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The most fundamental purpose of infrared (IR) and visible (VI) image fusion is to integrate the useful information and produce a
new image which has higher reliability and understandability for human or computer vision. In order to better preserve the
interesting region and its corresponding detail information, a novel multiscale fusion scheme based on interesting region
detection is proposed in this paper. Firstly, the MeanShift is used to detect the interesting region with the salient objects and the
background region of IR and VI. Then the interesting regions are processed by the guided filter. Next, the nonsubsampled
contourlet transform (NSCT) is used for background region decomposition of IR and VI to get a low-frequency and a series of
high-frequency layers. An improved weighted average method based on per-pixel weighted average is used to fuse the low-
frequency layer. The pulse-coupled neural network (PCNN) is used to fuse each high-frequency layer. Finally, the fused image is
obtained by fusing the fused interesting region and the fused background region. Experimental results demonstrate that the
proposed algorithm can integrate more background details as well as highlight the interesting region with the salient objects,
which is superior to the conventional methods in objective quality evaluations and visual inspection.

1. Introduction

Image fusion is an important branch of information sci-
ence, which has been widely used in many fields, such as
bioinformatics, medical image processing, and military target
visualization. Especially in military field, infrared (IR) and
visible (VI) image fusion is important to military science
technology, such as automatic military target detection and
localization. As a hot image fusion field, it has attracted the
attention of many researchers [1–7]. The key problem of IR
and VI image fusion is to integrate and extract the feature
information of the source images to produce a new image
which is more reliable and understandable, and the fused
image not only has the detailed texture information of VI
image but also can highlight the target area in an IR image.

There are many different algorithms for the IR and VI
image fusion that have been proposed and developed over
the past few decades. The early fusion methods such as
intensity-hue-saturation (IHS) and principal component
analysis (PCA) were to process pixel values on spatial

domain, which were traditional classical methods, but the
fusion effect was limited compared with other excellent
fusion methods [8–10]. Many fusion methods based on mul-
tiscale transform (MST) have become popular in recent
years, such as Laplacian pyramid (LP), wavelet transform
(WT), discrete wavelet transform (DWT), and nonsub-
sampled contourlet transform (NSCT) [11–16]. Due to the
excellent characteristics of the multiscale decomposition
method, the MST-based method could get a good fusion
effect compared with early fusion methods, such as NSCT-
PCNN [17]. However, these methods usually failed to high-
light the target information in the fused image. IR image
target detection-based method is another popular IR and
VI image fusion method; these methods detected the target
region of the IR image firstly, then fused the background
regions using other methods to get the fused background
image, and finally fused the target region and background
regions directly to get a new image. The advantages of these
methods can fully retain the infrared target information in
the fused image, but commonly, these infrared target regions
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of the fused image will lack the corresponding detail informa-
tion in the VI image. Our previous work proposed a fusion
algorithm which was based on target extraction; it was useful
to highlight the target in the infrared image due to the target
region which was directly fused into the final image [8]. Tak-
ing into account the shortcomings of these algorithms, in
order to overcome these problems, a novel IR and VI image
fusion method is proposed in this paper. Compared with
our previous work, we improved the accuracy of interesting
region detection where it contains highlighting target and
heat sources. In addition, in order to enrich the visible infor-
mation in the interesting region, we also adopt fusion strat-
egy to fuse them.

The first step of the proposed method is to detect the
interesting region which contains significant target in the
IR image by the MeanShift method. The MeanShift has
many applications, such as clustering, discontinuity preserv-
ing smoothing, object contour detection, image segmenta-
tion, and nonrigid object tracking [15, 18]. We will use it
to detect the interesting region with a significant infrared
target from the background regions in the IR image. In
order to fully retain and highlight the interesting region
and significant target information in the fused image, the
interesting region will be taken as a separate component
and directly fused into the finally image. But the interesting
region extracted from the IR image will lose the details of
the corresponding region of the VI image. To solve this
problem, we use the guided filter to fuse the interesting
regions of IR and its corresponding VI image [19–21]. The
interesting region of the IR image serves as the guidance
image and the interesting region of VI image as the input
image. The guided image filter was proposed in 2013 by
He et al. [19]; the guided filter has many good characteris-
tics, such as edge-preserving and image smoothing. So we
use it to preserve the edge of the VI image; the produced
interesting region contains the significant target information
as well as the detail information.

