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1. Introduction

Of all men’s miseries, the bitterest is this: to know so much and have control over nothing.
—Herodotus

Data analysis is a complex task. Many tools can been brought to bear on the problem,
from user-driven SQL and OLAP systems, to machine-automated data mining algorithms,
with hybrid approaches in between. All the solutions on this spectrum share a basic prop-
erty: analyzing large amounts of data is a time-consuming task. Decision-support SQL
gueries often run for hours or days before producing output; so do data mining algorithms
(Agrawal, 1997). It has recently been observed that user appetite for online data storage is
growing faster than what Moore’s Law predicts for the growth in hardware performance
(Papadopoulos, 1997; Winter and Auerbach, 1998), suggesting that the inherent sluggish-
ness of data analysis will only worsen over time.

In addition to slow performance, non-trivial data analysis techniques share a second
common property: they require thoughtful deployment by skilled users. It is well-known
that composing SQL queries requires sophistication, and it is not unusual today to see an
SQL query spanning dozens of pages (Walter, 1998). Even for users of graphical front-end
tools, generating the correct query for a task is very difficult. Perhaps less well-appreciated
is the end-user challenge of deploying the many data mining algorithms that have been
developed. While data mining algorithms are typically free of complex input languages,
using them effectively depends on a judicious choice of algorithm, and on the careful tuning
of various algorithm-specific parameters (Fayyad, 1996).
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A third common property of data analysis is that it is a multi-step process. Users are
unlikely to be able to issue a single, perfectly chosen query that extracts the “desired
information” from a database; indeed the idea behind data analysis is to extract heretofore
unknown information. User studies have found that information seekers very naturally
work in an iterative fashion, starting by asking broad questions, and continually refining
them based on feedback and domain knowledge (O’'day and Jeffries, 1993). This iteration
of analyses is a natural human mode of interaction, and not clearly an artifact of current
software, interfaces, or languages.

Taken together, these three properties result in a near-pessimal human-computer inter-
action: data analysis today is a complex process involving multiple time-consuming steps.
A poor choice or erroneous query at a given step is not caught until the end of the step
when results are available. The long delay and absolute lack of control between successive
queries disrupts the concentration of the user and hampers the process of data analysis.
Therefore many users eschew sophisticated techniques in favor of cookie-cutter reports,
significantly limiting the impact of new data analysis technologies. In short, the mode of
human-computer interaction during data analysis is fundamentally flawed.

1.1. CONTROL: Interactive data analysis

The CONTROL project attempts to improve the interaction between users and computers
during data analysis. Traditional tools presblack boxinterfaces: users provide inputs,

the system processes silently for a significant period, and returns outputs. Because of the
long processing times, this interaction is reminiscent ofaaiehprocessing of the 1960’s

and ‘70’s. By contrast, CONTROL systems haveoatine mode of interaction: users can
control the system at all times, and the system continuously provides useful output in the
form of approximate or partial results. Rather than a black box, online systems are intended to
operate like @rystal balt the user “sees into” the online processing, is given a glimpse of the
final results, and can use that information to change the results by changing the processing.
This significantly tightens the loop for asking multiple questions: users can quickly sense
if their question is a useful one, and can either refine or halt processing if the question was
not well-formed. We describe a variety of interactive online systems in Section 2.

Though the CONTROL project's charter was to solve interface problems, we quickly
realized that the solutions would involve fundamental shifts in system performance goals
(Hellerstein, 1997). Traditional algorithms are optimized to complete as quickly as possi-
ble. By contrast, online data analysis techniques may never complete; users halt them when
answers are “good enough”. So instead of optimizing for completion time, CONTROL
systems must balance two typically conflicting performance goals: minimizing uneventful
“deadtime” between updates for the user, while simultaneously maximizing the rate atwhich
partial or approximate answers approach a correct answer. Optimizing only one of these
goals is relatively easy: traditional systems optimize the second goal (they quickly achieve a
correct answer) by pessimizing the first goal (they provide no interactivity). Achieving both
goals simultaneously requires redesigning major portions of a data analysis system, employ-
ing a judicious mix of techniques from data delivery, query processing, statistical estimation
and user interfaces. As we will see, these techniques can interact in non-trivial ways.
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1.2. Online query processing in informix

In this paper we focus on systems issues for implementing online query processing—i.e.,
CONTROL for SQL queries. Online query processing enables a user to issue an SQL query,
see results immediately, and adjust the processing as the query runs. In the case of an online
aggregationquery, the user sees refining estimates of the final aggregation results. In the
case of an onlinenumeratiormguery (i.e., a query with no aggregation), the user receives an
ever-growing collection of result records, which are available for browsing via user interface
tools. In both cases, users should be able to provide feedback to the system while the query
is running, to control the flow of estimates or records. A common form of control is to
terminate delivery of certain classes of estimates or records; more generally, users might
express a preference for certain classes of estimates or records over others.

Online query processing algorithms are designed to produce a steady stream of output
records, which typically serve as input to statistical estimators and/or intelligent user inter-
faces. Our discussion here focuses mostly on the pipelined production of records and the
control of that data flow; statistical and interface issues are considered in this paper only
to the extent that they drive the performance goals, or interact with implementation issues.
The interested reader is referred to Section 1.4 for citations on the statistical and interface
aspects of online query processing.

As a concrete point of reference, we describe our experience implementing online query
processing in a commercial object-relational database management system (DBMS): In-
formix’s Dynamic Server with Universal Data Option (UDO) (Informix, 1998). The pedi-
gree of UDO is interesting: formerly known as Informix Universal Server, it represents
the integration of Informix’s original high-performance relational database engine with
the object-relational facilities of lllustra (lllustra, 1994), which in turn was the commer-
cialization of the Postgres research system (Stonebraker and Kemnitz, 1991). Informix
Corporation made its source code and development environment available to us for this
research, enabling us to test our ideas within a complete SQL database engine.

Working with UDO represented a significant challenge and opportunity. UDO is a large
and complex system developed (in its various ancestral projects) over more than 15 years.
As we describe in Hellerstein et al. (1997), online query processing cannot simply be
implemented as a “plug-in” module for an existing system. Most of the work described in
this paper involved adding significant new features to the UDO database engine itself. In a
few cases—particularly in crafting an API for standard client applications—we were able to
leverage the object-relational extensibility of UDO to our advantage, as we describe below.

In addition to adding new algorithms to the system, a significant amount of effort went
into architecting a complete end-to-end implementation. Our implementation allows the
various algorithms to be pipelined into complex query plans, and interacts effectively with
a wide variety of client tools. This paper describes both the core algorithms implemented
in UDO, as well as the architectural issues required to provide a usable system.

1.3. Structure of the paper

We discuss related work in Section 1.4. In Section 2 we describe a number of application
scenarios for CONTROL-based systems. Section 3 describes the core algorithms used in
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online query processing including access methods, data delivery algorithms, and join algo-

rithms. Section 4 describes the end-to-end challenges of putting these algorithms together
in the context of a commercial object-relational database management system. Section 5
demonstrates the performance of the system, in terms both of interactivity and rate of

convergence to accurate answers. In Section 6 we conclude with a discussion of future
work.

1.4. Related work

The CONTROL project began by studying online aggregation, which was motivated in
(Hellerstein (1997a) and Hellerstein et al. (1997). The idea of online processing has been
expanded upon within the project (Hellerstein, 1997b; Hellerstein, 1998a; Hellerstein et al.,
1999; Hidber, 1997) a synopsis of these thrusts is given in Section 2. Recently we have
presented the details of two of our core query processing algorithms: ripple joins (Haas and
Hellerstein, 1999) and online reordering (Raman et al., 1999). Estimation and confidence
interval techniques for online aggregation are presented in Haas (1996, 1997) and Haas and
Hellerstein (1999). To our knowledge, the earliest work on approximate answers to decision-
support queries appears in Morgenstein’s dissertation from Berkeley (Morgenstein, 1980),
in which he presents maotivation quite similar to ours, along with proposed techniques for
sampling from relations and from join results.

Our work on online aggregation builds upon earlier work on estimation and confidence
intervals in the database context (Hou et al., 1988; Haas et al., 1996; Lipton et al., 1993).
The prior work has been concerned with methods for producing a confidence interval with
a width that is specified prior to the start of query processing (e.g. “get within 2% of the
actual answer with 95% probability”). The underlying idea in most of these methods is
to effectively maintain a running confidence interval (not displayed to the user) and stop
sampling as soon as the length of this interval is sufficiently small. Hou, et al. (1989) consider
the related problem of producing a confidence interval of minimal length, given a real-time
stopping condition (e.g. “run for 5 minutes only”). The drawback with using sampling
to produce approximate answers is that the end-user needs to understand the statistics.
Moreover, making the user specify statistical stopping conditions at the beginning reduces
the execution time but does not make the execution interactive; for instance there is no
way to dynamically control the rate of processing—or the desired accuracy—for individual
groups of records.

