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Abstract 

Our ability to forecast epidemics more than a few weeks into the future is constrained by 

the complexity of disease systems, our limited ability to measure the current state of an 

epidemic, and uncertainties in how human action will affect transmission. Realistic 

longer-term projections (spanning more than a few weeks) may, however, be possible 

under defined scenarios that specify the future state of critical epidemic drivers, with the 

additional benefit that such scenarios can be used to anticipate the comparative effect 

of control measures. Since December 2020, the U.S. COVID-19 Scenario Modeling Hub 

(SMH) has convened multiple modeling teams to make 6-month ahead projections of 

the number of SARS-CoV-2 cases, hospitalizations and deaths. The SMH released 

nearly 1.8 million national and state-level projections between February 2021 and 

November 2022. SMH performance varied widely as a function of both scenario validity 

and model calibration. Scenario assumptions were periodically invalidated by the arrival 

of unanticipated SARS-CoV-2 variants, but SMH still provided projections on average 

22 weeks before changes in assumptions (such as virus transmissibility) invalidated 

scenarios and their corresponding projections. During these periods, before emergence 

of a novel variant, a linear opinion pool ensemble of contributed models was 

consistently more reliable than any single model, and projection interval coverage was 

near target levels for the most plausible scenarios (e.g., 79% coverage for 95% 

projection interval). SMH projections were used operationally to guide planning and 

policy at different stages of the pandemic, illustrating the value of the hub approach for 

long-term scenario projections. 
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Main text 

Since SARS-CoV-2 was detected in December 2019, there have been numerous 

disease modeling efforts aiming to inform the pandemic response. These activities have 

had a variety of goals, including measuring transmissibility, estimating rates of 

unobserved infections and evaluating control measures (1, 2). Particular attention has 

been paid to models that attempt to predict the course of the pandemic weeks or 

months into the future. 

 

These predictive models can, roughly, be divided into two categories: (1) forecasting 

models that attempt to predict what will happen over the future course of the epidemic, 

encompassing all current knowledge and future uncertainties, and (2) scenario planning 

models that aim to capture what would happen if the future unfolded according to a 

particular set of circumstances (e.g., intervention policies). While there is no bright line 

between the two approaches, there are often differences in how they are implemented. 

Forecasts are typically limited to shorter time horizons, as key drivers of disease 

dynamics (e.g., human behavior, variant virus emergence) can become highly uncertain 

at longer horizons. In contrast, scenario projections often attempt to provide longer term 

guidance by making explicit assumptions about future changes in those drivers (3), 

potentially at the expense of predicting what will happen. These approaches support 

decision making in different ways; for instance, forecasts can inform near-term resource 

allocation and situational awareness (4), while a scenario approach can inform longer-

term resource planning and to compare potential control strategies (5, 6).  
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Ensembles of independent models consistently outperform individual models in a 

number of fields (7, 8), including infectious disease forecasting (9–12). Leveraging this 

multi-model approach, the US COVID-19 Forecast Hub was formed in April 2020, to 

predict the number of US cases, hospitalizations, and deaths 1-4 weeks into the future 

(13). Recognizing that longer term planning scenarios could benefit from a similar multi-

model approach (14–16), the US COVID-19 Scenario Modeling Hub (SMH) was formed 

in December 2020 to produce scenario based projections months into the future.  

 

Between February 2021 and November 2022 SMH produced 16 rounds of projections, 

14 of which were released to the public (17) (Round 8 was a “practice round”, and the 

emergence of the Omicron variant invalidated Round 10 projections before their 

release) (Figure 1). The focus of each round was guided by ongoing discussions with 

public health partners at the state and federal level and reflected shifting sources of 

uncertainty in the epidemiology of, and response to, the COVID-19 pandemic. Each 

round included four scenarios, with early rounds focusing on vaccine availability and 

use of non-pharmaceutical interventions (NPIs), and later rounds addressing vaccine 

uptake and the effect of new variants.  

 

In each round, 4-9 modeling teams provided 12 to 52 weeks (depending on the round’s 

goals) of probabilistic projections for each scenario for weekly cases, hospitalizations, 

and deaths at the state and national level. Projections were aggregated using the linear 

opinion pool method (18). Thirteen teams have participated overall, with some teams 

providing projections only for certain rounds or states.  
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To assess the performance and added value of the SMH we compared projections to 

real world epidemic trajectories. Whether scenario projections accurately matched those 

trajectories depends on both how well scenario definitions matched reality, and the 

calibration of the projections made conditional on those scenarios. Here we attempt to 

evaluate both (Figure 2), while acknowledging that there may exist complementary 

evaluations more specific to the many ways SMH projections were used, ranging from 

informing national vaccine recommendations (5, 19) to planning for future COVID-19 

surges (20, 21).  

 

SMH scenarios usually bracketed future epidemic drivers 

In each SMH round (except Round 1), the four scenarios considered represented the 

cells of a 2x2 table, with each of the two axes of this table including two different levels 

of key sources of uncertainty (e.g., low vs. high variant transmissibility) or intervention 

(e.g., authorization or not of childhood vaccines) (Figure 2). Typically, these levels 

aimed to bracket the future values of key epidemic drivers using available information 

(about, e.g., vaccine hesitancy (22–25), or characteristics of emerging viral variants (26, 

27)).  

 

We first assessed whether scenario assumptions achieved their goal of bracketing 

epidemic drivers, as compared to the eventually observed data for those assumptions at 

the national level (Figure S2-Figure S4, Table S3). For instance, say one uncertainty 

axis in a round’s scenarios stipulated vaccine coverage would increase up to  a low 
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value of 70% and a high value of 80% (depending on the scenario) at the end of the 

projection period. We say this uncertainty axis “brackets” observations if observed 

vaccination coverage fell within this range (see Figure S3 for an example). 

 

Over the 14 publicly released rounds each with two primary axes of uncertainty (i.e., 28 

total uncertainty axes), 19 were considered to be evaluable against available observed 

data (Table 1, see Methods). We succeeded in bracketing at least one axis for the 

majority of the projection period in 9 of 14 publicly released rounds (14 of 19 evaluable 

axes). In rounds where one axis specified monthly national vaccine uptake (Rounds 1-4 

and 9 for primary series, Rounds 14-15 for boosters), scenarios successfully bracketed 

observations in 55% of projection weeks (31% Round 1, 100% Round 2, 54% Round 3 

and 12% Round 4, 100% for Round 9, 100% Round 14, 38% Round 15 Figure S2-

Figure S5). In other rounds, scenarios specified vaccination coverage at the end of the 

projection period (Rounds 5-7 for primary series, and 16 for boosters), which bracketed 

observed coverage in 2 of 4 rounds. There were 6 rounds with a scenario axis that 

attempted to bracket the transmission characteristics (inherent transmissibility or 

immune escape) of one or more known SARS-CoV-2 variants of concern (Rounds 2, 6, 

7, 11, 12, 16). Scenario specifications bracketed most estimates of transmissibility now 

available in the literature (28, 29) (though one study offers an estimate above the 

bracketing range for the Delta variant (30)) (Table S3). All rounds including assumptions 

about variant severity (Rounds 11 and 12) or waning immunity (Round 13) bracketed 

currently available literature estimates (31–33) (Figure S6). 
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The emergence of new variants was a significant challenge in designing scenarios with 

long term relevance. Changes in the predominantly circulating variant resulted in major 

divergences from scenario assumptions in 7 of 14 publicly released rounds. 