Next, the background regions will be decomposed by
nonsubsampled contourlet transform to get a low-
frequency and a series of high-frequency layers. NSCT as
an effective decomposition tool was proposed by Da Cunha
et al. [16]. NSCT has many good properties of time-
frequency localization, multidirection, and multiscale; there-
fore, it has been widely used in image fusion compared with
other multiscale-based methods [22–24]. For the low-
frequency layer, we proposed an improved weighted average
method based on per-pixel weighted average. Due to the
characteristics of the low-frequency layer (hazy image), the
per-pixel weighted average based method is effective and will
be detailedly described in the fusion rule section. For the
high-frequency layers, the pulse-coupled neural network
(PCNN) will be used to process each high-frequency layer.
PCNN was proposed by Eckhorn et al. [25]. Since it was
introduced, it has been widely used in the field of image pro-
cessing, such as image segmentation, image enhancement,
image edge detection, and image fusion [26, 27]. In the pro-
posed method, the spatial frequency (SF) metric of the
high-frequency layers will be used as external incentive infor-
mation of the PCNN model, which makes it better to deal

with overexposed or weak exposure images and make the
fusion result more suitable for human visual inspection.

The remaining sections of this paper are organized as fol-
lows: the related work and proposed methods are introduced
in Section 2, including the interesting region detection and
fusion, the background region fusion, and concrete fusion
steps. Experimental result comparisons and analysis are
given in Section 3. The conclusions are shown in Section 4.

2. Related Work and Proposed Methods

2.1. Related Work

2.1.1. MeanShift Algorithm. The most important function of
the MeanShift is as a tool for computing probability density
function in a set of data samples [28]. It has been widely used
in discontinuity preserving smoothing, object contour detec-
tion, and image segmentation.

Given a finite number of data points x1,… , xn in the
d-dimensional space Rd, a multivariate kernel density func-
tion is defined as

P x =
1

n
〠
n

i=1

K x − xi , 1

where

K x = c∏
d

i=1
k xi 2

With the kernel K(x) being a bounded function with the
following properties,
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where c is a constant and those of equations mean normal-
ized, symmetric, and exponential weight decay, respectively.
The normal kernel K(x) is computed by

KN x = c × exp −
1
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x 2 4

Estimate the kernel density gradient by
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and using the normal kernel form, (5) can be rewritten as
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where g x = −k′ x . We use the MeanShift to process the IR
image, cluster the infrared target pixels, and obtain the inter-
esting region of IR. For image clustering and segmentation,
we treat the image as data points in the spatial and gray level
domains; two radially symmetric kernels will be used which
are defined as follows:

K x = C ⋅ ks
xs

hs
⋅ kr

xr

hr
, 7

where xs is the spatial coordinate, xr is the range of a feature
vector in color space, and hs and hr are the employed kernel
bandwidths. An example of the interesting region detection
of IR with different bandwidths is given in Figure 1.

We can see from Figure 1 that the MeanShift method can
effectively extract the IR image region which we interested in
and the infrared target information accurately. Compared
with IR, the interesting region of VI contains more detailed
information. In order to highlight the interesting region of
IR and enrich the details of the corresponding region of VI
in the fused image, when the interesting regions of IR and
VI are determined, the guided filter is used to fuse ones.

2.1.2. Guided Filter. The guided filter is an edge-preserving
filter and can compute the filter output by considering the
content of the guidance image. There are many good charac-
teristics of the guided filter, especially in edge detail preserva-
tion [18, 19, 29]. The filtered output image is very similar to
the input image, and it also contains both texture and detail
information of the guidance image, as shown in Figure 2.

Supposing that the guidance image is I, the detail descrip-
tion of the guided filter is given as follows:

Oi = akIi + bk, ∀i ∈ ωk, 8

where O is the linear transformation of I, ωk is a local
window, in which the pixel k is the center, and the coeffi-
cients ak and bk are constant, to make the input image
and the output image as similar as possible; we minimize
the variance between the output imageO and the input image
P as follows:

E ak, bk = 〠
i∈ωk

akIi + bk − P 2 + εa2k , 9

Source image (hs, hr) = (8,8) (hs, hr) = (8,16) (hs, hr) = (8,32)

(hs, hr) = (16,16)(hs, hr) = (16,8) (hs, hr) = (16,32) (hs, hr) = (32,32)

Figure 1: Interesting region detection with different bandwidths.