More recent work has focused on maintaining precomputed summary statistics for ap-
proximately answering queries (Gibbons and Matias, 1998; Gibbons et al., 1998); Olken
also proposed the construction of sample views (Olken, 1993). In a similar though sim-
pler vein, Informix has included simple precomputed samples for approximate results to
ROLAP queries (Informix, 1998). These techniques are to online query processing what ma-
terialized views are tad hocqueries: they enhance performance by precomputing results,
but are inapplicable when users ask queries that cannot exploit the precomputed results.
In the context of approximate query answexd,hocspecification applies both to queries
and to the stopping criteria for sampling: a user may specify any query, and want to see
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answers with differing accuracies. Unlike general materialized views, most precomputed
summaries are on single tables, so many of the advantages of precomputed samples can be
achieved in an online query processing system via simple buffer management techniques. In
short, work on precomputed summaries is complementary to the techniques of this paper; it
seems viable to automate the choice and construction of precomputed summaries as an aid
to online query processing, much as Hybrid OLAP chooses queries to precompute to aid
OLAP processing (Shukla et al., 1998; Harinarayan et al., 1996; Pilot Software, 1998; SQL,
1998).

Arelated but quite different notion of precomputation for online query processing involves
semantically modeling data at multiple resolutions (Silberschatz et al., 1992). A version of
this idea was implemented in a system caledROXIMATE (Vrbsky and Liu, 1993). This
system defines an approximate relational algebra which it uses to process standard relational
queries in an iteratively refined manner. If a query is stopped before completion, a superset
of the exact answer is returned in a combined extensional/intensional format. This model
is different from the type of data browsing we address with online query processing: it is
dependent on carefully designed metadata and does not address aggregation or statistical
assessments of precision.

There has been some initial work on “fast-first” query processing, which attempts to
quickly return the first few tuples of a query. Antoshenkov and Ziauddin report on the
Oracle Rdb (formerly DEC Rdb/VMS) system, which addresses the issues of fast-first
processing by running multiple query plans simultaneously; this intriguing architecture re-
quires some unusual query processing support (Antoshenkov and Ziauddin, 1996). Bayardo
and Miranker propose optimization and execution techniques for fast-first processing us-
ing nested-loops joins (Bayardo and Miranker, 1996). Carey and Kossman (1997, 1998),
Chaudhuri and Gravano (1996, 1999), and Donjerkovic and Ramakrishnan (1999) discuss
techniques for processing ranking and “tN-queries, which have a “fast-first” flavor as
well. Much of this work seems applicable to online query optimization, though integration
with online query processing algorithms has yet to be considered. Fagin (1998) proposes
an interesting algorithm for the execution of ranking queries over multiple sources that
optimizes for early results. This algorithm has a similar flavor to the Ripple Join algorithm
we discuss in Section 3.3.

2. Application scenarios and performance requirements

The majority of data analysis solutions are architected to provide black-box, batch behavior
forlarge data sets: this includes software for the back-office (SQL decision-support systems),
the desktop (spreadsheets and OLAP tools), and statistical analysis techniques (statistics
packages and data mining). The result is that either the application is frustratingly slow
(discouraging its use), or the user interface prevents the application from entering batch
states (constraining its use.) The applications in this section are being handled by current
tools with one or both of these approaches. In this section we describe online processing
scenarios, including online aggregation and enumeration, and online visualization. We also
briefly mention some ideas in online data mining.
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2.1. Online aggregation

Aggregation queries in relational database systems often require scanning and analyzing a
significant portion of a database. In currentrelational systems such query execution has batch
behavior, requiring a long wait for the user. Online query processing can make aggregation
an interactive process.

Consider the following simple relational query:

SELECT college, AVG(grade)
FROM enroll
GROUP BY college;

This query requests that all records in $ago11 table be partitioned into groups by college,

and then for each college its name and average grade should be returned. The output of this
query in an online aggregation system can be a set of interfaces, one per output group, as
in figure 1. For each output group, the user is given a current estimate of the final answer.
In addition, a graph is drawn showing these estimates along with a description of their
accuracy: each estimate is drawn with bars that degiohfidence intervalvhich says that
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Figure L  An online aggregation interface.
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with X% probability, the current estimate is within an intervatkef from the final answer

(X is set to 95% in the figure). The “Confidence” slider on the lower left allows the user

to control the percentage probability, which in turn affects the 2vidth of the bars. In
addition, controls on the upper left of the screen are provided to stop processing on a group,
or to speed up or slow down one group relative to others. These controls allow the user to
devote more processing to groups of particular interest. These interfaces require the support
of significant modifications to a DBMS, which we describe in this paper. We have developed
estimators and corresponding implementation techniques for the standard SQL aggregates
AVG, COUNT, andSTDDEV? (Hellerstein et al., 1997; Hass and Hellerstein, 1999).

Online aggregation is particularly useful in “drill-down” scenarios: a user may ask for
aggregates over a coarse-grained grouping of records, as in the query above. Based on a
quick online estimate of the coarse-grained results, the user may choose to issue another
query to “drill down” into a set of particularly anomalous groups. Alternatively the user
may quickly find that their first query shows no interesting groups, and they may issue an
alternate query, perhaps grouping on different attributes, or requesting a different aggregate
computation. The interactivity of online aggregation enables users to explore their data in
a relatively painless fashion, encouraging data browsing.

The obvious alternative to online aggregation is to precompute aggregation results be-
fore people use the system—this is the solution of choice imthkidimensionaOLAP
(MOLAP) tools (e.g., Hypersion Essbase OLAP Server, 1999). Note that the name OLAP
(“OnLine Analytic Processing”) is something of a misnomer for these systems. The analytic
processing in many OLAP tools is in fact done “off line” in batch mode; the user merely
navigates the stored results on line. This solution, while viable in some contexts, is an exam-
ple of the constrained usage mentioned at the beginning of this section: the only interactive
queries are those that have been precomputed. This constraint is often disguised with a
graphical interface that allows only precomputed queries to be generated. A concomitant
and more severe constraint is that these OLAP systems have trouble scaling beyond a few
dozen gigabytes because of both the storage costs of precomputed answers, and the time
required to periodically “refresh” those answers. Hybrids of precomputation and online
aggregation are clearly possible, in the same way that newer systems provide hybrids of
precomputation and batch query processing (e.g., Shukla et al., 1998; Harinarayan et al.,
1996; Pilot Software, 1998; Maier and Stein, 1986).

2.2. Online enumeration: Scalable spreadsheets

Database systems are often criticized as being hard to use. Many data analysts are experts
in a domain other than computing, and hence prefer simipdet-manipulatiorinterfaces

like those of spreadsheets (Shneiderman, 1982), in which the data is at least partially visible
at all times. Domain-specific data patterns are often more easily seen by “eyeballing” a
spreadsheet than by attempting to formulate a query. For example, consider analyzing a
table of student grades. By sorting the output by GPA and scrolling to the top, middle, and
bottom, an analyst may notice a difference in the ethnic mix of names in different GPA
guantiles; this may be evidence of discrimination. By contrast, imagine trying to write an
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SQL aggregation query asking for the average grade per apparent ethnicity of the name
column—there is no way to specify the ethnicity of a name declaratively. The difficulty is
that the (rough) name-to-ethnicity mapping is domain knowledge in the analyst’s head, and
not captured in the database.

Unfortunately, spreadsheets do not scale gracefully to large datasets. Aninherent problem
is that many spreadsheet behaviors are painfully slow on large datasets—if the spreadsheet
allows large data sets at all. Microsoft Excel, for example, restricts table size to 64K rows or
fewer, presumably to ensure interactive behavior. The difficulty of guaranteeing acceptable
spreadsheet performance on large datasets arises from the “speed of thought” response time
expected of spreadsheet operations such as scrolling, sorting on different columns, pivoting,
or jumping to particular cells in the table (by address or cell-content prefix). Thus traditional
spreadsheets are not useful for analyzing large amounts of data.

We are buildindA-B-C, a scalable spreadsheet that allows online interaction with individ-
ual records (Raman et al., 1999a). As records are enumerated from a large file or a database
query returning many rows, A-B-C allows the user to view example rows and perform typical
spreadsheet operations (scroll, sort, jump) at any time. A-B-C provides interactive (sub-
second) responses to all these operations via the access methods and reordering techniques
of Sections 3.1 and 3.2.

Hypotheses formed via online enumeration can be made concrete in A-B-C by grouping
records “by example”: the user can highlight example rows, and use them to interactively
develop aregular expression or other group identity function. Groups are then “rolled up” in
a separate panel of the spreadsheet, and users can interactively specify aggregation functions
to compute on the groups online. In this case, the online enumeration features of A-B-C are
a first step in driving subsequent online aggregation.

2.3. Aggregationt+ enumeration: Online data visualization

Data visualization is an increasingly active research area, with rather mature prototypes in
the research community (e.g. Tioga Datasplash (Aiken et al., 1996), DEVise (Livny et al.,
1997), Pad (Perlin and Fox, 1993)), and products emerging from vendors (Ohno, 1998).
These systems are interactive data exploration tools, allowing users to “pan” and “zoom”
over visual “canvases” representing a data set, and derive and view new visualizations
quickly.

