carried out in the brain.
The two-stage correlation procedure has greatly affected the emerg-

ing field of model-based cognitive neuroscience. For example, Forst-
mann and colleagues (Forstmann et al., 2008; Forstmann et al., 2010;
Forstmann, Tittgemeyer, et al., 2011) have explored the contribution
of the striatum and pre–supplementary motor areas (pre-SMA) to the
response caution parameter in the linear ballistic accumulator (LBA;
Brown & Heathcote, 2008) model. The response caution parameter
represents the amount of remaining evidence an observer requires
before eliciting a response. Forstmann and colleagues have studied
how the response caution parameter relates to both neural activity
(through fMRI; Forstmann et al., 2008) and neural structure (through
diffusion-weighted imaging; Forstmann et al., 2010; Forstmann, Tit-
tgemeyer, et al., 2011). Taken together, their efforts have brought
forth a significant understanding of how the pre-SMA and striatum
facilitate the flexible adjustment of response caution under a variety of

1 Note that this does not characterize all cognitive neuroscientists—there
are many researchers who rely heavily on cognitive models.
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speed emphasis instructions (e.g., emphasizing fast or accurate re-
sponses).
Most model-based cognitive neuroscience studies have focused on

relating behavioral model parameters to neural activity aggregated
across a set of trials. Conventionally basing an inference on aggre-
gated data has produced many infamous misinterpretations and lim-
itations (e.g., Heathcote, Brown, & Mewhort, 2000; Morey, Pratte, &
Rouder, 2008). For example, Heathcote et al. (2000) showed how
averaging across subjects produced a bias in favor of the power
function in relating response times to number of practice trials. They
found that when data were not aggregated across subjects, an expo-
nential model produced a better fit to their data than the power
function, which has important implications for psychological theory.
To avoid the issues associated with aggregating data, van Maanen et
al. (2011) examined the relationship between neural and behavioral
measures on the single-trial level. To accomplish this, they employed
a two-stage estimation procedure to obtain correlates of the single-trial
parameters of the LBA model with the blood oxygen level-dependent
(BOLD) signal. van Maanen et al. found that when subjects were told
to respond quickly, the single-trial response caution parameter posi-
tively correlated with the BOLD signal in the pre-SMA and the dorsal
anterior cingulate. However, when subjects were required to switch
randomly between providing a fast or accurate response, the single-
trial response caution parameter was positively correlated with the
BOLD signal in the anterior cingulate proper. Although the approach

by van Maanen et al. provided new insight into corticobasal ganglia
functioning, their modeling efforts neglected an important source of
parameter constraint. As we show later in this article, the two-stage
correlation procedure they used is unable to exploit the constraint
offered by the neural data. Therefore, the parameter estimates were
noisy, possibly decreasing the strength of the reported correlational
findings.
Although the two-stage correlation procedure has been useful in

supporting various theories of cognitive processes, the procedure
leaves much to be desired. First, the procedure generally aggregates
across trial-to-trial information (but see van Maanen et al., 2011),
which limits our understanding of how an observer’s state of mind
influences the behavioral data. Second, the procedure is not statisti-
cally reciprocal because the neural data cannot influence the param-
eter estimates of the behavioral model. Hence, the current state of
model-based cognitive neuroscience neglects two important sources
of significant constraint. In this article, our goal is to develop a
framework that simultaneously obeys these constraints.

The Joint Modeling Framework

Turner, Forstmann, et al. (2013) proposed a new approach to
model-based cognitive neuroscience that uses a hierarchical
Bayesian framework to impose neurally based parameter con-
straints on behavioral models. Their framework, illustrated in

Figure 1. A graphical diagram of the neural drift diffusion model. The left side illustrates the standard DDM
with parameters � (i.e., the behavioral model) for four different types of responses within the model: high starting
point and drift (HSHD; orange), low starting point and drift (LSLD; red), high starting point but low drift
(HSLD; blue), and low starting point but high drift (LSHD; green). The right side illustrates activation patterns
for eight regions of interest on a single trial (i.e., the neural model with parameters �). The behavioral and neural
models are conjoined by a hierarchical structure (middle) in which relationships between the mechanisms of
cognitive models and statistical models of brain function are learned through the hyperparameters �.
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Figure 1, allows for a natural augmentation of cognitive models
with neural data.2 The left side of Figure 1 shows a behavioral
model intended to capture the behavioral data (e.g., the drift
diffusion model), and the right side displays a statistical model
chosen to capture the neural data. To combine the two models, we
assume a particular relationship between the behavioral model
parameters and the statistical model parameters, regulated by the
hyperparameters � (middle of Figure 1). The hierarchical structure
allows for mutual constraint on all model parameters, captures
multiple levels of effects (e.g., condition, subject, or trial effects),
and provides a way of identifying more parameters than the
number of data points on a given trial (see, e.g., Vandekerckhove
et al., 2011). Finally, the modeling is carried out by examining the
posterior distribution of the model parameters rather than conduct-
ing significance tests through correlation analyses, and so the
framework inherits many advantageous features of Bayesian sta-
tistics. For example, the effects of interest can be examined with-
out the need for Type I error corrections or the development of a
priori hypotheses (O’Doherty, Hampton, & Kim, 2007).
Turner, Forstmann, et al. (2013) demonstrated the utility of their

approach on simulated and experimental data by combining infor-
mation across subjects. In their analysis, Turner et al. combined
structural information measured by diffusion-weighted imaging
and related this information to the parameters of the LBA (Brown
& Heathcote, 2008) model. Because the neural measures were
structural, they did not fluctuate from trial to trial, and as a
consequence, the dynamics of the decision process could only be
studied from one decision maker to another. Here, we advance this
work by focusing the analysis on the single-trial level. In so doing,
the new model allows us to better understand the dynamics of
perceptual decision making by incorporating functional neuro-
physiological measures into our cognitive model. As we show
below, our model enables us to identify brain regions associated
with mechanisms assumed by our model, so that we can interpret
neuroimaging data through the lens of a cognitive model.

The Neural Drift Diffusion Model

The neural drift diffusion model (NDDM) is a combination of a
drift diffusion process for the behavioral data and a statistical
model for the pattern of brain activity. Figure 1 shows a graphical
diagram of the NDDM. On the left side, we use the drift diffusion
model (DDM; Ratcliff, 1978) with parameters � to model the joint
distribution of choice and response time in a two-alternative
forced-choice task. On the right side, we use a statistical model
with parameters � for the single-trial analysis of fMRI data
(Eichele et al., 2008). The structural relationships between the
pattern of brain activity and the cognitive model parameters are
learned through the hyperparameters �, which define the hierar-
chical structure (Turner, Forstmann, et al., 2013).

Accounting for Behavioral Data

Sequential sampling models have provided a robust mathemat-
ical framework for understanding the cognitive processes under-
lying perceptual decision making (Ratcliff, 1978; Usher & Mc-
Clelland, 2001). The fundamental structure of these models
involves several parameters, which typically correspond to a re-
sponse threshold, a nondecision component, a “drift” rate, and a

bias parameter. Following the encoding of a stimulus, sequential
sampling models assume that an observer accumulates evidence
for each of a number of alternatives at a rate determined by the
drift rate parameter. Once enough evidence has been accumulated
for a particular alternative such that the evidence exceeds the
response threshold, a response is triggered corresponding to the
winning alternative.
Many neurophysiological findings have supported the notion of

a sequential sampling process during perceptual decision making
in nonhuman primates (e.g., Hanes & Schall, 1996; Mazurek,
Roitman, Ditterich, & Shadlen, 2003; Kiani, Hanks, & Shadlen,
2008). In humans, researchers have relied on the statistical rela-
tionship between measures obtained through noninvasive proce-
dures (e.g., fMRI and EEG) and the latent mechanisms assumed by
the cognitive models. One popular sequential sampling model is
the DDM (Ratcliff, 1978). The DDM, and by extension the
NDDM, identifies four different sources of variability in decision
making: moment-to-moment variability within a single trial, trial-
to-trial variability in the start point, nondecision time, and rate of
evidence accumulation. The left bottom panel of Figure 1 shows an
illustration of the DDM under four settings of the parameter
values: a high starting point and high drift rate (HSHD; orange), a
low starting point and low drift rate (LSLD; red), a high starting
point but low drift rate (HSLD; blue), and a low starting point but
high drift rate (LSHD; green). The left gray box represents the
between-trial variability in the starting point, and the trajectories of
the four model simulations show the within-trial variability in
evidence accumulation. Each parameter regime corresponds to
behavioral outcomes that are conceptually different. For example,
the LSLD and HSLD examples both reach the bottom boundary
(i.e., the incorrect decision) but do so at different times. In the
LSLD regime, the model reaches the decision much faster than in
the HSLD regime, because in the LSLD regime, the model does
not need to overcome the initial bias toward the incorrect decision
as in the HSLD regime. These two parameter settings produce the
same response, albeit at different times, where one decision is
primarily driven by an initial bias (i.e., the LSLD regime), and the
other is more directly affected by the stimulus information (i.e., the
HSLD regime). Figure 1 also shows how the within-trial variabil-
ity in the model could potentially produce a response that is
inconsistent with the stimulus information, which primarily influ-
ences the drift rate. For example, in the LSHD regime, the model
is initially biased for the incorrect decision (i.e., the bottom thresh-
old) and nearly reaches the bound early on. However, as time
progresses, the model is able to recover from this initial bias and
allows the stimulus information to drive the decision to the correct
response.
Within the NDDM, we can separate the influence of (prestimu-

lus) bias from the rate of stimulus information processing, allow-
ing us to differentiate between competing explanations for how the
data arise. For example, a fast correct decision might be the result
of a particularly easy stimulus (e.g., a high drift rate), or it might
just be a guess with a fortunate outcome (e.g., a high starting
point). Distinguishing the various sources of variability in the

2 Although the inclusion of neural data is particularly relevant here, the
joint modeling framework is more general—any auxiliary data source can
be inserted into the model.
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decision process will be essential to understanding their relation-
ship to neurophysiological measures. However, the inclusion of
moment-to-moment variability within a single trial makes the
calculation of the model’s likelihood function difficult to evaluate.
Here we use an efficient algorithm for calculating the likelihood of
the DDM portion of our hierarchical model (Navarro & Fuss,
2009).
Using the DDM, Ratcliff and colleagues (2009) examined the

correlations between single-trial EEG amplitude measures and
condition-specific model parameters. Although the DDM does
inherently have single-trial parameters, they were integrated out to
facilitate parameter estimation. Here, we exploit the hierarchical
structure of the NDDM to obtain estimates of the trial-to-trial
parameters, an idea that is similar to other recent Bayesian treat-
ments of the DDM (Vandekerckhove et al., 2011), but has the
added benefit of combining neural measures to create a single,
unified model of cognition (Turner, Forstmann, et al., 2013).

