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Infrared and visible image fusion 
via octave Gaussian pyramid 
framework
Lei Yan1, Qun Hao1, Jie Cao1*, Rizvi Saad1, Kun Li1, Zhengang Yan2 & Zhimin Wu3

Image fusion integrates information from multiple images (of the same scene) to generate a (more 
informative) composite image suitable for human and computer vision perception. The method 
based on multiscale decomposition is one of the commonly fusion methods. In this study, a new 
fusion framework based on the octave Gaussian pyramid principle is proposed. In comparison with 
conventional multiscale decomposition, the proposed octave Gaussian pyramid framework retrieves 
more information by decomposing an image into two scale spaces (octave and interval spaces). 
Different from traditional multiscale decomposition with one set of detail and base layers, the 
proposed method decomposes an image into multiple sets of detail and base layers, and it efficiently 
retains high- and low-frequency information from the original image. The qualitative and quantitative 
comparison with five existing methods (on publicly available image databases) demonstrate that the 
proposed method has better visual effects and scores the highest in objective evaluation.

Image fusion is an enhancement technique that aims to combine images obtained from di�erent types of sensor 
to generate a composite image with substantial information that can be used for human perception or machine 
vision  tasks1. Image fusion can be performed at three levels, namely, pixel, feature, and decision levels. In com-
parison with other approaches, the pixel-level-based image fusion directly combines the original information 
in the source image to yield more informative fused images for visual perception and computer  processing2. 
�e pixel-level based method is widely used in pattern  recognition3,4, remote  sensing5–7, medical  imaging8,9, and 
military  applications10,11.

Numerous fusion methods have been proposed in the past which achieve good fusion performance. 
�ese methods can be classi�ed into four categories based on their adopted  theories2,12, namely, multiscale 
 transform13–20, sparse  representation21–23, neural  network24–31, and other  optimizations32–34. Multiscale transform-
based methods decompose source images into several levels, fuse corresponding layers with particular rules, and 
reconstruct the target images accordingly Popular transforms used for decomposition and reconstruction include 
 wavelet16,  pyramid15 and their derived versions. �e multiscale transform-based methods usually �x the decom-
position levels, and the adaptive selection of decomposition levels still remains to be  solved12, For conventional 
multi-scale transformation, the image decomposition e�ectively preserves the background information of the 
image, However, this method lacks e�ective retention of detailed texture information. Sparse representation-
based methods represent images as linear combinations of sparse bases in over complete dictionaries, which is 
key to their good performance in terms of feature fusion. However, these methods ignore the correlation among 
di�erent patches, and lead toward the loss of detail  information12. Neural network-based methods extract image 
features using arti�cial neural networks. Arti�cial neural networks have advantages in image feature process-
ing, and have been applied to image  fusion35–37. Although deep neural networks e�ciently process large-scale 
object information such as contour, edge, and contrast, they fail to e�ectively handle the extraction of details, 
such as textures.

In practice, image fusion has been applied to combine information in infrared (IR) and visible (VIS) images. 
�e potential of VIS images has been limited by poor light and harsh weather conditions (e.g., smog and fog). By 
contrast, IR images can provide better information in conditions where VIS imaging fails. However, IR images 
cannot properly reconstruct spatial information about the scene because they operate in a di�erent spectrum that 
is not visually pleasing. Speci�cally, the advantage of IR images is their intensity information, which is mainly 
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re�ected in the low-frequency information of IR images. �e advantages of VIS images are contour and texture 
information. �e contour information is mainly re�ected in the low frequency information of the VIS image, and 
the texture information is mainly re�ected in the high frequency information of the VIS image. �us, the fusion 
of VIS and IR images at di�erent frequencies can produce complementary information. In addition, through 
comparative analysis of di�erent methods (presented in the introduction section), we found that the multiscale 
transform method can realize the decomposition of an image at di�erent frequencies, but the decomposition scale 
needs to be set manually. �erefore, considering the characteristics of the IR and VIS image fusion, and based 
on the analysis of four categories of methods, the fusion performance of IR and VIS images can be improved 
in terms of two aspects: (1) Adaptive decomposition of images by scales; (2) Separation and retention of low-
frequency and high-frequency information at di�erent scales.