An inherent challenge in architecting a data visualization system is that it must present
large volumes of information efficiently. This involves scanning, aggregating and rendering
large datasets at point-and-click speeds. Typically these visualization systems do not draw
a new screen until its image has been fully computed. Once again, this means batch-style
performance for large datasets. This is particularly egregious for visualization systems that
are expressly intended to support browsing of large datasets.

Related work in the CONTROL project involves the development of online visualization
techniques we call CLOUDS (Hellerstein et al., 1999), which can be thought\i$zal
aggregations and enumerations for an online query processing system. CLOUDS performs
both enumeration and aggregation simultaneously: it renders records as they are fetched,
and also uses those records to generate an overlay of shaded rectangular regions of color
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Figure 2 Snapshots of an online visualization of cities in the United States, with and without CLOUDS.

(“clouds”), corresponding to nodes in a carefully constructed quad tree. The combination of
the clouds and the rendered sample is intended to approximate the final image. This means
that the clouds are not themselves an approximation of the image, but ratimpansatory
shading that accounts for the difference between the rendered records and the projected final
outcome. During processing, the user sees the picture improve much the way that images
become refined during network transmission. This can be particularly useful when a user
pans or zooms over the results ofathhocquery: in such scenarios the accuracy of what is
seen is not as important as the rough sense of the moving picture. Figure 2 shows a snapshot
of an online visualization of cities in the United States, with and without CLOUDS. Note
how the CLOUDS version contains shading that approximates the final density of areas
better than the non-CLOUDS version; note also how the CLOUDS visualization renders
both data points and shading.

As with the Scalable Spreadsheet, our data visualization techniques tie into data delivery,
and benefit directly from the access methods and reordering techniques described in Sections
3.1 and 3.2. For DBMS-centric visualization tools like DEVise and Tioga, the full power of
an online query processing system—including joins, aggregations, and so on—is needed
in the back end.

2.4. Online data mining

Many data mining algorithms make at least one complete pass over a database before
producing answers. In addition, most mining algorithms have a number of parameters to
tune, which are not adjustable while the algorithm is running. While we do not focus on
data mining algorithms in this paper, we briefly consider them here to highlight analogies
to online query processing.

As a well-known example, consider the oft-citgriori algorithm for finding “associa-
tion rules” in market-basket data (Agrawal and Srikant, 1994). To use an association rule
application, a user specifies values for two variables: one that sets a minimum threshold
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on the amount of evidence required for a set of items to be produnatspport and
another which sets a minimum threshold on the correlation between the items in the set
(minconfidencke These algorithms can run for hours without output, before producing as-
sociation rules that passed the minimum support and confidence thresholds. Users who set
those thresholds incorrectly typically have to start over. Setting thresholds too high means
that few rules are returned. Setting them too low means that the system (a) runs even more
slowly, and (b) returns an overwhelming amount of information, most of which is useless.
Domain experts may also want to explicitly prune irrelevant correlations during processing.

The traditional algorithm for association rules is a sequence of aggregation queries,
and can be implemented in an online fashion using techniques for online query processing
described in this paper. An alternative association rule algorithm called CARMA was devel-
oped in the CONTROL project (Hidber, 1997). While not clearly applicable to SQL query
processing, CARMA is worthy of mention here for two reasons. First, it very efficiently pro-
vides online interaction and early answers. Second—and somewhat surprisingly—CARMA
often produces a final, accurate answer faster than the traditional “batch” algorithms, both
because it makes fewer passes of the dataset and because it manages less memory-resident
state. So in at least one scenario, inventing an algorithm for online processing resulted in a
solution that is also better for batch processing!

Most other data mining algorithms (clustering, classification, pattern-matching) are simi-
larly time-consuming. CONTROL techniques seem worth considering for these algorithms,
and the development of such techniques seems to be a tractable research challenge. Note
that CONTROL techniques tighten loops in the knowledge-discovery process (Fayyad et al.,
1996), bringing mining algorithms closer in spirit to data visualization and browsing. Such
synergies between user-driven and automated techniques for data analysis seem like a
promising direction for cross-pollenation between research areas.

3. Algorithms for online query processing

Relational systems implement a relatively small set of highly tuned query processing oper-
ators. Online query processing is driven by online analogs of the standard relational query
processing operators, along with a few new operators. In this section we discuss our im-
plementation in Informix of online query processing operators, including randomized data
access, preferential data delivery, relational joins, and grouping of result records. Of these,
randomized data access was the simplest to address, and our solution required no additions
to the Informix SQL engine. It does, however, have an impact omptilysical desigrof a
database, i.e., the layout of tables and indexes on disk.

3.1. Randomized data access and physical database design

In most scenarios, it is helpful if the output of a partially-completed online query can be
treated as arandom sample. In online aggregation queries, the estimators for aggregates like
AVG and SUM require random sampling in order to allow for confidence intervals or other
statements about accuracy. This requirement is less stringent for online enumeration, but
still beneficial: in most scenarios a user would prefer to see a representative sample of the
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data at any given time. Hence we begin our discussion of query operators by considering
techniques for randomized data access.

In order to guarantee random data delivery, we resegss methodsalgorithms for data
access—that produce ever-larger random samples of tables. This can be accomplished in a
number of ways. Random sampling is the same as simply scanning a table in certain sce-
narios: particularly, when the rows have been randomly permuted prior to query processing
or when, as verified by statistical testing, the storage order of the rows on disk is indepen-
dent of the values of the attributes involved in the aggregation query. Alternatively, it may
be desirable to actually sample a table during query processing, or to materialize a small
random sample of each base relation during an initialization step, and then subsequently
scan the sample base relations during online processing. Olken (1993) surveys techniques
for sampling from databases and for maintaining materialized sample views.

We chose to guarantee random delivery in Informix by storing tables in random order.
This approach is already available in any DBMS that supports user-defined functions: we
cluster tables randomly by clustering records on a user-defined funétioythat generates
pseudo-random numbetsScans of the table produce ever-larger random samples at full
disk bandwidth. To make this scheme work in the face of updates, new tuples should be
inserted to random positions in the table, with the tuples formerly in those positions being
appended to the end of the table. While not difficult, we have not added random insertion
functionality to our Informix prototype.

There are two potential drawbacks to this approach. The firstis that every scan of the table
generates the same random sample; over time the random but static properties of the order
could be misinterpreted as representative of all possible orderings. This can be alleviated
somewhat by starting scans at an arbitrary points in the file (as is done in the “shared
scans” of some DBMSs (Red Brick Systems, Inc., 1998)), though of course the properties
of the fixed order are still reflected. A better solution is to periodically force some random
shuffling in the table; this is analogous to the “reorganization” steps common in database
administration, and it easily could be made automatic and incremental.

The second problem with this approach is that a relation stored in random order is by
definition not stored in some other order. This has ramifications for database design, since it
is typical for a database administrator to cluster a table on an attribute frequently referenced
in range queries, rather than on a random function. This can be solved in a manner analogous
tothat of traditional database design: if one has a clustering on some column, and a secondary
random clustering is desired, one can generate a secondary random ordering via an index on
a random-valued attribute. This can be done without modification in any object-relational
system like Informix that supporfsinctionalindexes (Maier and Stein, 1986; Lynch and
Stonebrakere, 1988). One simply constructs a functional indeix(& x), wheref ( ) is
a random-number generator, axds any column ofR. The resulting index ofR serves
as a secondary random ordering structure. Note that scanning a secondary index requires
a random 1/O per record,; this is a performance drawback of secondary random indexes as
well. As with most physical database design decisions, there are no clear rules of thumb
here: the choice of which clustering to use depends on whether online queries or traditional
range queries are more significant to the workload performance. These kinds of decision
can be aided or even automated by workload analysis tools (e.g., Chaudhuri and Narasayya,
1998)).
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3.2. Preferential data delivery: Online reordering

Itis not sufficient for data delivery in an online query processing system to be random. It also
must be user-controllable. This requirement was not present in traditional batch systems,
and hence the techniques we discuss in this section do not have direct analogs in traditional
systems.

A key aspect of an online query processing system is that users perceive data being
processeaver time Hence an important performance goal for these systems is to present
data of interest early on in the processing, so that users can get satisfactory results quickly,
halt processing early, and move on to their next request. The “speed” buttons shown in
the Online Aggregation interface in figure 1 are one interface for specifying preferences:
they allow users to request preferential delivery for particular groups. The scrollbar of
a spreadsheet is another interface: items that can be displayed at the current scrollbar
position are of greatest interest, and the likelihood of navigation to other scrollbar positions
determines the relative preference of other items.

To support preferential data delivery, we developedaline reorderingoperator that
reorders data on the fly based on user preferences—it attempts to enstinéetieating
items get processed first (Raman et al., 1999b). We allow users to dynamically change their
definition of “interesting” during the course of a query; the reordering operator alters the
data delivery to try and meet the specification at any time.