Unanticipated variants emerged, on average, 22 weeks into the projection period 

(median 16 weeks) (Figure S1), substantially limiting the horizon at which our scenarios 

remained plausible. This challenge was exacerbated by the lag between when 

scenarios were defined and when projections were released (5 weeks on average, 

range 2-10 weeks; Figure 1), and even led us to cancel release of one SMH round 

(Round 10) when the Omicron variant emerged. However, in the post Omicron period 

(Rounds 13-16) SMH scenarios consistently devoted an axis to the emergence of 

immune escape variants that were deemed consistent enough with observations that 

projections were considered to remain plausible throughout.  

 

Conditioning on scenario plausibility as a pathway to evaluating projections  

Next we evaluated the performance of SMH projections using prediction interval (PI) 

coverage and weighted interval score (WIS) (34) (see Methods). PI coverage measures 

the percent of observations that fall in a prediction interval (so coverage of a 95% PI 

would ideally be 95%). WIS summarizes calibration across all projection intervals, 

measuring whether a projection interval captures an observation while penalizing for 

wider intervals. These standard metrics for evaluating probabilistic forecasts directly 

compare predictions to observations. In the context of scenario modeling, however, 

divergences between prediction and observation are the product of two distinct factors: 

(1) how well the underlying scenario assumptions matched reality (here, scenario 
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plausibility), and (2) how well models would perform in a world where those scenario 

assumptions are perfectly correct (i.e., model calibration). For instance, if a scenario’s 

definition is highly divergent from real world events, poor predictive accuracy is not 

necessarily a sign of poor model calibration, and vice versa. Hence, to assess the 

calibration of SMH models and the ensemble, we need to identify those scenarios and 

projected weeks where the majority of observed error is likely driven by model 

miscalibration (i.e., when scenarios are close to reality). We refer to this intersection of 

scenarios and projected weeks as “plausible scenario-weeks”. 

 

To identify the set of plausible scenario-weeks, we first excluded weeks where an 

emergent variant that was unanticipated in the scenario specifications reached at least 

50% prevalence nationally. For evaluation purposes, we considered this to be an 

invalidation of all remaining scenario-weeks in the round, and thereby removed 79 out 

of 400 (20%) projection weeks from the plausible set. Then we compared scenario 

specifications to data on US vaccination coverage and variant characteristics, this time 

to identify those scenarios that were closest to realized values during non-excluded 

weeks (see Methods, Table S3 for details). This yielded a total of 292 plausible weeks 

for calibration analysis (31% of all scenario-weeks), 173 of which (from Rounds 2-4, 13-

16) had two plausible scenarios for the same week, which were equally weighted during 

evaluation.  

 

SMH ensemble consistently outperformed component and reference models 
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An initial question is whether we benefit from aggregating multiple models. To answer 

this, we assessed the relative calibration of individual models and various ensembling 

methods across projections from plausible scenario-weeks using overall relative WIS, a 

metric of performance relative to other models which adjusts for varying projection 

difficulty across targets (from Cramer et al. (11), see Methods). We assessed variations 

of two common ensembling techniques: the linear opinion pool (LOP) (18) and the 

Vincent average (35, 36). The LOP assumes that individual model projections represent 

different hypotheses about the world and preserves variation between these differing 

projections (37). In contrast, the Vincent average assumes that each prediction is an 

imperfect representation of some common distribution of interest (like a sample), and 

accordingly cancels away much of the variation. In practice, we believed the former 

assumption better represented the pool of SMH models and chose to use a variation of 

the LOP as our primary approach in Round 4 (where the highest and lowest values are 

excluded, called the “trimmed-LOP”, see Methods). Hereafter, the trimmed-LOP will be 

referred to as the “SMH ensemble”.  

 

We found that the SMH ensemble consistently outperformed component models 

(Figure 3C, Figure S48). This ensemble performed better than average, with an overall 

relative WIS < 1 for all targets), and was the top performer more frequently than any 

individual model (19 of 42 targets, across 14 rounds with 3 targets per round). It was 

best or second best 69% of the time (29/42), and in the top 3 performers 93% of the 

time (39/42). Further, the SMH ensemble partially compensated for the overconfidence 

of individual models. Across all locations and rounds, overall 95% PI coverage was 79% 
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compared to the ideal 95% for the SMH ensemble versus a median of 40% (interquartile 

range (IQR) 31-49%) across individual models for incident cases, 80% versus 42% 

(IQR 31-54%) for incident hospitalizations, and 78% versus 42% (IQR 31-49%) for 

incident deaths. The trimmed-LOP SMH ensemble also outperformed the two 

alternative ensembling methods considered (untrimmed LOP and median Vincent 

average, Figure S58).  

 

To assess the added value of SMH, it is important that we compare projections to 

possible alternatives (38). In many settings (e.g., weather forecasting) past observations 

for a similar time of year can be used as a “null” comparator (9, 39). Lacking such 

historical data for SARS-CoV-2, we chose to compare our projections to two alternate 

models: (1) a naive model that assumes cases will remain at current levels for the entire 

projection period with historical variance (the same null model used by the COVID-19 

Forecast Hub (11)), and (2) a model based on the set of 4-week ahead ensemble 

predictions from the COVID-19 Forecast Hub (i.e., for any given week predictions from 

the SMH ensemble were compared to those of the COVID-19 Forecast Hub ensemble 

made 4-weeks prior). It should be noted that the naive model uses information available 

at the time of projection, while the 4-week ahead forecast uses more recent 

observations for most of the projection period.  

 

The SMH ensemble outperformed the naive model across all targets, by 46% for 

incident cases (relative WIS 0.54, range across rounds 0.14-3.33), 39% for 

hospitalizations (relative WIS 0.61, range 0.19-1.69) and 58% for deaths (relative WIS 
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0.42, range 0.07-1.46) (Figure S22). As expected, the SMH ensemble performed worse 

than the 4-week forecast model overall (relative WIS 1.48, range 0.34-5.79 for cases, 

1.41, 0.40-2.85 for hospitalizations and 2.04, 0.92-3.55 for deaths) (Figure 3A,B, 

Figure S22). Occasionally, the SMH ensemble outperformed the 4-week ahead forecast 

model for cases and hospitalizations, for instance in the highly truncated Round 5 

addressing the Alpha variant and the two Omicron rounds (Rounds 11, 12) (Figure 3 

A,B, Figure 5, Figure S14). Some teams that contributed projections to SMH also 

submitted forecasts to the COVID-19 Forecast Hub. Although modeling methodology 

varies by intended use, e.g., model projections for SMH are conditioned on specific 

assumptions that would not necessarily be accounted for in forecasting models. 