In this study, an octave pyramid fusion framework is proposed, which achieves two breakthroughs. First, the 
decomposition levels in the framework realize adaptive selection. Second, interval space decomposition is added 
in this framework to simultaneously retain lower- and high-frequency information. �e proposed fusion frame-
work is a type of multiscale transform that operates in two scale spaces, namely octave and interval spaces. �e 
number of octave spaces represents the level of image decomposition and is adaptive relative to image size. �e 
interval space decomposition performs multiple instances of Gaussian blur on the image to obtain multiple sets 
of detail and base layers, which retain considerable information about the source image. �e proposed framework 
considers high- and low-frequency information processing for the source image in principle, which e�ectively 
improves the performance of the fused image. By doing these, the proposed method e�ectively improves the 
quality of image fusion. Experimental results (both qualitative and quantitative) demonstrate the superior fusion 
performance of the proposed method compared to existing typical schemes.

�e remainder of the paper is organized as follows. "Octave Gaussian pyramid" introduces the principle of the 
octave Gaussian pyramid.  "Image fusion framework based on Octave Gaussian Pyramid" proposes the fusion 
framework based on the octave Gaussian pyramid. "Experiment and analysis" presents experimental analysis, 
and compares the performance of our method with �ve conventional methods over publicly available datasets. 
Finally, "Conclusion" concludes the paper.

Octave Gaussian pyramid
�e Gaussian function is the only possible scale-space  kernel38 and it is widely used in image processing. In image 
fusion, multi-scale transformation based on Gauss decomposition is a classical fusion framework. Generally, 
Gaussian pyramid is obtained by computing the source images with repeated Gaussian �ltering and down-
sampling. In a traditional Gaussian pyramid, each level is blurred only once by the Gaussian kernel. �e entire 
pyramid contains several detail layers and only one base  layer13.

�e Gaussian blurring of an image is de�ned as function L (x, y, σ0), which is generated by convolving 
variable-scale Gaussian function G (x, y, σ0) with an input image I (x, y) expressed as:

where “ * ” is the convolution operation, σ0 is the initial blur coe�cient, and the Gaussian function is given by:

�e octave pyramid framework proposed in this study contains two scale spaces, namely, octave and interval 
spaces, as shown in Fig. 1 (where O is the number of octaves, and S is the number of intervals). In the octave 
pyramid, two variables are important, namely the number of octaves (o) and the number of intervals (s) in the 
octave. �e two quantities (o, s) constitute the scale space of the Gaussian pyramid. Generally, the length and 
width of an image in the octave are equal. Variable o controls the size dimension, whereas s distinguishes between 
images in the same octave scale. �e variable s also controls di�erent degrees of blur in an octave. �erefore, (o, 
s) represents a sample image in the octave Gaussian pyramid.

�e construction of the octave pyramid is divided into two steps. First, the initial image is blurred with dif-
ferent coe�cients to obtain an octave space. Second, the last blurred image in the octave space is downsampled 
to obtain an image that becomes the initial image in the next octave space (subsequently processed further). �e 
two steps are repeated until the last octave. Figure 2 shows the construction process.

For octave space, the number of octaves is determined adaptively, using the following equation:

where O is the number of octaves, and (M, N) is the size of source image. �e initial Gaussian blur coe�cient of 
an image in di�erent octaves can be expressed as follows 38:

where “·” is the multiplication operation. Similarly, for the interval space, the Gaussian blur coe�cient of each 
image can be determined by

where S is the number of intervals, and k is a constant factor. �e Gaussian blur coe�cient of an image repre-
sented by (o, s) is:

(1)L(x, y, σ0) = G(x, y, σ0) ∗ I(x, y),

(2)G(x, y, σ0) =
1

2πσ 2
0

e
−

x2+y2

2σ2
0 .

(3)O = log2(min(M,N)) − 2,

(4)σo = 2
o−1

· σ0 o ∈ [1,O]

(5)σs = k
s−1

· σ0, k = 2
1/S

and s ∈ [1, S]
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�erefore, the image in the octave Gaussian pyramid can be represented as:

and

where down represents downsampling, and Io-1,S denotes the �nal interval of the (o-1) octave. Furthermore, the 
di�erence-of-Gaussian (DOG) equation can be derived from Eq.(7), as shown as follows:

(6)σo,s = 2
o−1

· k
s−1

· σ0.