In order to provide user control, a data processing system must accept user preferences
for different items and use them to guide the processing. These preferences are specified in
a value-based, application-specific manner, usually based on values in the data items. The
mapping from user preferences to the rates of data delivery depends on the performance
goals of the application. This is derived for some typical applications in Raman et al.
(1999b). Given a statement of preferences, the reorder operator should permute the data
items at the source so as to make an application-spegifiity of feedbackunction rise
as fast as possible.

Since our goal is interactivity, the reordering must not involve pre-processing or other
overheads that will increase runtime. Instead, we do a “best effort” reordeithgut
slowing down the processing, by making the reordering concurrent with the processing.
Figure 3 illustrates our scheme of inserting a reorder operator into a data flow. We can

N~

Produce Reorder Process Consume

Figure 3 The reordering operator in context.
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divide any data flow into four stages: tpeoduce stage, thereorder stage, thepro-

cess stage, and theonsume stage. In the context of query processiPgpduce represents

an access method generating recordsarder reorders the items according to the dy-
namically changing preferences of the consurencess is the set of operations that

are applied “downstream” to the records—this could involve query plan operators like
joins, shipping data across a slow network, rendering data onto the screen in data visual-
ization, etc.Consume captures the user think-time, if any—this is mainly for interactive
interfaces such as spreadsheets or data visualization. Since all these operations can go on
concurrently, we exploit the difference in throughput betweerptfweluce stage and the
process Or consume Stages to permute the items. For disk-based data sowsesice

can run as fast as the sequential read bandwidth, wheteasss may involve several ran-

dom I/Os which are much slower (Gray and Graefe, 1997). While the items sent out so far
are being processed/consumeeorder can take more items froproduce and permute

them.

The reorder operator tries tgput as many interesting items as possible onto a main-
memory buffer, and th@rocess operator issues requestsget items from the buffer.
Process decides which item tget based on its performance goakeorder uses the
time gap between successiets from the buffer (which may arise due to processing or
consumption time) to populate the buffer with more interesting items. It does this either
by using an index to fetch interesting items, or by aggressively prefetching from the input,
spooling uninteresting items onto an auxiliary disk. Policies for management of the buffer
and organization of the auxiliary disk are described in more detail in Raman et al. (1999b);
the basic idea is to evict least-interesting items from the buffer, and place them into chunks
on disk of records from the same group.

If the reorder operator caget records much faster than they candhecessed, then the
reordering has two phases. In the first phase, reorder contirggalbdata, and tries to keep
the buffer full of interesting items in the appropriate ratios, carefully spooling uninteresting
items to chunks on the side disk. The second phase occurs when there is no more data to
get; atthis point, reorder simplgnricheghe buffer by fetching chunks of interesting tuples
of interest from the side disk.

3.2.1. Index stride and database design issueghe Index Stride access method was first
presented in Hellerstein et al. (1997); it works as follows. Given a B-tree index on the
grouping columns,on the first request for a tuple we open a scan on the leftmost edge
of the index, where we find a key vallkg. We assign this scan a search key of the form
[=kq]. After fetching the first tuple with key valule, on a subsequent request for a tuple

we open a second index scan with search ke ], in order to quickly find the next group

in the table. When we find this valuk,, we change the second scan’s search key to be
[=ko], and return the tuple that was found. We repeat this procedure for subsequent requests
until we have a valué;, such that a search keyk,] returns no tuples. At this point, we
satisfy requests for tuples by fetching from the scasak;], ..., [=ks] in a round-robin
fashion. In order to capture user preference for groups, we do not actually use round-robin
scheduling among the groups; rather we use lottery scheduling (Waldspurger and Weihl,
1995), assigning more “tickets” to groups of greater interest.
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Index Stride can be used to support online reordering, because the reorder operator can
get tuples in the appropriate ratios by simply passing its weighting of groups to the Index
Stride access method. A drawback of using an index is that it involves many random 1/Os.
For many scenarios, Index Stride is significantly less efficient than simply running an online
reordering operator over a table-scan. However for groups of very low cardinality Index
Stride can be extremely beneficial. A hybrid of Index Stride and table-scan can be achieved
via partial indexeqSeshadri and Swami, 1995; Stonebraker, 1989): an index is built over
the small groups, and the reorder operator is run over a union of the small groups (in the
index) and the larger groups (in the heap file). In a system without partial indexes like
UDO, the hybrid scheme can be effected by explicitly partitioning the table into its rare and
common groups, storing the rare groups in a separate table. Performance tradeoffs between
Index Stride and online reordering of table-scans are presented in Raman et al. (1999b).

3.3. Ripple join algorithms

Up to this point, our discussion has focused on algorithms for delivering data from individual
tables. These techniques are appropriate for SQL queries on single tables; they are also
appropriate for simple spreadsheet-like systems built on files, as sketched in Section 2.2.
In general, however, SQL queries often combine data from multiple tables—this requires
relational join operators.

The fastest classical join algorithms (see, e.g., Graefe (1993)) are inappropriate for online
query processing. Sort-merge join is blocking: it generates no output until it has consumed
its entire input. Hybrid hash join (DeWitt et al., 1984) does produce output from the begin-
ning of processing, but at a fraction of the rate at which it consumes its input. Moreover
most commercial systems use Grace hash join (Fushimi et al., 1986) which is a blocking
algorithm.

The only classical algorithm that is completely pipelining is nested-loops join, but it is
typically quite slow unless an index is present to speed up the inner loop. Using nested-
loops join in an online fashion is often more attractive than using a blocking algorithm
like sort-merge join. But the absolute performance of the online nested-loops join is often
unacceptably slow even for producing partial results—this is particularly true for estimating
aggregates.

To see this, consider an online aggregation query over two tdbb]S. When a sample
of Ris joined with a sample 08, an estimate of the aggregate function can be produced,
along with a confidence interval (Haas, 1997). We call this scenario the enshofling
step—at the end of each sampling step in a join, the running estimate can be updated and the
confidence interval tightened. In nested loops join, a sampling step completes only at the
end of each inner loop. Bis the relation in the outer loop of the join in our example, then a
sampling step completes after each full scaRRoBut if R is of non-trivial size (as is often
the case for decision-support queries), then the amount of time between successive sampling
steps—and hence successive updates to the running estimate and confidence interval—can
be excessive.

In addition to having large pauses between estimation updates, nested-loops join has an
additional problem: it “samples” more quickly from one relation (the inner loop) than from
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n=1 n=2 n=3 n=4

Figure 4 The elements oR x Sthat have been seen aftesteps of a “square” ripple join.

the other. If the relation in the outer loop contributes significantly to the variance of inputs to
the aggregation function, it can be beneficial to more carefully balance the rates of reading
from the two relations.

To address these problems, we developed a new join algorithm for online query pro-
cessing, called thepple join (Haas and Hellerstein, 1999). In the simplest version of the
two-table ripple join (figure 6), one previously-unseen random tuple is retrieved from each
of R and S at each sampling step; these new tuples are joined with the previously-seen
tuples and with each other. Thus, the Cartesian producEis swept out as depicted in the
“animation” of figure 4. In each matrix in the figure, tieaxis represents tuples &, the
Saxis represents tuples 8f each positiorir, s) in each matrix represents a corresponding
tuple in R x S, and each ¥” inside the matrix corresponds to an elementRok S that
has been seen so far. In the figure, the tuples in eaéhasfd S are displayed in the order
provided by the access methods; this order is assumed to be random.

The “square” version of the ripple join described above draws samplesRramd S at
the same rate. As discussed in Haas and Hellerstein (1999), it is often beneficial to sample
one relation (the “more variable” one) at a higher rate in order to provide the shortest
possible confidence intervals for a given aggregation query. This requirement leads to the
general “rectangular” version of the ripple j6idepicted in figure 5. The general algorithm
with K (>2) base relation&;, Ry, ..., Rk retrievesgy previously-unseen random tuples
from Ry at each sampling step for4 k < K. (figure 5 corresponds to the special case in
whichK = 2, 8; = 3, andB, = 2.) Note the tradeoff between interactivity of the display
and estimation accuracy. When, for examge= 1 andg, =2, more 1/O’s are required
per sampling step than whehi =1 andg, =1, so that the time between updates to the
confidence intervals is longer; on the other hand, after each sampling step the confidence
interval typically is shorter whefi; = 1 andg, = 2.

In Haas and Hellerstein (1999) we provide full details of ripple joins, and their interaction
with aggregation estimators. We also include detailed discussion on the statistics behind

T feiket §§§§§§9§§

n=1 n=2 n=3

Figure 5. The elements oR x Sthat have been seen aftesampling steps of a “rectangular” ripple join with
aspect ratio 3« 2.
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for (max = 1 to infinity) {
for (i = 1 to max-1)
if (predicate(R[i],S[max]))
output (R[i],S[max]);
for (i = 1 to max)
if (predicate(R[max],S[i]))
output (R[max],S[il);

}

Figure 6. A simple square ripple join. The tuples within each relation are referred to in array notation.

tuning the aspect ratios to shrink the confidence intervals as fast as possible, while still
attempting to meet a user’s goal for interactivity. In addition, we demonstrate that ripple
join generalizes pipelining nested-loops and hash joins. That leads to descriptions of higher-
performance algorithmic variants on figure 6 based on blocking (analogousto blocked nested
loops join), hashing (generalizing the pipelined hash join of Wilschut and Apers (1991),
and indexes (identical to index nested loops).