(a) Guidance image (b) Input image (c) Filtered image

Figure 2: Two examples of the guided filter.
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where ε is the regularization parameter and ak and bk are
computed by

ak =
x 1/ ω 〠

i∈ωk
IiPi − μkPK

δk + ε
,

bk = PK − akμk,

10

where ak is the mean and bk is the variance of the local
window ωk in the image I, ω is the total number of pixels
in the local window ωk, and PK is the mean of the input image
P in the local window ωk. Figure 2 shows a set of examples of
the guided filter.

It can be seen from Figure 2 that the guidance image
contains a large number of detail and texture information.
And the input image just contains significant regional infor-
mation but lacks of detail, texture, and edge information. As
can be seen from Figure 2(c), the output image of the guided
filter is consistent with the input image, but it only contains
detailed texture information in the corresponding region of
the guidance image. This is also suitable to process the
saliency target in the IR image and its corresponding region
in the VI image. Through the guided filter, we can fuse the
detail information into the interesting region in the IR image;

in this way, the produced new interesting region contains
both salient object and detail information.

2.1.3. Nonsubsampled Contourlet Transform (NSCT). NSCT
is a new two-dimensional image decomposition and analysis
tool, which is derived from contourlet transform (CT) [16].
The construction of NSCT contains nonsubsampled pyramid
filter banks (NSPFB) and nonsubsampled directional filter
banks (NSDFB), which are shown in Figure 3.

It can be seen from Figure 3 that the source image can be
decomposed by NSCT to get a low-frequency layer and a
series of high-frequency layers. All obtained layers are the
same size with the source image. Figure 4 shows an example
of NSCT decomposition. In Figure 4, we decompose the
source image into four layers, each of which is decomposed
into four images in four directions; we select two images from
each layer as shown in Figure 4. Figure 4(b) is the low-
frequency layer; it can be seen that it contains only the low
frequency information of the source image without high fre-
quency details. From level 1 to level 4 are the high-frequency
layers, which show the detail information from different
levels to different levels.

2.1.4. Pulse-Coupled Neural Network (PCNN). The PCNN is
a single-layered artificial neural network [25]. A basic neuron

Source
image

NSPFB

NSPFB

NSDFB

NSDFB

Lowpass subband

Bandpass
directional
subband

(a) The decomposition framework of NSCT

w2 (�,�)

(–�,–�)

w1

(b) Ideal frequency partitioning

Figure 3: The construction of NSCT.

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 4: An example of NSCT decomposition. (a) Source image. (b) Low-frequency layer. (c)-(d) Level 1. (e)-(f) Level 2. (g)-(h) Level 3. (i)-
(j) Level 4.
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of PCNN contains the receptive field, the modulation field,
and the pulse generator, which are shown in Figure 5.

The receptive field of PCNN can be described in detail
as follows:

Fij n =V F〠
k,l

WkjYkl n − 1 + Fij n e−αF + Sij,

Lij n = e−α
L

Lij n +VL〠
kl

MkjY ijkl n − 1 ,
11

where Sij is the input stimulus at pixel (i, j) of the source

image, Fij is the feeding input of it, matrices W and B are

the constant synaptic weight, αF and αL are the time con-
stants, and V F and VL are normalizing constants.

In modulation field, the internal state is controlled by
linking strength β, which is given by

U ij n = Fij n 1 + βLij n , 12

where Uij is the internal state of the neuron, which is created
by modulating the feeding and linking channels.

The pulse generator field can be described as

θij n = e−α
θ

θij n − 1 +VTY ij n − 1 , 13

Y ij n =
1, U ij n > θij n ,

0, otherwise,
14

where Y ij is the output of input Sij and θij is the dynamic

threshold of the neuron, which is used to compare with Uij.
It can be seen from (14), if U ij is larger than θij, the output

Y ij of the neuron at (i, j) is 1, which we call the neuron is

fired. The time matrix T of the neuron fired can be described
as follows:

Tij n =
n, if Y ij n = 1, for the f irst time,

Tij n − 1 , otherwise
15

2.2. Proposed Method. The proposed fusion algorithm
framework is depicted in Figure 6. The first step in the
proposed method is to detect the interesting region which

Receptive field Modulation field Pulse generator
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�reshold
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0

�ij

Lij

Fij
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Wij,kl
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Uij

Yij

1

e−��

e−�L

Figure 5: The typical structure of PCNN model.
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MeanShi�

Interesting region R1

Interesting region R2

Serves as guidance image

Serves as input image

Guided filter

Fused interesting region FR
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Low-frequency layers L2
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Low-frequency layers L1
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VI image I2

Background region B1

Background region B2

Figure 6: Schematic diagram of the proposed fusion method.