(7)Lo,s = Go,s ∗ Io,1,

(8)

Io,1 =

{

I(x, y), o = 1

down(Io−1,S), o ∈ [2,O]

Go,s =
1

2πσ 2
o,s

e
−

x2+y2

2σ2o,s .

Figure 1.  Octave Gaussian pyramid.

Figure 2.  Structure split of Fig. 1
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Figure 3 shows the DOG image representation for the pyramid in Fig. 2. �e image is decomposed into high- 
and low-frequency information by the octave DOG pyramid. �e traditional Gaussian di�erence pyramid has 
only one base layer and one group of detail layers. However, in the octave DOG pyramid, the number of base 
layers is O, and (S-1) groups of detail layers are present. Speci�cally, the maximum interval value (e.g., in octave 
1 the interval 5 in Fig. 3) in each octave space is the base layer, and the remaining the intervals are detail layers.

Image fusion framework based on octave Gaussian pyramid
Figure 4 summarizes the main stages in the proposed framework. First, using the octave Gaussian pyramid, 
source images are decomposed into two parts, namely, detail and base layers. Second, the detail layers are fused 
by the maximum gradient strategy. �e base layers use the visual saliency map (VSM) rule for  fusion34. Finally, 
the fused image is obtained by reconstructing the fused detail layers and the fused base layers.

Image decomposition. On the basis of the principle introduced in Sect. 2, the image can be divided into 
detail layers and base layers using Eq. (9), as shown as follows:

where bo,s denotes the base layers and do,s represents the detail layers.
For IR and VIS source images, bIRo,s bIR o,s and dIR o,s represent the base layers and detail layers of the IR 

image, respectively; bVIS o,s and dVIS o,s represent the base and detail layers of the VIS image, respectively.

Strategy for image fusion. Fusion for base layers. In image decomposition, the base layer contains a 
wealth of information, such as image texture, contrast, edges, and other background information. �e purpose 
of base layer fusion is to transfer information from the base layer of the IR and VIS images to the fused image. 
For example, the IR images contain strong contrast information, while the VIS images have rich texture informa-
tion. �e VSM method calculates the importance of each pixel relative to the original  image39. As a result, the 
contrast and texture information in the source image can be well preserved and a better base layer fusion e�ect 
can be achieved.

VSM de�nes pixel-level saliency on the basis of a pixel’s contrast to all other pixels. �e saliency value Vk(p) 
of pixel p is de�ned as follows:

where k denotes the source images and k = {IR, VIS}, Ip denotes the intensity value of pixel p in image I, and q is 
each pixel of image I. �e visual saliency of a particular pixel is computed by individually subtracting its intensity 
value with all the pixels in the image and then summing up those values.

For Eq. (11), the pixel by pixel expansion of Vk(p) can be written as follows:

 where N is the number of pixels in I. �e saliency values are equal if two pixels have the same intensity value, 
such that Eq. (12) can be rewritten as follows:

(9)DOGo,s =

{

Lo,s s = S

Lo,s+1 − Lo,s , s = [1, · · · , S − 1]
.

(10)
bo,s = Lo,s , s = S

do,s = Lo,s+1 − Lo,s . others

(11)
Vk(p) =

∑

∀q∈Ik

|Ikp − Ikq |,

(12)V(p) = |Ip − I1| + |Ip − I2| + · · · + |Ip − IN |,

Figure 3.  DOG of Fig. 2



5

Vol.:(0123456789)

Scientific Reports |         (2021) 11:1235  | https://doi.org/10.1038/s41598-020-80189-1

www.nature.com/scientificreports/

where I denote pixel intensity, Sl represents the number of pixels whose intensities are equal to I, and L is the 
gray levels of images and L = 256 in this paper. Furthermore, the visual saliency weight map Vk will be obtained 
by calculating the visual saliency of other pixels in image using Eq. (13). Finally, the Vk is normalized to [0, 1].

In Eq. (13), we obtain a saliency map for the original image. Regions with large values of VSM typically cor-
respond to intensity and texture areas, whose information are useful and necessary for fusion. �e base layer 
fusion rule is written as

where VIR and VVIS denote the VSM of the IR and VIS images, respectively.