Accounting for Neural Data

Many fMRI findings have identified brain regions that seem to
be related to sequential sampling processes (Mulder, van Maanen,
& Forstmann, 2014). For example, Mulder, Wagenmakers, Rat-
cliff, Boekel, and Forstmann (2012) argue that the orbitofrontal
cortex (OFC) is involved in generating decision bias, based on the
correlation between OFC activation and DDM’s bias parameter in
various tasks. Analogous to the behavioral models, most of these
studies have focused on grouped data, rather than single-trial
fluctuations. However, single-trial parameter estimates of hemo-
dynamic response functions can be obtained (Danielmeier,
Eichele, Forstmann, Tittgemeyer, & Ullsperger, 2011; Eichele et
al., 2008). The fluctuations in these parameters may be informative
of predicting the fluctuations in behavior, and there are many ways
in which single-trial parameters may be obtained. For example,
Eichele et al. (2008) applied independent component analysis
followed by deconvolution of the BOLD response to understand
how brain activity preceding an error evolves from trial to trial.
Using the same method, van Maanen et al. (2011) studied how the
fluctuations in response caution (as measured with a single-trial
sequential sampling model) are related to the trial-to-trial dynam-
ics of the BOLD signal.

Technical Details

To explain the model more formally, we denote the threshold
parameter as �, the single-trial starting point as z � [0, �], and
the single-trial drift rate as �.3 For the present article, we ignore
subject-specific differences and focus on trial-specific effects,
although one could extend the model to capture these additional
features of the data. Given this decision, we will drop the
subject-specific subscript j from the exposition that follows.
The single-trial parameter matrices (e.g., �) are of length I,
where I is the number of trials. We first reparameterize the
starting point to be a proportion of the threshold, so that w �
z/�, where w � [0, 1]. Using this notation, the probability
density function for the first passage time distribution for the
lower boundary is given by

f(t��,wi, �i)�
�

�2exp���i�wi �
�i
2t
2 �

��
k�1

	

k exp��
k2�2t
2�2 �sin(k�wi)

(1)

(Feller, 1968; Navarro & Fuss, 2009). To obtain the probability
density at the upper boundary, we replace �i with –�i and wi with
1 – wi in Equation 1. We incorporate a nondecision time parameter
� by replacing t in Equation 1 with (t – �). If we arbitrarily define
c � 1 for the Wiener diffusion process that absorbs at the lower
bound and c � 2 otherwise, the joint probability density function
for a given response c at time t is given by

Diffusion(c, t��, �i,wi, 
)

� f�t � 
��, c � 1� (�1)c�1wi, (�1)c�1�i�. (2)

To obtain parameters with infinite support, we transform the
single-trial start points w by a logistic transformation so that

� � logit�w� � log� w
1� w�.

One could also assume that the nondecision time parameter �
fluctuated from trial to trial. However, in the current implementa-
tion of the NDDM, we chose against adding this additional layer
of complexity for reasons of parsimony, a decision that has been
supported by other researchers (e.g., Brown & Heathcote, 2008;
Usher & McClelland, 2001). Furthermore, in the NDDM, the
nondecision time parameters capture effects that are not cogni-
tively interesting, and so we decided to save investigation of the
neural basis of this mechanism for future research.
Multiple methods are available for estimating trial-to-trial vari-

ability in the neural data (e.g., Eichele et al., 2008; Mumford,
Turner, Ashby, & Poldrack, 2012; Waldorp, Christoffels, & van de
Ven, 2011). For the data reported here, we used independent
component analysis (ICA; Calhoun, Adali, Pearlson, & Pekar,
2001; see Methods section for details). Given a set of M neural
sources, we denote the single-trial activation of the mth source
(i.e., the estimate of the beta weight) on the ith trial as 	i,m.
To create a unified model of behavioral and neural data, we

assume that the single-trial drift rates �i, single-trial starting points

i, and the single-trial activation parameters for the M sources
	i,1:M come from a common distribution, so that

��i,�i,i,1:M� ~MVN ��,	�,

whereMVN (�, 	) denotes the multivariate normal distribution
with mean vector � and variance covariance matrix 	 (i.e., � �
{�, 	} from Figure 1). The hypermean vector � is of length (2 �
M), whereas the variance-covariance matrix 	 is of dimension
(2 � M) � (2 � M). Here the “2” corresponds to the two
single-trial parameters 
 and �.

3 A word on notation is in order here. We use boldface fonts to represent
entities containing more than one element and represent scalars in regular
font. Sometimes it will be convenient to refer only to a portion of a matrix,
and we do this by indicating the range of elements within a subscript. For
example, the matrix � might have dimensions J by I, but we refer to the jth
row as �j,1:I.
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The hypermean vector � represents the mean of the joint vector
[�, �] whereas 	 represents the variance covariance matrix. For
ease of interpretation, we can partition the matrix 	 by combining
the behavioral model variance-covariance matrix 2 (of dimension
[2 � 2]) with the neural model activation variance-covariance
matrix �2 (of dimension [M � M]), so that

� � � 
2 
��

(
��)T �2 �, (3)

where


�� � ��1,1�1,1�1,1 �1,1�1,2�2,2 . . . �1,1�1,M�M,M

�2,2�2,1�1,1 �2,2�2,2�2,2 . . . �2,2�2,M�M,M
�,

a matrix of dimension (2 � M). The matrix � (of dimension [2 �
M]) is a correlation matrix that assesses the relationship between
each region of interest (ROI) and each cognitive model parameter.
Hence, if for example �1,1 is estimated to be near zero, the
interpretation is that the first behavioral model parameter (i.e., the
drift rate) is unrelated to the first neural source. This feature of our
model allows us to enforce a priori considerations, such that if a
particular neural source is known to be uncorrelated with a par-
ticular behavioral model parameter, one can simply constrain
�1,1 � 0. Because we have no a priori beliefs, we will freely
estimate all parameters in �.
Importantly, the parameters of the NDDM are conjoined with

the neural measures in our data on every trial, and so the variability
in the BOLD activation is linked to the trial-to-trial variability
within the model. Our modeling approach allows us to examine
brain-behavior patterns in several novel ways. First, it allows us to
explore the data on the basis of both choice and response time
measures. Second, the NDDM possesses parameters that capture
both single-trial and subject-specific effects. Third, the modeling
framework enforces neural constraints on the behavioral model
parameters and vice versa, which may have important conse-
quences for model development (cf. Jones & Dzhafarov, 2014;
Turner, 2013). Finally, by using our model-based cognitive neu-
roscience approach, we make an explicit link to the computational
theory of sequential sampling. In so doing, we can provide a
mechanistic view of the BOLD activity by way of cognitively
meaningful constructs such as the rate of information processing or
a prestimulus bias.
In the next section, we present the results of a simulation study

designed to examine the contributions of linking the single-trial
parameters with auxiliary single-trial data (i.e., neural data). In
particular, we show how a model that integrates neural and be-
havioral data on a single-trial basis can outperform a model that
only takes advantage of the behavioral data.

Simulation

The main objective of our simulation is to investigate the predic-
tions from two models: the first model—the DDM—only takes into
account the behavioral data, whereas the second model—the
NDDM—integrates both behavioral and neural data in the way
described earlier. Because the DDM only accounts for behavioral
data, it can only generate predictions for future behavioral data
based on the information it learns from past behavioral patterns.
On the other hand, the NDDM takes advantage of past behavioral

performance as well as current neurophysiological information on
every trial. Therefore, the advantages in predictive performance
provided by the NDDM will be directly proportional to the mag-
nitude of the statistical association between the neural signature
and the behavioral model parameters (Turner, 2013).
Perhaps the best way to evaluate the relative contributions of the

two models is to examine the accuracy of their predictions for
future data (i.e., data not used in the fitting process). To do so, we
first generated data from a joint model for a single subject (and so
we will drop the subject index in all parameters below) that linked
a single-trial neural signature to the single-trial parameters in the
behavioral model—specifically the drift rate � and starting point �
matrices. For the neural signature, we assumed the presence of 34
brain regions or “sources” whose single-trial activation parameter
 fluctuated from trial to trial.4 Specifically, we assumed

(�i,�i,i,1:M) ~MVN(�,	),

where � and 	 were chosen to be similar to the data in our
experiment reported below. Once � and 	 had been established,
they were used to randomly generate the parameter vectors �, �,
and . We set the threshold parameter equal to � � 2 and the
nondecision time parameter equal to � � 0.1, which are settings of
the parameters that produce data reasonably close to the experi-
mental data reported below.
Particularly relevant within � is the correlation matrix �. Figure

2 shows a histogram of the elements within �1,1:M (left panel) and
�2,1:M (right panel). The figure shows that many of the elements
are near zero and, as a consequence, enforce minimal constraint on
the behavioral model parameters (Turner, 2013). Of the 68 ele-
ments of �, only 14 elements have absolute values greater than 0.2.
Although this may seem like an inconsequential number, we see
later how only a few nonzero elements of � can be used to heavily
constrain the parameters of the behavioral model, ultimately lead-
ing to better predictions by the NDDM relative to the DDM.
Using the parameter settings described above, we generated 400

choice response times and source activations from the NDDM (i.e.,
the observations were all independent and identically distributed).
Next, both the NDDM and the DDM were trained on the first 200
data points (i.e., the “training data”). Finally, each model generated
predictions about the remaining 200 data points (i.e., the “test
data”). Given the nature of the models, a few model details differ
between the NDDM and DDM, which we now discuss.

Model Details

The NDDM. The details of the NDDM are outlined above,
with the exception of the particular choices we made about prior
distributions. Here, we specified noninformative priors for � and �
such that


 ~U[0, 2]

� ~U[0, 10],

where U[a, b] denotes the uniform distribution on the interval [a,
b]. We specified a joint prior on the hypermean parameter vector
� and hyper-variance-covariance matrix 	 so that

4 We chose 34 neural sources to match the number of sources used in our
experimental data below.
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p��,	� � p(��	)p(	),

where

��� ~MVN��0, s0
�1	�,

and

	 ~W�1(�, d0),

where W�1 (a, b) denotes the inverse Wishart distribution with
dispersion matrix a and degrees of freedom b. We set d0 equal to
the number of sources plus the number of single-trial model
parameters plus two (i.e., d0 � 34 � 2 � 2 � 38), s0 � 1/10, and
�0 is a vector containing 36 zeros. These choices were made to
establish a conjugate relationship between the prior and posterior,
so that analytic expressions could be derived for the conditional
distributions of � and 	, while still specifying uninformative
priors.5
The DDM. We chose to maintain as much consistency across

the joint and behavioral models as possible, which resulted only in
changes in the prior specifications. The only difference between
the models was that the behavioral model ignored the neural data.
Because the number of neural sources is zero, we set d0 � 4.
Furthermore, the neural model parameters , �, and � were
removed from the model. Given these specifications, the behav-
ioral model we employed is slightly more flexible than the classic
DDM (Ratcliff, 1978), because it contains a parameter that models
the correlation between the single-trial starting point and drift rate.
As a consequence of this additional flexibility, the DDM we use
here performed slightly better than the classic DDM in some
preliminary simulation results.