 

To better understand the interaction between scenario assumptions and projection 

performance, we compared average WIS for projections from plausible scenario-weeks 

with (A) truncated projections from scenarios that were not selected as “most plausible” 

and (B) all projections, not truncated based on variant emergence. If the ensemble was 

well calibrated and our selected most plausible scenarios were closest to reality, we 

would expect projections from plausible scenario-weeks (with truncation) to have the 

best performance. We found this expectation to be correct in 57% (24/42) of round-

target combinations (the other 43% suggesting that SMH ensemble was sometimes 

“right” for the wrong reasons). Occasionally scenario selection had little effect on 

performance (e.g., Round 9 and Round 12, Figure 5). In general, performance for 

truncated scenarios was better than if we had not truncated (normalized WIS was the 

same or lower in 64 of 84 scenario-round-target combinations with truncation), though 
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some of this difference may be attributable to longer projection horizons. Similar 

conclusions hold for of 95% PI coverage (Figure S51-Figure S53). 

 

While adding value over null alternatives, SMH projections struggled to anticipate 

changing disease trends 

Projections may have utility beyond their ability to predict weekly incidence. For 

instance, projections that predict whether incidence will increase, decrease or stay the 

same may be useful even if they are inaccurate in predicting the magnitude of those 

changes. Based on a method proposed by McDonald et al. (40), we classified projected 

and observed incident cases, hospitalizations, and deaths in each week and jurisdiction 

as “increasing”, “flat”, or “decreasing” using the percent change from two weeks prior 

(Figure 4, see Methods).  

 

The median of the SMH ensemble correctly identified the observed trend in 43% of 

plausible scenario-weeks, comparable to the 4-week forecast model (43%) and better 

than randomly assigning categories (33%) or assuming continuation of the current trend 

(34%) (Figure 4). A classification can also be assessed by the number correctly 

classified relative to the number predicted (precision) or the number observed (recall, 

see Methods) (41). Performance on these metrics was similar across targets and 

classifications, with the exception of correctly anticipating periods of increasing 

incidence (48% precision and 44% recall for decreasing, 39%/57% for flat, and 

45%/24% for increasing, where lower numbers are worse). Although increases were 

challenging to predict, they have particular public health importance, as these are the 
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periods when interventions or additional resources may be needed. While misses were 

common, it was relatively rare for the SMH ensemble to predict a decrease when 

incidence increased (23% of increases) or vice-versa (10% of decreases). Alternate 

quantiles (than the median) had similar overall performance, though upper quantiles 

were better at capturing increasing phases (e.g., 95th quantile had 38% precision and 

46% recall for increases), at the expense of reduced performance in flat periods 

(37%/46%, Figure S36-Figure S37).  

 

Performance and goals varied over a changing pandemic 

SMH performance varied across different stages of the pandemic. The earliest SMH 

scenarios (Rounds 1-4) confronted a period of high uncertainty about vaccine supply 

and the ongoing effect of NPIs. Still, ensemble performance on forecast metrics (WIS, 

coverage) for plausible scenario-weeks was comparable to average performance 

across rounds (Figure 3, Figure S42). Of note, the ensemble did not anticipate the 

increasing and decreasing trends of the Alpha wave well despite including the variant in 

scenario definitions, with Round 3 missing increases and Round 4 anticipating an overly 

long and large wave (Figure S38). 

 

In Rounds 6-7, SMH projections missed the timing and magnitude of the Delta wave, 

despite scenario assumptions bracketing Delta’s transmissibility in both rounds, and 

vaccine assumptions in Round 6. SMH ensemble performance on forecast metrics was 

the worst of any period, and trend classification was below par. This miss is likely the 

result of multiple factors: unexpectedly rapid waning of vaccine protection, differences in 
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the epidemiology of the Delta variant (serial interval, intrinsic severity), and changing 

human behavior in response to the early-summer lull in cases. As more information 

became available about the Delta variant, SMH projections improved in Round 9 both 

for forecast metrics and anticipation of epidemic trends (Figure S45). 

 

During the initial Omicron wave (Rounds 11-12), SMH scenarios anticipated properties 

of the Omicron variant (all axes bracketed reality), and projections captured weekly 

trajectories and trends particularly well over the 3 month time horizon. Notably, these 

were the only rounds without significant truncation where the SMH ensemble 

outperformed the 4-week ahead forecast for cases and hospitalizations. It is not 

completely clear why the SMH was able to perform so well during this period. However, 

scenario designs were well informed by preliminary data from South Africa and 

heterogeneity in epidemic drivers was low over the projection period (due to high 

immune escape and relatively stable human behavior), mitigating many of the types of 

uncertainty that cause particular difficulties for long term epidemic projections.  

 

The first SMH round of the post-Omicron era, Round 13, considered uncertainties about 

waning immunity and the emergence of a hypothetical immune escape variant. 

Performance was poor on all statistics and degraded quickly with projection horizon, 

despite waning assumptions that were consistent with later literature (33). There was 

substantial disagreement between models, and projections from some models were 

highly sensitive to subtle differences in assumptions about the exact trajectory of 

waning immunity, even when average duration and final protection levels were held 
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constant (Figure S60). Model disagreement and poor performance may have been 

further driven by low incidence (hence low information) at the time of calibration.  

 

In contrast, the last three rounds considered here (Rounds 14-16) performed well on 

forecast metrics over the 18-41 evaluable weeks (key data sources became unavailable 

in March 2023, truncating evaluation). These rounds considered variants with different 

levels of immune escape and the approval and uptake of bivalent boosters. In these 

rounds, the SMH ensemble anticipated the occurrence of subsequent waves, was 

roughly accurate as to their scale, but was less accurate in projecting their timing. Of 

note, in Round 16 the focus shifted from individual new variants to broad categories of 

variants with similar levels of immune escape, in an attempt to account for the 

increasingly complex landscape of SARS-CoV-2 genetic diversity. Still, competition 

between variants and the resulting dynamics of strain replacement presented 

challenges for scenario design.  

 

Building on the SMH experience 

Since December 2020, SMH has convened multiple modeling teams to produce 

frequent, real-time, probabilistic projections of COVID-19 outcomes over a 3-12 month 

horizon based on well-defined scenarios. Scenario assumptions bracketed future 

conditions (where evaluable) the majority of the time, but the relevance of scenarios 

was frequently truncated by the emergence of unanticipated variants. For projected 

weeks where scenario assumptions were considered closest to subsequently observed 

reality, a trimmed linear opinion pool ensemble was far more reliable than any individual 
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model, though anticipating epidemic trends, especially in periods of increasing 

incidence, remained a challenge. The broad reliability of the ensemble, combined with 

the alignment of multiple teams on shared questions, helped SMH to become an 

important source of information for a variety of groups ranging from the media(42) to 

federal and local public health agencies (e.g., (1, 5, 19)).  

 

SMH projections have played an important role in informing the pandemic response to 

new variants (20, 21) and vaccine interventions (5, 19). For example, projections from 

Rounds 6 and 7 sounded an important warning about likely resurgences due to the 

Delta variant (21), even though performance was poor. Similarly, Round 11 provided 

important (and ultimately accurate) information about the size and speed of the coming 

Omicron wave. Notably, SMH projections have provided key information to guide policy 

recommendations. Round 9 addressed potential population-level benefits of childhood 

vaccination (20), and Rounds 14 and 15 directly informed the decision to recommend 

bivalent boosters for a wide age range starting September 2022 (19). These public 

health impacts depended on the timely release (Figure 1) of projections from scenarios 

that were both relevant to emergent policy questions and tractable to modeling teams. 