Fusion for detail layers. Generally, the method of detail layer fusion uses the maximum pixel value between 
the corresponding IR and VIS images. However, the details of an image are re�ected by its pixel gradient. �ere-
fore, the maximum gradient strategy is used for the detail layer  fusion40. Speci�cally, the gradient of image I is 
obtained as follows:

(13)Vk(p) =

L−1∑

l=0

Sl|I
k
p − Ikl |,

(14)Fbo,s = VSM(bIRo,s , b
VIS
o,s ) =

(V IR
o,sb

IR
o,s + (1 − V IR

o,s)b
VIS
o,s ) + (VVIS

o,s bVISo,s + (1 − VVIS
o,s )bIRo,s)

2
.

Figure 4.  Proposed imaging framework.
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where g represents the horizontal gradient operator, and g’ denotes the vertical gradient operator.
For the fusion of detail layers, the pixels with the largest gradient in IR and VIS detail layers are taken as the 

fusion result. In image processing, ∇dIR o,s and ∇dIR o,s represent the detail layer gradient in IR and VIS image 
decomposition, respectively. �e fusion strategy can be de�ned as:

where “·* ” is the matrix dot multiplication.

Image reconstruction. Image reconstruction aims to obtain the �nal fused image. First, the fused base and 
detail layers are reconstructed into an octave Gaussian pyramid. �en, the �rst interval in each octave is taken 
to form a traditional Gaussian pyramid. Finally, the �nal fused image can be obtained by reconstructing this 
traditional pyramid.

On the basis of the base and detail layers a�er fusion, the octave Gaussian pyramid is reconstructed by the 
following equation:

According to Eq. (7), Lo,s is the decomposition of Lo,1. �us, Lo,1 contains all the information in Lo,s. Similarly, 
Fo,1 is considered to contain all the information in the pyramid. �e fused image will be obtained by:

where up is the upsampling operation, and “*” represents convolution operation.

Experiment and analysis
Experimental setting. To verify the e�ectiveness of the proposed framework, 21 pairs of IR/VIS images 
are used in our experiments. Twenty-one pairs of images have been widely used in image fusion research; they 
are publicly available  online41. Some sample images from the test set are shown in Fig. 5.

In this study, �ve typical fusion methods (classi�ed into four categories) are selected for comparison with the 
proposed fusion framework. �ese existing methods include dual tree-complex wavelet transform (DTCWT)14, 
ratio of low-pass pyramid (RLP)13, convolutional sparse representation (ConvSR)23, fusion using deep framework 
(F_VGG)27, fusion by gradient transfer, and total variation minimization (GTF)32. �e DTCWT and RLP based 
fusion methods represents the multiscale transform. �e ConvSR-based fusion methods use the sparse repre-
sentation framework, and the F_VGG based fusion approach is a neural network-based method. By contrast, the 
GTF based fusion uses ‘gradient transfer and total variation minimization’ method, which is di�erent from others.

Objective evaluation plays an important role in image fusion because the performance of a fusion method is 
mainly assessed by quantitative scores on di�erent metrics. Various fusion metrics have been proposed in recent 
years. In this study, we quantitatively evaluate the performance of di�erent fusion methods using two quality 
metrics, namely, multiscale structural similarity (MS_SSIM)42, and sum of the correlations of di�erences (SCD)43. 
�e SCD is one of the newly proposed image fusion quality evaluation methods, which calculates quality by 
considering the source images and their e�ect on the fused image. �e MS_SSIM metric is based on structural 
similarity, and it provides more �exibility than the single-scale approach does in incorporating the variations of 
image resolution and viewing conditions. For all metrics, a larger value indicates a better fused result.

Comparative experiments. In�uence of octave and interval on fusion. In the proposed framework, mul-
tiple decompositions are carried out in the octave and interval space of an image. To explore the in�uence of the 
decomposition number of octave and interval on fusion, a comparative experiment was designed and evaluated 
with SCD metric.

(15)∇ =

√

I2g + I2
g
′

(16)Fdo,s = d
IR
o,s ∗ (∇d

IR
o,s > ∇d

VIS
o,s ) + d

VIS
o,s ∗ (∇d

VIS
o,s > ∇d

IR
o,s)

(17)Fo,s =

{

Fdo,s = Fbo,s , s = S

Fdo,s + Fdo,s+1
. s = [S − 1, · · · , 1]

(18)F=max[Fo−1,1, up(Fo,1) ∗ Go−1,S]. o = [O,O − 1, · · · , 2]

Figure 5.  Portion of test images used in our experiments.
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Columns 3 to 5 in Fig. 6 are the experimental results highlighting the in�uence of octave on fusion. In this 
experiment, the number of intervals is �xed to 3, and the number of octaves is set to 3, 4, and 5 respectively. �e 
quantitative results are presented in Table 1.

