INFRA-RED SOURCES IN THE H II REGION W3

C. G. Wynn-Williams, E. E. Becklin and G. Neugebauer

(Received 1972 July 24)

Abstract

SUMMARY High resolution mapping and photometric observations in the wavelength range $\mathrm{r} \cdot 65-20 \mu$ have led to the discovery of nine distinct infra-red objects in W_{3}. Four of them, including one coincident with $\mathrm{W}_{3}(\mathrm{OH})$, are identified with compact radio $\mathrm{H}_{\text {II }}$ condensations $\sim 0 \cdot \mathrm{I}$ pc in diameter. They show strong emission in the range $3-20 \mu$ which is attributable to dust grains at a temperature of $\sim 150 \mathrm{~K}$ mixed with the ionized gas. On the other hand, the $2-\mu$ emission from these objects is considerably less than is predicted from the radio measurements, indicating that the $\mathrm{H}_{\text {II }}$ condensations are surrounded by obscuring dust with up to 50 mag of visual extinction. One of the condensations contains an unresolved source which is almost certainly a highly obscured O star that excites the component. Four other infra-red sources have no associated radio continuum source; one of these, an unresolved source with a luminosity $\sim 3 \times 10^{4} L_{\odot}$, is coincident with a source of $\mathrm{H}_{2} \mathrm{O}$ maser emission and may be a massive protostar.

I. INTRODUCTION

W_{3}, a powerful galactic radio source, is an H ir region situated in the Perseus spiral arm at a distance of about $3 \mathrm{kpc} . \star$ It is associated with the optical nebula IC 1795, at least two centres of molecular maser emission and large quantities of dust and neutral hydrogen.

Recent aperture synthesis maps of W_{3} at 2.7 GHz and 5 GHz (Webster \& Altenhoff 1970; Wynn-Williams 1971) show that a large fraction of the total radio emission originates from compact condensations with diameters of the order of $0 \cdot 1 \mathrm{pc}$ and electron densities of about $10^{4} \mathrm{~cm}^{-3}$. A reproduction of the Sky Survey red photograph of the region is included in the paper by Wynn-Williams (1971), hereafter referred to as 'Paper I'.

In this paper, we examine the infra-red emission in the range 1.65 to 20μ from two regions of W_{3}. These regions correspond approximately to those mapped at 5 GHz in Paper I and comprise:
r. The W_{3} (continuum) source. This is a $3 \operatorname{arc} \min (2.7 \mathrm{pc})$ diameter region containing four condensations, and is the main source of continuum radio emission. This region is associated with a powerful $\mathrm{H}_{2} \mathrm{O}$ maser source and lies behind a thick layer of obscuring dust.
2. The $\mathrm{W}_{3}(\mathrm{OH})$ source. This is a very compact H II condensation, only some $2 \operatorname{arcsec}(0.03 \mathrm{pc})$ in diameter. It is situated about $16 \operatorname{arc} \min (14 \mathrm{pc})$ from W_{3} (continuum) and is associated with the main source of OH emission in W_{3}, but no optical feature.

[^0]The main purposes of the present observations were (a) to search for the exciting stars of the $\mathrm{H}_{\text {II }}$ condensations, which are obscured at optical wavelengths; (b) to examine the distribution of heated dust in the nebula; and (c) to see if there exist correlations between $\mathrm{OH} / \mathrm{H}_{2} \mathrm{O}$ and infra-red emission in H in regions similar to those that exist for $\mathrm{OH} / \mathrm{IR}$ stars (see, for example, Wilson et al. 1972).
W_{3} is a particularly suitable object for study in the infra-red because (a) it has a high emission measure; (b) star formation is likely to have been taking place within the last $10^{4} \mathrm{yr}$ (Paper I); and (c) there already exists a large body of optical and radio data on the source.

2. OBSERVATIONS

The observations presented here consist of wide band photometric and mapping measurements at $\mathrm{I} .65 \mu(\mathrm{I} \cdot 5-\mathrm{r} .8 \mu), 2.2 \mu(2.0-2.4 \mu), 3.5 \mu(3.2-3.8 \mu), 4.8 \mu$ (4.5-5.1 μ), 10 $\mu(8-13 \mu)$ and $20 \mu(17-24 \mu)$. Measurements were made during the winter of $1971-72$ on the Hooker 100-inch and the Hale 200-inch telescopes of the Hale Observatories. The photometer used measures the difference between the emission from two adjacent areas of sky (Becklin \& Neugebauer 1968). The separation of these areas depended on the choice of telescope and operating wavelength, but was usually in the range of $7-30 \mathrm{arc} \mathrm{sec}$. Focal plane diaphragms with a variety of sizes were used, the choice depending on the seeing conditions and the nature of the object being studied. For much of the mapping and for a large number of the photometric determinations a 10 arc sec aperture was used.

Calibrations were made using standard stars. The flux calibration was based on the model atmosphere calculations of α Lyr given by Schild, Peterson \& Oke (1971); the flux levels at the effective wavelengths are given in Wilson et al. (1972). At 20μ the air mass correction was determined each night using a bright star at different zenith angles; standard air mass corrections were applied to the $1 \cdot 65^{-}$ to $10-\mu$ data.

None of the infra-red sources under study are visible optically; their positions were therefore established relative to nearby field stars by measurements at the focal plane of the telescope. The positions of the field stars were then determined relative to a number of AGK2 stars by measurements of the appropriate 48 -inch Schmidt Sky Survey plate.

3. RESULTS

Fig. I shows the maps of the W_{3} (continuum) source at $2 \cdot 2$ and 20μ, together with the $6-\mathrm{cm}$ radio map of the corresponding area adapted from Paper I. The whole area of Fig. I was surveyed down to flux density limits of 150 f.u. at 20μ and $0 \cdot 1$ f.u. at 2.2μ. Selected parts of the region were, however, studied in greater detail, with the result that sources with flux densities below the limits quoted above are included in Fig. I. Because of the confusion with field stars, $2 \cdot 2-\mu$ sources to the west of $02^{\mathrm{h}} 2 \mathrm{I}^{\mathrm{m}} 48^{8}$ are not shown.