Consistently fulfilling these goals required frequent meetings and conversations 

between the coordination team, public health collaborators and modeling teams. This 

process fostered a vibrant scientific community that has been critical to the SMH’s 

success.  
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Here we have evaluated how SMH scenarios and projections compare to real-world 

events, with a specific focus on incident cases, hospitalizations and deaths. However, 

scenario projections may be used in a myriad of ways, and the value of SMH outputs for 

many of these uses may not directly depend on scenario bracketing or calibration to 

incident outcomes in plausible scenario-weeks as assessed here. For instance, if the 

primary goal is to inform a decision about whether or how to implement some 

intervention, it is the contrast of scenarios with and without that intervention that is 

important (5, 15, 16). Alternatively, one might use the full set of scenarios to allocate 

resources or inform response plans to potential surges in disease incidence; in this 

case, we might evaluate the extent to which planning around extremes from pessimistic 

projections would have led to over- or under-allocation of resources. Our current 

analysis makes no attempt to directly assess SMH performance for either of these goals 

(nor to the many other possibilities). Assessing the value added by SMH in these 

settings would require targeted analyses, and remains an important avenue for future 

research.  

 

Our analysis of scenario bracketing and model calibration has methodological 

limitations. We lacked data to evaluate scenario definitions regarding NPIs and certain 

characteristics of emergent variants, limiting our ability to identify a single most plausible 

scenario. Teams also had discretion on how to apply vaccination specifications and 

other scenario assumptions at finer spatial scales; consequently, we did not evaluate 

scenario plausibility at the state level, although it may have varied dramatically there. 

We chose to evaluate SMH projections based on a set of plausible scenario-weeks, but 
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did not account for variability in how closely these plausible weeks matched reality. A 

complementary approach that may offer better assessments of model calibration would 

be to re-run scenario projections retrospectively with updated assumptions based on 

later subsequently observed data. Lastly, without a good “null” model it is hard to 

evaluate the added value of the SMH projections, and lack of historic data and the 

nature of planning scenarios makes design of such a null model difficult.  

 

The scenario approach is an attempt to provide useful projections in the face of the 

many complexities that make predicting epidemics difficult. One of the most important 

complexities is the multiple, interacting drivers of disease dynamics that are themselves 

difficult to predict, such as ever evolving pathogen characteristics and human behavior. 

Although the scenario approach allows us to provide projections despite these 

complexities, only a subset of possible futures are explored. Therefore, it is essential to 

design scenarios that are useful – narrowing in on the possible futures that will best 

inform present actions. The fast timescale and multi-wave nature of infectious disease 

outbreaks often means we have little time to deeply consider both scenario design and 

model implementation in real-time, but it allows us to learn about the system and refine 

our approaches to scenario design and epidemic modeling more quickly than is possible 

in other systems (e.g., climate (43)). 

 

Since its inception, SMH has disseminated nearly 1.8 million unique projections, making 

it one of the largest multi-team infectious disease scenario modeling efforts to date 

(other notable efforts have been documented, including multi-model estimation of 
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vaccination impact (44)). The SMH process has already been replicated in other 

settings (45) and for other pathogens (46). Looking to the future, the lessons learned 

and developing hub infrastructure (47), help to provide a more effective, coordinated, 

and timely response to emerging pandemic threats. It will be advantageous to launch 

multi-model efforts for scenario planning, forecasting, and inference in the early stages 

of future pandemics, when the most critical, time-sensitive decisions need to be made 

and uncertainty is high. To do this effectively, we can build on the SMH and other efforts 

from the COVID-19 response, by continuing “peace time” research into how to better 

collect and use data, construct scenarios, build models and ensemble results. As part of 

an evidence-based pandemic response, scenario modeling efforts like SMH can support 

decision making through improved predictive performance of multi-model ensembles 

and well-defined shared scenarios. 

 

Methods 

 

Overview of evaluation approaches for scenario projections 

When evaluating the distance between a scenario projection and an observation, there 

are two potential factors at play: (1) the scenario assumptions may not match reality 

(e.g., scenario-specified vaccine uptake may underestimate realized uptake), and (2) if 

there were to be alignment between the scenario specifications and reality, model 

predictions may be imperfect due to miscalibration. The difference between projections 

and observations is a complex combination of both sources of disagreement, and 

importantly, observing projections that are close to observations does not necessarily 
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imply projections are well-calibrated (i.e., for scenarios very far from reality, we might 

expect projections to deviate from observations). To address both components, we 

evaluated the plausibility of COVID-19 Scenario Modeling Hub (SMH) scenarios and the 

performance of SMH projections (ensemble and component models). A similar 

approach has been proposed by Hausfather et al. (43). Below, we describe in turn the 

component models contributing to SMH, the construction of the ensemble, the 

evaluation of scenario assumptions, and our approaches to estimating model calibration 

and SMH performance.  

 

Models submitting projections to SMH 

Over the course of the first sixteen rounds of SMH, thirteen independent models 

submitted projections, with most submitting to multiple rounds. The majority of 

submitting models were mechanistic compartmental models, though there was one 

semi-mechanistic model and two agent-based models. Some models were calibrated to, 

and made projections at, the county level, whereas others were calibrated and made 

projections at the state level; many, but not all, had age structure. We have provided an 

overview of each model in Table S1. As models change each round to accommodate 

different scenarios and adapt to the evolving pandemic context, we chose not to focus 

here on model-specific differences (in structure, parameters, or performance). For more 

information on round-specific implementations, we direct readers to other publications 

with details (5, 21).  

 

Inclusion criteria and projections used for evaluation 
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Our analysis included state- and national-level projections of weekly incident cases, 

hospitalizations, and deaths from individual models and various ensembles for fourteen 

of the first sixteen rounds of SMH (Rounds 8 and 10 were not released publicly, and 

therefore are not included; see also Table S2 for a list of jurisdictions included). Each 

round included projections from between 4 and 9 individual models as well as 

ensembles. For a given round, modeling teams submitted projections for all weeks of 

the projection period, all targets (i.e., incident or cumulative cases, hospitalizations, and 

deaths), all four scenarios, and at least one location (i.e., states, territories, and 

national). Here, we evaluated only individual models that provided national projections 

in addition to state-level projections (i.e., excluding individual models that did not submit 

a national projection, though projections from these models are still included in the 

state-level ensembles that were evaluated). Submitted projections that did not comply 

with SMH conditions (e.g., for quantifying uncertainty or defining targets) were also 

excluded (0.8% of all submitted projections). Detailed description of exclusions can be 

found in Table S2.  