Columns 6 to 8 in Fig. 6 represents the experiments highlighting the in�uence of interval on fusion. In this 
experiment, the number of octaves is set to 3, and the number of intervals is set to 2, 3, and 4 respectively. �e 
quantitative analysis is presented in Table 2.

In the data analysis of Tables 1 and 2, we �nd that the fusion e�ect improves with the increase of octave and 
interval.

In�uence of fusion strategy on result. In image fusion, the common fusion strategy for the detail and the base 
layer are “Average” and “Maximum value” fusion. In the proposed fusion method, the base layer uses the VSM 
rule, and the detail layer uses the maximum gradient rule. To verify the e�ectiveness of the fusion strategies 
adopted in the proposed method, a comparative experiment is designed and evaluated with SCD metric.

Columns 3 to 5 in Fig. 7 are the experimental results obtained by applying di�erent fusion rules (average, 
maximum values, and VSM) in the base layers. �e test results are shown in Table 3. Columns 6 to 8 in Fig. 7 are 
the experimental results of fusion rules in the detail layer. �e test results are shown in Table 4. Analyzing the 
data in Tables 3 and 4, it can be found that the fusion strategy used in the proposed method performs best. �is 
shows the correctness of the selected fusion strategy.

Comparison with other fusion methods. �e fused images obtained by the �ve existing methods and 
the proposed method are shown in Fig. 8. In the images, the “fence” area is marked with a red border which is 
enlarged and shown as the image inset in the lower-le� corner. �e cyan box marks the saliency areas in images.

Figure 6.  In�uence of octave and interval on fusion.

Table 1.  In�uence of octave on fusion.

Images Forest Lake House Solider

Interval = 3

Octave = 3 1.6638 1.8155 1.7568 1.7084

Octave = 4 1.6989 1.8302 1.7768 1.7804

Octave = 5 1.6996 1.8403 1.7771 1.7814

Table 2.  In�uence of interval on fusion.

Images Forest Lake House Solider

Octave = 3

Interval = 2 1.6943 1.8395 1.7757 1.7790

Interval = 3 1.6976 1.8403 1.7761 1.7802

Interval = 4 1.6989 1.8415 1.7776 1.7814
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�e images with the highest contrast of the saliency target (cyan frame) are shown in Fig. 8e,h. However, 
artifacts are found around the saliency target in Fig. 8e. �e possible reason is that di�erences occur between 
di�erent patches, which leads to artifacts in the reconstruction. Conversely, the contrast of the saliency target in 
Fig. 8h is similar to that in the IR image. In the other fusion methods, the contrast of the saliency target is lower 
because the “averaging rule” reduces the contrast of the base layer fusion. �erefore, the fusion strategy based 
on VSM better retains the contrast of the saliency target in the image.

�e “fence” in the red border in Fig. 8 is the textural details of the image; such details are part of high-
frequency information. Similarly, artifacts are found in the image in Fig. 8e. In Fig. 8f,g, the “fence” is nearly 
invisible because the two methods lack e�ective detail retention capabilities. �e “fence” in Fig. 8d,h are clearer 
than that in Fig. 8c. �e “fence” in Fig. 8d,h have the best visual e�ect. �erefore, the proposed framework has 
better detail retention capability compared with the other methods.

Further comparison of the proposed framework with �ve other methods is provided in Fig. 9. For each group 
of results, the �rst two columns present the original IR and VIS images, respectively, whereas the remaining six 
columns correspond to the fusion results of the other six methods. As shown in Fig. 9, the results of ConvSR 
method produce artifacts. In the fusion results shown in Fig. 9f,g, the details of the image are not well preserved. 
In this respect, the fusion methods of the images in Fig. 9c,d,h have improved detail retention. However, in the 
“People” image, the methods shown in Fig. 9c,d produce a small number of artifacts (positions marked by red 
boxes), which reduces the quality of fusion. By contrast, our proposed framework does not introduce artifacts 
when preserving details. In addition, among all the comparison methods, the thermal radiation information in 
our results is e�ectively preserved and the contrast is higher.