The seven sources of infra-red emission which are evident in Fig. I are discussed in more detail in Sections 3(a)-3(c). Two additional infra-red sources were discovered associated with $\mathrm{W}_{3}(\mathrm{OH})$; these are discussed in Section 3(d). Throughout this paper the numbers IRSi, IRS2, etc. refer to infra-red sources, while the numbers $W_{3}(A), W_{3}(B)$, etc. refer to the radio components as in Paper I; the flux unit (f.u.) is defined as $10^{-26} \mathrm{Wm}^{-2} \mathrm{~Hz}^{-1}$ and all coordinates are for epoch $1950 \cdot 0$.

Fig. I. The W_{3} (continuum) region at $2 \cdot 2-\mu, 20-\mu$ and $6-\mathrm{cm}$ wavelength. The complete region was mapped with a 10 arc sec aperture at $2 \cdot 2$ and 20μ to flux levels of $\circ \cdot 1$ and 150 f.u.; the positions and sizes (Table II) of IRS $3, I_{2} S_{4}, I_{5} 5$, IRS6 and IRS 7 were determined with a 5 arc sec aperture. The radio continuum data are taken from Paper I and have a resolution of 6.5×7.4 arc sec; the position of the $\mathrm{H}_{2} \mathrm{O}$ maser source is as given by Hills et al. (1972). The contour intervals, in units of $W_{m^{-2}} \mathrm{~Hz}^{-1} \mathrm{sr} r^{-1}$, are 2.0×10^{-19} at $2.2 \mu, 2.5 \times 10^{-16}$ at 20μ and 3.4×10^{-18} at $6 \mathrm{~cm}\left(\mathrm{~T}_{B}=440 \mathrm{~K}\right.$ at 6 cm$)$ with dashed contours at half intervals. Hatched circles indicate unresolved sources. Sources to the west of $02^{h}{ }_{21}{ }^{m} 48^{8}$ are not shown at $2 \cdot 2 \mu$ because of the presence of confusing field stars.

(a) $I R S_{\mathrm{I}}$ and $I R S 2$: sources associated with $W_{3}(A)$

The bottom two maps of Fig. r indicate that the shape and size of IRSI at 20μ are nearly identical with those of $\mathrm{W}_{3}(\mathrm{~A})$ at 6 cm ; at both wavelengths emission is concentrated in an incomplete ring surrounding a central region of lower brightness. At $2 \cdot 2 \mu$, however, there is an additional unresolved source, IRS2, near the
radio minimum. Scans show that its diameter is $\lesssim 5 \mathrm{arcsec}$; IRS2 is also observable at 1.65μ, but was not seen on the ro- and $20-\mu$ scans (flux $\lesssim 100$ f.u. at 20μ). With the exception of this unresolved source, which for reasons given in Section 4(b) we believe to be an early-type star, there is good agreement between the brightness distributions of $\mathrm{W}_{3}(\mathrm{~A}) /$ IRSi at $2 \cdot 2 \mu, 20 \mu$ and 6 cm .

The combined radio and infra-red energy distributions of $\mathrm{W}_{3}(\mathrm{~A}) /$ IRSI are shown in Fig. 2; the flux of IRS2, which is approximately 6 per cent of the total

Fig. 2. The energy distributions of the four sources $W_{3}(A) / I R S_{\mathrm{I}}, W_{3}(B) / I R S_{3}, W_{3}(C) /$ $I R S_{4}$ and $W_{3}(O H) / I R S 8$ at radio and infra-red wavelengths. The dashed lines indicate the expected infra-red thermal emission from the ionized hydrogen as predicted from the radio emission (see Section 4(a)). Radio data are from Paper I (0.4, 1•4 and 5 GHz), Webster $\mathcal{E}^{\text {® }}$ Altenhoff (1970) (2.7 GHz), Aikman (1968), (6.6 and 10.6 GHz), Schraml \mathfrak{E} Mezger (1969), (${ }_{5} 54 \mathrm{GHz}$). The 86 GHz point for $W_{3}(\mathrm{OH})$ was supplied by W. F. Wilson (private communication); the 82 GHz limits for $W_{3}(A)$ and $W_{3}(B)$ are from Hobbs, Modali \mathcal{E}° Maran (1971) who give a value for the total emission for W_{3} (continuum).
at $2 \cdot 2 \mu$, has not been included. The total flux density at 20μ was obtained by integration of Fig. I, but at 2.2μ, where the source is weaker and the zero level determination more difficult, the total flux density was obtained from a separate series of scans using a 15 arc sec aperture and a signal-reference beam separation of 250 arc sec. The flux densities at $\mathrm{I} \cdot 65,3 \cdot 5$, and 10μ were estimated by normalization of comparative measurements of a 10 to 20 arcsec diameter region of the bright north rim of the source.

The 1 - to $3-\mu$ colour of IRS2 is significantly different from that of IRSI; in Table I the $1 \cdot 65$ - and $\mathbf{2 \cdot 2 - \mu}$ flux densities from IRS 2 are compared with those

Table I
Positions and 2- μ colours of the unresolved source IRS2, and of a 10 arc sec diameter region of the extended source IRSI