Results

Because we are first testing the model in a simulation study, we
have the advantage of knowing the true values of the model
parameters. For now, we will compare the models on their ability

to predict the single-trial model parameters rather than actual
behavioral data. The reason for this decision is purely for illustra-
tive purposes: it is difficult to visually compare the choice re-
sponse time predictions of the two models for all of the test data in
a Bayesian setting. However, in the experimental data reported
below, because we do not know what the true model parameters
are, we will be unable to compare the models on that basis and will
resort to statistical summaries of model predictions for behavioral
data instead.
Figure 3 shows the predictions for the single-trial parameters of

the NDDM (left column; green) and the DDM (right column; red)
against the test data (black lines). The top row of Figure 3 corre-
sponds to the drift rates, whereas the bottom row corresponds to
the starting points. In both rows, the true model parameters for the
test data have been sorted in increasing order to better facilitate a
comparison of the models’ predictions. In each panel, the maxi-
mum a posteriori (MAP) prediction is shown as the dark corre-
spondingly colored line, and the 95% credible sets are shown as
the light-shaded region.
Because the DDM neglects the neural signature, the model can

only generate predictions for the single-trial parameters based on
previous experience with the task (i.e., the training data). Although
these are optimal predictions in a statistical sense, they are—as the
right panel of Figure 3 demonstrates—completely insensitive to
trial-to-trial fluctuations in the model parameters. On the other
hand, the joint model takes advantage of (a) the trial-to-trial
fluctuations in the neural signature and (b) the association between
source activation and drift rate. From these two features of the
data, the joint model makes appreciably better predictions for the
single-trial drift rates relative to the behavioral model. The corre-
lation between the true and predicted drift rates for the NDDM was
0.273, t(198) � 3.99, p � .01, whereas the correlation for the

5 We remained agnostic about the specification of the priors because this
is the first time our model has been fit to data.

Figure 2. Histogram of the correlation matrix � used in the simulation and estimated from the experimental
data. The left panel shows the elements of the matrix �1,1:M corresponding to the associations between the 34
neural sources and the drift rate parameter, whereas the right panel shows the elements of �2,1:M corresponding
to the starting point parameter.
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DDM was 0.072, t(198) � 1.01, p � .31. The correlation between
the true and predicted starting points for the NDDM was 0.205,
t(198) � 2.95, p � .01, whereas the correlation for the DDM was
0.057, t(198) � 0.80, p � .43.
It is important to note that the correlation between the model

parameters and the neural data is in itself not sufficient for allow-
ing the NDDM to outperform the DDM on the prediction task.
Because the NDDM has several more parameters relative to the
DDM, the strength of the association between the model parame-
ters and the neural data must be strong enough to warrant the
additional flexibility of the NDDM. For example, if there was no
correlation between the model parameters and the neural data (i.e.,
all off-diagonal elements of 	 � 0), the predictions of the NDDM
would on average match the predictions of the DDM, but the
predictions of the NDDM would be more variable (the shaded
green area corresponding to the NDDM in Figure 3 would be
larger than the shaded red area corresponding to the DDM) relative
to the DDM as a result of the additional parameter uncertainty in
the model. This is important because the information in the right
panel of Figure 3 is what would be used to generate predictions in
the two-stage correlation procedure.
The primary question of interest in this article is whether neural

data can be used in a generative manner to enhance our understanding
of the mind from a mechanistic point of view. Up to this point, we
have developed a model of behavioral and neural data and shown that
in at least one situation, the model can outperform the core behavioral
model (also see Turner, 2013; Turner, Forstmann, et al., 2013).

Although we chose values of the parameters to produce data that were
reasonably close to experimental data, it remains unclear whether the
NDDM is an enhancement of the DDM for truly experimental data. In
the next section, we fit the models to experimental data to further test
the merits of the NDDM relative to the DDM.

Experiment

To test our hypothesis that there exists an association between
single-trial model parameters and trial-to-trial fluctuations in the
neural signal, we rely on data reported in (van Maanen et al.,
2011), which collected response choice, response times, and the
prestimulus BOLD signal for every trial under two speed emphasis
conditions. In the accuracy condition, subjects were instructed to
respond as accurately as possible, whereas in the speed condition,
subjects were instructed to respond as quickly as possible. The
experiment used a moving dots task where subjects were asked to
decide whether a cloud of semirandomly moving dots appeared to
move to the left or to the right. Subjects indicated their response by
pressing one of two spatially compatible buttons with either their
left or right index finger. Before each decision trial, subjects were
instructed whether to respond quickly (the speed condition) or
accurately (the accuracy condition). Following the trial, subjects
were provided feedback about their performance. We implemented
the speed-accuracy manipulation to verify that our modeling re-
sults were consistent with prior work on response caution and to
facilitate estimation of the model parameters. However, a block-

Figure 3. Model predictions for single-trial parameters. The left panels show the predictions for the neural drift
diffusion model (NDDM), whereas the right panels show the predictions for the drift diffusion model (DDM).
The top row corresponds to the single-trial drift rates, whereas the bottom row corresponds to the single-trial
starting points. The 95% credible set is shown as the shaded region (green for the NDDM and red for the DDM),
the maximum a posteriori prediction is shown in the corresponding color, and the true single-trial parameters are
shown in black. The single-trial parameters have been sorted in increasing order to better illustrate the
differences in model predictions.
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type difficulty manipulation was not necessary because, as we
show, the variability inherent in the experimental stimulus gener-
ation procedure alone allowed for a more informative (i.e., con-
tinuous) difficulty manipulation.

Participants

Seventeen participants (seven female; mean age � 23.1 years,
SD � 3.1 years) gave informed consent and participated in this
experiment. All participants had normal or corrected-to-normal
vision, and none had a history of neurological, major medical, or
psychiatric disorders. All participants were right-handed, as con-
firmed by the Edinburgh Inventory (Oldfield, 1971). The experi-
mental standards were approved by the local ethics committee of
the University of Leipzig. Data were handled anonymously.

Stimuli

Participants performed a two-alternative forced-choice random
dot motion task. On each trial, participants were asked to decide
whether a cloud of three-pixel-wide dots appeared to move to the
left or the right. The cloud consisted of 120 dots, of which 60
moved coherently and 60 moved randomly. “Coherence” was
achieved by moving the coherent dots one pixel in the target
direction from frame to frame. The remaining dots were relocated
randomly. On the subsequent frame, the coherent dots were moved
randomly, and the random dots were now treated as coherent, such
that the appearance of motion was determined by all dots, and
participants could not focus on one dot to make a correct inference.
The diameter of the entire cloud circle was 250 pixels. In this
circle, pixels were uniformly distributed. Importantly, the variabil-
ity in the stimulus-generation process combined with our single-
trial analysis allows us to better investigate how stimulus difficulty
interacts with the decision process relative to other, block-type
manipulations (Liu & Pleskac, 2011; Ratcliff et al., 2009).

fMRI Data Acquisition and Analysis

Each trial lasted 10 s and started with a jittered temporal interval
between 0 and 1,500 ms. Then a cue was presented in the middle
of the screen for 2,000 ms, indicating whether the trial was speed
stressed or accuracy stressed. Cue presentation was followed by a
jittered interval between 0 and 3,000 ms in steps of 1,000 ms. The
dot cloud was presented for 1,500 ms and followed by feedback.
On the speed-stressed trials, participants were required to respond
within 400 ms after stimulus onset. On the accuracy-stressed trials,
participants were required to respond within 1,000 ms.
The experiment was conducted in a 3T scanner (Philips) while

whole-brain fMRI was obtained. The fMRI data were acquired
prior to the onset of the condition cue. Thirty axial slices were
acquired (222 � 222 mm field of view, 96 � 96 in-plane resolu-
tion, 3-mm slice thickness, 0.3-mm slice spacing) parallel to the
anterior commissure–posterior commissure plane. We used a
single-shot, gradient-recalled echo planar imaging sequence (rep-
etition time 2,000 ms, echo time 28 ms, 90-degree flip angle,
transversal orientation). Prior to the functional runs, a 3D T1 scan
was acquired (T1, 25 � 25 cm field of view, 256 � 256 in-plane
resolution, 182 slices, slice thickness 1.2, repetition time 9.69,
echo time 4.6, sagittal orientation).

As previously reported (van Maanen et al., 2011), the indepen-
dent components were obtained through group spatial ICA (Cal-
houn et al., 2001). For each individual separately, the preprocessed
fMRI data were prewhitened and reduced via temporal principal
component analysis (PCA) to 60 components. Then, group-level
aggregate data were generated by concatenating and reducing
individual principal components in a second PCA step. Infomax
ICA (Bell & Sejnowski, 1995) was performed in this set with a
model order of 60 components (Kiviniemi et al., 2009). To esti-
mate robust components, we used independent component analysis
software package (Himberg, Hyvarinen, & Esposito, 2004)—that
is, the decomposition was performed 100 times with random initial
conditions—and identified centroids with a canonical correlation-
based clustering. Individual independent component maps and
time courses were reconstructed by multiplying the corresponding
data with the respective portions of the estimated demixing matrix.
The set of 60 components was further reduced by excluding
components that were associated with artifacts, had a cluster extent
of fewer than 26 contiguous voxels, and had uncorrected t statistics
of t19 � 5. Consequently, 34 ICs were considered in the main
analyses (we maintained the original numbering of 1–60). Al-
though doing the preprocessing (i.e., the ICA) was not actually
necessary, it helped us to reduce the dimensionality of the problem
because instead of modeling activity in a (large) number of voxels,
we could instead focus our efforts on modeling activity in a small
set of important brain regions.
To obtain single-trial estimates of the hemodynamic response

(HR) amplitudes, we used the method reported in Eichele et al.
(2008) and Danielmeier et al. (2011). For each participant and
component separately, the empirical event-related HR was decon-
volved by forming the convolution matrix of all trial onsets with a
length of 20 s and multiplying the Moore-Penrose pseudoinverse
of this matrix with the filtered and normalized component time
course. Single-trial amplitudes were recovered by fitting a design
matrix containing separate predictors for each trial onset con-
volved with the estimated HR onto the IC time course, estimating
the scaling coefficients () by using multiple linear regression.
Further details on the experimental design and the neural analysis
can be obtained from van Maanen et al. (2011).

Model Details

All choices for the models were equivalent to those made in the
simulation study. For these data, we allow the threshold parameter
to vary across speed emphasis conditions, which is consistent with
numerous sequential sampling model accounts of the speed-
accuracy trade-off (e.g., Boehm, Van Maanen, Forstmann, & Van
Rijn, 2014; Mulder et al., 2013; Turner, Sederberg, Brown, &
Steyvers, 2013; Winkel et al., 2012). We use a vector of response
threshold parameters � � {�(1),�(2)} so that �(1) and �(2) are used
for the accuracy and speed conditions of the experiment, respec-
tively. Similarly, we use a vector of nondecision time parameters
� � {�(1),�(2)} for the same respective conditions.
We denote the reaction time (RT) for the jth subject on the ith trial

as RTj,i, the response choice as REj,i, and the speed emphasis condi-
tion asCj,i. Thus, the behavioral data for Subject j areBj,1:I � {REj,1:I,
RTj,1:I, Cj,1:I}. Given the priors listed in the simulation section, and
denoting the neural data for the jth subject as Nj,1:I,1:M, the full joint
posterior distribution for the model parameters is given by
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p(��B, N)� 	
j�1

J

	
i�1

I
Diffusion�REj,i,RTj,i��(Cj,i),�i, 
, �i�

� 	
i�1

I � 	
j�1

J

	
m�1

M
p(Nj,i,m�i,m)p��i,�i,i,m��,	��

� 	
k�1

2
p��(k)�p�
(k)�p(� |	)p(	),

where p(Nj,i,m|	i,m) was defined in Eichele et al. (2008) and

� � {�, �, �1:I,�1:I,1:I,1:M,�,	}.