5Journal of Sensors



contains the significant target areas and then fuse the
interesting regions of the IR and VI image. In our method,
the MeanShift and guided filter are used to perform the first
step in our algorithm.

The background region is obtained by removing the
interesting region from the source image. For the back-
ground region, the multiscale transform-based method is
used to process it. Firstly, nonsubsampled contourlet
transform (NSCT) is used to decompose the background
region of two source images and then to get a low-
frequency layer and a series of high-frequency layers for each
image. Next, we use an improved weighted average method
based on per-pixel weighted average and pulse-coupled
neural network (PCNN) to process the low-frequency and
high-frequency layers, respectively.

2.2.1. Low-Frequency Layer Fusion Rules. In nature images,
low-frequency information is the main component of an
image; on the contrary, high-frequency information contains
the details of the image [30]. It can be seen in Figure 6 that,
compared with the image B1 and B2, the low-frequency
layers L1 and L2 are the main components without the
details. Most low-frequency layer fusion methods are
weighted averaging based methods, which do not consider
the membership relationship between pixels and only weigh
the independent pixel values. These methods cannot fully

fuse the details of the low-frequency layers. In order to have
a better fusion effect, we proposed an improved weighted
average method which is based on per-pixel weighted aver-
age, which can be described as follows:

CL
F i, j =wA i, j × CL

A i, j + 1 −wA i, j × CL
B i, j , 16

where CL
F i, j denotes the final result of the low-frequency

layer, CL
A i, j is the low-frequency layer of the background

region in the source IR image A, and CL
B i, j is the low-

frequency layer of the background region in source VI
image B.

wA i, j = exp −
CL
B i, j − μ

2

2 τσ 2
, 17

where μ and σ are the mean and variance of the back-
ground regions in source VI image B and τ is the adjust-
ment factor of Gaussian function. The Gaussian function
curve and an example are shown in Figure 7. In the pro-
posed method, we set τ = 1. It can be seen in Figure 7(d)
that, after the source image is processed by per-pixel
weighted average, only the low-frequency information of
the source image is reserved; to some extent, it is a low pass
filter, and similar as Figure 4(b), the low-frequency layer is
obtained by NSCT. Therefore, it is effective to process the
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Figure 7: Gaussian function. (a) Gaussian curve with different τ. (b) Gaussian surface. (c) Source image. (d) Produced image by Gaussian.
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low-frequency layer by the weighted average method based
on per-pixel weighted average.

2.2.2. High-Frequency Layer Fusion Rules. From Figure 4, it
can be seen that most details of information, texture, and
edge are included in the high-frequency layers. For the
high-frequency layers, PCNN is used in the proposed
method. In the modulation field, the linking coefficient β is
a key parameter which value can directly affect the weighting
of the linking channel. We use the spatial frequency (SF) of
the high-frequency layer as the linking coefficient β in our
proposed method. In Section 2.1.4, we have analyzed the
PCNNmodel. The spatial frequency (SF) can reflect the over-
all definition level of an image; the SF of the source image is
used to determine the linking strength β, which can be
described as follows:

SF = RF2 + CF2, 18

where RF is the spatial row frequency and CF is the spatial
column frequency, which can be computed by

RF =
1

M ×N
〠
M

i=1

〠
N

j=2

F i, j − F i, j − 1 2,

CF =
1

M ×N
〠
N

i=1

〠
M

j=2

F i, j − F i, j − 1 2

19

The fused high-frequency layer CF,ij can be determined
as follows:

CF,ij =
CA,ij, TA,ij n ≥ TB,ij n ,

CB,ij, TA,ij n < TB,ij n ,
20

where TA,ij(n) and TB,ij(n) denote time matrices of each
neuron obtained by (15) and CA,ij and CB,ij are the high-
frequency layers of the background regions in source IR
image A and VI image B.

2.2.3. Fusion Steps. The framework of the proposed method
in this paper is shown in detail in Figure 6, and the concrete
fusion steps are summarized as follows: input: source IR
image A and VI image B.