Right ascension (1950.0)
Declination (1950.0)
I. $65-\mu$ flux density (f.u.)
$2 \cdot 2-\mu$ flux density (f.u.)
Measured ratio ($S_{2 \cdot 2} / S_{1 \cdot 65}$)
Predicted ratio ($S_{2 \cdot 2} / S_{1 \cdot 65}$) for no extinction
Extended source
(IRSI)

$$
02^{\mathrm{h}} 2 \mathrm{I}^{\mathrm{m}} 56 \cdot 7 \pm 0 \cdot 3^{\mathrm{s}}
$$

$$
61^{\circ} 52^{\prime} 54 \pm 2^{\prime \prime}
$$

$$
0.06 \pm 0.01
$$

$$
0.13 \pm 0.01 \quad 0.17 \pm 0.01
$$

$$
2 \cdot 2 \pm 0 \cdot 4
$$

$$
1 \cdot 7 \pm 0 \cdot 2
$$

$$
0.63
$$

from a 10 arc sec diameter region centred on the bright rim of IRSI. The origin of this colour difference is discussed in Sections 4 (a) and 4(b).
(b) $I R S_{3}$ and $I R S_{4}$: sources associated with H II condensations

As can be seen from Fig. I and Table II the positions of sources IRS 3 and IRS4 agree within experimental error with those of the radio sources $W_{3}(B)$ and $W_{3}(C)$, although there is some indication that IRS $_{4}$ is displaced from $\mathrm{W}_{3}(\mathrm{C})$ in the direction of W_{3} (D). It was possible to measure IRS3 at 3.5 and 2.2μ (Fig. 2) but the confusion from field stars hindered observations at these wavelengths of IRS4. Scans with a 5 arcsec diameter aperture showed that IRS_{3} is clearly extended at 20μ with a size similar to that of $\mathrm{W}_{3}(\mathrm{~B})$, while IRS $_{4}$, like $\mathrm{W}_{3}(\mathrm{C})$, has a diameter of less than 5 arcsec (see Table II).

Table II
Positions, sizes and $20-\mu$ flux densities of infra-red and radio sources

Components	R.A. (1950.0)	Dec. (1950 ${ }^{\circ}$)	Approximate size (arc sec)	20- μ flux density (f.u.)
IRSI	$02^{\mathrm{h}} 2 \mathrm{I}^{\mathrm{m}} 56 \cdot 0 \pm 0 \cdot 5$	+619 $52^{\prime} 45 \pm 5^{\prime \prime}$	40	2000
$\mathrm{W}_{3}(\mathrm{~A})$	$02^{\text {h }} 2 \mathrm{I}^{\mathrm{m}} 56 \cdot 8 \pm 0 \cdot 4$	$61^{\circ} 52^{\prime} 49 \pm 5^{\prime \prime}$	40	-
IRS_{3}	$02^{\text {h }} 2 \mathrm{I}^{\mathrm{m}} 50 \cdot 3 \pm 0 \cdot 3^{\text {s }}$	$6 I^{\circ} 52^{\prime} 22 \pm 2^{\prime \prime}$	14	200
$\mathrm{W}_{3}(\mathrm{~B})$	$02^{\mathrm{h}} 2 \mathrm{I}^{\mathrm{m}} 50 \cdot 7 \pm 0 \cdot 2^{\text {s }}$	$6 \mathrm{I}^{\circ} 52^{\prime} 2 \mathrm{I} \pm 2^{\prime \prime}$	17	-
IRS_{4}	$02^{\text {h }} 2 \mathrm{I}^{\mathrm{m}} 43 \cdot 5 \pm 0 \cdot 3^{\text {s }}$	$61^{\circ} 52^{\prime} 49 \pm 2^{\prime \prime}$	<5	300
$\mathrm{W}_{3}(\mathrm{C})$	$02^{\text {h }} 2 \mathrm{I}^{\mathrm{m}} 43 \cdot 8 \pm 0 \cdot 2^{\text {s }}$	$61^{\circ} 52^{\prime} 46 \pm 2^{\prime \prime}$	<5	-
W3 (D)	$02^{\text {h }} 2 \mathrm{I}^{\mathrm{m}} 42 \cdot 4 \pm 0 \cdot 2^{\text {s }}$	$61^{\circ} 52^{\prime} 55 \pm 2^{\prime \prime}$	18	-
IRS_{5}	$02^{\mathrm{h}} 2 \mathrm{I}^{\mathrm{m}} 53 \cdot 2 \pm 0 \cdot 3^{\text {s }}$	$6 \mathrm{I}^{\circ} 52^{\prime} 2 \mathrm{I} \pm 2^{\prime \prime}$	<3	500
$\mathrm{H}_{2} \mathrm{O}$	$02^{\text {h }} 2 \mathrm{I}^{\mathrm{m}} 52 \cdot 9 \pm 0 \cdot 2^{\text {s }}$	$61^{\circ} 52^{\prime} 22 \pm 2^{\prime \prime}$	-	-
IRS6	$02^{\text {h }} 2 \mathrm{I}^{\mathrm{m}} 53 \cdot 8 \pm 0 \cdot 3^{\text {s }}$	$61^{\circ} 52^{\prime} 16 \pm 2^{\prime \prime}$	<10	50
IRS7	$02^{\text {h }} 2 \mathrm{I}^{\mathrm{m}} 52 \cdot 8 \pm 0 \cdot 3^{\text {s }}$	$61^{\circ} 52^{\prime} 10 \pm 2^{\prime \prime}$	5-10	70

The $\mathrm{H}_{2} \mathrm{O}$ position is from Hills et al. (1972), other radio data from Paper I.
A careful search was made at 20μ for emission from $\mathrm{W}_{3}(\mathrm{D})$, the last of the four radio condensations associated with the W_{3} (continuum) radio source. Marginal evidence for emission was found on some scans, but it would be safer to conclude only that the $20-\mu$ flux density through a $10 \mathrm{arc} \sec$ diameter aperture centred on $\mathrm{W}_{3}(\mathrm{D})$ is less than roo f.u.

(c) IRS5, IRS6 and IRS 7 : sources not associated with H II condensations

In addition to the sources associated with H II condensations, three new sources have been discovered at 20μ which do not correspond to any optical or radio continuum feature. Their locations are shown in Fig. I and Table II.
IRS_{5} is the most remarkable of these sources. Its $20-\mu$ flux density is greater than that of $\mathrm{W}_{3}(\mathrm{~B}) / \mathrm{IRS}_{3}$, despite the fact that it is unresolved with a diameter of less than $3 \operatorname{arcsec}(0.05 \mathrm{pc})$. As can be seen in Fig. 3 its energy distribution is unlike those of the sources associated with H II condensations (Fig. 2), of which IRS_{3} is typical. It has an extremely steep slope at short wavelengths; between $\mathbf{2 . 2}$ and 4.8μ the flux density increases by a factor of 10^{4}.