The benefits of ripple join for enumeration (non-aggregation) queries are akin to the
benefits of sampling for these queries: the running result of a ripple join arguably represents
a “representative” subset of the final result, since it is made from sizable random samples
from each input relation. In an enumerative query, the ripple join aspect ratio can be tuned
to maximize the size of the output, rather than a statistical property.

3.4. Hash-based grouping

SQL aggregation queries can contain a GROUP BY clause, which partitions tuples into
groups. This process can be done via sorting or hashing; in either case, the stream of tuples
resulting from selections, projections and joins are grouped into partitions such that within

a partition all tuples match on the GROUP BY columns. Sorting is a blocking operation
and hashing is not (at least not for a reasonable number of groups), so it is important that
an online aggregation system implement GROUP BY via hashing. Further discussion of
unary hashing and sorting appears in Hellerstein and Naughton (1996).

4. End-to-end issues in online query processing

A collection of algorithms does not make a system; the various building blocks must be
made to interact correctly, and consideration must be given to the end-to-end issues required
to deliver useful behavior to users. In this section we discuss our experience implementing
online query processing in Informix UDO. This implementation is more than a simple “plug-
in”: the various algorithms must be incorporated inside the server alongside their traditional
counterparts, and must be made to work together correctly. In addition, interfaces must be
added to the system to handle interactive behaviors that are not offered by a traditional
system. In this section we describe interfaces to the system, and implementation details in
composing query execution plans. We also discuss some of remaining challengesin realizing
a completely online query processing system. There were some issues in implementing the
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estimators in a DBMS that are not clear from an algorithmic standpoint. We discuss these
in Appendix A.

4.1. Client-server interfaces

A traditional database Application Programming Interface (API) accepts SQL queries as
input, and returns eursoras output; the cursor is a handle with which the client can request
output tuples one at a time. A batch system may process for a long time before the cursor is
available for fetching output, while an online system will make the cursor available almost
immediately. Beyond this minor change in interaction lie more significant changes in the
client-server API: online query processing allows for ongoing interaction between a client
application and database server. Two basic issues need to be handled. First, the system needs
to provide output beyond relational result records. Second, users can provide many kinds
of input to the system while a query is running.

Before actually deciding on functions to add, we had to decide how applications would
invoke our functions. We took two approaches to this problem. Our first solution was to
extend Informix’s Embedded SQL (ESQL) API, which is a library of routines that can be
called from C programs. This was problematic, however, because implementing clients in
C is an unpleasant low-level task.

We preferred to use a combination of Windows-based tools to build our application:
the interface of figure 1 consists of a few hundred lines of Visual Basic code that invoke
Informix’s MetaCube clienttool, and also utilize a Microsoft Excel spreadsheetthat provides
the table and graph widgets. These Windows-based tools do not work over ESQL; instead
they communicate with the DBMS via the standard Open Database Connectivity (ODBC)
protocol. Unfortunately ODBC is part of the MS Windows operating systems, and its APl is
not extensible by third parties. Hence we developed a second architecture that conforms to
the traditional ODBC paradigm: all input is done via SQL queries, and output via cursors.
Sticking to this restricted interface has a number of advantages: it enables the use of ODBC
and similar connectivity protocols (such as Java's JDBC), and it also allows standard client
tools to be deployed over an online query processing system.

Given this architecture, we proceed to discuss our CONTROL API for output and input
in turn.

4.1.1. Output API. Online enumeration queries provide the same output as traditional
database queries; the only distinction is that they make a cursor available for fetching almost
instantly. Online aggregation queries provide a form of output not present in traditional
systems: running estimates and confidence intervals for results. We chose to have these
running outputs appear as regular tuples, with the same attributes as the actual output
tuples. This means that a single SQL query is issued, which returns a stream of tuples that
includes both estimates and results. For example, the query of Section 2.1 can be issued as:

SELECT ONLINE AVG(grade), CONFIDENCE_AVG(grade, 95)
FROM enroll
GROUP BY college;
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The addition of the ONLINE keyword and the CONFIDEN@&G function to the query

can be done automatically by the client application, or explicitly by a user. In this example,
CONFIDENCEAVG is a user-defined aggregate function (UDA) that returns a confidence
interval “half-width” ¢ corresponding to the probability given by the second argument to
the aggregate (i.e., the estimatetis of the correct average with 95% probability). The
interface of figure 1 shows thevalues displayed as “error bars” in a graph. Immediately
after issuing this query, a cursor is available for fetching results. In a traditional system, this
guery would produce one tuple pesllege. In our system, the query produces multiple
tuples percollege, each representing an estimate of the aveagele along with a
confidence interval half-width. If the query is run to completion, st tuple fetched per
college represents the accurate final answer.

Any ODBC client application can handle this sequence of tuples. In particular, a standard
text-based client works acceptably for online aggregation—estimates stream across the
screen, and the final results remain on the last lines of the output. This proved to be our
client of choice while developing the system. Our new interfaces (e.g., figure 1) overwrite
old estimates with updated ones by assigning groups to positions in a tabular display.

4.1.2. Input API. Users should be able to control a running query by interacting with a
client, which passes user input on to the server. As a concrete example from our imple-
mentation, the user should be able to speed up, slow down, or stop groups in an online
aggregation query. Similarly, the spreadsheet widget should be able to express a preference
for records that are in the range currently being shown on screen.

For clients implemented in C over our enhanced ESQL, input to the server is direct: the
client simply invokes API functions that we have added to ESQL, suphwas:_group (x),
speed_up_group (x), etc. Such invocations can be interleaved arbitrarily with requests to
fetch data from a cursor. For clients communicating via ODBC rather than ESQL, direct
invocation of API functions is not an option. For this scenario, we were able to leverage
the Object-Relational features of UDO in a non-standard manner. In an object-relational
system, an SQL query can invoke user-defined functions (UDFs) in the SELECT statement.
We added UDFs to our database that invoke each of our API functions. Hence the client
can issue a query of the form

SELECT PAUSE_GROUP(x) ;

and get the same effect as a client using ESQL. Clients can interleave such “control” queries
with requests to fetch tuples from the main query running on the database. Originally
we considered this an inelegant design (Hellerstein et al., 1997), because it significantly
increases the code path for each gesture a user makes. In practice, however, the performance
of this scheme has been acceptable, and the ease of use afforded by ODBC and Windows-
based 4GLs has been beneficial.

4.1.3. Pacing. Online aggregation queries can return updated estimates quite frequently—
for a single-table aggregation query like that of Section 2.1, a new estimate is available for
every tuple scanned from the table. However, many clients use complex graphical interfaces
or slow network connections, and are unable to fetch and display updates as fast as the
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database can generate them. In these scenarios it is preferable for the system to produce a
new estimate once for eveky>> 1 tuples. This prevents overburdening the client. There
is a second reason to avoid producing too many updated estimates. Typically, SQL query
output is synchronized between the server and client: after the client fetches a tuple, the
server is idle until the next request for a tuple from the client. This architecture is an artifact
of batch system design, in which most of the server processing is done before the first tuple
can be fetched. In an online aggregation query, time spent handling updated estimates at the
client is time lost at the server. Hence it pays to amortize this lost time across a significant
amount of processing at the server—i.e., one does not want to incur such a loss too often.
A solution to this problem would be to reimplement the threading model for online
aggregation so that the query processing could proceed in parallel with the delivery of
estimates. To achieve this, the aggregation query could run as one thread, and a separate
request-handling thread could process fetch requests by “peeking” at the state of the query
thread and returning an estimate. Rather than rearchitecting Informix’s structure in this way,
we chose to maintain Informix’s single-thread architecture, and simply return an output tuple
for everyk tuples that are aggregated. We refer to the nurklaertheskip factor The skip
factor is set by the user in terms of time units (seconds), and we translate those time units into
a skip factor via a dynamic feedback technique that automatically calibrates the throughput
of client fetch-handling.

4.2. Implementing online query operators

The algorithms of Section 3 were designed in isolation, but a number of subtleties arise when
integrating them into a complete system. In this section, we discuss issues in implementing
online query processing operators in Informix.

4.2.1. Online reordering. Like the early System R DBMS prototype (Astrahan et al.,
1976), Informix UDO is divided into two parts: a storage manager called RSAM, and
a query optimization/execution engine implemented on top of RSAM. In our prototype,
we decided to implement all our algorithms entirely above RSAM. This decision was
motivated by considerations of programming complexity, and by the fact that RSAM has a
well-defined, published API that we did not want to modify (Informix, 1998).