  

Probabilistic projections and aggregation approaches 

Modeling teams submitted probabilistic projections for each target via 23 quantiles (e.g., 

teams provided projected weekly incident cases for Q1, Q2.5, Q5, Q10, Q20, …, Q80, 

Q90, Q95, Q97.5, and Q99). We evaluated 3 methods for aggregating projections: 

untrimmed-LOP, trimmed-LOP (variations of probability averaging or linear opinion pool 

(18), LOP), and median-Vincent (variation of quantile or Vincent averaging (35, 36) 

which is also used by other hubs (11)).  
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The untrimmed-LOP is calculated by taking an equally weighted average of 

cumulative probabilities across individual models at a single value. Because teams 

submitted projections for fixed quantiles, we used linear interpolation between these 

value-quantile pairs to ensure that all model projections were defined for the same 

values. We assumed that all projected cumulative probabilities jump to 0 and 1 outside 

of the defined value-quantile pairs (i.e., Q1-Q99). In other words, for a projection 

defined by cumulative distribution ���� with quantile function ������, we assume that 

���� � 0 for all � � ����0.01� and ���� � 1 for all � 
 ����0.99�. 
The trimmed-LOP uses exterior cumulative distribution function (CDF) 

trimming(48) of the two outermost values to reduce the variance of the aggregate, 

compared to the untrimmed-LOP (i.e., the prediction intervals are narrower). To 

implement this method, we follow the same procedure as the untrimmed-LOP, but 

instead of using an equally-weighted average, we exclude the highest and lowest 

quantiles at a given value and equally weight all remaining values in the average. Under 

this trimming method, the exclusions at different values may be from different teams.  

The median-Vincent aggregate is calculated by taking the median value for each 

specified quantile. These methods were implemented using the CombineDistributions 

package (37) for the R statistical software (49). 

  

Scenario plausibility 

Projections in each SMH round were made for 4 distinct scenarios that detailed 

potential interventions, changes in behavior, or epidemiologic situations (Figure 1). 

These scenarios were designed approximately one month before projections were 
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submitted, and therefore 4-13 months before the end of the projection period, 

depending on the round’s projection horizon. Scenario assumptions, especially those 

about vaccine efficacy or properties of emerging viral variants, were based on the best 

data and estimates available at the time of scenario design (these were often highly 

uncertain). Here, our purpose was to evaluate SMH scenario assumptions using the 

best data and estimates currently available, after the projection period has passed. We 

assessed SMH scenarios from two perspectives: 

1. based on their prospective purpose: we identified whether scenarios “bracketed” 

reality along each uncertainty axis (i.e., one axis of the 2x2 table defining 

scenarios, based on one key source of uncertainty for the round). Scenarios in 

most SMH rounds were designed to bracket true values of key epidemic drivers 

(though the true value was not known at the time of scenario design). In other 

words, along each uncertainty axis in an SMH round, scenarios specified two 

levels along this axis (e.g., “optimistic” and “pessimistic” assumptions). Here we 

tested whether the realized value fell between those two assumptions (if so, we 

call this “bracketing”). 

2. for retrospective evaluation of calibration: we identified the set of plausible 

scenario-weeks for each round. One of our primary goals in this analysis was to 

assess and compare the calibration of different approaches (e.g., individual 

models, SMH ensemble, null comparator models). To assess this in the most 

direct way possible, we chose scenarios and projection weeks that were close to 

what actually happened (i.e., we isolated error due to calibration by minimizing 
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deviation between scenarios and reality; see Overview of evaluation approaches 

for scenario projections for details). 

An “evaluable” scenario axis was defined as an axis for which assumptions could be 

confronted with subsequently observed data on epidemic drivers; in some instances, we 

could not find relevant data and the axis was not considered evaluable (e.g., NPI, see 

below). To evaluate scenario assumptions, we used external data sources and literature 

(Table S3). Due to differences across these sources, we validated each type of scenario 

assumption differently (vaccination, NPI, and variant characteristics; Figure 2), as 

described in detail below and in Table S3. Vaccine specifications and realized coverage 

are shown in Figure S2-Figure S5, while details of our round-by-round evaluation are 

provided below. 

Rounds 1-4 concentrated on the early roll-out of the vaccine in the US and 

compliance with NPIs. To evaluate our vaccine assumptions in these rounds, we used 

data on reported uptake from the US Centers for Disease Control and Prevention 

database (50). For these rounds, scenarios prescribed monthly national coverage 

(state-specific uptake was intentionally left to the discretion of the modeling teams), so 

we only used national uptake to evaluate the plausibility of each vaccination scenario 

(Figure S2). In these scenarios, “bracketing” was defined as reality falling between 

cumulative coverage in optimistic and pessimistic scenarios for 50% or more of all 

projection weeks. The “plausible” scenario was that scenario with the smallest absolute 

difference between cumulative coverage in the final projection week (or in cases of 

variant emergence, the last week of projections before emergence; details below) and 

the observed cumulative coverage. We also considered choosing the plausible scenario 
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via the cumulative difference between observed and scenario-specified coverage over 

the entire projection period; this always led to selecting the same scenario as plausible.  

 When scenarios specified a coverage threshold, we compared assumptions with 

the reported fraction of people vaccinated at the end of the projection period. For 

instance, in round 2 scenario C and D, we stipulated that coverage would not exceed 

50% in any priority group, but reported vaccination exceeded this threshold. In Rounds 

3-4, the prescribed thresholds were not exceeded during the truncated projection 

period.  

By Round 5 (May 2021), vaccine uptake had started to saturate. Accordingly, in 

rounds 5-7, vaccine assumptions were based on high and low saturation thresholds that 

should not be exceeded for the duration of the projection period, rather than monthly 

uptake curves. For these rounds, we evaluated which of the prescribed thresholds was 

closest to the reported cumulative coverage at the end of the projection period 

(Figure S3). Later rounds took similar approaches to specifying uptake of childhood 

vaccination (Round 9) and bivalent boosters (Round 14-16). Rounds 9 (Figure S4), and 

14-15 (Figure S5) specified weekly coverage and Round 16 specified a coverage 

threshold; we followed similar approaches in evaluating these scenarios.  

For vaccine efficacy assumptions, we consulted population-level studies 

conducted during the period of the most prevalent variant during that round (Table S3). 

Similarly, for scenarios about emerging viral variants (regarding transmissibility 

increases, immune escape, and severity) and waning immunity, we used values from 

the literature as a ground truth for these scenario assumptions. We identified the most 
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realistic scenario as that with the assumptions closest to the literature value (or average 

of literature values if multiple were available, Table S3).  

Rounds 1-4 included assumptions about NPIs. We could not identify a good 

source of information on the efficacy and compliance to NPIs that would match the 

specificity prescribed in the scenarios (despite the availability of mobility and policy 

data, e.g., Hallas et al. (51)). Rounds 13-15 included assumptions about immune 

escape and severity of hypothetical variants that may have circulated in the post-

Omicron era. Round 16 considered broad variant categories based on similar levels of 

immune escape, in response to the increasing genetic diversity of SARS-CoV-2 viruses 

circulating in fall 2022. There were no data available for evaluation of immune escape 

assumptions after the initial Omicron BA1 wave. As such, NPI scenarios in Rounds 1-4 

and immune escape variant scenarios in Rounds 13-16 were not “evaluable” for 

bracketing analyses, and therefore we considered all scenarios realistic in these cases. 

