Infrared and Raman study of interlayer anions CO₃²⁻, NO₃, SO₄²⁻ and ClO₄⁻ in Mg/Alhydrotalcite

J. THEO KLOPROGGE,* DAVID WHARTON, LEISEL HICKEY, AND RAY L. FROST

Centre for Instrumental and Developmental Chemistry, Queensland University of Technology, 2 George Street, GPO Box 2434, Brisbane Qld 4001, Australia

ABSTRACT

The difference in the local environment of CO₂⁻, NO₃⁻, SO₄⁻, and ClO₄⁻ in Mg/Al-hydrotalcite compared to the free anions was studied by infrared and Raman spectroscopy. In comparison to free CO_{3-}^{2-} a shift toward lower wavenumbers was observed. A band around 3000–3200 cm⁻¹ has been attributed to the bridging mode $H_2O-CO_2^{--}$. The IR spectrum of CO_3^{--} hydrotalcite clearly shows the split v_3 band around 1365 and 1400 cm⁻¹ together with weak v_2 and v_4 modes around 870 and 667 cm^{-1} . The v₁ mode is activated and observed as a weak band around 1012 cm^{-1} . The Raman spectrum shows a strong v_1 band at 1053 cm⁻¹ plus weak v_3 and v_4 modes around 1403 and 695 cm⁻¹. The symmetry of the carbonate anions is lowered from D_{3k} to C_{2k} resulting in activation of the IR inactive v_1 mode around 1050–1060 cm⁻¹. In addition, the v_3 shows a splitting of 30–60 cm⁻¹. Although NO₃hydrotalcite has incorporated some CO_3^{2-} the IR shows a strong v_3 mode at 1360 cm⁻¹ with a weak band at 827 cm⁻¹, and the v_4 band is observed at 667 cm⁻¹, although it is largely obscured by the hydrotalcite lattice modes. The Raman spectrum shows a strong v_1 mode at 1044 cm⁻¹ with a weaker v_4 band at 712 cm⁻¹. The v_3 mode at 1355 cm⁻¹ is obscured by a broad band due to the presence of CO_{3}^{2-} . The symmetry of NO_{3}^{-} did not change when incorporated in hydrotalcite. The IR spectrum of SO_4 -hydrotalcite shows a strong v₃ at 1126, v₄ at 614 and a weak v₁ mode at 981 cm⁻¹. The Raman spectrum is characterized by a strong v_1 mode at 982 cm⁻¹ plus medium v_2 and v_4 bands at 453 and 611 cm^{-1} ; v₃ cannot be identified as a separate band, although a broad band can be seen around 1134 cm⁻¹. The site symmetry of SO₄²⁻ is lowered from T_d to C_{2v} . The distortion of ClO₄⁻ in the interlayer of hydrotalcite is reflected in the IR spectrum with both v_3 and v_4 bands split around 1096 and 1145 cm^{-1} and 626 and 635 cm^{-1} , respectively. A weak v₁ band is observed at 935 cm^{-1} . The Raman spectrum shows a strong v_1 mode at 936 cm⁻¹ plus v_2 and v_4 bands at 461 and 626 cm⁻¹, respectively. A v_3 mode cannot be clearly recognized, but a broad band is visible around 1110 cm⁻¹. These data indicative a lowering of symmetry from T_d to C_s .