Step 1: detect the interesting region which contains the
salient infrared objects of IR and corresponding
VI image by the MeanShift, to get the interesting
region and the background regions.

Step 2: for the interesting regions of the source image,
fuse them by the guided filter method which is
described in Section 2.1.2, to produce the fused
interesting region.

Step 3: perform NSCT in the background regions and
then obtain a low-frequency layer and a series
of high-frequency layers for each source image.

Step 4: for the low-frequency layer, an improved
weighted average method based on per-pixel

weighted average algorithm is used to produce
the fused low-frequency layer, which is shown
in (16) and (17).

Step 5: for the high-frequency layers, SF-PCNN-based
method is used to produce the fused high-
frequency layers, which are described in Section
2.2.2 in detail.

Step 6: the fused background region is produced by
NSCT reconstruction.

Step 7: fuse the interesting region and the fused back-
ground region to produce the final fusion image.

3. Experimental Results and Analysis

In order to illustrate the effectiveness of the proposed fusion
algorithm, several groups of IR and VI images fusion exper-
iments will be described in detail in this section. These
images are available at http://figshare.com/articles/TNO_
Image_Fusion_Dataset/1008029. All simulations are con-
ducted in MATLAB 2014a, on an Intel(R) Core (TM) i5-
6400 @2.7GHz PC with 16GB RAM. Firstly, the experimen-
tal parameter setting is introduced; then the discussion of
fusion results compared with other methods will be given.

3.1. Experimental Introduction. To show the improvement of
the proposed method, the fusion results of “Jeep” by the pro-
posed method and the method of [8] are shown in Figure 8.
In [8], the target region was directly fused into the final image
to highlight the target in an infrared image. And in this
paper, we improve the accuracy of interesting region detec-
tion where it contains highlighting target and heat sources.
In addition, we integrate the interesting regions of VI and
IR for enriching the visible information in the interesting
region. As shown in Figure 8 and Figure 9, the fusion result
by the proposed method contains rich details while
highlighting the target of IR image.

The proposed method will be compared with eight cur-
rent fusion methods: principal component analysis- (PCA-)
based method [10], discrete wavelet transform- (DWT-)
based method [11], PCNN-based method [15], NSCT-
based method [23], Laplacian pyramid transform- (LP-)
PCNN-based method [14], NSCT-PCNN-based method
[17], IFM based method [31], and MWGF-based method
[32]. In all PCNN-based method experiments, through a
large number of verification and comparison in experiments,
the parameters of PCNN are set as αθ = 0 2, αL = 0 05, VL =
0 02, Vθ = 40, N = 200, and M =W = 0 707, 1, 0 707 1, 0, 1
0 707, 1, 0 707 , where N is the number of iterations of
PCNN. All NSCT-based methods, “pkva,” and “9–7” are
set as the pyramid and the direction filter. For all multi-
scale decomposition methods, the decomposition level is
set to 3, and “averaging” is used to fuse the low-frequency
layer, and the high-frequency layers are fused by “absolute
maximum choosing.”

In order to evaluate the fusion results with different
methods objectively, three most commonly used objective
indicators will be used as the evaluation index: mutual
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information (MI), pixel of visual information (VIF), and

edge gradient operator (QAB/F). MI is used to measure
the amount of the source images’ information retained in
the fused image. VIF is an evaluation index for human
visual system, which is based on natural scenes and image

distortion [33]. QAB/F is used to measure the edge infor-
mation based on edge strength and orientation preserving
from the source images. Commonly, the greater value of
these evaluation metrics indicates that the fused image
has a better quality [34].

3.2. Fusion Results and Discussions. The experimental images
consisted of six pairs of IR and VI images, which are shown
in Figure 10. The first line in Figure 10 is VI images,
and the second line is IR images. A large number of details
and texture are included in the VI images, while the IR image
contains only significant information.

The fusion results obtained by different fusion algo-
rithms of “Sand path” are given in Figure 11. Figure 11(a)
is the fused image by PCA, Figure 11(b) is the fused image

by DWT, Figure 11(c) is the fused image by PCNN,
Figure 11(d) is the fused image by NSCT, Figure 11(e) is
the fused image by LP-NSCT, Figure 11(f) is the fused
image by PCNN-NSCT, Figure 11(g) is the fused image
by IFM, Figure 11(h) is the fused image by MWGF, and
Figure 11(i) is the fused image by the proposed method.
From Figure 11, we can see that the fused image by the pro-
posed method contains more detail information of the VI
image, as well as the highlighted infrared target information
compared with other methods. In addition, the fused image
by our method has advantages in visual effects and it is also
superior to other algorithms in objective evaluation, which
are shown in Table 1.