Results

We used a combination of Gibbs sampling (Gelman, Carlin,
Stern, & Rubin, 2004) and differential evolution with Markov
chain Monte Carlo (ter Braak, 2006; Turner, Sederberg, et al.,
2013) to fit the model to the data. We ran the algorithm for 15,000
iterations with 24 chains following a burn-in period of 5,000
samples. We thinned the chains by retaining every third iteration,
resulting in 120,000 samples of the joint posterior distribution.
Standard techniques were used to assess convergence (Plummer,
Best, Cowles, & Vines, 2006).

Evaluating Model Fit

Before we begin interpreting posterior distributions, it is impor-
tant to verify that the model fits adequately to the data. For the
NDDM, this assessment involves verifying that the model can (a)
recover the pattern of source activations present in the neural data
and (b) produce behavioral data that match the observed behav-
ioral data reasonably well. To verify objective (a), we compared
the statistics of the raw neural data (e.g., the source means and
correlation matrix) to the estimated posterior distributions of
model parameters (e.g., � and 	). Between the two comparisons,
the more difficult task is in the comparison of �, so we will only
present those results here.6 Figure 4a and 4b shows the assessment
of model fit to the neural data. Figure 4a plots the correlation
matrix of the 34 sources estimated from the raw ICA data against
the predicted relationships generated from the model. The left
panel of Figure 4b shows the correlation matrices for the raw ICA
data, whereas the right panel shows the MAP estimate for each
element of the corresponding correlation matrix to the variance-
covariance matrix �2 predicted by the NDDM (see Equation 3).
Recall that the variance-covariance matrix �2 is the partition of 	
that exclusively handles the interrelationships between the neural
sources. The correlation matrices are symmetric, so, for example,
the element in the 30th row, second column is equal to the element
in the 33rd row, fifth column. Each element of the matrix is color
coded according to the legend on the far-right panel, where high
correlations are shown in red (i.e., correlations of 0.5) and low
correlations are shown in blue (i.e., correlations of �0.2). The
diagonal elements of this matrix are all equal to 1.0 (shown in
black), but we have removed them for illustrative purposes. Ade-
quate recovery of �2 implies that the NDDM is capturing the
patterns of source activity observed in the data, for reasons that are
both functional (e.g., connectivity) and spatial (e.g., proximity).
Figure 4a and 4b shows that we have accurately recovered the
pattern of source activations in our data.
To evaluate the model’s fit to the behavioral data, we examined the

posterior predictive distribution (PPD) of the choice response time

distributions. The PPD serves as a generalization of the information
obtained in the empirical data to new, hypothetical data that might
have been observed had more trials been obtained in the experiment.
The PPD provides a statistically coherent way to simultaneously form
a quantification of uncertainty and establish a “best” estimate for the
predicted model parameters, based on the data that were observed. To
generate the PPD, we focused on the behavioral model parameters �,
� and �, rather than the single-trial parameters � and 
, so that the
model predictions were generalized to hypothetical data that could
have been observed had more data been collected. Aggregating across
the parameter space in this way will produce model predictions that
are inherently more variable and, generally speaking, less accurate.
Recall that the parameters � are the subset of the hyperparameter �
that are exclusive to the behavioral model (i.e., � is the hypermean of
� and 
). To generate the most likely PPD, we obtained the MAP
estimate for each model parameter and plotted the corresponding
defective distributions for each stimulus by speed emphasis condition.
Figure 4c to 4f shows the choice response time distributions from the
empirical data (histograms) along with the MAP prediction from the
model (black lines) for each combination of stimulus and speed
emphasis condition: (c, d) rightward stimulus presentations, (e, f)
leftward stimulus presentations, (c, e) accuracy emphasis condition,
and (d, f) speed emphasis condition. In each panel, the defective
response time distributions are shown for both the “leftward” (left)
and “rightward” (right) responses, meaning that the probability of
each response alternative from the model can be evaluated by com-
paring the heights of the two distributions. Figure 4c to 4f shows that
the PPD closely resembles the basic form of the empirical data,
demonstrating that the model is accurately fitting the data. However,
a skeptical reader may wonder why the model slightly misses some
aspects of the data. Part of this effect is due to a phenomenon known
as shrinkage. This means that the model is forced to capture both the
neural and behavioral data, where the neural data contain information
about the activations in 34 ROIs and the behavioral data contain only
two observations in the form of a choice response time pair. Because
the neural data are more numerous, the model places more emphasis
on accurately fitting the neural data relative to the behavioral data, and
so if any misfit should occur, it will be more likely to occur on the
least informative data measures (i.e., the behavioral data in this case).
Regarding the additional parameters in the model, the posterior

distribution of the threshold parameter for the accuracy condition
�(1) had a median of 1.585 with a 95% credible set of (1.521,
1.658), whereas the threshold parameter for the speed condition
�(2) had a median of 1.372 with a 95% credible set of (1.323,
1.426). These parameters vary in a way that is predicted from the
experimental manipulation—namely, that the response threshold
should decrease as the speed of a response is emphasized over the
accuracy of that response. The posterior distribution of the non-
decision time parameter in the accuracy condition �(1) had a
median of 0.299 with a 95% credible set of (0.291, 0.305), whereas
the nondecision time parameter in the speed condition �(2) had a
median of 0.057 with a 95% credible set of (0.053, 0.607). These
parameters also vary in a way that is predicted from the experi-
mental manipulation.

6 Our results showed that � was recovered accurately compared to the
empirical means of the raw neural data.
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Figure 4. Evaluation of model fit. The top panels (a, b) show the model fit to the neural data. Specifically,
Panel a plots the estimated region-to-region correlation matrix obtained from the raw data against the predicted
relationship from the model. Panel b shows the correlation matrices estimated from the data (left) and the
predicted relationships generated from the model (right). The bottom panels (c–f) show the model predictions
(black lines) against the raw data (histograms) for the choice response time distributions in each of the various
conditions in the experiment: (c, d) rightward stimulus presentations, (e, f) leftward stimulus presentations, (c,
e) accuracy emphasis condition, and (d, f) speed emphasis condition. In each panel (c–f), defective response time
distributions are shown for both the “leftward” (left) and “rightward” (right) responses.
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Once assured that a reasonably accurate model fit had been
obtained, we examined the relationship between patterns of BOLD
activity and the parameters of the cognitive model. To do this, we
first generated 10,000 samples from the estimated � and 	 pa-
rameters to form a more stable representation of the association
between BOLD activity and parameters of the cognitive model.7
We examined the resulting PPD of (�, �) to determine the extent
to which the prestimulus BOLD activity in each ROI was predic-
tive of the single-trial mechanisms used by the NDDM. ROIs were
defined from the independent components extracted from our data
and were not defined a priori (for more details, see Eichele et al.,
2008).
Once the PPD was generated, we defined regions within the

PPD that corresponded to psychologically interpretable con-
structs—namely, the rate of stimulus information processing, bias,
and response efficiency. We defined efficiency as the ability to
make fast, yet unbiased, decisions. The regions allowed us to
generate psychologically meaningful constructs on the basis of the
parameters in the model. The regions were chosen based on how
the constructs mapped onto the mechanisms assumed by the
NDDM and specifically the range of parameter values correspond-
ing to these constructs. Within the NDDM, the rate of stimulus
information processing corresponds to the drift rate, and the degree
of bias corresponds to the starting point. Figure 5a, 5d, and 5g
shows the joint PPD of drift rate and starting point. The rows of
Figure 5 correspond to the three construct analyses we performed
and will discuss in the sections that follow: drift rate (top), starting
point (middle), and efficiency (bottom). Each colored region in
Figure 5a, 5d, and 5g corresponds to a separate type of behavioral
response pattern. Although the absolute locations of each region
were defined after the model was fit to the data, the relative
locations were defined a priori on the basis of cognitively mean-
ingful constructs. For example, a “high” drift rate was defined to
contain only relatively large values of drift, and “high” bias was
defined to contain only starting points that were much closer to one
response threshold than the other. Figure 5b, 5e, and 5h shows the
predicted choice response time distributions for each correspond-
ingly colored region in the joint posterior distribution under accu-
racy emphasis instruction, whereas Figure 5c, 5f, and 5i shows the
choice response time distributions under speed emphasis instruc-
tion. The figure shows only the model’s predictions for stimuli
with rightward directional motion because the predictions for
leftward motion stimuli were mirror images of the rightward
motion stimuli.8 In each of the response time distribution plots,
distributions corresponding to the correct decision are shown on
the left (i.e., negative values), whereas distributions corresponding
to the incorrect decision are shown on the right. In each panel, the
model’s prediction for the probability of a correct response is
represented as the density of the correct response time distribution
relative to the incorrect response time distribution. In the sections
that follow, we further investigate how activity in the brain relates
to these three cognitive constructs in turn. Specifically, in the
section entitled “Drift Rate Region Analysis,” we examine the
pattern of brain activations predicted by the model under high and
low drift rate trials. Next, in the section entitled “Starting Point
Region Analysis,” we investigate the pattern of brain activations
present during high- and low-bias trials, which is determined by
the degree to which the starting point deviates from the point of
equal preference for each alternative. Finally, in the section enti-

tled “Efficiency Region Analysis,” we investigate a new construct
defined as the degree to which observers are able to integrate
stimulus information in a way that is unbiased. In addition, in the
drift rate region analysis, we explain our results in terms of the
default mode network, which has been shown to be active when a
subject is engaged in off-task behavior.

Drift Rate Region Analysis

The mechanism that most directly corresponds to the rate of
stimulus information accumulation in the NDDM is the drift rate.
Because the BOLD activity is obtained prior to the stimulus
presentation, any significant relationship between the BOLD re-
sponse and the drift rate is indicative that the prestimulus state of
the mind is predictive of task behavior. Hence, our first region
analysis focused on the drift rate and fits relation to the prestimulus
BOLD signal. For this analysis, we picked two regions in the
parameter space: one region corresponding to high drift rates (i.e.,
�, with an interval of � 0.2) and one region corresponding to low
drift rates (i.e., �, with an interval of � 0.2). Figure 5a shows the
two drift rate regions we selected, where the green region corre-
sponds to the high drift rate region and the red region corresponds
to the low drift rate region. As for the starting point parameter, we
defined our regions to include a large range of values for the start
point so that the effects of bias on the decision could be fully
integrated out, isolating the contribution of drift rate in the decision
process. To generate predictions for the behavioral data from the
model, we generated a choice response time distribution by
randomly selecting values for the drift rate and starting point
existing within each of the colored regions in Figure 5a. In
addition, the remaining parameters for nondecision time and
threshold were selected randomly from their corresponding
estimated posterior distributions. Figure 5b and 5c shows the
average predicted choice response time distributions under ac-
curacy (5b) and speed (5c) emphasis instructions, respectively.
These figures show that the high drift rate region produces
responses that are both more accurate and faster than the low
drift rate region. In fact, for the low drift rate region, the model
predicts that responses will have accuracy that is near chance.
BOLD activation patterns as a function of drift rate. Figure

6 shows the mean predicted BOLD signal for each ROI during low
(top row; the red region in Figure 5a) and high drift rate trials
(bottom row; the green region in Figure 5a). Each ROI is repre-
sented as a “node” appearing on the nearest axial slice in Montreal
Neurological Institute (MNI) coordinates and is labeled according
to Table 1. The true shape and extent of each ROI is presented in
the supplementary materials. The predicted BOLD signal is color
coded according to the key on the right-hand side. Using Figure 6,
we can identify brain regions that are associated with the slower
information processing by locating ROIs that have high BOLD
activity in the top row and low activity in the bottom row.