IRS6 and IRS7 are much fainter and were detected only at 20μ, at which wavelength their flux densities are each about 60 f.u. Measurements on both these sources were difficult owing to their proximity to IRS $_{5}$, but scans show that IRS7 is extended.

As can be seen in Table II, IRS $_{5}$ coincides within experimental error with the position of the $\mathrm{H}_{2} \mathrm{O}$ maser source as determined by Hills et al. (1972). No accurate position is known for the OH emission discovered by Turner (1970) from this region.

(d) IRS8 and IRS9: sources associated with $W_{3}(\mathrm{OH})$

Searches were made at both 2.2 and 20μ over an area of about 2 arc min diameter centred on $\mathrm{W}_{3}(\mathrm{OH})$. The detection limit for the discovery of new sources in this region was 0.07 f.u. at 2.2μ and roo f.u. at 20μ.

Two sources were found; their positions are shown in Table III and their energy distributions in Figs 2 and 4. IRS8 is the more powerful of the two at 20μ, but IRS 9 is the brighter at $2 \cdot 2 \mu$.

Table III
The two infra-red sources associated with the $W_{3}(\mathrm{OH})$ source

	R.A. (1950*0)	Dec. (1950.0)	Approximate size (arc sec)	20- μ flux density (f.u.)
IRS8	$02^{\text {h }} 23^{\mathrm{m}} 16 \cdot 7 \pm 0 \cdot 3^{\text {s }}$	$+61^{\circ} 38^{\prime} 56 \pm 2^{\prime \prime}$	<3	200
Radio continuum	$02^{\mathrm{h}} 23{ }^{\mathrm{m}} 16.48 \pm 0.07^{\text {s }}$	$6 I^{\circ} 38^{\prime} 56 \cdot 8 \pm 0 \cdot 5^{\prime \prime}$	$1 \cdot 7$	-
OH	$02^{\mathrm{h}} 23^{\mathrm{m}} 16 \cdot 8 \pm 0 \cdot 2^{\text {s }}$	$6 \mathrm{I}^{\circ} 38^{\prime} 54 \pm 2^{\prime \prime}$	1.2×2.3	-
$\mathrm{H}_{2} \mathrm{O}$	$02{ }^{\text {h }} 23{ }^{\text {m }} 17 \cdot 25 \pm 0 \cdot 2^{\text {s }}$	$61^{\circ} 38^{\prime} 57 \cdot 4 \pm 2^{\prime \prime}$	-	-
IRS9	$02^{\mathrm{h}} 23^{\mathrm{m}} 21 \cdot 4 \pm 0 \cdot 3^{\text {s }}$	$61^{\circ} 39^{\prime} 10 \pm 2^{\prime \prime}$	<10	25

The radio position is from Paper I, the OH position is from Raimond \& Eliasson (1969), the OH size from Moran et al. (1968), and the $\mathrm{H}_{2} \mathrm{O}$ position is from Hills et al. (1972).

IRS8 is coincident with the OH and radio continuum positions to within experimental error, though marginally displaced from the $\mathrm{H}_{2} \mathrm{O}$ position. It is unresolved at 20μ, with a diameter less than 3 arc sec. Its energy distribution and luminosity are similar to those of IRS 3 and IRS4; at wavelengths less than 3μ, however, it is difficult to measure because it is superimposed on a fluctuating background.

A preliminary description of IRS9 at 1.65 and 2.2μ has already been given by Neugebauer, Hilgeman \& Becklin (1969); IRS9 is some 30 arc sec away from the

OH source and is not associated with any known optical or radio feature. Most of its flux density comes from within a 10 arc sec region, but an accurate estimate of its diameter is difficult owing to the background fluctuations at 2.2μ mentioned above.

4. DISCUSSION

(a) Extinction in front of the $H_{\text {iI }}$ condensations

The dashed lines in Fig. 2 represent the predicted emission from ionized hydrogen and helium as extrapolated from the radio data using relations given by Willner, Becklin \& Visvanathan (1972). This predicted emission includes contributions from free-free, free-bound and bound-bound transitions, but will be referred to simply as ' free-free ' emission for the remainder of this paper.

In the three cases where the radio data are sufficient to permit extrapolation into the infra-red, the measured $2 \cdot 2$ - and $\mathrm{I} \cdot 65-\mu$ emission is well below the predicted 'free-free ' emission. We attribute this deficit to interstellar and circumnebular extinction and estimate the extinction in front of each condensation by comparison of its predicted 'free-free' and measured $2 \cdot 2-\mu$ flux density. For $\mathrm{W}_{3}(\mathrm{~A}) /$ IRSI, $\mathrm{W}_{3}(\mathrm{~B}) /$ IRS 3 and $\mathrm{W}_{3}(\mathrm{OH}) /$ IRS8 the ratios of predicted to measured flux density are $5 \pm 2,100 \pm 30$ and >25 corresponding to $2 \cdot 2-\mu$ optical depths of $1 \cdot 6 \pm 0 \cdot 4$, $4 \cdot 6 \pm 0 \cdot 3$ and $>3 \cdot 2$. These optical depths will be increased if there is significant emission from heated dust at 2μ.