In order to illustrate the applicability of the proposed
method, other groups of experiments are performed, which
are given as follows.

It can be seen from Figure 12 and Figure 13 that the
proposed method has more advantages in detail informa-
tion integration. In order to better reflect their differences
of the fused images obtained by different fusion methods,

(a) Visible image jeep (b) Infrared image jeep

(c) Fused Jeep by [8] (d) Fused jeep by the proposed method

Figure 8: Experiment with “Jeep.”

(a) Visible image jeep (b) Infrared image jeep

(c) Fused by [8] (d) Fused by the proposed method

Figure 9: Detail with enlarged scale “Jeep.”
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Figure 13 shows the detail with an enlarged scale of
Figure 12. In Figure 13(i), the red frame region is more
suitable for human visual system, with more visible detail
information. Compared with the same position in two
source images, the fused region has higher readability
and reliability.

Figure 14 and Figure 15 are the third and fourth groups of
experiment of “UN Camp” and “Trees,” respectively. The
objective evaluation matrices are given in Table 1. In order
to reflect more directly out of their difference, line chart com-
parison of MI, VIF, and QAB/F values of the experiments is
given in Figure 18.

Figure 16 and Figure 17 are the experimental results of
“Jeep” and “Kaptein.” The objective evaluation matrices are
given in Table 1. Line chart comparison of MI, VIF, and
QAB/F values of the experiments is given in Figure 19. It can
be seen that the fusion results of the proposed method have
a better visual effect. Compared with the same position in
two source images, the fused region has higher readability
and reliability.

All fusion results by the proposed method and the
method of [8] are shown in Figure 18. The first line in
Figure 18 is the results of [8], and the second line is the results
of the proposed method. The objective evaluation matrices

(a) (b) (c) (d) (e) (f)

Figure 10: Experimental images. (a) “Sand path.” (b) “Bristol Queens Road.” (c) “UN Camp.” (d) “Trees.” (e)“Jeep.” (f) “Kaptein.”

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 11: Experimental results of “Sand path”. (a) PCA. (b) DWT. (c) PCNN. (d) NSCT. (e) LP-PCNN. (f) NSCT-PCNN. (g) IFM.
(h) MWGF. (i) The proposed method.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 12: Second example experimental results of “Bristol Queens Road.” (a) PCA. (b) DWT. (c) PCNN. (d) NSCT. (e) LP-PCNN.
(f) NSCT-PCNN. (g) IFM. (h) MWGF. (i) The proposed method.

Table 1: Objective results for various fusion results.

Evaluation Experiment
Fusion methods

PCA DWT PCNN NSCT LP-PCNN NSCT-PCNN IFM MWGF Reference [8] Proposed

MI

Sand path 1.1117 0.5578 1.4473 1.5081 0.5468 1.0629 1.6325 1.7830 1.7935 1.8874

Bristol Queens Road 2.4788 1.2387 2.3390 1.9813 1.1924 2.2035 1.6665 2.5665 2.3513 2.6238

UN Camp 2.1191 0.7973 2.0342 1.5648 0.8595 1.0644 2.7810 2.9160 2.3461 2.1219

Trees 1.3114 0.8653 0.8844 1.1424 0.7757 1.3761 1.0500 1.3480 1.3418 1.3598

Jeep 2.1219 1.0000 3.1090 2.4130 1.9150 2.4980 1.8704 2.9550 2.9721 2.9613

Kaptein 2.0190 1.0910 2.5090 1.8650 1.1960 1.7100 3.469 3.3830 3.2045 3.3921

Average MI 1.8603 0.9250 2.0538 1.7457 1.0809 1.6524 2.0782 2.4919 2.3349 2.3910

VIF

Sand path 0.4201 0.2566 0.3048 0.3284 0.2788 0.3886 0.3599 0.4813 0.4821 0.5230

Bristol Queens Road 0.4991 0.3797 0.4986 0.4906 0.4687 0.5196 0.4947 0.5715 0.4949 0.5202