7 The data are sparse relative to the number of model parameters, which
would be problematic for the subsequent analyses. Hence, we relied on the
PPD rather than the single-trial estimates themselves.

8 In other words, the response time distributions were identical except
that “correct” distributions resembled the “incorrect” distributions and vice
versa.
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Default mode network. An appealing interpretation of these
findings lies in the idea of the default mode network (DMN).
Consistent patterns have emerged from studying the relationship
between prestimulus brain activity and subsequent stimulus infor-
mation processing. One pattern of activity that has a reliable effect
on decision making is the DMN. The DMN is a network of brain
regions that are active during off-task behaviors such as mind
wandering, self-referential thought, or task-independent introspec-
tion (Christoff, Gordon, Smallwood, Smith, & Schooler, 2009;
Eichele et al., 2008; Gusnard & Raichle, 2001; Raichle et al., 2001;
Raichle & Snyder, 2007; Weissman, Roberts, Visscher, &
Woldorff, 2006). The DMN was originally observed as a pattern of
brain activity present during the resting states of experiments
(Raichle et al., 2001). Since this initial observation, the very notion
of a DMN has sparked substantial controversy (Fair et al., 2008;

Pollack & Devlin, 2007). Our view is that the existence of a DMN
has drastic implications for how observers perform various tasks.
For example, when the DMN is active, observers may engage in
task-unrelated behaviors, creating suboptimal integration of stim-
ulus information. Activation of the DMN might manifest behav-
iorally as an increase in errors (Eichele et al., 2008) or a slowing
of the response times (Weissman et al., 2006). As such, the DMN
has stimulated a significant amount of research exploring how
activation in its subcomponents might relate to behavioral perfor-
mance.
The general approach to studying the DMN is to relate (e.g.,

correlate) behavioral measures such as response accuracy, re-
sponse time, or self-reports of awareness to brain activation pat-
terns, such as the BOLD response. As examples, Weissman et al.
(2006) used a local/global letter identification task to examine how

Figure 5. Model predictions for the behavioral data. Panels (a, d, g) show the joint posterior distributions of
drift rate and starting point. Within each panel, a set of regions is defined to allow for the analysis of three
cognitive constructs: (a) drift rate, (d) starting point (i.e., bias), and (g) efficiency. Panels (b, e, h) show the
choice response time distributions for correct (left) and incorrect (right) responses under accuracy emphasis
instructions, whereas Panels (c, f, i) show choice response time distributions under speed emphasis instructions.
Panels (a, b, c) show the high and low drift rate regions, which are represented as the green and red regions/lines,
respectively. Panels (d, e, f) show high- and low-bias regions, which are represented as blue (rightward response
bias), red (leftward response bias), and green (low-bias) regions/lines, respectively. Panels (g, h, i) show the
high- and low-efficiency regions, which are represented as green, and blue (rightward response bias) and red
(leftward response bias) regions/lines, respectively. Note that only model predictions for rightward stimuli are
shown and that the starting point is shown on the logit scale. PPD � posterior predictive distribution.
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response times related to brain activity. Their primary result was
the identification of several regions that, when activated, produced
longer response times (i.e., BOLD activity positively correlated
with response time): anterior cingulate cortex, right middle frontal
gyrus, and right inferior frontal gyrus. Eichele et al. (2008) found
that patterns of reduced deactivation across trials in a region
consisting of the inferior precuneus, posterior cingulate cortex, and
retrosplenial cortex tended to predict future errors. In addition,
they found decreased activity preceding errors in the posterior
middle frontal cortex, orbital gyrus, inferior frontal gyrus, and
SMA. Finally, Christoff et al. (2009) found that mind wandering as
measured by self-reports and task accuracy was associated with
activation of the dorsal and ventral anterior cingulate cortex,
precuneus, temporoparietal junction, dorsal rostromedial and right
rostrolateral prefrontal cortex, posterior and anterior insula, and
bilateral temporopolar cortex, regions that are typically associated
with the DMN.
Although the aforementioned studies have been instrumental in

identifying the subcomponents of the DMN, they still leave much
to be desired. First, the majority of previous examinations have
explored how only a single behavioral measure relates to the
DMN. Basing an inference on a single behavioral measure pro-
vides little constraint on the number of possible alternative expla-
nations. For example, comparing neural activity during correct and
incorrect trials only tells us which brain regions are (highly) active
for each accuracy outcome. Such a comparison does not differen-
tiate between, say, fast and slow errors, a feature of the data that
has played an important role in differentiating competing psycho-
logical theories (Donkin, Nosofsky, Gold, & Shiffrin, 2013; Prov-
ince & Rouder, 2012; Ratcliff & Smith, 2004; Ratcliff, Van Zandt,
& McKoon, 1999). Second, previous examinations have employed
discriminative analytic techniques, such as regression or Granger
causality analysis. Discriminative approaches make no direct con-

nection to an explicit cognitive theory because they are designed
for data-driven analytic procedures (Bishop & Lasserre, 2007). As
a result, discriminative models cannot enhance our understanding
of how brain regions affect the decision process or why an active
brain region is harmful to task performance mechanistically. On
the other hand, generative models make explicit assumptions about
the mechanisms underlying a cognitive process, and in so doing,
they provide explanations for how neural activity relates to behav-
ioral measures.
The DMN is generally thought of as a collection of brain regions

that, when active, contribute negatively to overall task perfor-
mance. However, Fox et al. (2005) observed patterns of functional
connectivity at rest that suggest the brain is organized into two
functional networks that are anticorrelated. The first network,
which we call the “task-positive” network, consists of brain re-
gions that, when active, contribute positively to overall task per-
formance. The second network, which we call the “task-negative”
network, works in an opposite manner and is consistent with
general definitions of the DMN (Raichle & Snyder, 2007). To
identify these networks, we must first separate task-negative be-
havior from task-positive behavior. In our model, we assume that
task-negative behavior is most directly related to low drift rates,
whereas task-positive behavior is related to high drift rates. We
make this assumption because the drift rate parameter controls the
rate of evidence accumulation, such that a high drift rate generally
produces faster, more accurate responses, and a low drift rate
produces slower, less accurate responses. Given the effect that the
drift rate parameter has on the behavioral variables (see also Figure
5), we feel that it most closely maps onto the notion of the DMN.
To identify task-negative and task-positive networks, we need

only determine the brain regions that have large deactivations
during high drift rate trials. One way to assess the degree of
deactivation is to simply take the difference between the predicted

Figure 6. Brain activity as a function of the predicted rate of information processing on the single-trial level. The
columns correspond to six axial slices, moving from ventral to dorsal surfaces. Each node corresponds to a region of
interest, and the node’s color represents the degree of activation for slow (i.e., low drift rates; top row) and fast (i.e.,
high drift rates; bottom row) information processing. In our model, drift rate serves as a proxy for the rate of stimulus
information processing. High and low drift rate regions were defined by their relative locations in the marginal
posterior distribution of the drift rate parameter (i.e., start point variability was integrated out; see Figure 5a).
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activity levels during low and high drift rate trials. For example, in
Figure 6, we can simply compare the BOLD activity in the top and
bottom rows. When BOLD activity increases with increases in
drift rate, the pattern of activity is consistent with the task-positive
network. By contrast, when BOLD activity is high during low drift
rate trials and low in high drift rate trials, the pattern of activity is
consistent with the task-negative network. However, evaluating
the magnitude of the deactivation does not incorporate the uncer-
tainty about the predicted activation or the variability in the BOLD
signal present for each individual ROI. One way to incorporate
these uncertainties is through an examination of the PPD. For each
ROI, the PPD contains a full distribution of the predicted BOLD
activity for both high and low drift rate trials. Thus, we can
estimate the probability that the BOLD activity during low drift
rate trials is greater than the BOLD activity during high drift rate
trials through numerical integration. Figure 7 shows these proba-
bilities for each ROI, sorted in descending order. Higher proba-
bilities in Figure 7 (i.e., the red region) are associated with task-
negative behaviors, whereas lower probabilities (i.e., the green
region) are associated with task-positive behaviors. ROIs located
in the brownish-yellow area do not identify either behavioral
characteristic with certainty. Brain regions most highly associated

with the task-negative network are the anterior insula (52), cingu-
late gyrus (41), parahippocampus (46), caudate (9), ventromedial
orbitofrontal cortex (vmOFC; 5), fusiform gyrus (28), vmOFC/
precuneus (24), posterior intraparietal sulcus (38), and the superior
temporal gyrus (58). Brain regions whose BOLD activity during
high drift rate trials is greater than their activity during low drift
trials are consistent with a task-positive network. We observed
only two ROIs meeting this criterion: the precuneus (56) and the
thalamus/dorsal striatum (14).
Although our particular ROI designation is unique, we can contrast

our findings with prior research. The generally accepted set of sub-
components of the DMN consists of the following brain regions:
medial temporal lobe, medial prefrontal cortex, anterior cingulate
cortex, and the ventral precuneus. In our ROI set, the medial temporal
lobe contains the parahippocampus (9) and the fusiform gyrus (28),
whereas the medial prefrontal cortex contains the vmOFC (5) and the
vmOFC/precuneus (24). In addition, there are several other ROIs in
the nearby dorsal medial prefrontal cortex—such as the superior
frontomedian cortex (47) and the cingulate gyrus (41)—and the
orbitofrontal cortex, including a frontopolar region (59). For the
anterior cingulate cortex, the cingulate gyrus (41) and the cingulate
sulcus (51) are nearby (van Maanen et al., 2011). Finally, our ROI set

Table 1
ROI Locations, Descriptions, and Mean Predicted Blood Oxygen Level-Dependent Level

ROI Description MNI coordinates x, y, z LD HD LB DB

1 Calcarine �30, �95, 0; 18, �96, �5 0.580 0.384 0.470 0.049
2 Precentral gyrus �17, �68, �21; 17, �65, �21 0.184 �0.074 0.078 0.300
3 Calcarine 3, �93, �9 0.474 0.147 0.317 0.005
5 vmOFC 1, 39, �12 0.418 �0.105 0.162 0.132
6 Putamen �22, 14, �3; 24, 8, �3 0.276 0.009 0.146 0.050
8 Cerebellum �27, �68, �22; 23, �77, �22 0.273 0.096 0.193 0.054
9 Caudate �8, 15, 4; 9, 15, 2 0.428 �0.157 0.139 0.030
14 Thalamus/dorsal striatum �5, �27, �3; 5, �27, �4 0.111 0.275 0.207 0.023
20 Postcentral gyrus 41, �25, 54 0.296 0.117 0.202 0.037
22 Medial temporal gyrus 59, �45, 19 0.280 �0.055 0.121 0.062
23 Pre/postcentral gyrus �39, �17, 62 0.437 0.023 0.217 0.154
24 vmOFC/precuneus �1, 53, �3; �1, �59, 34 0.745 �0.415 0.185 0.036
26 Paracentral gyrus 0, �29, 67 0.416 0.024 0.225 0.067
27 Cerebellum �20, �50, �15; 23, �50, �18 0.607 �0.272 0.192 0.136
28 Fusiform gyrus 33, �38, �16 0.446 0.072 0.264 0.006
29 Inferior temporal gyrus �55, �50, �17; 52, �57, �17 0.089 0.073 0.076 0.098
30 Thalamus 0, �15, 9 0.216 0.044 0.128 0.009
31 Precuneus 4, �59, 59 0.300 0.041 0.182 0.066
32 IFG pars triangularis �54, 20, 10 0.349 �0.003 0.182 0.106
33 Precuneus 4, �59, 59 0.741 �0.318 0.217 0.100
38 Posterior IPS 43, �46, 46 0.357 �0.030 0.175 0.076
39 Middle frontal gyrus �47, 26, 24; 55, 20, 25 0.274 0.263 0.261 0.207
41 Cingulate gyrus 2, 36, 20 0.493 �0.040 0.228 0.006
46 Parahippocampus �27, �7, �26; 26, �7, �26 0.460 �0.180 0.147 0.022
47 Superior frontomedian cortex 4, 42, 39 0.358 0.028 0.193 0.015
48 Mid-occipital gyrus �28, �83, 23; 31, �83, 25 0.368 �0.014 0.177 0.101
51 Cingulate sulcus 0, �1, 47 0.434 0.047 0.238 0.029
52 Anterior insula 38, 22, �10 0.535 �0.021 0.259 0.025
53 Frontopolar 47, 46, 4 0.294 �0.075 0.126 0.202
54 Pre-SMA/SMA 2, 4, 69 0.399 0.186 0.285 0.139
55 Precuneus 2, �38, 35 0.287 �0.004 0.145 0.075
56 Precuneus 4, �35, 45 0.007 0.263 0.131 0.108
58 Superior temporal gyrus 51, �2, �3 0.475 �0.190 0.153 0.025
59 Frontopolar 40, 48, �2 0.409 �0.131 0.147 0.215