Overall, across 14 publicly released rounds, we identify a single most realistic scenario 

in 7 rounds, and two most realistic scenarios in the other 7. 

Finally, in some rounds, a new viral variant emerged during the projection period 

that was not specified in the scenarios for that round. We considered this emergence to 

be an invalidation of scenario assumptions, and removed these weeks from the set of 

plausible scenario-weeks. Specifically, emergence was defined as the week after 

prevalence exceeded 50% nationally according to outbreak.info variant reports (52–54), 

accessed via outbreak.info R client (55). Accordingly, the Alpha variant (not anticipated 

in Round 1 scenarios) emerged on 3 April 2021, the Delta variant (not anticipated in 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 3, 2023. ; https://doi.org/10.1101/2023.06.28.23291998doi: medRxiv preprint 

https://doi.org/10.1101/2023.06.28.23291998
http://creativecommons.org/licenses/by/4.0/


27 

Rounds 2-5) emerged on 26 June 2021, and the Omicron variant (not anticipated in 

Round 9) emerged on 25 December 2021. 

 

Comparator models 

To assess the added value of SMH projections against plausible alternative sources of 

information, we also assessed null models or other benchmarks. Null models based on 

historical data were not available here (e.g., there was no prior observation of COVID-

19 in February in the US when we projected February 2021). There are many potential 

alternatives, and here we used three comparative models: naive, 4-week forecast, and 

trend-continuation.  

The baseline “naive” model was generated by carrying recent observations 

forward, with variance based on historical patterns (Figure S13-Figure S15). We used 

the 4-week ahead “baseline” model forecast from the COVID-19 Forecast Hub (11) for 

the first week of the projection period as the naive model, and assumed this projection 

held for the duration of the projection period (i.e., this forecast was the “naive” projection 

for all weeks during the projection period). Because the COVID-19 Forecast Hub 

collects daily forecasts for hospitalizations, we drew 1,000 random samples from each 

daily distribution in a given week and summed those samples to obtain a prediction for 

weekly hospitalizations. The naive model is flat and has relatively large prediction 

intervals in some instances. 

 As a forecast-based comparator, we used the COVID-19 Forecast Hub 

“COVIDhub-4_week_ensemble” ensemble model (Figure S7-Figure S9). This model 

includes forecasts (made every week) from multiple component models (e.g., on 
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average 41 component models between January and October 2021 (11)). We obtained 

weekly hospitalization forecasts from the daily forecasts of the COVID-19 Forecast Hub 

using the same method as the naive model. This 4-week forecast model is particularly 

skilled at death forecasts (11); however, in practice, there is a mismatch in timing 

between when these forecasts were made and when SMH projections were made. For 

most SMH projection weeks, forecasts from this model would not yet be available (i.e., 

projection horizons more than 4 weeks into the future); yet, for the first 4 weeks of the 

SMH projection period, SMH projections may have access to more recent data. It 

should also be noted that the team running the COVID-19 Forecast Hub has flagged the 

4-week ahead predictions of cases and hospitalizations as unreliable (56). Further, 

SMH may be given an “advantage” by the post-hoc selection of plausible scenario-

weeks based on the validity of scenario assumptions. 

Finally, the trend-continuation model was based on a statistical generalized 

additive model (Figure S10-Figure S12). The model was fit to the square root of the 14-

day moving average with cubic spline terms for time, and was fit separately for each 

location. We considered inclusion of seasonal terms, but there were not enough historic 

data to meaningfully estimate any seasonality. For each round, we used only one year 

of data to fit the model, and projected forward for the duration of the projection period. 

The SMH ensemble consistently outperformed this alternative comparator model (see 

Figure S16-Figure S21). 

 

Projection performance 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 3, 2023. ; https://doi.org/10.1101/2023.06.28.23291998doi: medRxiv preprint 

https://doi.org/10.1101/2023.06.28.23291998
http://creativecommons.org/licenses/by/4.0/


29 

Prediction performance is typically based on a measure of distance between projections 

and “ground truth” observations. We used the Johns Hopkins CSSE dataset (57) as a 

source of ground truth data on reported COVID-19 cases and deaths, and U.S. Health 

and Human Services Protect Public Data Hub (58) as a source of reported COVID-19 

hospitalizations. These sources were also used for calibration of the component 

models. CSSE data were only produced through 4 March 2023, so our evaluation of 

Rounds 13-16 ended at this date (1 week before the end of the 52 week projection 

period in Round 13, 11 weeks before the end of the 52 week projection period in Round 

14, 9 weeks before the end of the 40 week projection period in Round 15, and 8 weeks 

before the end of the 26 week projection period in Round 16). 

We used two metrics to measure performance of probabilistic projections, both 

common in the evaluation of infectious disease predictions. To define these metrics, let 

� be the projection of interest (approximated by a set of 23 quantile-value pairs) and � 

be the corresponding observed value. The “
% prediction interval” is the interval within 

which we expect the observed value to fall with 
% probability, given reality perfectly 

aligns with the specified scenario. 

1. Ninety-five percent (95%) coverage measures the percent of projections for 

which the observation falls within the 95% projection interval. In other words, 

95% coverage is calculated as  

���%��, ��  � �

�
 ∑ 1�����0.025�  � � � ����0.975���

� 	 �   

where 1��� is the indicator function, i.e., 1�����0.025�  � � � ����0.975��  � 1 if 

the observation falls between the values corresponding to Q2.5 and Q97.5, and 
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is 0 otherwise. We calculated coverage over multiple locations for a given week 

(i.e., � �  1. . . � for � locations), or across all weeks and locations. 

2. Weighted interval score (WIS) measures the extent to which a projection 

captures an observation, and penalizes for wider prediction intervals (34). First, 

given a projection interval (with uncertainty level 
) defined by upper and lower 

bounds, � �  ��� �1 � 


�
� and � � ��� �


�
�, the interval score is calculated as  

��
��, �� �  �� � ��    �



�� � ��1�� � ��   �



�� � ��1�� � ��  

where again, 1��� is the indicator function. The first term of ��
 represents the 

width of the prediction interval, and the second two terms are penalties for over- 

and under-prediction, respectively. Then, using weights that approximate the 

continuous rank probability score (59), the weighted interval score is calculated 

as 

!����, �� � 1"  1/2 $12 |� � ����0.5�|  & 
� 2  ��


�

� 	 �

' 

Each projection is defined by 23 quantiles comprising 11 intervals (plus the 

median), which we used for the calculation of WIS (i.e., we calculated ��
 for 


 � 0.02, 0.05, 0.1, 0.2, . . . , 0.8, 0.9 and " � 11).  

It is worth noting that these metrics do not account for measurement error in the 

observations. 