For IRSI and IRS 2 it is possible to compare the predicted and measured ratios of flux densities at $2 \cdot 2$ and $\mathrm{I} \cdot 65$ and thus to derive a value for the extinction in front of the nebula which is essentially independent of radio measurements. The measured and predicted values for this ratio are given in Table I. The predicted ratio for IRSI $_{\text {I }}$ is calculated on the basis of 'free-free' emission (Willner et al. 1972); that for IRS2 on the basis that it is an early-type star (Section 4(b)). It is seen from Table I that the measured ratios of $S_{2 \cdot 2} / S_{1.65}$ are larger by factors of 1.9 and $2 \cdot 7$ for IRSI and IRS2 over those expected with no extinction. If the obscuring dust obeys a normal interstellar reddening law, the extinction coefficient at $\mathrm{I} \cdot 65 \mu$ is $\mathrm{I} \cdot 7$ times that at 2.2μ (Becklin \& Neugebauer 1968). Thus the optical depths at 2.2μ for IRSI and IRS2 are found to be 0.9 and 1.4 , with an error of ± 0.3.

There is thus agreement within experimental error for the extinction in front of $\mathrm{W}_{3}(\mathrm{~A}) /$ IRSI as derived from (a) the ratio of radio to infra-red flux from $\mathrm{W}_{3}(\mathrm{~A})$ / IRSI; (b) the infra-red reddening of IRSi; and (c) the infra-red reddening of the star IRS2. The fact that the three values for the extinction in front of $\mathrm{W}_{3}(\mathrm{~A}) /$ IRSI $_{1}$ agree within experimental error is justification of the assumptions that (a) IRS2 is a star, and (b) that there is no significant flux from $\mathrm{W}_{3}(\mathrm{~A}) /$ IRSI at $2 \cdot 2 \mu$ from processes other than ' free-free ' emission. This latter conclusion is similar to the conclusion of Hilgeman (1970), based on a study of the Brackett- γ emission line, that in the Orion Nebula the thermal emission from dust is less than that from 'free-free ' transitions at 2.2μ.

The relation between infra-red and optical extinction has been discussed by Becklin \& Neugebauer (1968); from their tabulation, the mean $2 \cdot 2-\mu$ optical depth in front of $\mathrm{W}_{3}(\mathrm{~A}) /$ /RSSI of $\mathrm{r} \cdot 3 \pm 0 \cdot 3$ corresponds to a visual extinction of $14 \pm 3 \mathrm{mag}$. In Paper I a comparison of the radio and $\mathrm{H} \alpha$ brightness of W_{3} led to the conclusion that the visual obscuration in front of $W_{3}(B)$ is ≥ 14.7 mag. The
same argument can be applied to show that the visual extinction in front of $\mathrm{W}_{3}(\mathrm{~A})$ is $\geq 14.0 \mathrm{mag}$, in agreement with the value derived from the present infra-red data.

It should be noted that the extinction in front of the condensations varies from source to source, but is apparently uniform in front of the most extended one, $\mathrm{W}_{3}(\mathrm{~A}) /$ IRSI. This suggests that each condensation is associated with its own obscuring matter, the location of which is discussed further in Section 4.(c).
(b) The identification of $I R S_{2}$ as the exciting star of $W_{3}(A) / I R S_{1}$

The possibility that IRS2 is the source of ionizing radiation for the compact $\mathrm{H}_{\text {II }}$ region $\mathrm{W}_{3}(\mathrm{~A}) /$ IRSi suggests itself immediately because of (a) the small diameter of the source; (b) its location close to the geometric centre of $\mathrm{W}_{3}(\mathrm{~A})$; and (c) the fact that its infra-red energy distribution is significantly bluer than that of $\mathrm{W}_{3}(\mathrm{~A}) /$ IRSi.

If IRS2 is at the distance of W_{3}, and its extinction is as discussed in Section 4(a), its absolute magnitude at $2 \cdot 2 \mu$ is $-5 \cdot 0$. This absolute magnitude corresponds to either an O_{5} main-sequence or an M_{3} giant star (Johnson 1966). The ionization attributable to an M_{3} star would be negligible, but the excitation parameter of an O_{5} star, a measure of its ionizing flux, is about $100 \mathrm{pc} \mathrm{cm}^{-2}$ (Prentice \& ter Haar 1969), in agreement with that required, on the basis of radio data (Paper I), to ionize $\mathrm{W}_{3}(\mathrm{~A})$. Furthermore, the source of ionization is more likely to consist of only one or two very early stars than a larger number of later-type OB stars, because the stellar radiation from such a cluster would have a lower effective temperature and consequently a smaller ultra-violet to infra-red flux ratio than is deduced from the observations.

Finally it should be noted that the apparent visual magnitude for IRS2, if an O_{5} star hidden behind 14 mag of extinction, would be 20 ± 3 mag, which is compatible with its absence from the Sky Survey prints.

(c) Dust and infra-red emission from the H II condensations

While ' free-free' transitions account satisfactorily for emission shortward of 2.2μ for $\mathrm{W}_{3}(\mathrm{~A}) /$ IRSI $_{1}$ and, presumably, for the other sources shown in Fig. 2, another emission mechanism must be invoked to explain the large amount of infrared energy observed in the range $3-20 \mu$. A widely discussed emission mechanism invoked to explain infra-red emission from galactic sources is that of radiation from heated dust. This proposal is especially attractive since it has been established (Section 4(a)) that obscuring matter exists in the immediate vicinity of the sources.

If the $3-$ to $20-\mu$ energy originates from hot dust, the dust is probably mixed with the ionizing gas as in Mr_{7} (Kleinmann 1970) and the Orion Nebula (Ney \& Allen 1969); in this way the marked agreement between the brightness distributions at 20μ and 6 cm of both $\mathrm{W}_{3}(\mathrm{~A}) /$ IRSi and $\mathrm{W}_{3}(\mathrm{~B}) / \mathrm{IRS}_{3}$ can be most easily understood. There is no evidence that the infra-red radiation is being emitted from a shell outside the $\mathrm{H}_{\text {II }}$ region, although, as discussed at the end of this section, most of the obscuring matter must be external to the H il region.