Note. ROI � region of interest; MNI � Montreal Neurological Institute; LD � low drift; HD � high drift; LB � low bias; DB � average difference
in activation across the two high-bias regions; vmOFC � ventromedial orbitofrontal cortex; IFG � inferior frontal gyrus; IPS � intraparietal sulcus;
SMA � supplementary motor cortex.
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contains five ROIs in the precuneus area: 31, 33, 55, 56, and partially
the vmOFC/precuneus (24). Of these ROIs, ROI 31 and ROI 33 are
located ventrally, whereas ROI 55 and ROI 56 are located anteriorly
to the precuneus. Interestingly, while the BOLD signal present in ROI
55 showed no definitive behavioral influence, the BOLD signal pres-
ent in ROI 56, which was located dorsally relative to ROI 55,
exhibited task-positive behavior. Of these listed ROIs, all except for
ROI 56 showed patterns of activity that were remarkably consistent
with the DMN: high activity during low drift rate trials and low
activity during high drift rate trials. However, when accounting for the
variability in individual ROI activity (see Figure 7), we did not find
strong evidence (i.e., as measured by the location of the posterior
distribution) of DMN membership for the superior frontomedian
cortex (47), the frontopolar region (59), or the precuneus (31, 33, 55).
Although these results speak to the consistency of our model with
prior research, they also indicate that our (Bayesian) analysis of the
NDDM provides a slightly different interpretation once uncertainty
and variability of BOLD activity are taken into account.

Starting Point Region Analysis

The second region analysis we performed was on the starting point.
Figure 5d shows the joint posterior predictive distribution for single-
trial drift rate and starting point. Three starting point regions are of
interest. The first region corresponds to an area of low bias and is
represented with the color green. To define the region, we selected
starting point values that were within a small window (i.e., within 0.2
on the logit scale) of the point of unbiased responding at zero. Similar
to the drift rate regions above, we selected a large range of drift rates
so that the effects of drift on the decision could be fully integrated out.
The resulting low-bias regions consisted of the starting points of � �
[0.45, 0.55], which is a proportion ranging from zero to 1. The second

and third regions correspond to areas of high bias. The blue region
represents a high bias for a rightward response (i.e., the correct
response here), whereas the red region represents a high bias for a
leftward response (i.e., the incorrect response). To define these re-
gions, we selected areas that were equidistant from the point of
unbiased responding and had the same width and range for drift rates
as the low-bias region. The resulting high-bias regions consisted of the
starting points of � � [0.60, 0.69] for high rightward response bias
and 
 � [0.31, 0.40] for high leftward response bias (on the proba-
bility scale).
As in the drift region analysis, we generated predictions for the

behavioral data by randomly selecting values of drift rate and starting
point that were contained within each of the regions in Figure 5d.
Figure 5e and 5f shows the average predicted choice response time
distributions under accuracy (5e) and speed (5f) emphasis instruc-
tions, respectively. The figures show that the most accurate responses
are obtained in the high rightward bias region shown in blue. Because
the contribution of the drift rate has been integrated out, the decision
is being driven primarily by the starting point. Hence, when the
starting point is nearer to the correct boundary (i.e., the “rightward”
response boundary), the responses will tend to be more accurate than
even the unbiased responding. However, if we were to plot the model
predictions for leftward stimuli, the same blue region would produce
the most inaccurate and slowest responses, relative to the other re-
gions.
BOLD activation patterns as a function of starting point.

The top row of Figure 8 shows the average BOLD signal for each
ROI within the low-bias region (i.e., the green region in Figure
5d). Regions with the greatest activation (i.e., activations greater
than 0.25) were the calcarine (1 and 3), pre-SMA/SMA (54),
fusiform gyrus (28), middle frontal gyrus (39), and the anterior

Figure 7. Probability of default mode network membership for each region of interest. For each region of interest,
we evaluated the predicted probability that the blood oxygen level-dependent (BOLD) signal present for low drift rate
trials would exceed the BOLD signal present during high drift rate trials. Higher probabilities indicate higher
likelihood of task-negative network membership, whereas smaller probabilities indicate higher likelihood of task-
positive network membership. DMN � default mode network; vmOFC � ventromedial orbitofrontal cortex.
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insula cortex (52), whereas regions with the least activation (i.e.,
activation less than 0.14) were the inferior temporal gyrus (29),
cerebellum (2), medial temporal gyrus (22), frontopolar cortex
(53), thalamus (30), precuneus (56), and the caudate (9).
To better interpret the interaction of the BOLD signal and biased

decision making, we used a measure of differential BOLD activity,
given by

�k �
1
2�i�1

2

�yk
LB � yi,k

HB�,

where Yk
LB denotes the average BOLD signal for the kth ROI in the

low-bias region, and yi,k
HB denotes the average BOLD signal for the

kth ROI in the ith high-bias region. Thus, � is the average absolute
difference in BOLD activity when moving from regions of low
bias to regions of high bias for either alternative. The bottom row
of Figure 8 shows �k for each ROI, color coded according to the
key on the right-hand side. Because a high value for � implies
either a high or low BOLD signal relative to the BOLD signal in
the top row of Figure 8 (i.e., the BOLD signal during unbiased
decisions), greater differential activation in the bottom row of
Figure 8 is indicative that a given ROI contributes to starting point
fluctuations that produce biased responding. Brain regions with the
greatest average difference in activation (i.e., greater than 0.13)
were the cerebellum (2), frontopolar cortex (59), middle frontal
gyrus (39), frontopolar cortex (53), pre/postcentral gyrus (23),
pre-SMA/SMA (54), cerebellum (27), and the vmOFC (5). For a
given ROI, lower values in the bottom row of Figure 8 indicate that
a particular ROI does not significantly affect the placement of the
starting point. Regions with the lowest average difference in acti-
vation (i.e., less than 0.02) were the calcarine (3), fusiform gyrus
(28), cingulate gyrus (41), thalamus (30), and superior frontome-
dian cortex (47).

One limitation of our analysis is that it does not disentangle the
different types of high-bias response outcomes. Suppose, for ex-
ample, a rightward motion stimulus is presented. If the model
begins the trial with a high preference for a “rightward” response,
it could produce either (a) a fast correct response or (b) a slow
incorrect response. The latter of these two events could occur if the
drift rate for the trial was relatively low, causing the response to be
made on the basis of noisy stimulus integration. By examining the
posterior distribution of a model that does not explicitly condition
on accuracy of the response, we cannot explore the role of the
BOLD activity on the accuracy of highly biased responses. Al-
though this is a limitation of our analysis, it is not a limitation of
the model. There are two ways we could examine the contribution
of bias in greater detail. The first is a data-driven approach in
which we would simply observe the pattern of BOLD activity
present during trials where events (a) and (b) occurred. For these
data, this approach is problematic because the limited number of
observations would make the interpretation of such results difficult
to substantiate. The second approach would be to reparameterize
the model so that the thresholds in the model corresponded to the
correct and incorrect response alternatives, rather than leftward
and rightward response alternatives. Such a procedure would as-
sume that rightward and leftward stimuli were equally preferable,
and this assumption is reasonable for these data. However, the
focus of the present study was to examine the degree to which
brain regions were related to the rate of information processing—
regardless of starting point—and so neither solution above was
investigated in detail.
The drift rate and starting point regions analyses above are

useful because they isolate parameters within the NDDM and map
them directly to patterns of neural activity. However, one may also
be interested in identifying how the brain executes processes that

Figure 8. Brain activity patterns as a function of the degree of bias. The columns correspond to six axial slices,
moving from ventral to dorsal surfaces. Each node corresponds to a region of interest, and the node’s color
represents the degree of activation. The top row shows the pattern of activity present during unbiased trials. The
bottom row shows the average absolute difference in activation between trials with high and low bias. In our
model, the initial starting points relative to w � 0.5 serve as a proxy for the degree of bias in the decision. High-
and low-bias regions were defined by their relative locations in the marginal distribution of the starting point
parameter (i.e., the drift rate variability was integrated out; see Figure 5d).
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are more conceptual in nature, which can be defined by parameter
regimes within the model. For example, one may be interested in
identifying patterns of brain activity that produce behavioral re-
sponses that are accurate and relatively fast but are driven by the
observer’s ability to process stimulus information and not by
“lucky guesses.” In the next section, we perform an analysis on
such a concept, which we refer to as efficiency.