Implementing Index Stride above RSAM resulted in some compromises in performance.
RSAM presents interfaces for scanning relations, and for fetching tuples from indexes.
The index-based interface to RSAM takes as arguments a relRtiam index|, and a
predicatep, and returns tuples frorR that matchp. To amortize 1/0 costs, an efficient
implementation of Index Stride would fetch tuples a disk block at a time: one block of tuples
from the first group, then one from the second, and so on. Since the RSAM interface is
tuple-at-a-time, there is no way to explicitly request a block of tuples. In principle the buffer
manager could solve this problem by allocating a buffer per group: then when fetching the
first tuple from a block it would put the block in the buffer pool, and it would be available
on the next fetch. Unfortunately this buffering strategy does not correspond naturally to the
replacement policies in use in a traditional DBMS. The performance of Index Stride could
be tuned up by either implementing a page-based Index Stride in RSAM, or enhancing the
buffer manager to recognize and optimize Index Stride-style access.
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4.2.2. Ripple join. Performance is not the only issue that requires attention in a complete
implementation; we also encountered correctness problems resulting from the interaction
of ripple join and our data delivery algorithms. As described in figure 6, ripple join rescans
each relation multiple times. Upon each scan, it expects tuples to be fetched in the same
order. Traditional scans provide this behavior, delivering tuples in the same order every time.
However, sampling-based access methods may not return the same order when restarted.
Moreover, the online reordering operator does not guarantee that its output is the same when
it is restarted, particularly because users can change its behavior dynamically.

To address this problem, we introduce a cache above non-deterministic operators like
the reorder operator, which keeps a copy of incoming tuples so that downstream ripple join
operators can “replay” their inputs accurately. This cache also prevents ripple join from
actually repeating 1/0Os when it rescans a table—in this sense the cache is much like the
“building” hash table of a hash join.

In ordinary usage, we expect online queries to be terminated quickly. However, if a query
is allowed to run for a long period of time, the ripple caches can consume more than the
available memory. At that point two options are available. The first alternative is to allow the
cache to become larger than available memory, spilling some tuples to disk, and recovering
them as necessary—much as is done in hash join algorithms. The second alternative is to
stop caching at some point, but ensure that the data delivery algorithms output the same
tuples each time they are restarted. For randomized access methods this can be achieved
by storing the seed of the random number generator. For user-controllable reordering, this
requires remembering previous user interactions and “replaying” them internally when
restarting the delivery. We implemented the latter technique in Informix.

An additional issue arises when trying to provide aggregation estimates over ripple joins.
As noted in Section 3.3, estimates and confidence intervals over ripple joins can be refreshed
when a sample dR has been joined with sample §fthis corresponds to a “corner” in the
pictures of figure 4. It therefore makes sense for the estimates in a join query to be updated
at everyk'th corner for skip-factok. However it is possible that the tuple corresponding to
a corner may not satisfy the WHERE clause; in this case, the system does not pass a tuple
up the plan tree, and the estimators are not given the opportunity to produce a refined output
tuple. To avoid this loss of interactivity, when a ripple join operator reaches a “corner”,
it returns a dummy, “null tuple” to the aggregation code. These null tuples are handled
specially: they are not counted as part of the aggregation result, but serve as a trigger for
the aggregation code to update estimates and confidence intervals. Null tuples were easy to
implement in UDO as generalizations of tupleinter joinoperators: an outer join tuple
has null columns from a proper subset of its input relations, whereas a null tuple has null
columns from all of its input relations.

4.3. Constructing online query plans

Like any relational database system, an online query processing system must map declara-
tive SQL queries to explicit query plans: this process is typically cajlesty optimization

Online processing changes the optimization task in two ways: the performance goals of an
online system are non-traditional, and there are interactive aspects to online query processing
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Figure 7. An online query plan tree.

that are not present in traditional databases. For example, for any given query we want to
minimize not the time to completion but rather the time to “reasonable” accuracy. Online
query optimization is an open research area we have only begun to address in the CON-
TROL project. In our first prototype we modified Informix UDO’s optimizer and query
executor to produce reasonable online query plans, without worrying about optimality. In
this section we describe our implementation, and raise issues for future research. As mo-
tivation, figure 7 shows a complete online query plan, including a number of online query
processing operators.

4.3.1. Access method selectionThe choice of access methods dictates the extent to which
a user can control data delivery. The choices of access methods lie on a spectrum of con-
trollability. At one extreme, sequential scan provides no control, but it is fast and does not
require indexes. At the other extreme, Index Stride provides complete control over the pro-
cessing rates from different groups in a GROUP BY query, butitis slow because it performs
many random 1/Os. Online reordering lies between these two extremes. It runs almost as
fast as a sequential scan (except for a small CPU overhead), but only does a best-effort
reordering: if the user has a high preference for extremely rare groups, online reordering
can deliver tuples only as fast as it scans them. In our implementation, we modified the
UDO optimizer to handle SELECT ONLINE queries with a simple heuristic: if there is
a clustered index on the GROUP BY column we use an Index Stride access method, and
otherwise we use a sequential scan access method and follow it with online reordering.
Anopenissue is to allow for reordering when there are GROUP BY clauses over columns
from multiple tables: in this case the reordering operators must work in concert with ripple
join to produce groups in the appropriate ratio. Currently, we add a reordering operator to
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only the leftmost table in the query plan that has a GROUP BY. We intend to address this
issue in future work.

4.3.2. Join ordering. Unlike most traditional join algorithms, ripple joins are essentially
symmetric: there is no distinction between the “outer” and “inner” relations. Hence for a
tree of ripple joins, the join ordering problem is quite simple: all that is required is to tune
the aspect ratios described in Section 3.3; this is done dynamically as described in Haas
and Hellerstein (1999). This view of the problem is overly simplistic, since there is a choice
of ripple join variants (block, index or hash), and the join order can affect this choice. For
example, in a query over relatio® S and T, there may be equality join clauses con-
nectingRto S, andSto T, but no join clause connecting to T. In this case the join
order(R < T) < S cannot use a hash- or index-ripple join since we need to form the
cross-product oR andT ; by contrast, the join ordéiR < S) >« T can use two hash joins.

In our current prototype, we let UDO decide on the join ordering and join algorithms in its
usual fashion, optimizing for batch performance. We then post-process the plan, inserting
reorder operators above access methods, converting hash joins to hash-ripple joins, index
nested-loops joins to index-ripple joins, and nested-loops joins to block-ripple joins.

In ongoing related work, we are studying query optimization in the online context. We
have developed a prototype of a continuous optimization scheme based on the notion of an
eddy(Avnur and Hellerstein, 2000). An eddy is arary query operator interposed between
ninput tables and — 1 joins, which adaptively routes tuples through the joins. The output
of each join is sent back to the eddy for further processing by other joins. By interposing
an eddy in the data flow, we change the join order of the query for every tuple as it passes
through the query plan. Eddies hold promise not only for online query processing, but for
any pipelined set of operations that operate in an uncertain environment—any scenario
where user preferences, selectivities or costs are unpredictable and dynamic.

4.4. Beyond select-project-join

The majority of our discussion up to this point has concentrated on simple SQL query
blocks—consisting of selection, projection and join—followed by grouping and aggrega-
tion. A complete online SQL system must handle other variations of SQL queries as well.
We have not implemented all of SQL in an online fashion: some of it is best done by the
user interface, and some is future research. We detail these issues here.

4.4.1. Order by, Having. The ORDER BY clause in SQL sorts output tuples based on the
values in some column(s). Implementing an online ORDER BY at the server is somewhat
pointless: at any time the server could construct an ordered version of the output so far,
but re-shipping it to the client for each update would be wasteful. Instead, we believe that
ORDER BY is best implemented at the client, using an interface like those described in
Section 2.2. Note that the ORDER BY clause is often used to get a “ranking”, where a few
representative rows near the top will suffice (Carey and Kossmann, 1997; Chaudhuri and
Gravano, 1996). In this case an online spreadsheet interface may be more appropriate to
get a typical smattering of the top few rows; the strict total ordering of SQL's ORDER BY
may over-constrain the request at the expense of performance.
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SQL's HAVING clause filters out groups in a GROUP BY query, based on per-group
values—either aggregation functions or grouping columns. Consider a version of the query
of Section 2.1 that contains an additional clause at theEYWING AVG(grade) > 3.0;
this is an example of a HAVING clause with an aggregate in it. Over time, some college’s
estimated average grade may go from a value greater than 3.0 to one less than 3.0. In that
case, the clientusthandle the deletion of the group from the display; the server does not
control how the client displays previously-delivered tuples. Since the HAVING clause has
to be handled appropriately by clients, we did not implement a HAVING-clause update
scheme at the server.

4.4.2. Subqueries and other expensive predicateSQL allows queries to be nested in the
FROM, WHERE and HAVING clauses. Queries containing ssuthqueriegan sometimes

be rewritten into single-level queries (see Leung et al. (1998) or Cherniack (1998) for an
overview), but there are cases where such subqueries are unavoidable. The problem with
such subqueries is that they force batch-style processing: the outer query cannot produce
output until the subquery is fully processed. Farrelated subqueries, the problem is
exacerbated: the outer query must complete processing (at least!) one subquery before each
tuple of output. A similar problem arises wigixpensiveiser-defined functions in an object-
relational system (Hellerstein, 1998b; Chaudhuri and Shim, 1996): at least one expensive
computation must be completed before each tuple is passed to the output.