The temperature and optical depth of the emitting dust may be estimated from measured flux densities of those sources which are extended. In Table VI the brightness and colour temperatures based on the $20-$ and $10-\mu$ fluxes and on two possible emissivity laws are given for IRS $_{3}$, IRS $_{4}$, IRS8 and the north rim of

Table IV
Temperature and optical depths for the dust in the infra-red sources associated with H II condensations

	IRSi	IRS_{3}	IRS_{4}	IRS8
Brightness temperature (K) at 20μ	65	70	≥ 80	≥ 85
Brightness temperature (K) at io μ	95	100	≥ 105	≥ 110
Colour temperature (K) at 20-10 μ for $n=0$	170	150	160	150
Colour temperature (K) at 20-10 μ for $n=2$	120	100	110	100
Optical depth at 20μ for $n=0$	0.0005	0.004	≥ 0.01	≥ 0.02
Optical depth at 20μ for $n=2$	0.005	0.03	$\geq 0 \cdot 1$	≥ 0.2

The emissivity of the dust in the range $10-20 \mu$ is assumed to follow a law $\epsilon \propto \lambda^{-n}$.

IRSI ; a diameter of $\leq 5 \mathrm{arcsec}$ was assumed for IRS $_{4}$ and $\leq 3 \mathrm{arcsec}$ for IRS8. None of the energy distributions can be closely fitted to a blackbody distribution. The temperatures and optical depths probably vary considerably over each source. It may be concluded, however, that: (a) the temperatures of those grains seen at Io and 20μ are in the range of $100-200 \mathrm{~K}$; (b) the sources are optically thin at 20μ; and (c) the more compact sources $\mathrm{W}_{3}(\mathrm{C}) / \mathrm{IRS}_{4}$ and $\mathrm{W}_{3}(\mathrm{OH}) /$ IRS8 have significantly larger optical depths at 20μ than the broader sources $\mathrm{W}_{3}(\mathrm{~A}) /$ IRSI and $\mathrm{W}_{3}(\mathrm{~B}) /$ IRS $_{3}$.

Estimates of the particle size and total mass of the dust may be gained from an examination of the radiation equilibrium of the dust in $\mathrm{W}_{3}(\mathrm{~A}) /$ IRSi. If, as was shown in Section $4(\mathrm{~b}), \mathrm{IRS}_{2}$ is an O_{5} star, its luminosity is about $3 \times{ }^{10}{ }^{5} L_{\odot}$ (Morton \& Adams 1968). From Fig. i it can be seen that most of the dust is situated at a projected distance of about 0.3 pc from IRS2. A blackbody in thermal equilibrium at this distance from such a star would have a temperature of 25 K . The fact that the grain temperature is almost an order of magnitude higher than this indicates that the emissivity at 20μ is 10^{-3} less than in the ultra-violet. The most likely explanation for this is that a significant number of the grains have a diameter considerably less than 20μ. The data are insufficient to allow a determination of how, in detail, the emissivity of the grains varies with wavelength, especially as there are almost certainly real dust temperature variations in the nebula as well as contributions from both ionized hydrogen and exciting stars at shorter wavelengths.

From the optical depths at 20μ ('Table IV) and the ratio of ultra-violet to infra-red emissivity derived above, it may be deduced that the ultra-violet optical depth of the hot dust in the larger condensations $\mathrm{W}_{3}(\mathrm{~A}) /$ IRSI $_{1}$ and $\mathrm{W}_{3}(\mathrm{~B}) / \mathrm{IRS}_{3}$ is of the order unity; the optical extinction due to dust inside the H ir region is therefore of the order of I mag. This amount of extinction would be caused by $\circ \cdot \mathrm{I} M_{\odot}$ dust at the radius of $\mathrm{W}_{3}(\mathrm{~A}) /$ IRSi, assuming an extinction of $4 \times 10^{4} \mathrm{mag}^{-1}$ cm^{2} (Allen 1964). From the radio measurements in Paper I it was concluded that $\mathrm{W}_{3}(\mathrm{~A})$ contained i4 M_{\odot} of hydrogen, which leads to a gas to dust ratio on the order of 100 , a value which is typical of the interstellar medium. Thus a selfconsistent picture for the infra-red emission from the H II condensations may be easily formed on the basis of thermal radiation from dust associated with the ionized gas; it is unnecessary to introduce any special assumptions about the nature or the concentration of the dust.

Powerful $100-\mu$ emission at a level of about ${ }^{10} 0^{-21} \mathrm{~W} \mathrm{~m}^{-2} \mathrm{~Hz}^{-1}$ has been discovered from $\mathrm{H}_{\text {II }}$ regions like W_{3} by Harper \& Low (1971) and Hoffmann, Frederick \& Emery (1971). The angular resolution available to these observers was comparatively low, but it nevertheless seems probable that much of the $100-\mu$ radiation is emanating from compact regions similar to those described in this paper. In this context it is relevant that the total flux emitted from $\mathrm{W}_{3}(\mathrm{~A})$ / IRSI at wavelengths shortward of 20μ is $10^{5} L_{\odot}$, which is about one-third of the total available power from IRS2, the star at its centre.

Finally, it may be noted that since the dust mixed with the ionized gas in the $\mathrm{H}_{\text {ir }}$ region contributes only about i mag to the visual extinction, $\mathrm{W}_{3}(\mathrm{~A}) /$ IRSi must be surrounded by a much thicker layer of obscuring dust, with $A_{\mathrm{v}} \approx \mathrm{I} 3 \mathrm{mag}$. This dust is presumably associated with the neutral gas into which the H II region is expanding, but its extent cannot be deduced from the present observations.

(d) The infra-red source $I R S_{5}$

Among the new sources discussed in this paper IRS_{5} is of particular interest in that (a) it has a very high surface brightness at long wavelengths; (b) it is coincident with an $\mathrm{H}_{2} \mathrm{O}$ maser source but no radio continuum source; (c) it is very compact, $\leq 3 \operatorname{arcsec}(0.05 \mathrm{pc})$; and (d) its spectrum is unlike that of those sources that are identified with H ir condensations.