Efficiency Region Analysis

We defined efficiency as the ability to make fast, yet unbiased,
decisions. Within the NDDM, fast unbiased decisions are only
made when (a) the drift rate is high and (b) the starting point is
equally close to each of the response thresholds. To define the
high-efficiency region, we selected a relatively large value for the
drift rate (� � 1.8) and a small range of values for the starting
point, because we wanted to limit the high-efficiency region to an
unbiased parameter regime. In our model, unbiased responding is
obtained when w � 0.5 or logit(w) � 
 � 0 as shown in Figure
5g. The high-efficiency region is represented in Figure 5g as the
green area. To select low-efficiency regions, we first began by
selecting relatively small values for the drift rate (� � 0.2). To
define regions corresponding to biased decision making, we noted
that bias in the decision is present if either alternative is preferred
prior to stimulus onset. In the model, a preference for a “right-
ward” response is obtained by increasing the starting point w
above 0.5. By contrast, preference for a “leftward” response is
obtained by decreasing the starting point below 0.5. Thus, we
defined two equally biased regions—one region corresponding to
a high “rightward” response preference (i.e., the blue region in
Figure 5g where w � 0.65) and one region corresponding to a high
“leftward” response preference (i.e., the red region in Figure 5g
where w � 0.35).
Figure 5h and 5i shows the average of these predicted distribu-

tions, where each distribution is color coded to coordinate with the
regions defined in Figure 5g. Under both accuracy and speed
emphasis instructions, we see that the model predicts correct
responses with highest probability in the high-efficiency region
(green). The second highest probability of a correct response is
obtained in the blue low-efficiency region, and the lowest proba-
bility for a correct response is obtained in the red low-efficiency
region. In fact, under both accuracy and speed emphasis instruc-
tions, the model predicts that incorrect responses are more likely
than correct in the red low-efficiency region. The reason for this
particular ranking of efficiency regions is because the blue low-
efficiency region is nearer to the “rightward” response boundary,
which is the correct response here.9 For the red low-efficiency
region, because the model begins near enough to the “leftward”
response boundary and the drift rate is low enough, most of the
responses spuriously reach the incorrect boundary.
Note that our particular definition of efficiency depends not only

on response time but also on accuracy. In part, we formed our
definition based on the interaction between drift rate and starting
point and because a highly biased response does not imply inac-
curate responding. For example, Figure 5h shows that the blue
low-efficiency region actually produces faster correct responses
than the high-efficiency region. However, the blue low-efficiency
region also produces many more errors than the high-efficiency
region, and the errors made by the blue low-efficiency region are

slower than the errors made by the high-efficiency region. In
addition, the drift rate interacts with the starting point such that a
high enough drift rate can help prevent errors that would have
resulted from a large initial bias.
Identifying efficient BOLD activation patterns. Figure 9

shows the average BOLD signal for each ROI within the high right-
ward bias low-efficiency region (i.e., the blue region in Figure 5g; top
row), the high leftward bias low-efficiency region (i.e., the red region
in Figure 5g; middle row), and the high-efficiency region (i.e., the
green region in Figure 5g; bottom row). Each ROI is represented as a
“node” appearing on the nearest axial slice in MNI coordinates and is
labeled according to Table 1. Some ROIs containing more than one
brain region are represented as multiple nodes. For example, calcarine
(1) was defined bilaterally, and so two nodes are used to represent this
ROI in the figure. The predicted BOLD signal is color coded accord-
ing to the key on the right-hand side. High BOLD activity in the top
and middle rows combined with low BOLD activity in the bottom
row indicates that a particular ROI contributes negatively to efficient
decision making. Figure 9 shows that greater efficiency can be
achieved when most ROIs have the greatest deactivation (i.e., lowest
activation), but the degree of deactivation varies across ROIs. For
example, regions corresponding to the vmOFC (5, 24) require greater
deactivation than do regions corresponding to either the inferior
temporal gyrus (28) or lateral portions of the cerebellum (8). The
greatest deactivations (i.e., having a deactivation greater than 0.6)
were observed for the following regions (from greatest to least):
precuneus (33), vmOFC/precuneus (24), anterior portions of the cer-
ebellum (27), frontopolar region (59), vmOFC (5), parahippocampus
(46), superior temporal gyrus (STG; 58), caudate (9), and a medial
portion of the cerebellum (2). Furthermore, greater efficiency is ob-
tained with greater activation of the thalamus and dorsal striatum (14)
and a dorsal medial area of the precuneus (56). Some ROIs exhibited
a nonmonotonic relationship with efficiency; for example, high acti-
vation or high deactivation of the middle frontal gyrus (39) and the
inferior temporal gyrus (29) produced inefficient responses, whereas
midrange activations (i.e., around 0.1) produced highly efficient re-
sponses.
To this point, we have shown that our (generative) modeling

approach allows for the identification of brain regions whose activa-
tion correlates with parameters of a cognitive model. Another way we
can evaluate the merits of NDDM relative to the DDM is by exam-
ining how the models perform on a cross-validation test. The objec-
tive here is to show that the NDDM can use the information provided
by the neural data to generate better predictions for behavioral data
than the DDM. Because we have already shown that the NDDM
provides a better qualitative explanation of the data than the DDM,
such a test—if successful—would demonstrate that the NDDM pro-
vides an enhanced view of the data that is not subject to poor
generalization (Myung & Pitt, 2002).

Comparing the Models

In this section, we perform a predictive modeling test via cross-
validation. First, we randomly removed 100 trials—referred to as the
“test” data—from our data set and refit both models to the remaining
“training” data. Once the (new) posteriors for both models had been

9 Recall that only the predictions for rightward motion stimuli are shown
in Figure 5.
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estimated, we used the posterior estimates for the hyperparameters to
generate PPDs for the single-trial drift rate and starting point param-
eters, consisting of 1,000 random samples. For the NDDM, this
generation process conditioned on the information in the neural data
for each test trial as described in Turner (2013). As an illustrative
example, Figure 10a and 10b shows the PPDs for the (single-trial)
drift rate parameter � and (single-trial) starting point parameter �,
respectively, for the NDDM (green histograms) and the DDM (red
histograms) on Test Trial 82. When comparing the PPDs, we observe
two things. First, the PPDs for both parameters in the NDDM are
more constrained (i.e., have smaller variance) relative to the DDM
model parameters, especially for the drift rate parameter � (see Figure
10a). For the NDDM, the means over 100 test trials of the standard
deviations of the posterior distributions for � and � were 0.248 and
0.209, respectively, whereas for the DDM, the standard deviations
were 0.407 and 0.244, respectively. Clearly, the posterior distributions
of the model parameters for the NDDM have less variance relative to
the DDM, where a larger discrepancy exists between drift rates. As
we observed in the simulation study, the posteriors in the NDDM are
more constrained because of the information provided by the neural
data. Turner (2013) showed that the additional constraint on the
behavioral model parameters is guaranteed as long as a nonzero
correlation exists between at least one neural source and a particular

latent variable. In our analyses, we observed several strong correla-
tions between both model parameters and many neural sources (see
Figure 2), and as a consequence, the information in the neural data
better constrains the cognitive model. Second, we observe that the
means of the PPDs for both model parameters differ between the
NDDM and the DDM. The difference in means is also caused by
the neural data. Similar to our observations in the simulation study
above, for the NDDM, the means of the single-trial posterior distri-
butions fluctuate according to the neural data, whereas for the DDM,
the means fluctuate only slightly, because they are being generated
only from the prior distribution (i.e., it ignores the neural data).
Once the PPDs had been generated for each model parameter, we

used the 1,000 random samples to generate a PPD for the behavioral
data. Figure 10c shows the PPDs in data space, where green corre-
sponds to the NDDM and red corresponds to the DDM (i.e., as in
Figure 10a and 10b). The 95% credible set for the response time
distributions of correct (left) and incorrect (right) responses is shown
for each model, along with the median of the PPDs shown in corre-
sponding color. Comparing the two credible sets, we can see that the
predictions under the NDDM are less variable relative to the DDM.
The dashed vertical line represents the data for Test Trial 82, which
was a correct response with a response time of 525 ms. To compare
the accuracy of the predictions for both models, we can evaluate the

Figure 9. The efficiency of information processing as a function of blood oxygen level-dependent (BOLD)
activation. Efficiency is defined as the ability to produce fast, yet unbiased, responses, which is determined by
the location in the joint posterior distribution of drift rate and starting point (see Figure 5g). The columns
correspond to six axial slices, moving from ventral to dorsal surfaces. Each region of interest is represented as
a node in the figure color coded to reflect its degree of BOLD activation. The top row corresponds to the
low-efficiency region with high rightward bias (i.e., the blue region in Figure 5g), the middle row corresponds
to the low-efficiency region with high leftward bias (i.e., the red region in Figure 5g), and the bottom row
corresponds to the high-efficiency region (i.e., the green region in Figure 5g).
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density of the test trial data under the response time curves. If a model
places higher density at the location of a particular test trial data point,
the predictions are more accurate because the model believes the test
data are most likely to occur at this location. Hence, the higher the
density around the test trial data, the more accurate the predictions
from the model. For Test Trial 82, the NDDM has a higher density
than the DDM, making it the preferred model for this test trial.
We can repeat the model comparison process illustrated in Figure

10 for the remaining test trials. However, to do so, we will evaluate
the likelihood of each test trial under the collection of probability
density functions (i.e., the entire shaded region in Figure 10c). Eval-
uation of the likelihoods under all probability density functions in the
PPDs produced a distribution of 1,000 likelihood values for each
model. To compare the distributions between the two models, we
used a Monte Carlo procedure for estimating the probability that the
distribution of likelihood values for the NDDM was higher than the
distribution of likelihood values for the DDM (see Robert & Casella,
2004).
Figure 11 shows the probability that the NDDM is the preferred

model for each of the 100 test trials, ranked according to increased
preference for the NDDM. Each probability is color coded to repre-
sent whether the test trial resulted in a correct (black dots) or incorrect

(gray dots) response. The vertical arrow points to Test Trial 82, which
was used as the illustrative example in Figure 10. A horizontal
reference line is plotted to correspond to equal preference for each
model at 0.5, and a vertical reference line is plotted to correspond to
50% of the test trials. The figure shows that 63 of the 100 trials are
better predicted by the NDDM, which is indicated by observing the
number of dots above the horizontal line. In our analyses, the NDDM
performed better than the DDM on 83% of the incorrect trials but only
57% of the correct trials.10

Discussion

In this article, our goal was to develop a model that could use
prestimulus measures of brain activity to better constrain and
inform the mechanisms assumed by a cognitive model of choice

10 In two replications of the cross-validation study, we noted that the
NDDM performed consistently better on the incorrect trials than on the correct
trials. We speculated that the performance difference is due to the NDDM’s
ability to make use of the task-negative network in predicting subsequent
behavior. However, additional data will need to be collected to ensure that
these initial findings are not spurious.

Figure 10. Posterior predictive distributions of model parameters and data variables for Test Trial 82. In all panels,
neural drift diffusion model (NDDM) distributions are shown in green, whereas drift diffusion model (DDM)
distributions are shown in red. The top panels show the posterior predictive distributions for (a) the (single-trial) drift
rate � and (b) the (single-trial) starting point �. Panel c shows the posterior predictive distribution for the choice
response time distributions for correct (left) and incorrect (right) responses. For each model, 95% credible sets are
plotted along with the best prediction illustrated with a solid line of corresponding color. The dashed vertical line
represents the test trial data (i.e., a correct response with a response time of 525 ms).
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response time. To accomplish this, we developed the NDDM by
extending the joint modeling framework to link neural and behav-
ioral data at the single-trial level (Turner, Forstmann, et al., 2013).
Our model captures many sources of variability simultaneously
and takes full advantage of the set of available constraints. Struc-
turing the model in this way creates an interesting dynamic be-
tween neural and behavioral measures. For example, our model
predicts behavior not only on the basis of past behavioral data but
also on the basis of neural data observed on a particular trial.
To test our model, we directly compared it to a version of the