UN Camp 0.4599 0.2899 0.3107 0.3538 0.3156 0.3743 0.4419 0.4937 0.3873 0.4656

Trees 0.3776 0.3238 0.3145 0.4128 0.3648 0.4372 0.5141 0.5013 0.5243 0.4311

Jeep 0.4575 0.4100 0.5440 0.4841 0.5544 0.4788 0.4572 0.6023 0.5528 0.6107

Kaptein 0.4182 0.3637 0.4332 0.4488 0.4308 0.4359 0.4871 0.5189 0.4947 0.5103

Average VIF 0.4387 0.3372 0.4009 0.4197 0.4021 0.4390 0.4591 0.5281 0.4894 0.5101

QAB/F

Sand path 0.5013 0.3934 0.4188 0.4331 0.4136 0.5218 0.5104 0.5161 0.5072 0.5295

Bristol Queens Road 0.5678 0.3841 0.6708 0.5963 0.5889 0.6661 0.6066 0.6746 0.6693 0.6719

UN Camp 0.5038 0.3442 0.4785 0.4169 0.4356 0.4650 0.5265 0.5262 0.5296 0.5330

Trees 0.4533 0.3909 0.3804 0.4306 0.4476 0.4423 0.6004 0.5815 0.4832 0.4524

Jeep 0.4252 0.3436 0.6453 0.3022 0.5467 0.3142 0.3892 0.6769 0.6348 0.6818

Kaptein 0.3249 0.3442 0.5280 0.3692 0.4759 0.4240 0.5853 0.6109 0.6118 0.6189

Average QAB/F 0.4627 0.3667 0.5203 0.4247 0.4847 0.4722 0.5364 0.5977 0.5726 0.5813
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are given in Table 1. It can be seen from Figure 18 and
Table 1 that the proposed method has better results in objec-
tive evaluation and visual effect. The average values of MI,
VIF, and QAB/F for six pairs of IR and VI images are listed

in Table 1. It can be seen that the average value of the pro-
posed method is only less than MWGF and greater than
the other comparison algorithms, because the MWGF is
more effective for some special images, so as to increase the

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 13: Detail with enlarged scale. (a) PCA. (b) DWT. (c) PCNN. (d) NSCT. (e) LP-PCNN. (f) NSCT-PCNN. (g) IFM. (h) MWGF. (i) The
proposed method.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 14: Experimental results of “UN Camp.” (a) PCA. (b) DWT. (c) PCNN. (d) NSCT. (e) LP-PCNN. (f) NSCT-PCNN. (g) IFM.
(h) MWGF. (i) The proposed method.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 15: Experimental results of “Trees.” (a) PCA. (b) DWT. (c) PCNN. (d) NSCT. (e) LP-PCNN. (f) NSCT-PCNN. (g) IFM. (h) MWGF.
(i) The proposed method.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 16: Experimental results of “Jeep.” (a) PCA. (b) DWT. (c) PCNN. (d) NSCT. (e) LP-PCNN. (f) NSCT-PCNN. (g) IFM. (h) MWGF.
(i) The proposed method.
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average value, such as the MI of “UN Camp”, but the pro-
posed method has higher evaluation metrics on most images
than MWGF.

4. Conclusion

A novel multiscale fusion scheme for the IR and VI image
based on the interesting region detection is proposed in this
paper, which can integrate more background details as well
as highlight the interesting region with the salient objects.
This method combines the advantages of the MeanShift

and guided filter, which are used to detect the interesting
significant target region and fuse the interesting regions
of the IR and VI image. Next, the background regions
are fused in the NSCT domain. An improved weighted
average method based on per-pixel weighted average is
used to fuse the low-frequency layers, and for the high-
frequency layers, SF-PCNN-based method is used to pro-
duce the fused new layers. Then the fused background
regions are produced by NSCT reconstruction. The fused
image is produced by fusing the fused interesting and
background regions. Experimental results show that the

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 17: Experimental results of “Kaptein.” (a) PCA. (b) DWT. (c) PCNN. (d) NSCT. (e) LP-PCNN. (f) NSCT-PCNN. (g) IFM.
(h) MWGF. (i) The proposed method.

(a) (b) (c) (d) (e) (f)

Figure 18: Experimental results by [8] and the proposed method. (a) “Sand path.” (b) “Bristol Queens Road.” (c) “UN Camp.” (d) “Trees.”
(e)“Jeep.” (f) “Kaptein.”
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proposed fusion scheme can achieve superior results in
visual inspection and objective evaluations.
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