The total luminosity of IRS_{5} for wavelengths shortward of 24μ is $3 \times 10^{4} L_{\odot}$. Its energy distribution (Fig. 3) suggests that its temperature is higher than those of

Fig. 3. The infra-red energy distributions of $\operatorname{IRS} 5$ and $W_{3}(B) / I R S_{3}$. The dashed line is a blackbody curve at a temperature of 350 K .
the $\mathrm{H}_{\text {II }}$ condensations; if an emissivity of unity and a temperature of 350 K (Fig. 3) is assumed, a diameter of $0.2 \operatorname{arcsec}(0.003 \mathrm{pc})$ is obtained.

The nature of the object is very uncertain. Its high luminosity suggests that it could be a dust-enshrouded evolved supergiant or a main-sequence $O B$ star. If it were the latter its excitation parameter would be greater than $30 \mathrm{pc} \mathrm{cm}^{-2}$ and it would therefore emit sufficient ultra-violet photons to produce a radio-detectable H il region unless either (a) there is no gas surrounding the star, or (b) the $\mathrm{H}_{\text {II }}$ region has not expanded sufficiently to make it observable at 5 GHz . The time scale for expansion would be of the order of $1 \circ^{3} \mathrm{yr}$, assuming that the ionization front of the nebula moves at $10 \mathrm{~km} \mathrm{~s}^{-1}$. The unlikely possibility that W_{3}, which is a very young $\mathrm{H}_{\text {II }}$ region, contains an evolved supergiant star is interesting because such stars, for example VY CMa, are sometimes $\mathrm{H}_{2} \mathrm{O}$ emitters like IRS5.

An alternative and exciting possibility for IRS_{5} is that it is a pre-main-sequence object and that the source of its energy is gravitational rather than thermonuclear.

Fig. 4. The infra-red energy distributions of $W_{3}(\mathrm{OH}) / I R S 8$ and IRS9.
This hypothesis is attractive because of the small diameter of the object, its low temperature and lack of an H in region, its high density as indicated by the presence of molecular maser emission, and its location close to young O stars. Comparison with Larson's (1969) predictions of the infra-red properties of protostars indicates that if IRS5 is a protostar it must have a mass well in excess of $5 M_{\odot}$. It is thus possible that IRS_{5} will subsequently evolve so as to resemble objects like $\mathrm{W}_{3}(\mathrm{~B})$ / IRS_{3} or $\mathrm{W}_{3}(\mathrm{~A}) / \mathrm{IRS}_{1}$ when its surface temperature becomes high enough to ionize the surrounding gas. It is perhaps relevant that the intrinsic $20-\mu$ flux from IRS_{5} is similar to that of the extended infra-red source found by Kleinmann \& Low (1967) in the Orion nebula, which Hartmann (1967) has interpreted as being a protostellar cluster. Both sources are unusual in being unassociated with any radio or optical feature except a microwave maser source, but IRS_{5} is hotter and more compact than the Kleinmann-Low object.

Much of the above discussion also applies to the three other sources, IRS6, IRS7 and IRS9, that are unassociated with $\mathrm{H}_{\text {II }}$ condensations, although IRS6 and IRS $_{7}$ are so much weaker than $\mathrm{W}_{3}(\mathrm{~B}) /$ IRS $_{3}$ that the lack of a feature at 6 cm is not significant.

(e) $\mathrm{OH} / \mathrm{H}_{2} \mathrm{O}$ maser sources

Infra-red sources have been discovered within 4 arcsec of both the microwave maser emission regions in W_{3}. In both cases the sources are unresolved and have a high surface brightness at 20μ. One of these, IRS $_{5}$, has no associated radio continuum source, while the other, IRS8, is coincident with the $\mathrm{W}_{3}(\mathrm{OH})$ continuum radio source, although the latter is faint and is self-absorbed even at 5 GHz . In the wavelength range 3 to $20 \mu, \mathrm{IRS}_{5}$ and IRS8 have an interesting similarity in their energy distribution, in that both seem to have either a deficit at io μ or an excess at 5μ over a smooth distribution; the differences in their energy distribution shortward of 3μ can be attributed to the presence of 'free-free' emission in $\mathrm{W}_{3}(\mathrm{OH}) /$ IRS8. Moderate-resolution infra-red spectra of these sources would clearly be of value.

It is profitable to explore the possibility that the $\mathrm{OH} / \mathrm{H}_{2} \mathrm{O}$ sources are pumped by infra-red transitions as has been discussed by Litvak (1969). For this mechanism the photon flux at the pumping frequency must be greater than the photon flux in the amplified line. The fluxes are calculated in Table V, assuming isotropic

Table V
Photon emission rates

Wavelength	Emission rate $\left(\mathrm{IO}^{45} \mathrm{~s}^{-1}\right)$	
	IRS_{5}	IRS $8 / \mathrm{W}_{3}(\mathrm{OH})$
$\mathrm{I} 8 \mathrm{~cm}(\mathrm{OH}$ line $)$	-	1
$\mathrm{I} .35 \mathrm{~cm}\left(\mathrm{H}_{2} \mathrm{O}\right.$ line $)$	14	70
20μ	$\mathrm{I} \cdot 6$	0.7
4.8μ	0.2	0.0 I

OH data are taken from Robinson $\&$ McGee (1967), $\mathrm{H}_{2} \mathrm{O}$ from Buhl et al. (1969).
emission and a fractional line width of 2×10^{-6}. It can be seen that infra-red pumping of $\mathrm{H}_{2} \mathrm{O}$ can be ruled out unless the flux density of $\mathrm{W}_{3}(\mathrm{OH})$ /IRS8 increases by at least two more powers of ten longward of 20μ or either strong infra-red selfabsorption or anisotropic emission is postulated. Similarly, infra-red pumping of OH is also unlikely. Thus, despite the very close positional correspondence between maser and infra-red sources, the causal relationship between them is still unclear.