DDM (Ratcliff, 1978) in a simulation study. Comparing the DDM
to the NDDM is an important test because the models are equiv-
alent except that the DDM neglects the information in the neural
data. Hence, if the NDDM could outperform the DDM, it would
suggest that our model-based approach is an advancement to the
traditional approach of cognitive modeling. We provided both
models with a limited number of training examples and then tested
their ability to predict future data (i.e., the “test” data). To compare the
accuracy of the models, we evaluated the correlations of the true
single-trial parameters with the maximum a posteriori predictions of
the models (see Figure 3). We found that the predictions of the
NDDM significantly correlated with both single-trial parameters,
whereas the DDM’s predictions were not significantly correlated with
either single-trial parameter.
We then used our model to further examine how brain activity

relates to behavioral data (and vice versa) in a perceptual decision-
making task. We found that specific combinations of start point
and drift rate parameters predicted different behavioral decision
dynamics as well as neural activation in different ROIs. Specifi-
cally, we found that the combination of high drift rates and no bias
(which we defined as efficiency) was related to fast responses with

few errors. Additionally, high efficiency was related to deactiva-
tion of many ROIs. These effects were decomposed into an effect
related to the start point parameters and an effect related to the drift
rate parameters. Starting point fluctuations were related to biased
behavior (i.e., fast correct and slow incorrect responses or vice
versa), as well as with activation in the cerebellum, frontopolar
cortex, middle frontal gyrus, pre/postcentral gyrus, pre-SMA, and
the vmOFC. In contrast, higher drift rates predicted faster and
more correct choices. This was associated with decreased activa-
tion in the precuneus. Conversely, low drift rates predicted slow
and incorrect responses and increased activation in the precuneus
and cerebellum.
We also investigated the role of the DMN on the basis of the

NDDM. For our purposes, it was convenient to identify both
task-negative and task-positive networks, whose components are
anticorrelated (Fox et al., 2005). Activation of brain regions within
the task-negative network tended to produce responses that were
inaccurate. When the responses were accurate, they were generally
slower relative to the full response time distribution. We then
assessed the degree to which each ROI within the task-negative
network was associated with the mechanisms in our model, spe-
cifically, the rate of information processing. We do not necessarily
believe that the drift rate parameter corresponds exclusively to the
DMN. It is entirely plausible that low drift rate trials contain a
mixture of brain areas that produce task-negative behavior, such as
the DMN plus brain areas where the influence of the stimulus is
expressed. Regardless, the drift rate parameter does give us the
best chance of identifying regions associated with the conventional
notion of the DMN. We found that many of the components of the
task-negative network were exclusively associated with predicting
the rate of information processing—specifically, the precuneus,

Figure 11. Cross-validation test comparing the neural drift diffusion model (NDDM) to the drift diffusion
model (DDM). The numerical estimates for model predictability are plotted in ascending order of NDDM
preference. Each point is color coded to indicate that the trial was either correct (black dots) or incorrect (gray
dots). The horizontal reference line at 0.5 represents equal model preference, whereas the vertical reference line
at 50 corresponds to half the data (i.e., 50 trials on either side). The arrow identifies the likelihood comparison
made on Test Trial 82 (see Figure 10).
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vmOFC/precuneus, anterior cerebellum, parahippocampus, STG,
caudate, and the anterior insula. By contrast, the pre-SMA/SMA,
middle frontal gyrus, and the medial portion of the cerebellum
mostly influenced the starting point. Our model could not cleanly
differentiate which mechanism had the highest association with a
frontopolar region (59). Surprisingly, the task-positive network
included only two components—the thalamus/dorsal striatum and
the medial precuneus. We found that whereas the thalamus/dorsal
striatum (14) was exclusively related to drift rate, the medial
precuneus (56) was associated with both drift rate and starting
point.
There are also a few differences between our results and prior

research. Jointly modeling the neural and behavioral data allowed
us to determine whether trial-to-trial fluctuations in BOLD activity
were more similar to trial-to-trial fluctuations in starting point or
drift rate. We assumed that the notion of a DMN was better
ascribed mechanistically to the drift rate parameter, enabling us to
identify brain regions through parameters in the model. Thus,
when a brain region is not highly associated with the drift rate, we
argue that it functions differently from what is required by current
definitions of the DMN. With this view in mind, the major differ-
ences between our results and prior research primarily fall onto
four brain regions. First, the middle frontal gyrus (39) and the
pre-SMA (54) were unrelated to the drift rate but were highly
related to the starting point. Second, we found that the right
inferior temporal gyrus was unrelated to drift rate, but there was
some small evidence that it was related to starting point. Third, we
found that the middle temporal gyrus (22) was related to drift when
using simple differencing, but when overall uncertainty in the
predicted BOLD activity was taken into account, we did not
observe a significant mapping to the drift rate or starting point.
Other reasons for these differences could be due to inconsistent
ROI specifications across studies, the task used in the experiment,
or the incorporation of multiple behavioral measures. Specifically,
we are unaware of any study in neuroscience that combines choice
and response time into a single analysis.
We can also compare our results to those of van Maanen et al.

(2011), although the implementation of the single-trial LBA
(STLBA) model and the NDDM differs strongly, and it would not
be fair to expect an exact correspondence between the results.
However, because conceptually the models are closely related, it is
expected that both models make similar predictions for those ROIs
in which the signal is strongest (i.e., the relation with the latent
variable is strongest). This is indeed what we found. van Maanen
et al. report a correlation between single-trial starting point and the
middle frontal gyrus, pre-SMA/dorsal anterior cingulate cortex,
putamen, anterior cingulate cortex, superior occipital gyrus, and
precuneus. The parameter in NDDM that is mostly related to a
single-trial start point is the bias parameter, because both param-
eters capture the distance to threshold on a trial-by-trial basis.
Indeed, the NDDM reveals that SMA/pre-SMA and middle frontal
gyrus are associated with a large difference in bias, which can be
interpreted as those trials in which the initial activation is already
close to threshold.
Although there are some similarities, the NDDM and the

STLBA model also report some differences. These nonoverlapping
regions may be due to differences in the functional role of these
areas, as represented by the slightly different parameters of both
models. For example, (van Maanen et al., 2011) found that the

single-trial starting point correlates with single-trial BOLD in the
putamen, but this was not found with the NDDM. One possible
interpretation is that the STLBA starting point parameter indexes
the overall threshold, and the NDDM starting point parameter
indexes the distance to threshold of one accumulator. This differ-
ence would lead to the interpretation that the putamen is involved
in setting overall response caution, a notion generally supported by
the literature (e.g., Forstmann et al., 2008, 2010). In a similar way,
the implication of the vmOFC in corresponding to bias by the
NDDM (but not the STLBA model) may be in support of the
bias-related function of this brain area (Mulder et al., 2013).
Although we have shown that the NDDM provides a powerful

explanation of how neural sources are related to mechanisms within
the model, it is also important to show that the NDDM is advanta-
geous in predictive modeling. One reason for this is the counterbal-
ance between model complexity, goodness of fit, and generalizability
(e.g., Myung & Pitt, 2002). Without explicitly showing the NDDM’s
generalizability, one may wonder if the model is simply more com-
plex than the DDM. To demonstrate the NDDM’s potential in pre-
dictive modeling, we compared the NDDM to the DDM in a cross-
validation test. We first removed 100 trials (i.e., the “test data”) at
random from the experimental data. We then refit the models to the
remaining “training data” and used the estimated posterior distribu-
tions to generate predictions for the test data. Figure 10 shows how
the information in the neural data constrains the model and limits
its flexibility in generating predictions. As a consequence of this
additional constraint, the NDDM outperformed the DDM in the
cross-validation test.

Alternative Model-Based Approaches

Although our model-based approach is unique in application, it
is not unique in motivation. Many authors have advocated for the
power of reciprocal relations between neuroscience and mathemat-
ical modeling (cf. Forstmann, Wagenmakers, et al., 2011). Cur-
rently, a variety of methodologies and theoretical frameworks exist
for accomplishing this reciprocity. Some of these approaches are
theoretical in nature, where the physiology of neural function alone
inspires the development of cognitive architectures (e.g., Mazurek
et al., 2003McClelland & Rumelhart, 1986; O’Reilly, 2001, 2006;
O’Reilly & Munakata, 2000; Shadlen & Newsome, 2001; Usher &
McClelland, 2001). Other approaches aim to incorporate mecha-
nisms that describe the production of neural data on top of an
underlying cognitive model (e.g., Anderson et al., 2010; Anderson
et al., 2008; Anderson et al., 2012; Anderson, Qin, Jung, & Carter,
2007; Fincham, Anderson, Betts, & Ferris, 2010) or use the raw
neural data to directly replace certain mechanisms within the
cognitive model (e.g., Purcell et al., 2010; Purcell, Schall, Logan,
& Palmeri, 2012; Zandbelt, Purcell, Palmeri, Logan, & Schall,
2014).
As we discussed earlier, a particularly relevant approach to

model-based neuroscience is the two-stage correlation approach
(e.g., Cavanagh et al., 2011; Forstmann et al., 2008; Forstmann et
al., 2010; Forstmann, Tittgemeyer, et al., 2011; Ho et al., 2012; Ho
et al., 2009; Philiastides et al., 2006; Ratcliff et al., 2009; van
Maanen et al., 2011; Wiecki, Sofer, & Frank, 2013). In this
approach, behavioral model parameters are estimated and then
correlated with a neural signature of interest. Cavanagh et al. used
a two-stage approach in which the parameters of a hierarchical
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drift diffusion model (HDDM; Wiecki et al., 2013) were regressed
against important aspects of their EEG data. Cavanagh et al.’s
approach is similar in spirit to the NDDM presented here. In fact,
one can show that the joint modeling framework subsumes the
two-stage correlation procedure, and by extension, the NDDM
subsumes the regression approach of Cavanagh et al. This regres-
sion approach, although informative, still suffers from the problem
of neglecting parameter constraint and ignores important relation-
ships that might exist between neural sources, such as spatial
proximity or neuroanatomy (i.e., a problem of multicollinearity).
The NDDM, on the other hand, makes the interrelationships be-
tween sources an explicit part of the model that is used to amplify
its predictive power.

Implementing the NDDM

Given the complexity of the NDDM, one may wonder how
feasibly the NDDM can be implemented. We combine several
methodological advancements to fit the model to data. First, we
used the algorithm of Navarro and Fuss (2009) for efficient cal-
culation of the model’s first passage time distributions. Second, we
use an efficient, scalable algorithm for performing Bayesian sam-
pling of the joint posterior, called differential evolution with
Markov chain Monte Carlo (ter Braak, 2006; Turner & Sederberg,
2012; Turner, Sederberg, et al., 2013). Third, to accomplish the
hierarchical modeling, we first pick convenient transformations of
the single-trial parameters so that they both have continuous,
infinite support on the parameter space. For the drift rates, no
transformation was necessary, whereas for the starting points, we
transformed the relative starting point parameter w through a
logistic function to produce �. Once the parameters were on the
appropriate space, we could assume that the parameters fluctuated
from trial to trial according to a normal distribution. Assuming
normality then made it possible to specify conditionally conjugate
prior distributions for the hyperparameters (see Gelman et al.,
2004, for similar derivations). Establishing conditionally conjugate
relationships among the hyperparameters allowed us to reduce the
dimensionality of the estimation problem by generating better
proposals for the parameters in our fitting routine (cf. Robert &
Casella, 2004).

Conclusions

In this article, we developed the NDDM as a way to simulta-
neously understand neural and behavioral data at the single-trial
level. Using our model, we were able to provide a mechanistic
interpretation of fMRI data through the lens of a cognitive model.
We showed how the NDDM used the information in the neural
data to generate significantly better predictions for behavioral data
in a cross-validation test. Such a modeling framework signals an
important advance for assessing and monitoring human perfor-
mance in a variety of tasks, especially day-to-day operations with
high attentional or “on-task” demands (e.g., flying a plane, driving
a car). Our research efforts further highlight the utility of neuro-
imaging in cognitive modeling, and more specifically, they signal
the importance of integrating neural and behavioral measures at
the single-trial level.
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