Table 5 presents the quantitative comparison of the fusion results in Fig. 9. �e best results are highlighted in 
bold. �e results indicate that the proposed method outperforms other methods for most of the fused images. 

Figure 7.  In�uence of fusion strategy on result.

Table 3.  Fusion strategies on base layers.

Strategy Forest Lake House Solider

Base layers

Average 1.4959 1.6655 1.6947 1.6377

Maximum value 1.5549 1.6916 1.5305 1.7280

Maximum gradient 1.6989 1.8402 1.7770 1.7804

Table 4.  Fusion strategies on detail layers.

Strategy Forest Lake House Solider

Detail layers

Average 1.6873 1.8366 1.7748 1.7613

Maximum value 1.6625 1.8148 1.7555 1.7072

Maximum gradient 1.6989 1.8402 1.7770 1.7804
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�e proposed framework only has lower MS_SSIM values compared with the DTCWT method on ‘‘Helicopter” 
and ‘‘Wilderness” images.

A fusion comparison test is conducted on all 21 pairs of images. Figure 10a shows the objective comparison 
of the six existing methods using the MS_SSIM metric. Figure 10b shows the fusion evaluation of 21 pairs of 
images on the SCD metric. Overall, the proposed method achieves better results in terms of the MS_SSIM metric, 
followed by the DTCWT method. In terms of SCD, DTCWT and F_VGG methods have similar performance 
curves, but they remain lower than the proposed framework. Speci�cally, in the evaluation of the 9th, 11th, 19th 
and 20th pairs of images in Fig. 10a, our proposed method is slightly lower than that of DTCWT. In the 20th 
pair of images in Fig. 10b, our method is slightly lower than RLP. In summary, Fig. 10 validates that the proposed 
method is superior to the other �ve fusion methods.

Figure 8.  “Sentry” source image pair and their fused images obtained with di�erent fusion methods.

Figure 9.  Comparison of fusion results from di�erent methods on the “Sentry”, “Boat”, “Helicopter”, 
“Wilderness” and “People” source images.
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Conclusion
�is study presents a fusion framework based on an octave Gaussian pyramid. On the basis of the principle of 
the octave Gaussian pyramid, the image is decomposed into two scale spaces, namely, octave and interval spaces. 
Di�erent strategies are used on the decomposed base and detail layers to obtain the fused octave Gaussian pyra-
mid. Finally, the fused image is obtained by restructuring the pyramid. �e proposed framework has two obvious 
advantages: (1) �e decomposition level of the image refers to the number of octave spaces in this framework, 
which realizes adaptive adjustment. (2) Only one set of base and detail layers is used in traditional multiscale 
decomposition. However, multiple sets of detail and base layers are obtained in the proposed framework. In 
addition, in this study, the existing fusion methods are divided into four categories. We select typical methods 
from each category to compare with the proposed framework for comprehensive evaluation. �e results testify 
the e�ectiveness of our proposed framework.

Table 5.  Quantitative comparison of di�erent fusion methods. Bold values represent the best fusion e�ect. 
�e larger the value of the evaluation metric, the better the fusion e�ect.

Images Metric DTCWT RLP ConvSR F_VGG GTF Proposed

Sentry
SCD 1.4815 1.4463 1.0610 1.4842 0.9697 1.6326

MS_SSIM 0.8796 0.8519 0.6941 0.8699 0.7843 0.9003

Boat
SCD 1.9082 1.8903 1.1833 1.9096 1.1407 1.9526

MS_SSIM 0.9369 0.9232 0.8262 0.9126 0.8770 0.9435

Helicopter
SCD 1.6658 1.6511 1.1060 1.6845 1.3807 1.7701

MS_SSIM 0.9423 0.9156 0.8799 0.9200 0.9324 0.9377

Wilderness
SCD 1.6165 1.6165 1.2408 1.6468 1.1066 1.7606

MS_SSIM 0.9052 0.8509 0.8195 0.8484 0.8248 0.8852

People
SCD 1.5558 1.5698 1.0417 1.5409 0.7988 1.7268

MS_SSIM 0.9115 0.8377 0.7846 0.8947 0.7979 0.9195

Figure 10.  Quantitative comparisons of the metrics (for metrics, larger values indicate better performance).
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