5. CONCLUSIONS

Observations of W_{3} in the wavelength range $1 \cdot 65$ to 20μ with spatial resolutions between 5 and 15 arc sec have enabled us to draw the following conclusions:
(I) Four of the five H ir condensations discovered at radio continuum wavelengths have associated infra-red sources; the fifth is uncertain. The 3 to $20-\mu$ infra-red emission from these sources is very strong and is attributed
to heated dust at temperatures in the range $100-200 \mathrm{~K}$. This dust is closely associated with the ionized hydrogen.
(2) Four infra-red sources have been found which are unassociated with $\mathrm{H}_{\text {II }}$ condensations. One of these has a luminosity of at least $3 \times 10^{4} L_{\odot}$, a diameter less than 3 arc sec, and may be a massive protostar.
(3) Strong infra-red sources coincide with the OH and $\mathrm{H}_{2} \mathrm{O}$ maser sources. Simple infra-red pumping models do not work in the case of $\mathrm{H}_{2} \mathrm{O}$, and are unlikely in the case of OH .
(4) The exciting source of one of the $\mathrm{H}_{\text {II }}$ condensations has been identified as an unresolved source which is observable around 2μ and is probably an O_{5} star.
(5) The presence of large quantities of interstellar or circumnebular extinction is confirmed. The amount of extinction varies, but reaches 50 visual magnitudes in front of $\mathrm{W}_{3}(\mathrm{~B})$.

ACKNOWLEDGMENTS

This work could not have been done without the support of the Caltech infra-red group; we especially thank J. Bennett, G. Forrester and L. Roberts for their assistance. We further thank T. Hilgeman who made some of the early infra-red measurements of W_{3} with us, and our night assistants E. Hancock and J. Corresco for their help. Radio data were provided prior to publication by W. J. Wilson, and by R. Hills and W. J. Welch. P. Conti and C. R. O'Dell kindly commented on an early version of this paper. C.G.W-W. is grateful to the Commonwealth Fund for the receipt of a Harkness Fellowship and to Hale Observatories for guest observer's privileges. This work was supported in part by National Aeronautics and Space Administration Grants NGL 05-002-007 and NGL 05-002-207.
C. G. Wynn-Williams:

California Institute of Technology
E. E. Becklin and G. Neugebauer:
Hale Observatories, California Institute of Technology and Carnegie Institution of
Washington

REFERENCES

Aikman, G. C., 1968. M.S. Thesis, University of Toronto.
Allen, C. W., 1964. Astrophysical Quantities, 2nd edition, p. 252, The Athlone Press, London. Becker, W., 1963. Z. Astrophys., 57, 117.
Becklin, E. E. \& Neugebauer, G., 1968. Astrophys. F., 151, 145.
Buhl, D., Snyder, L. E., Schwartz, P. R. \& Barrett, A. H., 1969. Astrophys. F., 158, L97.
Harper, D. A. \& Low, F. J., 1971. Astrophys. F., 165, L9.
Hartmann, W. K., 1967. Astrophys. F., 149, L87.
Hilgeman, T., 1970. Ph.D. Thesis, California Institute of Technology.
Hills, R., Janssen, M. A., Thornton, D. D. \& Welch, W. J., 1972. Astrophys. 尹., 175, L59.
Hobbs, R. W., Modali, S. B. \& Maran, S. P., 1971. Astrophys. F., 165, L87.
Hoffmann, W. F., Frederick, C. L. \& Emery, R. J., 1971. Astrophys. F., 170, L89.
Johnson, H. L., 1966. A. Rev. Astr. Astrophys., 4, 193.
Kleinmann, D. E., 1970. Bull. Am. astr. Soc., 2, 325.
Kleinmann, D. E. \& Low, F. J., 1967. Astrophys. 7., 149, Li.
Larson, R. B., 1969. Mon. Not. R. astr. Soc., 145, 297.

Litvak, M. M., 1969. Astrophys. F., 156, 471.
Moran, J. M., Burke, B. F., Barrett, A. H., Rogers, A. E. E., Ball, J. A., Carter, J. C. \& Cudaback, D. D., 1968. Astrophys. Э., 152, L97.
Morton, D. C. \& Adams, T. F., 1968. Astrophys. F., 151, 61 .
Neugebauer, G., Hilgeman, T. \& Becklin, E. E., 1969. Bull. Am. astr. Soc., 1, 201.
Ney, E. P. \& Allen, D. A., 1969. Astrophys. F., 155, Li93.
Prentice, A. J. R. \& Haar, D. ter, 1969. Mon. Not. R. astr. Soc., 146, 423.
Raimond, E. \& Eliasson, B., 1969. Astrophys. J., 155, 817.
Reifenstein, E. C. III, Wilson, T. L., Burke, B. F., Mezger, P. G. \& Altenhoff, W. J., 1970. Astr. Astrophys., 4, 357.
Robinson, B. J. \& McGee, R. X., 1967. A. Rev. Astr. Astrophys., 5, 183.
Schild, R., Peterson, D. M. \& Oke, J. B., 1971. Astrophys. F., 166, 95.
Schraml, J. \& Mezger, P. G., 1969. Astrophys. F., 156, 269.
Turner, B. E., 1970. Astrophys. Lett., 6, 99.
Webster, W. J. \& Altenhoff, W. J., 1970. Astr. F., 75, 896.
Willner, S. P., Becklin, E. E. \& Visvanathan, N., 1972. Astrophys. Y., r75, 699.
Wilson, W. J., Schwartz, P. R., Neugebauer, G., Harvey, P. H. \& Becklin, E. E., 1972. Astrophys. F., 177, in press.
Wynn-Williams, C. G., 1971. Mon. Not. R. astr. Soc., 151, 397.

[^0]: * The kinematic distance to W_{3} is $3 \cdot 1 \mathrm{kpc}$ (Reifenstein et al. 1970), while the distance to the nearby Cas OB6 association is 2.4 kpc (Becker 1963).