To date, we have not addressed the online processing of SQL queries with subqueries.
One perspective on subqueries in an online system is to view them as the composition of
two online systems: the subque@ is an input to the outer quer®, and the goal is to
produce running estimates f@(Qq( )). The optimization of such compositions has been
studied in the Al community agnytime algorithmgZilberstein and Russell, 1996), but it
is notimmediately clear whether that body of work is applicable to multiset-based operators
like SQL queries. Recently (Tan et al., 1999) have suggested that queries with subqueries
be executed as two threads, one each for the outer and inner query blocks, with the outer
block executing based on estimated results from the inner block. The user controls the
rate of execution of these two threads, and thereby the accuracy of the answers. While this
approach is promising, it works only when the subquery simply computes an aggregate, and
the predicate linking the outer block to the inner block is a comparison predicate; it will be
interesting to see if this approach can be extended to other predicates. Various techniques
are available for efficiently executing correlated subqueries and expensive functions during
processing (Rao and Ross, 1998; Hellerstein and Naughton, 1996); these ameliorate but do
not solve the batch-style performance.

5. A Study of CONTROL in action

Inthis section, we illustrate the performance of interactive data analysis in Informix UDO via

a sample usage scenario. Our goal is to demonstrate the benefits of online query processing:
continually improving feedback on the final result, and interactive control of the processing.
We also give an example which combines a ripple join and online reordering to show the
completeness of our system against all “select-project-join” queries. Note that this is not
intended as an robust analytic study of performance; comparisons of online algorithms
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Query 1: SELECT ONLINE avg(o_totalprice), confidence.avg(o_totalprice)
FROM order;

Query 2: SELECT ONLINE avg(o.totalprice), o_orderpriority, confidence avg(o_totalprice)
FROM order
WHERE NOT EXISTS (SELECT * FROM lineitem WHERE o_orderkey = 1l _orderkey
AND 1_shipmode = ’AIR’)
GROUP BY o.orderpriority;

Query 3: SELECT ONLINE avg(l_extendedprice), l_shipmode, confidence.avg(o._totalprice)
FROM order, lineitem
WHERE o_orderkey = l_orderkey
GROUP BY o_orderpriority;

Figure 8 Queries used in our data analysis session.

under different distributions and parameter settings are given in Hellerstein et al. (1997),
Haas and Hellerstein (1999) and Raman et al. (1999).

We scale up all numbers by an undisclosed factor to honor privacy commitments to
Informix Corporation while still allowing comparative analysis (hence time is expressed
in abstract “chronons”). We give rough figures for the actual wall-clock times in order to
show the interactivity of CONTROL We run each of our experiments only until reaonable
accuracy is reached and the analyst switches to the next query.

Our data analysis session uses three queries (see figure 8) against the TPC-D database
with a scale factor of 1 (about 1 Gb of data) (Transaction Processing Council). Since online
reordering is more difficult for skewed distributions of group values, we use a Zipfian
distribution (13:3:3:1) of tuples across different order priorities in theder table. In
Queries 2 and 3 we group byorderpriority, to demonstrate the effectiveness of online
reordering even in the presence of the skewed distributions commonly found in real data.

Our scenario begins with an analyst issuing Query 1, to find the average price of various
orders. Although the base table takes a while to scan (it is about 276MB), the analyst
immediately starts getting estimates of the final average. Figure 9 shows the decrease in the
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Figure 9 Decrease in the confidence interval for Query 1.
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Figure 10 Number of tuples processed for different groups for Query 2.

confidence interval for the average as a function of time. We see that very accurate results
are obtained within 12 chronons. On the other hand, a non-online version of the same query
took 1490 chronons to complete, or over two orders of magnitude higher! To give an idea
of the interactivity, the online version took about a second to reach reasonable (confidence
interval <2%) accuracy whereas the non-online version took on the order of a few minutes
to complete.

After 12 chronons, the analyst looks at the estimates and feels (based on domain knowl-
edge) that they “are not quite right”. Wondering what is happening, the analyst hypothesizes
that the prices may be skewed by the presence of some expensive air shipments. Hence the
next query issued is Query 2, which finds the average price of orders that do not have any
item shipped by air. Notice that with a traditional DBMS, the analyst would not be able to
try out this alternative until the first query had completed and returned a result.

Since Query 2 involves a non-flattenable subquery, Informix cannot pick a ripple join. It
instead scanBrder, using the index ol.ineitem to evaluate the subquery condition. It
chooses online reordering to permit user control over the processing from different groups
of Order. Almost immediately after Query 2 starts running, the analyst decides, from
the estimates, that the group withorderpriority as5-LOW is more interesting than
others, and presses the “speed up” button (see figure 1) t&¢i@sV a preference of 5,
compared to 1 for the rest of the groups. Figure 10 shows the number of tuples processed
for different groups as a function of time. After some time (point T1 in the figuge),
LOW’s confidence interval has narrowed sufficiently, and the analyst shifts interest to group
1-URGENT, giving it a preference of 5, and reducing that of all other groups®tt\k. see
that online reordering is able to meet user preferences quite well, despite the interesting
groups being rare. In contrast, a sequential scan will actually process the interesting group
5-LOW more slowly than others, because it is uncommon.

Figure 11 shows the rate at which the confidence intervals for the estimates decrease for
the same query. We see that therder operator automatically adjusts the rates of processing
so as to decrease confidence intervals based on user preferences. Also note that at T1 when
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Figure 11 Decrease in confidence interval for different groups for Query 2 with online reordering. Note that the
confidence interval for 5-LOW decreases sharply at the beginning, and that the preference for 1-URGENT drops
sharply at T1.

the preference for 1-URGENT is increased, the other groups stop for a while (until T2)
(in fact 5-LOW plateaus for so long after T2 that the analyst sees no further updates for
this group before quitting at 800 chronons; this same behavior is also seen in Figure 10).
Likewise, there is a sudden spurt in the processing of tuples fr&/RGENT from T1

until T2. This happens becauseorder realizes that it has processed very few tuples from
1-URGENT with respect to the new preferences, and starts to compensate for it. After T2,
the different groups get processed according to their preferences. This compensation arises
because of the performance goal that we use: we view the preferences as a weight on the
importance of a group, and try to make the weighted average confidence interval across all
groups decrease as fast as possible. The motivation for this goal, as well as performance for
several other goals, is given in greater detail in Raman et al. (1999).

The mechanism for doing the reordering to decrease the confidence intervals in an optimal
manner is explained in Raman et al. (1999). In that paper we also present results that show
that online reordering performs well against a variety of data distributions, processing costs,
and user preference change scenarios. We also show its efficacy in reordering for an online
enumeration application, and for speeding up traditional batch query processing.

After seeing the estimates for 800 chronons, the query does not seem to exhibit any
interesting trends. Hence the analyst decides to proceed in a different direction, and submits
a new query (Query 3), which drills down on the average lineitem prices, grouping by the
o_order_priority. Online reordering has helped the analyst to narrow down the estimates
for the group of interest and drill down much before Query 2 completes; the entire query
takes 58730 chronons to run.

Query 3 needs to access theder andLineitenm tuples, and since the join predicate
is equality it can be evaluated with a hash ripple join. Again, we use online reordering on
Order to allow user control over the processing of tuples from different order priorities.
This query involves running a hash-ripple join ovararder operator.
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Figure 12 Decrease in confidence interval for different groups for Query 3 with online reordering. Note that the
confidence interval for 3-MEDIUM decreases much faster than the others.

Figure 12 shows the decrease in confidence intervals for different groups over time.
The analyst increases the preference for grawgeEDIUM to 20 at the beginning of the
processing, and this is reflected in the faster decrease in its confidence interval. We see that
within 100 chronons, a reasonably accurate picture emerges, especi@gipEnIUM. In
contrast, a regular hash join took 68210 chronons to execute this query, which is about
three orders of magnitude slower! Natice that this query involves running a hash ripple join
over areorder operator. Hence the join replays tuples fromeitem using a cache of the
previous results fromeorder as explained in Section 4.2.2. Further comparisons of ripple
joins are presented in Haas and Hellerstein (1999) including a comparison of hash, index,
and block ripple joins with batch algorithms, and a study of the importance of tuning join
aspect ratios for shrinking confidence intervals.

6. Conclusions and future work

We have implemented a prototype online query processing system in Informix UDO, which
supportsad-hocselect-project-join queries with grouping and aggregation. Our prototype
cannot be considered “shippable” software, but it is fairly complete. The set of algorithms
we developed provides interactive processing for a large family of SQL queries, and we
were able to address most of the details required to implement a usable general-purpose
system. We have been able to interface our system with 4GL-based client tools with little
difficulty, resulting in quite serviceable online data analysis applications.