WIS values are on the scale of the observations, and therefore comparison of 

WIS across different locations or phases of the pandemic is not straightforward (e.g., 

the scale of case counts is very different between New York and Vermont). For this 

reason, we generated multiple variations of WIS metrics to account for variation in the 
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magnitude of observations. First, for average normalized WIS (Figure 3B), we 

calculated the standard deviation of WIS, )
,�,�,�, across all scenarios and models for a 

given week, location, target, and round and divided the WIS by this standard deviation 

(i.e., WIS/)
,�,�,�). Doing so accounts for the scale of that week, target, and round, a 

procedure implemented in analyses of climate projections (60). Then, we averaged 

normalized WIS values across strata of interest (e.g., across all locations, or all 

locations and weeks). Other standardization approaches that compute WIS on a log 

scale have been proposed (61), though may not be as well suited for our analysis which 

focuses on planning and decision making. 

An alternative rescaling introduced by Cramer et al. (11), relative WIS, compares 

the performance of a set of projections to an “average” projection. This metric is 

designed to compare performance across predictions from varying pandemic phases. 

The relative WIS for model i is based on pairwise comparisons (to all other models, *) of 

average WIS. We calculated the average WIS across all projections in common 

between model � and model *, where !����� and !���*� are the average WIS of these 

projections (either in one round, or across all rounds for “overall”) for model � and model 

*, respectively. Then, relative WIS is the geometric average of the ratio, or  

+,�-.�/, !�� � 01 !�����!���*�
�

� 	 �

2
�/�

 

When comparing only two models that have made projections for all the same 

targets, weeks, locations, rounds, etc. the relative WIS is equivalent to a simpler metric, 

the ratio of average WIS for each model (i.e., 
������

������
). We used this metric to compare 

each scenario from SMH ensemble to the 4-week forecast model (Figure 5). For this 
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scenario comparison, we provided bootstrap intervals by recalculating the ratio with an 

entire week of projections excluded (all locations, scenarios). We repeated this for all 

weeks, and randomly drew from these 1,000 times. From these draws we calculated the 

5th and 95th quantiles to derive the 90% bootstrap interval, and we assumed 

performance is significantly better for one scenario over the others if the 90% bootstrap 

intervals do not overlap. We also used this metric to compare the ensemble projections 

to each of the comparative models (Figure S22). 

 

Trend classification 

In addition to traditional forecast evaluation metrics, we assessed the extent to which 

SMH projections predict the qualitative shape of incident trajectories (whether trends will 

increase or decrease). We modified a method from McDonald et al. (40) to classify 

observations and projections as “increasing”, “flat” or “decreasing”. First, we calculated 

the percent change in observed incident trajectories on a two week lag (i.e., ��3���  
1� �  ��3�����  1� for each state and target). We took the distribution of percent 

change values across all locations for a given target and set the threshold for a 

decrease or increase assuming that 33% of observations will be flat (Figure S23). 

Based on this approach, decreases were defined as those weeks with a percent change 

value below -23% for incident cases, -17% for incident hospitalizations, and -27% for 

incident deaths, respectively. Increases have a percent change value above 14%, 11%, 

17%, respectively. See Figure S34 for classification results with a one week lag and 

different assumptions about the percent of observations that are flat. 
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Then, to classify trends in projections, we again calculated the percent change 

on a two week lag of the projected median (we also consider the 75th and 95th 

quantiles because our aggregation method is known to generate a flat median when 

asynchrony between component models is high). For the first two projection weeks of 

each round, we calculated the percent change relative to the observations one and two 

weeks prior (as there are no projections to use for reference in the week prior, and two 

weeks prior, projection start date). We applied the same thresholds from the 

observations to classify a projection, and compared this classification to the observed 

classification. This method accounts for instances when SMH projections anticipate a 

change in trajectory but not the magnitude of that change (see Figure S44), and it does 

not account for instances when SMH projections anticipate a change but miss the timing 

of that change (this occurred to some extent in Rounds 6 and 7, Delta variant wave). 

See Figure S24-Figure S33 for classifications of all observations and projections. 

We assessed how well SMH projections captured incident trends using precision 

and recall, two common metrics in evaluating classification tasks with three classes: 

“increasing”, “flat”, and “decreasing” (41). To calculate these metrics, we grouped all 

projections by the projected and the observed trend (as in Figure 4D). Let ��� be the 

number of projections classified by SMH as trend 4 (rows of Figure 4D) and the 

corresponding observation was trend � (columns of Figure 4D). Then, for class �, 
1. precision is the fraction of projections correctly classified as �, out of the total 

number of projections classified as �, or  

4+,5�6��7 �  ���∑ ���
�
�	�
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For example, the precision of increasing trends is the number of correctly 

classified increases divided by the total number of projections classified as 

increasing.  

2. recall is the fraction of projections correctly classified as �, out of the total 

number of projections observed as �, or  

+,5-�� �  ���∑ ���
�
�	�

 

For example, the recall of increasing trends is the number of correctly 

classified increases divided by the total number of observations that 

increased.  
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Figure 1: Sixteen rounds of U.S. COVID-19 Scenario Modeling Hub (SMH) projections. Between 
February 2021 and November 2022, SMH publicly released fourteen rounds of projections with four 
scenarios per round. Each round is shown in a different color (internal Rounds 8 and 10 not shown). (A) 
Median (line) and 95% projection interval (ribbon, the interval within which we expect the observed value 
to fall with 95% probability, given reality perfectly aligns with the scenario) for U.S. weekly incident 
hospitalizations for four scenarios per round from the SMH ensemble. Observed weekly U.S. incident 
hospitalizations are represented by the solid black line. (B) Timing of each round of SMH projections is 
represented by a projection start date and end date (start and end of bar). In panels (A) and (B), scenario 
specifications were invalidated by the emergence of Alpha, Delta, and Omicron variants in rounds that did 
not anticipate emergence. Variant emergence dates (estimated as the day after which national 
prevalence exceeded 50%) are represented by dotted vertical lines. (C) For each round, the table 
specifies the number of participating modeling teams, the turnaround time from finalization of scenarios to 
publication of projections, and scenario specifications about non-pharmaceutical interventions (NPIs), 
vaccination, and variant characteristics. Scenario specifications are shaded gray if scenarios “bracketed” 
the true values in our retrospective analysis (i.e., the true value fell between the two scenario 
assumptions on that uncertainty axis). Note, in Rounds 11 and 12 both scenario axes specified 
assumptions about variants, and both are included in the “variant assumptions'' cell. Not shown here, the 
second scenario axis for Round 13 specified assumptions about waning immunity, which bracketed 
waning estimates from a meta-analysis. 
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Figure 2: COVID-19 Scenario Modeling Hub (SMH) process. (top) Prospective SMH process: The 
SMH coordination team takes input from public health partners on key questions to design scenarios. 
Scenarios have a 2x2 structure (with the exception of Round 1), where two levels are specified along 
each of two axes of uncertainty or interventions, and all four combinations of these possibilities are 
considered (scenarios A-D). Scenarios are refined in discussion with modeling teams, after which teams 
each fit their model and make projections independently. Then, after quality checks, individual model 
projections are aggregated using linear opinion pool (i.e., probability averaging), and in discussion with 
the teams, key messages are determined. A report is shared with public health partners and projections 
are released on the public SMH website (https://covid19scenariomodelinghub.org). (bottom) 
Retrospective evaluation: Evaluating the SMH effort involves comparing SMH scenario assumptions to 
reality, and comparing SMH projections to observations. Comparing scenarios to reality is used to identify 
the most plausible scenario-weeks, namely the set of “plausible” scenarios in projection weeks where 
scenario specifications about variants did not diverge from actual variant prevalence. Horizontal dotted 
lines represent emergence of an unanticipated variant.  
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Figure 3: Performance of U.S. COVID-19 Scenario Modeling Hub (SMH) ensemble projections for 
weekly incident cases, hospitalizations, and deaths. (A) Coverage of SMH ensemble 95% projection 
interval across locations by round and scenario. Ideal coverage of 95% is shown as a horizontal black 
line. (B) Normalized weighted interval score (WIS) for SMH ensemble by round and scenario. Normalized 
WIS is calculated by dividing WIS by the standard deviation of WIS across all scenarios and models for a 
given week, location, target, and round. This yields a scale-free value, and we averaged normalized WIS 
across all locations for a given projection week and scenario. For (A) and (B), the round is indicated by 
color and a number at the start of the projection period. Each scenario is represented by a different line, 
with plausible scenario-weeks bolded (see Methods). Performance of the 4-wk ahead COVID-19 Forecast
Hub ensemble is shown in gray. Vertical dotted lines represent emergence dates of Alpha, Delta, and 
Omicron variants. Evaluation ended on 10 March 2023, as the source of ground truth observations were 
no longer produced. (C) Relative WIS comparison of individual models (letters A-I) and SMH ensemble 
(“Ens”) within rounds and overall. A relative WIS of 1 indicates performance equivalent to the “average” 
model (yellow colors indicate performance worse than average, and greens indicate performance better 
than average; the color scale is on a log scale and truncated at ±1, representing 2 standard deviations of 
relative WIS values). See Figure S46-Figure S47 for 50% and 95% coverage of all targets. 
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Figure 4: Evaluation of scenario projections to anticipate disease trends. Illustration of classification of increasing (orange), flat (yellow), and 
decreasing (blue) trends for observed United States incident hospitalizations (A) and U.S.  COVID-19 Scenario Modeling Hub (SMH) ensemble 
projection median for the plausible scenario (B) using Round 11, at the start of the Omicron wave. Evaluation of trends across all rounds and 
locations for plausible scenario-weeks: (C) For decreasing, flat and increasing observations, percent of incident cases, hospitalizations and deaths
correctly identified by SMH ensemble projection median (gray), the 4-week forecast model (dashed line), a model that continues current trend 
(dotted), and the expectation if observations are classified randomly (solid). (D) For decreasing, flat, and increasing observations in plausible 
scenario-weeks, the number (and percentage) of observations that are classified as decreasing, flat, or increasing by the SMH ensemble 
projection median. Totals are calculated across all targets and rounds (meaning that some weeks are included multiple times, and therefore 
although 33% of observations are in each category, 33% of projections may not be in each category) and weighted by the plausibility of the 
scenario and week (for rounds with multiple plausible scenarios, this could introduce decimal totals; we rounded values down in these cases). 
Percentages on the outside show the percent correct for a given observed classification (precision, columns) or projected classification (recall, 
rows). Projection classifications were also calculated for all scenarios and weeks, regardless of plausibility (Figure S35), using SMH ensemble 
projection Q75 (Figure S36) and SMH ensemble projection Q97.5 (Figure S37); see supplement for additional stratification of results (by round, 
Figure S39; by location, Figure S40; by projection horizon, Figure S41-Figure S42; and by variant period, Figure S43). 
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Figure 5: Relative performance of the four U.S. COVID-19 Scenario Modeling Hub (SMH) scenarios 
(A, B, C, D) across rounds. Weighted interval score (WIS) for SMH ensemble projections in plausible 
scenario-weeks relative to the 4-week forecast model (4-week ahead COVID-19 Forecast Hub 
ensemble). WIS is averaged across all locations and plausible scenario-weeks for a given target, round, 
and scenario. Scenarios deemed plausible are highlighted in orange (see Methods). The number of 
plausible weeks included in the average is noted at the bottom of the incident death panel. Results for all 
weeks are shown with gray open circles for comparison. A WIS ratio of one (dashed line) indicates equal 
average WIS, or equal performance, between the SMH ensemble and 4-week forecast model. Ninety 
percent (90%) bootstrap intervals (vertical lines around each point) are calculated by leaving out WIS for 
all locations in a given week (over 1,000 random draws, though most are very narrow and therefore not 
visible). In each round, the scenario with the lowest WIS ratio is denoted with an asterisk. Any scenario 
with a 90% bootstrap interval that overlaps the bootstrap interval of the scenario with the lowest WIS ratio 
is also denoted with an asterisk. WIS ratio is shown on the log scale. 
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Table 1: Scenario bracketing. For each of two axes per round, bracketing (or not) of reality by U.S. 
COVID-19 Scenario Modeling Hub (SMH) scenarios. Text color denotes successful (blue) or unsuccessful 
(red) bracketing. When vaccination scenarios specified coverage weekly, we considered bracketing in 
50% or more of all projection weeks to be bracketing overall. For round 4, we use coverage of mRNA 
doses only to determine bracketing, as this makes up almost all of the assumed doses (i.e., we do not 
consider coverage of Johnson & Johnson). NPI = non-pharmaceutical intervention. 

Round Axis 1 Axis 2 

1 bracket weekly vaccination coverage in 8 weeks out of 
26 weeks (31%) and 8 out of 13 plausible weeks (61%) no second bracketing axis 

2 bracket weekly vaccination coverage in 26 out of 26 
weeks (100%) and 22 out of 22 plausible weeks (100%) 

bracket variant 
transmissibility estimates 

3 bracket weekly vaccination coverage in 14 out of 26 
weeks (54%) and 4 out of 16 plausible weeks (25%) 

unable to assess NPI 
scenarios 

4 bracket weekly vaccination coverage in 3 out of 26 
weeks (12%) and 3 out of 13 plausible weeks (23%) 

unable to assess NPI 
scenarios 

5 bracket vaccination coverage at end of projection 
period 

unable to assess NPI 
scenarios 

6 bracket vaccination coverage at end of projection 
period 

bracket variant 
transmissibility estimates 

7 underestimate vaccination coverage in both scenarios bracket variant 
transmissibility estimates 

9 bracket weekly vaccination coverage in 19 out of 19 
weeks (100%) and 13 out of 13 plausible weeks (100%) no second bracketing axis 

11 bracket variant transmissibility estimates bracket variant severity 
estimates 

12 bracket variant transmissibility estimates bracket variant severity 
estimates 

13 bracket immune waning estimates unable to assess immune-
escape variant scenarios 

14 bracket vaccination coverage in 23 of 23 (100%) 
evaluated weeks (through March 20, 2023) 

unable to assess immune-
escape variant scenarios 

15 bracket vaccination coverage in 9 of 24 (38%) 
evaluated weeks (through March 20, 2023) 

unable to assess immune-
escape variant scenarios 

16 overestimate vaccination coverage in both scenarios unable to assess immune-
escape variant scenarios 
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