A number of lessons emerged in our work. Most significantly, we found that extending an
SQL engine to provide online query processing is neither trivial nor overly daunting. A full
implementation does require extending the database engine from within, and extensions
are required from the access methods through the query operators, optimizer, and client
API. But most of the changes are analogous to facilities already present in a complete SQL
engine, and are therefore relatively simple to add.
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We believe that many of our lessons in extending the system are pertinent outside the spe-
cific domain of online query processing. For example, any extension of a database system
to handle new interactions will require some of the same API considerations mentioned in
this paper. Similarly, additions of new access methods entail new considerations in database
design. In addition, the issues raiseddoynposinglgorithms into large query plans are gen-
erally important, and perhaps too often neglected outside the context of relational database
systems. Because these kinds of issues are often ignored in initial publications, new data
analysis techniques are often passed over by practitioners. On occasion these pragmatic
issues can also become rather interesting research problems, which would not naturally
arise outside the context of a full implementation.

The most significant lesson for us resulted from the leverage we got from cross-
disciplinary synergy: in our case, the mixture of statistics, computer systems and user
interfaces. Our work was motivated by user interface goals; these mapped to system per-
formance requirements, which were in turn clarified by optimizing for statistical metrics.
Ripple join is perhaps the clearest example of this synergy: in order to achieve a balance
between interactivity and output quality for multi-table queries, we developed a new query
processing algorithm, which led to a very non-standard dynamic optimization paradigm
(adjusting aspect ratios) based on variance of input to statistical estimators. We believe that
this kind of cross-disciplinary synthesis is a fertile approach for developing future computer
systems.

A number of issues remain as future work in online query processing. We have barely
begun to study the user interface issues involved in online data analysis; much work remains
to be done in understanding and constructing usable applications, especially for online enu-
meration and visualization. In the systems arena, we are extending our results to work in a
parallel context, which entails algorithmic work as well as statistical work—e.g., parallel
ripple joins are akin to stratified sampling techniques, which affects the estimators and con-
fidence intervals for online aggregation. It would also be helpful to find general techniques
for handling subqueries—many typical decision-support queries contain subqueries (e.qg.
the TPC-D benchmark queries (Transaction Processing Council)), and some of those cannot
be rewritten away.

More generally, we are interested in the way that interactive techniques change the process
of data analysis and knowledge discovery: when long-running operations become more
interactive, the distinction between so-called “automated” techniques (e.g., data mining) and
user-driven techniques (data visualization, SQL) are significantly blurred. The implications
are likely to go beyond the obvious issues of faster interaction, to suggest new and more
natural human-computer interactions for data analysis.

Appendix: A. Issues in implementing aggregate estimation

Online aggregation queries raise additional complications, since query processing must be
integrated with estimation techniques. While this paper does not dwell on the statistics
involved in our estimators, we do describe some of the system implementation issues that
they raise.
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A.1. Choice of confidence intervals

Three different classes of confidence intervals for online aggregation are detailed in (Haas,
1997).Deterministicconfidence intervals give strict bounds on the error of an estimator, us-
ing bounds on the cardinalities of the tables and on the values of the input to the aggregation
function. Conservativeestimators are based on Hoeffding’s inequality (Hoeffding, 1963),
and can be used for samples of any size, but appear inapplicable to certain aggregation
functions like STDDEVLarge samplesstimators are based on Central Limit Theorems,
and can be used on large samples (where large can be as small as 20—-30 tuples) to provide
quite tight confidence intervals. All three of these estimators can be extended to work on
the cross-product samples provided by ripple joins (Haas and Hellerstein, 1999). We prefer
to use large-sample confidence intervals because they are typically much tighter than de-
terministic or conservative estimates (Haas, 1997) and apply to a wider range of aggregate
functions. However, there are two scenarios in which large-sample confidence intervals are
inappropriate.

First, large sample confidence intervals fluctuate wildly at the beginning of a query,
until a “large enough” sample has been processed. In order to avoid misleading the user,
conservative confidence intervals should be used at first, until a large sample has been
obtained. A reasonable choice might be to switch to large-sample confidence intervals only
after 40 or 50 tuples have passed the query’s WHERE clause. For those aggregates that
cannot use conservative confidence intervals, it makes sense to simply postpone producing
confidence intervals for that period. In general it is difficult to robustly decide when the
Central Limit Theorem “kicks in” and one can switch estimators; in practice the sample
sizes resulting from “big picture” database queries become large enough very quickly.
Second, towards the end of processing a query large-sample confidence intervals are too
conservative. Even after all tuples have been processed, a large-sample confidence interval
will have a finite, although small, width. Thus towards the end of a query it is appropriate
to switch to using deterministic confidence intervals. This switch can be done as soon as
the deterministic interval is tighter than the large-sample interval.

In most situations, we expect user to stop processing online queries well before they
complete, so the issue of deterministic confidence intervals may seem irrelevant. However
deterministic confidence intervals can get used quite often because of reordering in GROUP
BY queries. If a user is especially interested in a particular group, they will speed up that
group’s delivery to the pointwhere it all tuples from the group will get fetched quickly; this is
analogousto the “end-of-query” scenario for that group. If large-sample confidence intervals
were used, that group could have a wide confidence interval even though it was finished.

A.2. Interaction of reordering and aggregate estimation

Reordering the data delivery biases the order in which tuples are read from different groups;

in this sense it does not produce unbiased random samples. However, a key property of
our reordering methods is thatjthin a group, reordering does not affect the order of
tuples produced, and hence unbiased random samples are guaranteed per group. Since the
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aggregate function for each group in a GROUP BY query is estimated independently, no
bias is involved in the estimation.

A.3. Calculation of quantities for estimation

A number of quantities are required as inputs to our estimators and confidence-interval
computations. We briefly describe how we derive these in our implementation.

First, the estimators we use require knowledge of the actual number of tuples read from
eachtabléeforeany selections are applied. Obtaining this information required us to modify
the RSAM layer slightly, since RSAM only returns tuples that satisfy relevant selections in
the query’s WHERE clause. This was the only situation where we added code in the RSAM
layer.

Second, a few of our estimators and confidence interval computations require knowledge
of the cardinalities of individual groups in a table (Haas, 1997; Hass and Hellerstein, 1999).
To obtain this information for an Index Stride, we require a histogram on the GROUP BY
column; a more natural solution would be to usarkedindex (Knuth, 1973; Antoshenkov,
1992; Aoki, 1998), but this is not available in most commercial databases. In the first phase
of the reordering operator described at the end of 3.2, we can estimate a group’s cardinality
as the fraction of tuples from that group in the currently scanned sample. The statistics in
the confidence intervals need to take the error of this estimation into account (Haas, 1997;
Hass and Hellerstein, 1999); the statistical details remain as future work. In the second
phase of the reordering operator, the exact cardinalities of all groups are known, so our
usual estimation techniques apply.

Third, deterministic confidence intervals also require upper and lower bounds on the in-
puts to the aggregation functions. If the input to the function is a columnA@Ggenroll .
grade)), these bounds are typically available from the system catalogs. If the input is more
complex (e.gAVG(f (enroll.grade) for some UDFf) the only bounds available are
those of the data type of the input (e.g. MAXINT is an upper bound for integers).
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Notes

1. Continuous Output and Navigation Technology with Refinement On Line.

The other SQL aggregatasIN andMAX, are “needle-in-a-haystack” scenarios that cannot be satisfied via

sampling schemes like online aggregation: the minimum or maximum value may not appear until the last tuple

is fetched. However, related user-defined-aggregates are amenable to online aggregatigrpergentile,

which displays a tuple that can be said to be withf the 99'th percentile with some confidence.

3. The termclusteringin relational databases is distinct from the statistical notion of clustering. A table in a
database is said to be clustered on a column (or list of columns) if it is stored on disk in ascending order of that
column (or ascending lexicographic order of the list of columns).

4. In order for this scheme to work, one must declare the function to SQL as being “NOT VARIANT".

This informs the system that the value bf ) for a tuple will not change over time, and the index can serve
as a cache of thé ( ) value for each tuple. This might seem counterintuitive sifi¢e) generates random
numbers, but the point is that theseof the random numbers is static: once they define an initial random
ordering of the table, that ordering is static until the table is reclustered.

5. Index Stride is naturally applicable to other types of indices as well, but we omit discussion here.

6. The name “ripple join” has two sources. One is shown in the pictures in figures 4 and 5—the algorithm sweeps
out the plane like ripples spreading in a pond. The other source is the rectangular version of the algorithm,
which produces “Rectangles of Increasing Perimeter Length”.

7. Weran all experiments on alightly-loaded dual-processor 200 MHz UltraSPARC machine running SunO0S 5.5.1
with 256MB RAM. We used the INFORMIX Dynamic Server with Universal Data Option version 9.14 which
we enhanced with online aggregation and reordering features. We used a separate disk for the side-disk for
online reordering. We used a statistical confidence parameter (Haas, 1997) of 95% for our large sample
confidence intervals. Note that we did not bother to tune our Informix installation carefully, since our online
results were already performing sufficiently well. The performance of online and batch results presented here
are not necessarily indicative of the peak performance available in a well-tuned installation, and readers should
not use this study to extrapolate about the performance of Informix UDO.

8. To ensure that preferences are changed at a fixed, repeatable point in our experiments, we madidietthe
operator to read in the preference change points from a configuration file instead of from the GUI of figure 1.

N
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